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Mining multi-center heterogeneous medical
data with distributed synthetic learning

QiChang 1,9, ZhennanYan 2,9,MuZhou2,3,9, HuiQu1, XiaoxiaoHe1,HanZhang1,
Lohendran Baskaran4, Subhi Al’Aref5, Hongsheng Li6,7,10 ,
Shaoting Zhang3,7,8,10 & Dimitris N. Metaxas 1,10

Overcoming barriers on the use of multi-center data for medical analytics is
challenging due to privacy protection anddata heterogeneity in the healthcare
system. In this study, we propose the Distributed Synthetic Learning (DSL)
architecture to learn across multiple medical centers and ensure the protec-
tion of sensitive personal information. DSL enables the building of a homo-
geneous dataset with entirely synthetic medical images via a form of GAN-
based synthetic learning. The proposedDSL architecture has the following key
functionalities: multi-modality learning, missing modality completion learn-
ing, and continual learning. We systematically evaluate the performance of
DSL on different medical applications using cardiac computed tomography
angiography (CTA), brain tumor MRI, and histopathology nuclei datasets.
Extensive experiments demonstrate the superior performance of DSL as a
high-quality synthetic medical image provider by the use of an ideal synthetic
quality metric called Dist-FID. We show that DSL can be adapted to hetero-
geneous data and remarkably outperforms the real misaligned modalities
segmentation model by 55% and the temporal datasets segmentation
model by 8%.

Multi-center healthcare data sharing is challenging due to privacy
regulations andheterogeneity to advancemedical research. It is widely
known that sufficient medical data samples are the foundation to
enable successful machine learning algorithms1 in a range of medical
fields such as neuroscience2, genetics3, drug discovery4,5, and disease
diagnosis and prognosis6–8. Deep learning utilizes complex models
withmillions or billions of parameters and requires significantly larger
data samples compared to classical machine learning algorithms to
achieve its remarkable performance. However, the available medical
datasets for machine learning research often lack the necessary data
size with sufficient annotations. The representative national lung
screening CT cohort includes 54 thousand9 CT images, accounting for

only 0.06%of the annual acquired images in theUnited States10. Such a
centralized dataset is significantly smaller in size than the vision
benchmark ImageNet11 with 14 million images.

Although cross-institutional collaboration could accelerate med-
ical AI research, current data sharing and aggregation are challenged
by the mandatory privacy protection of patient records and related
review mechanisms. The Institutional Review Board (IRB)12 which
provides comprehensive guidelines to protect a subject’s privacy, and
a series of data protection regulations and protocols, including
HIPAA13,14, and EU GDPR15,16, are necessary to protect and use patient
data, but at the same time create daunting bottlenecks for sharing real-
world data across institutions. In addition, collecting data in a
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centralized hub increases the risk of information leakage as routine
data anonymization can not guarantee data privacy protection17. ue to
the above issues, synthetic data generation and processing methods
are gaining momentum since they have the potential to provide large-
scale accessible data without compromising privacy18. Synthetic data
have shown their potential to complement real-world data and facil-
itate all stages of model training19. For instance, training generative
methods such as generative adversarial networks can generate high-
quality synthetic data to boost the performance of image
reconstruction20, classification21, segmentation22, and domain
translation23.

Multi-centermedical records are inherently heterogeneous due to
the various hospital acquisition protocols, scanner types, data mod-
alities, and patient outcomes24,25. With the growth of medical data
volumes, integrative analysis of multi-center data is becoming
increasingly important to accelerate clinical workflow quality and
quantitation. Federated learning (FL)26–28 methods learn a base model
across multiple data centers. However, current FL approaches are
often inefficient in learning heterogeneous data29 and require
retraining to use improved future deep-learning techniques30. In
addition, in clinical centers, the accessibility and availability of data
depend on IRB restrictions which is a clear hurdle to support continual
learning in real-world scenarios31.

In this study, we propose a novel distributed synthetic learning
(DSL) architecture to addresspatient privacy anddata heterogeneity in
using multi-center data. Our distributed synthetic learning archi-
tecture can generate high-quality synthetic images from variousmulti-
center image modalities and also supports continual learning. We
demonstrate the privacy-protection advantages of our approach
experimentally by utilizing the generated synthetic images only in the
downstream segmentation and classification models which we then
test on real-world patient data. We then conduct extensive evaluations
of DSL on three different multi-center medical data sets, i.e., CTA
cardiac data, multi-modality MRI brain data, and histopathology data.
The data from each of the centers have been acquired with varying
protocols, scanners, microscopes, and settings, which makes them
highly heterogeneous. The results demonstrate the improved perfor-
mance of DSL compared to the state of the art for privacy-preserving
learning. Finally, we measure the synthetic image quality using the
proposed distributed metric termed Dist-FID. We believe Dist-FID will
be the replacement of FID32 when distributed learning is used for
medical image generation.

Results
In this section, we conduct experiments to systematically and quanti-
tatively validate DSL in a variety of settings. We investigate the effec-
tiveness of DSL in image segmentation tasks using multi-source
heterogeneous data from distributed data centers. Then, we explore
two practical cases involving multi-modality and missing-modality
image data, emphasizing the DSL capability of learning the misaligned
data distribution. Finally, we validate DSL in a challenging continual
learning experiment where the participating data centers may enter
and exit the deep-learning process at various time points.

Overview of approach
As shown in Fig. 1, DSL is designed to address the medical privacy,
data heterogeneity, and multi-modality challenges in multi-center
datasets. Figure 1a illustrates that DSL is comprised of one central
generator and multiple distributed discriminators located in differ-
ent data centers (nodes). The central generator takes task-specific
inputs (e.g., segmentation masks) and generates synthetic images
that follow a similar distribution as the data distribution of the data
centers. Using distributed adversarial learning, our architecture
ensures that the central generator learns a joint data distribution
without direct access to the private data of the data centers. The

learned generator produces a large public synthetic database for use
in downstream tasks. Our method can not only learn from single-
modality heterogeneous medical data but also from multi-modality
data shown in Fig. 1b. DSL can handle a complex and heterogeneous
situation even when some modalities are missing as shown in Fig. 1c.
This is achieved because the missing-modality completion of DSL’s
central generator learns to synthesize the missing modality. Fur-
thermore, DSL can be applied in a challenging continual learning
setting where the data centers are only temporarily available as
shown in Fig. 1d. The continual-learning ability of DSL keeps learning
from multiple data centers and prevents the generator model from
catastrophic forgetting31. In particular, we use continual learning in a
four-separate-data-center setting, where the data centers are acces-
sed sequentially. In the following, we provide details on the perfor-
mance of DSL and comparisons to three state-of-the-art methods,
namely, federated-learning GAN (FLGAN)33, AsynDGAN30, and
FedMed-GAN23. FLGAN represents the typical way of federated
learning by training and aggregating the samemodel across centers.
AsynDGAN is a baseline distributed GAN model that showed pro-
mising performance in learning to synthesize T2 brain images and
histopathology images. It shares a similar architecture as DSL, but
lacks support for heterogeneous data and an efficient model selec-
tion strategy. FedMed-GAN is a recently proposed federated-learning
GAN method that shows state-of-the-art performance for cross-
modality brain image synthesis. In our implementations, all com-
paring GANs used the same backbone network. The datasets used in
all experiments are summarized in Table 1. The training and testing
samples are split at the patient level. The training images are used to
learn the DSL models and other comparing methods. The testing
images are used in the downstream tasks for evaluation.

Distributed synthetic learning
We perform several experiments with different types of multi-center
datasets. First, we demonstrate that DSL can learn from multi-center
heterogeneous cardiac CTA images to obtain a central generator that
can generate high-fidelity synthetic CTA images by using masked
cardiac images as input. Masking is done to outline the key compo-
nents of the heart such as the ventricles, the atria, and the aorta. We
use three public cardiac CTA datasets, WHS, CAT08, and ASOCA,
acquired from multiple institutes globally (see Data collection and
processing for details) for evaluation.

Figure 2c and Table 2 show the segmentation performance of
different methods learned from the heterogeneous cardiac multi-
center datasets. In Table 2, the first row of Real-All shows the seg-
mentation results based on centralized learning of all three cardiac
datasets together, which we use as a baseline to compare our method.
Due to the data restrictions outlined previously, this is a hypothetical
learning scenario. A possible real scenario is to learn segmentation
separately on data from a single data center. The experiments corre-
sponding to Real-WHS, Real-CAT08, and Real-ASOCA show segmen-
tation results using the same segmentation method and data from a
single data center. The rows of FLGAN, AsynDGAN, FedMed-GAN, and
DSL correspond to experiments that segmentationmodels are trained
on synthetic data, which is generated by different generative learning
models. They use the three private cardiac datasets from the above
data centers. We observe that the segmentation model relying on a
single dataset shows significantly inferior performance since the Dice
score of Real-CAT08 is about 25% less than the Real-All result. In terms
of the Dice score, 95%Hausdorff Distance (HD95), and average Surface
Distance (SD), DSL demonstrates superior performance compared
with other state-of-the-art federated learning methods or direct
learningmethods that use a single dataset. For example, theDice score
of FLGAN with federated averaging aggregation is 0.709, which is
significantly lower (p = 0.0001 by a two-sided paired t-test) than DSL
with Dice of 0.864.
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Fig. 1 | Overview of the DSL architecture. a The architecture contains one central
generator andmultiple distributed discriminators, each located in amedical entity.
Then the well-trained generator can be used as an image provider to build a syn-
thetic database for downstream machine-learning tasks. The following three rows
show three different scenarios for heterogeneous medical data. In (b), the gen-
erator learns and generates multi-modality synthetic images at the same time. In

(c), the data centers provide data with misaligned modalities. To highlight, the
proposedDSL framework could leverage themisaligned information frommultiple
data centers and synthesizeunifiedmulti-modality images. In (d), the temporal data
centers can only be accessed sequentially. DSL can learn from each temporal
dataset without catastrophically forgetting what themodel has previously learned.

Article https://doi.org/10.1038/s41467-023-40687-y

Nature Communications |         (2023) 14:5510 3



We also assess the quality of synthetic images and Fig. 2a shows
examples of synthetic images of each generative method for the het-
erogeneous cardiac datasets. By selecting the best model with the
lowest Dist-FID score to generate synthetic data, DSL outperforms the
other federated and distributed GANs in terms of peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM). The pri-
mary reason for using Dist-FID in model selection is that such metric
can reflect the actual image quality of all distributed datasets, rather
than calculating FID by using a subset of all datasets or one of the
private datasets. From the curves in Fig. 2b, we recognize that Dist-FID
is more favorable than other image quality measurement strategies to
select the optimized epoch model, and Dist-FID can be an ideal
replacement for the Frechet Inception Distance (FID)32 in the dis-
tributed system. For instance, the synthetic images by FLGAN33, have a
Dist-FID score of 72.05, PSNRof 13.55, and SSIMof0.414, while our DSL
can generate better-quality images with a Dist-FID of 61.09, PSNR of
16.04, and SSIM 0.456.

Multi-modality distributed synthetic learning
We further validate our approach through multi-modality distributed
synthetic learning (MM-DSL) on the multi-modality MRI datasets. We
simulate three data centers, including CBICA, TCIA, and OTHER. Tak-
ing the three tumor sub-region labels and the brain skull as the input,
MM-DSL learns to generate realistic multi-modality (T1, T1c, T2, Flair)
brain MRI images (see Data collection and processing for details). For
the downstream machine-learning task, we focus on the whole-tumor
segmentation.

From Table 3 and Fig. 3, MM-DSL achieves higher performance
than the baselines of FLGAN, FedMed-GAN, and AsynDGAN on multi-
modality image generation and whole-tumor segmentation on the
BraTS dataset. TheDice score ofMM-DSL is 0.829, which is remarkably
higher than FLGANwith 0.736, FedMed-GANwith 0.73, andAsynDGAN
with 0.802. However, themodels learned from a single dataset may be
unstable due to the unbalanced size and different image quality. For
instance, the Dice score of Real-OTHER, 0.765, is significantly lower
than Real-TCIAwith 0.823. In addition, the synthetic data generated by
MM-DSL could also be treated as a data augmentation to boost the
performance of the single real image dataset. For instance, by com-
biningMM-DSL’s synthetic data andReal-TCIAdata, the Syn+Real-TCIA
achieves a Dice score of 0.854, which is better than Real-TCIA with
0.823 and MM-DSL alone with 0.829. It is worth mentioning that the
improvement achieved by this type of data augmentation can bemore
remarkable for smaller data size from a single data center. For exam-
ple, the segmentationDice score of the Real-OTHER dataset with 0.765
is boosted with augmentation by 7.7% to 0.824.

To validate the generalization ability of DSL, we further verify the
MM-DSL synthetic image quality with another downstream binary

classification task of image-based tumor region recognition. We split
the BraTS dataset into two categories (positive 11,349 and negative
14,691) to train the classifiers and test on 6510 real-world brain MRI
images. As reported in Supplementary Table 1, differentmethods used
either real samples or synthetic samples in the training, and all used the
same VGG network architecture34 with BCE loss. The accuracy of MM-
DSL is 0.897, which is significantly higher than the other synthetic-
image-based methods. For instance, MM-DSL outperforms FLGAN by
27%.MM-DSL also achieves better performance than the segmentation
model trained by using a small-scale real dataset (Real-OTHER), which
only obtains an accuracy of 0.74%.

Missing-modality completion distributed synthetic learning
We evaluate the robustness of our method in a complex and hetero-
geneous setting where the MRI modalities are misaligned across data
centers. In particular, we test the robustness by removing a different
modality from each of the three data centers. As a result, we removed
all Flair images from the CBICA center, the T1c images from the TCIA
center, and the T2 images from theOTHER center. This is a challenging
scenario as the datamodalities are different across the data centers. To
be able to learn to generate complete-modality synthetic data in this
challenging scenario, we adapt the number of discriminators in the
MM-DSL architecture, noted as Hetero-MM-DSL (see Methods for
details). We compare Hetero-MM-DSL with the federated segmenta-
tion method FedSeg (https://fedsegment.github.io/home), which
learns directly from multi-channel real data. Real-FedSeg represents
the FedSeg when it learns from complete-modality real data, while
Hetero-Real-FedSeg is FedSeg when it learns from missing-modality
data. Each missing modality was represented as a channel of all zeros.
We selected FedSeg to compare with our DSL for the following two
major reasons. First, FedSeg is a federated learning method that can
learn from distributed data. Second, in this case, directly learning a
segmentation model from real data is considered an upper bound of
learning from synthetic data. Since the MM-DSL already achieved
better results than the other GAN-basedmethods as shown in Tables 2
and 3, we just need to compare the results of Hetero-MM-DSL with the
results of Hetero-Real-FedSeg and present them in Table 4.

From Table 4 and Fig. 4, Hetero-MM-DSL achieves better seg-
mentation performance on missing modality settings, while the
federated-learning method significantly underperforms. For example,
the Dice score of Hetero-MM-DSL is 0.795, which is significantly higher
than the 0.353 Dice score of Hetero-Real-FedSeg. In addition, Hetero-
MM-DSL can handle this challenging problem with a small perfor-
mance loss of 4% (0.795 Dice score) compared toMM-DSL (0.829 Dice
score) and achieved this by completing the missing modalities with
synthetic images. In contrast, the performance of FedSeg, which uses
the FedAvg optimization method, is significantly reduced due to the

Table 1 | Summary of datasets

Cardiac CTA WHS64–66 ASOCA67,68 CAT0869 –

Train Subjects (Image#) 20 (3031) 32 (4642) 26 (3568) –

Test Subjects (Image#) 40 (6360) 8 (1180) 6 (756) –

Avg Spacing (mm3) 0.442 × 0.6 0.42 × 0.625 0.322 × 0.4 –

Scanner Philips Unknown Siemens –

BraTS1872–74 CBICA TCIA OTHER –

Train Subjects (Image#) 69 (4638) 85 (5736) 14 (975) –

Test Subjects (Image#) 19 (1165) 17 (1172) 6 (393) –

Nuclei75 (tasks#) Liver (t1) Breast (t2) Kidney (t3) Prostate (t4)

Train Subjects (Nuclei#) 4 (1906) 4 (1508) 4 (4866) 4 (1634)

Test Subjects (Nuclei#) 2 (838) 2 (707) 2 (716) 2 (766)

ThecardiacCTAdatawere collected from three different sources and imageswere acquired fromdifferent deviceswith various spacings. TheBraTS18datawas collected fromdifferent data centers
with fourmodalities. In themissingmodality completion setting, themodalities of different centers aremisaligned. In theNuclei dataset, eachorganhas adifferentdata size andweconduct continual
learning by using them sequentially.
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different missing data modalities from each data center. For example,
the Dice score of Real-FedSeg, which is 0.839 dropped significantly by
58% to 0.353 when Hetero-Real-FedSeg is used.

Continual synthetic learning
We also evaluate our approach in a continual synthetic learning sce-
nario with temporal datasets from multiple data centers, each con-
sisting of data from a different organ, namely the liver, breast, kidney,
and prostate. To simulate time, each dataset is exclusively accessed for
a defined period of time during the learning process, starting from the
liver dataset. Thus, there are four sequential continual learning tasks
that use the liver, breast, kidney, and prostate datasets, respectively.

Our approach is based on the modification of DSL by incorpor-
ating a reminding loss (described in “Methods”) for continual learning,
which we term CL-DSL. We compare the proposed CL-DSL with two
baseline approaches and one state-of-the-art method, TDGAN35. All
four methods learn generative models, use the same network archi-
tecture for the generator and discriminator, while the main difference
among them is the loss functions. The first baseline approach we term
Joint Continual Learning (JCL), does not include distributed learning of
a generative model. It leans a GAN model in a centralized sequential

Fig. 2 | Qualitative results of the CTAheart experiment. a Four image generation
examples for the GAN-based methods. Each row has the multi-component mask
image of the heart (Label), which is the input of the image generation, the corre-
sponding real CTA image (Real), and the synthetic images generated by different
methods (FLGAN, FedMed-GAN, AsynDGAN, DSL). DSL generates images with
higher scores in terms of peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). b The Dist-FID and FID score curves over the training

epochs. FID is calculated using real data from all data centers. The red circles
indicate the best epoch for eachmethod, while the arrows show the consistency of
FID and Dist-FID scores. c Three examples of segmentation results for different
methods vs the ground truth Label. The segmentation model learned from DSL’s
synthetic data obtains more accurate results than the other methods (Real-WHS,
Real-CAT08, Real-ASOCA, FLGAN, FedMed-GAN, AsynDGAN) and is comparable to
centralized learning (Real-All).

Table 2 | Quantitative results of cardiac CTA segmentation

Data/Method Average Dice↑ Average
HD95 (mm)↓

Average
SD (mm)↓

Real-All 0.906 ± 0.037 6.89 ± 5.69 1.67 ± 0.97

Real-WHS 0.831 ± 0.086 13.81 ± 9.34 3.37 ± 2.15

Real-CAT08 0.675 ± 0.145 33.24 ± 12.12 9.28 ± 4.80

Real-ASOCA 0.838 ±0.093 18.86 ± 14.47 3.94 ± 2.87

FLGAN 0.709 ±0.153 37.33 ± 15.47 6.14 ± 2.89

FedMed-GAN 0.656 ±0.199 45.68 ± 10.97 8.45 ± 4.14

AsynDGAN 0.853 ±0.067 20.58 ± 10.28 3.16 ± 1.87

DSL 0.864 ± 0.068 13.23 ± 7.93 2.85 ± 1.66

The reported results are the average scoreof seven sub-structures (mean ± standarddeviation) in
terms of Dice score, 95% quantile of Hausdorff distance (HD95), and average surface distance
(SD). In the first column, ‘Real-’ indicates the segmentation model is trained from original real
images, otherwise themodel is trained fromsynthetic images. Real-All is the result of centralized
learning from all three datasets together, which is an ideal setting. The rows of Real-WHS, Real-
CAT08, and Real-ASOCA show the segmentation results by learning from a single data source,
respectively. The FLGAN, AsynDGAN, FedMed-GAN, and our DSL are different generative
models learning from the three distributed datasets. DSL outperforms the other generative
approaches and the models learned from real data of a single data center.
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way by accumulating all the data in one location for learning. In par-
ticular, after learning task 1, it keeps the copy of task 1 data and adds
task 2 data into the training set to emulate continual training of the
GAN. In contrast, the othermethods conduct the continual learning by
keeping the learned knowledge in the model, while the datasets are in
different data centers. The second baseline we term Fine-Tuning, uses
the same learning architecture as CL-DSL, but without the reminding
loss. It only keeps fine-tuning the generator using the temporal data-
sets and the associated discriminators. The third method, TDGAN35,
uses the same reminding loss as CL-DSL, but has no model selection
strategy, and insteadof usingmetrics likeDist-FIDmentioned earlier, it
only keeps the last epoch’s model.

Figure 5a shows the synthetic image quality comparisons among
different methods after the final task. The synthetic samples are then
used to train segmentation models. Figure 5b shows FID vs Dist-FID
curves when DSL is learning task 4. Figure 5c compares the segmen-
tation results from the different methods qualitatively. We find that
Fine-Tuning produces more destructive synthetic images with PSNR
14.15 and SSIM 0.223, while CL-DSL generates superior quality images
of each organ with PSNR 16.99 and SSIM 0.32. The segmentation
model using high-quality synthetic images which are generated by CL-
DSL obtains better segmentation results than other approaches.
Table 5 compares the average performance of different methods for
continual learning using the four tasks sequentially. It shows that CL-
DSL achieves the best performance in terms of catastrophic forgetting
in the continual learning. CL-DSL has a clear advantage over TDGAN35

in most metrics. It is worth noting that the Fine-Tuning has worse
image generation and segmentation performance compared to CL-
DSL, even though Fine-Tuning learns all images from all temporal
datasets. Fine-Tuning quickly forgets the features learned from the
previous tasks during continual learning and can not continuously
improve its performance since it does not use the reminding loss.

Membership inference risk evaluation
The ability to defend against malicious attacks is vital for building
privacy-preserving machine-learning applications in medicine, espe-
cially in a distributed learning scenario. To validate the robustness of
DSL under potential adversarial attacks, we extend to perform key
ablation studies. We focus on themembership inference attack, which
is a type of adversarial attack for machine learning models36 that
relates to privacy concerns.

In our study, we consider two types of attack settings to analyze
the membership inference risk on the BraTS dataset. In setting 1, the
attacker has access to a set of real images and the transformation-
augmented synthetic database. Specifically, the attacker can access a
set of real images from the OTHER center, including 300 images used
for training the DSL (positive samples) and 300 images not used for
training (negative samples). We evaluate the attacker’s performance
on a randomly selected set of real images from the CBICA and TCIA
centers, consisting of 1000 positive and 1000 negative samples. We
adopt a membership inference risk analysis similar to37. First, we cal-
culate image similarity metrics between each real image and each
synthetic image using the normalized root-mean-square error and
perceptual distance. The perceptual distance is defined as 1-cosine of
images’ perceptual features, which are extracted from a pretrained
ResNet50 model on the ImageNet database. These two metrics are
normalized and summed to identify the closest synthetic image to
each real image. Then, we use the two similarity metrics from the
closest synthetic image as independent features to represent the real
image and train SVM classifiers38 on the 600 samples, and test on the
2000 samples. The linear support vector classifier (SVC) exhibits low
testing accuracy, with an F1 score of 0.58, recall of 0.52, precision of
0.66, and AUC of 0.65. Similarly, the performance of the RBF-kernel
SVC is also low, with an F1 score of 0.57, recall of 0.53, precision of
0.60, and AUC of 0.62. The membership inference attack faces two
significant challenges. Firstly, 2D medical images from the same ana-
tomical positions typically exhibit similar contextual information
across different patients. This similarity can create numerous ambi-
guities during the attack. Secondly, the presence of affine transfor-
mations (such as rotation and scaling) and pixel-wise intensity
differences in synthetic images make it more difficult to identify the
correctmatch for the target. These challenges arise due to the absence
of an ideal similaritymeasurement that caneffectively address all these
complexities.

In setting 2, the attacker has black-box access to the trained
image generator through an API. By providing a real image’s mask as
input to the API, the attacker can obtain a corresponding synthetic
image and compare it with the real image. We utilize two image
similarity metrics (normalized root-mean-square error and percep-
tual distance) between paired real and synthetic images to perform a
membership inference attack. Specifically, we use the same real data
samples as in the previous setting to train and test SVM classifiers. By
employing a linear support vector classifier (SVC), we obtain classi-
fication results on the testing samples, yielding an F1 score of 0.54,
recall of 0.55, precision of 0.53, and AUC of 0.55. The utilization of an
RBF-kernel SVC produces slightly lower results, with an F1 score of
0.45, recall of 0.38, precision of 0.54, and AUC of 0.55. The failed
attack indicates that our trained generator has strong generalization
and is not overfitting to the training data. Alternatively, a recent
study proposed a membership inference attack technique39 that
worked on all major cloud-based machine learning services. The
method first learned multiple “shadow models” that imitate the
behavior of the target mode and then learned an attack model based
on the outputs of the shadowmodels39. However, in our use case, the
attacker can hardly learn good “shadow models” because of no
access or knowledge of the discriminators and difficult training of
GANs in practice40.

It is therefore recognized that our DSL framework has a low
membership inference risk. The privacy preservation inour framework
could be further enhanced by incorporating additional security
mechanisms like differential privacy41 (all federated-learning methods
in our experiments were trained without differential privacy). How-
ever, introducing differential privacy comes with a notable accuracy
performance cost42. Introducing differential privacy to MM-DSL in the
BraTS experiment makes the segmentation accuracy drop from Dice
0.829 ±0.128 in Table 3 to 0.730 ± 0.201.

Table 3 | Quantitative results of whole tumor segmentation

Data/Method Dice ↑ HD95 (mm)↓ SD (mm)↓

Real-All 0.862 ±0.128 7.56 ± 10.90 1.48 ± 2.02

Real-CBICA 0.801 ± 0.142 27.11 ± 25.12 4.54 ± 4.42

Real-TCIA 0.823 ±0.117 10.32 ± 10.53 1.90 ± 1.19

Real-OTHER 0.765 ±0.167 15.61 ± 13.39 2.81 ± 2.36

FLGAN 0.736 ± 0.197 19.23 ± 17.19 3.50 ± 2.69

FedMed-GAN 0.730 ±0.213 18.40 ± 17.17 3.49 ± 2.93

AsynDGAN 0.802 ±0.162 15.95 ± 15.05 2.43 ± 1.66

MM-DSL 0.829 ±0.128 11.50 ± 12.82 1.99 ± 1.86

Syn + Real-CBICA 0.841 ± 0.156 9.56 ± 13.37 1.91 ± 3.07

Syn + Real-TCIA 0.854 ± 0.093 10.50 ± 12.29 1.71 ± 1.30

Syn +
Real-OTHER

0.824 ±0.126 17.83 ± 24.08 2.81 ± 3.46

All methods learn from multi-modality brain MRI data. The reported results (mean ± standard
deviation) include Dice score, 95% quantile of Hausdorff distance (HD95), and average surface
distance (SD). In the first column, ‘Real-’ indicates the model trained from original real images,
otherwise, the model is trained from synthetic images. Real-All merges together all data of
CBICA, TCIA, and OTHER. ‘Syn + Real-’ represents synthetic data augmentation by adding the
synthetic data from MM-DSL. MM-DSL outperforms the other generative approaches and the
models learned from real data of a single data center.MM-DSL’s synthetic data can also improve
the segmentation model learned from a single data center by the ‘Syn+Real’ augmentation.
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Discussion
Learning from cross-silo private and heterogeneous data is a major
challenge to enable large-scale, multi-center healthcare analytics.
We have developed a GAN-based distributed architecture, termed
Distributed Synthetic Learning (DSL), that achieves superior per-
formance compared to the state of the art for heterogeneous and
privacy-sensitive medical image data (see the tables in Results and
the box plots in Supplementary Fig. 1). The superior performance of
DSL is attributed to the distributed architecture containing one
central generator andmultiple distributed discriminators, as well as
the novel efficient Dist-FID metric for selecting an optimal model.
These two critical innovations facilitate DSL to characterize het-
erogeneous data properties, compensate for the misalignment of
data modalities, and ensure privacy-preserving medical image
analysis. In the following, we offer key insights into the advantage of
DSL over other types of distributed architectures for building
privacy-preserving distributed computational architectures for
image generation.

Fig. 3 | Qualitative results of the multi-modality MRI brain experiment. a One
example of real multi-modality MRI brain images (Real), and the corresponding
synthetic images generated by different methods (FLGAN, FedMed-GAN, AsynD-
GAN, MM-DSL) with image quality metrics of peak signal-to-noise ratio (PSNR) and
structural similarity indexmeasure (SSIM).bTheDist-FID and FID score curves over
the training epochs. The red circles indicate the best epoch for eachmethod, while

the arrows show the consistency of FID and Dist-FID scores. c Three examples of
segmentation results for different methods vs the ground truth Label. The seg-
mentation model learned from MM-DSL’s synthetic data obtains more accurate
results than other methods (Real-CBICA, Real-TCIA, Real-OTHER, FLGAN, FedMed-
GAN, AsynDGAN) and is comparable to centralized learning (Real-All).

Table 4 | Quantitative evaluation of the missing-modality
experiment

Dice ↑ HD95 (mm)↓ SD (mm)↓

Real-FedSeg 0.839 ± 0.157 9.24 ± 12.42 1.75 ± 1.69

Hetero-Real-
FedSeg

0.353 ± 0.144 65.84 ± 10.36 16.26 ± 3.66

MM-DSL 0.829 ± 0.128 11.50 ± 12.82 1.99 ± 1.86

Hetero-
MM-DSL

0.795 ±0.193 18.37 ± 19.44 4.00± 9.61

All methods learn frommissing-modality brain MR data. The reported results (mean ± standard
deviation) include Dice score, 95% quantile of Hausdorff distance (HD95), and average surface
distance (SD). ‘Real-FedSeg’ indicates the segmentation model is trained by FedSeg from real
complete-modality data in multiple data centers. ‘MM-DSL’ indicates the model is trained from
the synthetic data generated by MM-DSL, which learns from complete-modality data. ‘Hetero-’
represents the adjustedmethods for learning frommissing-modality data. Hetero-MM-DSL leads
to comparable segmentation results to the MM-DSL which learns from complete-modality data
and is significantly better than the Hetero-Real-FedSeg.
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An essential feature that distinguishes DSL from other related
approaches is the highly adaptable architecture capable of learning
from heterogeneous data. The DSL framework is generalizable and
can be used in various clinically important applications with sig-
nificant data challenges introduced by varying imaging modalities,
disease characteristics, and clinical acquisition protocols43,44. As
seen in Fig. 1b, c, d, DSL works with multi-modality data, missing
modalities, and temporalmedical image datasets that often occur in
clinical applications. DSL successfully addresses the data distribu-
tion misalignment in synthetic data generation applications. In the
case of missing-modality data, DSL trained from misaligned mod-
ality data from different data centers can infer and complete the
missing modalities and significantly outperforms the FedSeg by
55%. These DSL capabilities allow DSL to analyze large volumes of
medical image data.

The image quality assessment with the Dist-FID metric represents
an important contribution to this work. Although FID32 has beenwidely
used to evaluate image quality over an integrated dataset, measuring
the overall image quality in multi-center data and privacy-sensitive
scenarios remains largely unsolved. Simply applying the FID inception
metric calculation in distributed private datasets is impractical due to
data privacy restrictions. Previous distributed GAN methods30,45 used
public testing datasets to measure the synthetic image quality using
the FID score. Such an approach inevitably leads to inaccuracies since
the FID is unable to assess the image quality for each heterogeneous
dataset, due to varying data sizes, modalities, and image quality. In our
study, we find that the Dist-FID is an effective replacement of FID in
distributed learning settings. FromFigs. 2b, 3b, and 5b,weobserve that
the Dist-FID shows score consistency compared to FID for measuring
image quality in each epoch. We can use Dist-FID to select the best

Fig. 4 | Qualitative results of the missing-modality MRI brain experiment.
a Three examples of real brain images from three data centers respectively (Real-
TCIA, Real-CBICA, Real-OTHER), and the corresponding synthetic images from our
method (Heteo-MM-DSL). The red dash boxes indicate the missing modality and
the yellow solid boxes indicate the completed synthetic image generated by DSL.

b Two examples of segmentation results for different methods vs the ground truth
Label. The segmentation model learned from Hetero-MM-DSL’s synthetic data
obtains more accurate results than Hetero-Real-FedSeg and does not have a clear
performance drop compared to the complete-modality model (MM-DSL).
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Table 5 | Quantitative results of nuclear segmentation

Method Task1 (liver) Task2 (breast) Task3 (kidney) Task4 (prostate)

Dice ↑ AJI ↑ Dice ↑ AJI ↑ Dice ↑ AJI ↑ Dice ↑ AJI ↑

JCL 0.6676 0.3420 0.7114 0.4457 0.7350 0.4814 0.7627 0.5184

Fine-Tuning 0.6676 0.3420 0.6950 0.4405 0.7142 0.4195 0.6902 0.4273

TDGAN 0.6676 0.3420 0.6961 0.4323 0.7164 0.4512 0.7481 0.4931

CL-DSL 0.6676 0.3420 0.7346 0.4638 0.7428 0.4605 0.7633 0.4828

All comparingmethods learnGANmodels in thecontinual learning setting and the segmentationmodels are trained from thecorresponding synthetic data. The reported results include themeanof
theDice score andAggregated Jaccard Index (AJI). Note that the results in the Task1 columns are the same among all themethods because the learning processes of Task1 are the same for different
approaches. CL-DSL outperforms the other methods and obtains close performance to the centralized-learning method JCL.

Fig. 5 | Qualitative results of the continual learning experiment on the nuclei
dataset. a Four examples of real pathology images of four organs from different
data centers (Real), and the corresponding synthetic images generated by different
methods (JCL, Fine-Tuning, TDGAN, CL-DSL) with image quality metrics of peak
signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). b The
Dist-FID and FID score curves over the training epochs of the last task. The red
circles indicate the best epoch for each method, while the arrows show the con-
sistency of FID and Dist-FID scores. c Two examples of segmentation results for
different methods after the final task vs the ground truth Label. The segmentation

model learned fromCL-DSL’s synthetic data obtainsmore accurate results than the
other methods (Fine-Tuning, TDGAN) and is comparable to centralized learning
(JCL). The figures in each row of a are generated once for each method using the
same mask input. The segmentation results are measured from distinct image
patches that were regularly cropped in the preprocessing step. Repeating DSL by
applying random transformations (e.g. scaling, shift, flip) on the input can generate
more images with varied contexts and similar quality as shown in Supplemen-
tary Fig. 5.
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model to extract the best quality generated images in each experi-
ment. On the contrary, by using 1% of data from each data center or
adopting all data from a single data center as a public testing dataset,
the local FID calculated on these partial data does not result in the best
quality synthetic images. By selecting the model with the best Dist-FID
score we generate higher-quality synthetic data and the proposed DSL
outperforms all other distributed GAN models in all three metrics
(more score comparisons of FID and Dist-FID are in Supplementary
Fig. 2). From the FID andDist-FID curves in Figs. 2b, 3b, and 5b, the best
model selected by Dist-FID is the same as the one selected by FID.
When using the same model, the synthetic database and the down-
stream segmentation results are identical as well for Dist-FID and FID
metrics.

Our study draws inspiration from FLGAN45,46 and AsynDGAN30 to
address the privacy andmulti-center data collection challenges. Due to
the multiple technical innovations in DSL it consistently outperforms
FLGAN, FedMed-GAN, and AsynDGAN in different scenarios. Since
exchanging model parameters between the server and data centers
(synchronizing the model parameters) is known to result in a severe
performance drop when learning in heterogeneous environments47,48,
DSL does not synchronize model parameters as in standard FL-based
approaches45. In contrast, ourmethod directly computes the gradients
and updates the model. In our study, DSL employs the AsynDGAN’s
topological structure but extends its adaptability and scalability for
multiple modalities scenarios with the proposed Dist-FID module to
select the optimal model. Furthermore, DSL uses an additional loss
which makes DSL capable for continual learning. Taken together, DSL
demonstrates its strong ability formultiple learning scenarios due to a
reliable and robust synthetic data generator for downstream medical
image analytics, while ensuring data privacy preservation from all data
centers.

DSL ensures the security of private clinical data for the following
two reasons. First, duringmodel training, DSL transmits only synthetic
images and the corresponding losses, which prevents the transmission
of real DICOM images with sensitive patient information49. In the
standard federated multi-node training where the same model is
shared, anadversarial attack50 can recover theoriginal imagedata from
model gradients. Such an attack does not work on DSL, because DSL
does not have any model shared in any data center. The central server
and all participants learn different models and no model parameters
are exchanged. Second, during the synthetic data generation, random
transformations (e.g., scaling, rotation, shift) can be applied to the
input. This operation introduces additional image variances beyond
the random dropout operations, providing an extra layer of data
security protection. A key advance is that the randomly transformed
synthetic dataset can lead to similar downstream segmentation per-
formance while avoiding the generation of close-to-identical training
samples. For example, in the brain tumor experiment, the segmenta-
tion metrics for training on the transformed synthetic database are
Dice 0.838 ± 0.121, HD95 14.68 ± 15.74, SD 2.26 ± 1.93, which are close
to the MM-DSL results in Table 3. Note that all GAN-based methods
being compared in Table 3 used not augmented synthetic data.

We also noticed that a previous study51 showed the possibility of
identification of anonymous 3D cranial MRI scans using face-
recognition technology. However, our method was implemented
using 2D networks and 2D images with privacy preservation. In our
study, 2D medical images were indexed randomly and used indepen-
dently without the original 3D information. Thus the generator does
not learn any 3D information explicitly. In addition, the random
transforms in the generation stage make 3D facial reconstruction
impossible. Figures 2a and 3a show realistic-looking synthetic image
examples and demonstrate the ability of ourmethod to generate high-
quality images. Meanwhile, Fig. 4a shows that in unconditioned areas
the synthetic image can have very different semantic appearances
(e.g., smaller brain ventricles) compared with the real image data. In

summary, the generated syntheticdatabasemakes it impossible the 3D
face reconstruction of a patient.

Our findings reflect several key insights on synthetic data aug-
mentation that impact the performance of DSL. First, the architecture
of DSL, inspired by image-to-image translation52, provides randomness
only in terms of several dropout layers in the generator network. This
randomness does not offer significant variations to augment the syn-
thetic data, thuswe have applied separate data augmentationmethods
when generating a synthetic dataset for the downstreamsegmentation
task. For instance, we applied random transformations to the input,
such as scaling, shifting, flipping, and rotation, to generate more
diverse images (see examples of synthetic images in Supplementary
Figs. 3, 4, 5). Also, for datasets including multi-labels like the BraTS
dataset, we can adopt a mixture of different brain skulls with tumor
regions, introducing additional variations in the labels and synthetic
datasets. This key operation differentiates the synthetic samples from
the real samples while preserving the distribution of the real data.
Second, the size of the original data affects the performance gain of
the data augmentation method. When the size of all real data is small,
scaling up the synthetic database by random transformations brings
the benefit of increased variance in the synthetic database. We con-
ducted an ablation study by using the histopathology data in a 4 data-
center distributed learning setting similar to the cardiac and brain
tasks. By generating a synthetic dataset twice the size of the real data,
the augmented dataset used improves the segmentation performance
(Dice: from 0.789 to 0.805, AJI: from 0.528 to 0.552). However, further
increasing the size of the synthetic database does not benefit the
downstreammodels.We alsofind that simply increasing the size of the
synthetic database for the cardiac CTA and brain MRI tasks does not
improve downstream tasks. A possible reason is that as the synthetic
database becomes larger, repeating patterns in synthetic images may
also accumulate and cause over-fitting in the training of downstream
models. As a result, DSL applies the flexible data augmentation strat-
egy to generate rich synthetic data for downstream
segmentation tasks.

Our approach demonstrates potential generalization in handling
multi-modality data with computational efficiency. In the multi-
modality experiment, we constructed the MM-DSL with multiple dis-
criminators at each center, where each discriminator focuses on a
specific modality. While this design necessitates training using more
parameters at each data center compared to using a single dis-
criminator with multi-channel input for multi-modality data, it results
in a superior generativemodel. Specifically, there is an improvement in
dist-FID from29.37 to 28.06, and downstreamsegmentationDice from
0.821 ± 0.16 to 0.829 ±0.128. This improvement is accompanied by a
slight increase in overall training time (from 37.6 min per epoch to
40min per epoch) and GPUmemory usage for each data center (from
6.5 GB to 6.9 GB). Furthermore, our framework eliminates the
requirement for training the generator at each data center, resulting in
significant computational savings compared to other approaches such
as FLGAN and FedMed-GAN. This design is generalizable and can
handle themissing-modality scenario, so that it does not need to learn
from a channel of empty modality data. The semantic correlations
between different modalities are captured in the generator, which can
synthesizemulti-modality data as amulti-channel output. Thus, we did
not introduce additional computations on the discriminator side to
explicitly regularize the inter-modality connections. It is worth noting
that our framework is not specifically designed to complete the
missing modality in the real data domain53. The missing-modality
completion in our study happens in the synthetic image domain and
makes the complete-modality synthetic database statistically appro-
priate for downstream semantic segmentation tasks. As shown in
Fig. 4a, the synthetic image does not match pixel-to-pixel the real
image, since the input image does not provide constraints at
every pixel.
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The proposed framework can be extended to supportmany other
downstream machine-learning tasks. Despite the DSL advances in
handling heterogeneous data for clinical imaging applications, in this
work, we limit our focus to multi-modality medical image generation
and segmentation. We have not addressed the mixed use of labeled
and unlabeled data to co-train the model for possible performance
improvement54,55 or domain generalization learning to adapt to unseen
domains56. Also, combining imaging data with other forms of elec-
tronic health records such as clinical lab results or radiology reports
into a united learning framework could be of substantial interest57.
Additional controlling factors for the generator (instead of the seg-
mentationmasks), new techniques to generate both image andmask58,
and different downstream tasks can be further explored to assess the
performance of DSL. For example, we can explore the use of bounding
boxes or global labels to generate data for detection or classification,
or even text-to-image generation59. DSL architecture is adaptive and
can be used to provide insights for improved image analytics and
understanding of disease from distributed heterogeneous medical
data. This critical design can be helpful in learning large-scale medical
foundation models60–63.

Methods
The study and results presented in this study comply with relevant
ethical regulations and follow appropriate ethical standards in con-
ducting research regarding the treatment of human subjects.

Data collection and processing
We collected three categories of datasets described in Table 1 to
evaluate our method: (1) multi-center cardiac computed tomography
angiography (CTA); (2) multi-modality brain magnetic resonance
imaging (MRI); (3) multi-organ histopathology images. The data het-
erogeneity lies in several aspects, including the number of samples,
acquisition scanners, resolutions, geographic locations, modality (the
missing-modality setting), and organs (the histopathology dataset).
Supplementary Figs. 6, 7, and 8 showdifferences of some data samples
among multiple centers.

For the Cardiac CTA data, we collected three public cardiac
CTA datasets acquired from globally different institutes: the Multi-
Modality Whole Heart Segmentation (MM-WHS) challenge
dataset64–66, Automated Segmentation of Coronary Arteries
(ASOCA) challenge 2020 dataset67,68, and MICCAI Coronary Artery
Tracking Challenge 2008 (CAT08) dataset69. The heterogeneity of
scanners and radiology protocols result in various range of voxel
spacing and image quality. We only use the CTA data in the MM-
WHS dataset, and denote this subset as WHS dataset in Table 1. The
WHS data have manually annotated labels of seven whole heart
substructures. We generated the annotations of the same sub-
structures for CAT08 and ASOCA datasets by using a state-of-the-art
whole heart segmentation algorithm70 in the SenseCare research
platform71 and manually correcting gross errors. All the cardiac CTA
data were resampled to isotropic 0.8 mm resolution. We used 200
and 1000 as the window level and width to transfer the Hounsfield
units to intensity values in our experiments.

For the brain tumor MR images, we used 210 studies of glio-
blastoma (GBM) from the Brain Tumor Segmentation Challenge 2018
(BraTS18) training dataset72–74. The multi-modal MRI datasets were
acquiredwith different clinical protocols and various scanners from 19
different institutions including the Center for Biomedical Image
Computing and Analytics (CBICA), the Cancer Imaging Archive (TCIA),
and other contributors (OTHER). We used 168 for training and vali-
dation and 42 for testing. Each case comprises four MRI modalities,
including native (T1), T1 with gadolinium enhancing contrast (T1c), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR).
The ground truth annotation contains three types of tumor sub-
regions including tumor core, enhancing tumor, and edema. All

modalities have been aligned to a common space and resampled to
1mm isotropic resolution74.

For the histopathology images, we used the multi-organ nuclei
image dataset (Nuclei)75. Its public training set contains 30 digital
microscopic tissue images from 30 patients and about 22,000 anno-
tatednuclearboundaries in total (includingboth epithelial and stromal
nuclei). These images of size 1000× 1000 came from 18 different
hospitals spanning seven organs. We selected four organs, the breast,
kidney, liver, and prostate, to form a temporal dataset for evaluating
continuous learning. Each dataset at a time point contains data from
one of the organs. In our experiment, the training set of each center
has 4 images fromoneorgan. The testing set has 2 images per organ. In
the preprocessing step76, we first performed color normalization77 for
all images. Then, each image was divided into 16 (4 × 4) overlapping
tiles of size 286 × 286 to form thedataset in the experiment. Therefore,
the training set has 64 images in each simulated data center and the
testing set has 64 distinct image samples from different organs. In the
training of the segmentation model, we used a tile size of 256× 256,
which is the same size as the input and output of the generator in DSL.

Network architecture
Our proposed DSL is comprised of only one central generator and
multiple distributed discriminators located in different local nodes. An
overview of the proposed architecture is shown in Fig. 1. The central
generator, denoted as G, takes task-specific inputs (e.g., segmentation
masks in our use case) and generates synthetic images to fool the
discriminators. Let N denote the number of participating entities that
collaborate in the learning framework, and Sj = fðx j

i ,y
j
i Þg denote the

local private dataset of size jSj j at the j-th entity, where x is an auxiliary
variable representing annotation, such as a class label or segmentation
mask, y is the corresponding real image data, and i 2 f1,:::,jSj jg is the
sample index. The local discriminators, denoted as Dj, j∈ {1, . . . ,N},
learn todifferentiate between the local real imagesy j

i and the synthetic
images ŷ j

i =Gðx j
i Þ generated from G based on x j

i . Our architecture
ensures thatDjdeployed in the j-thmedical entity only has access to its
local dataset while not sharing any real image data outside the entity.
Only synthetic images, annotations, and losses are transferred
between the central generator and the distributed discriminators
during the learning process.

Central generator. For segmentation tasks, the central generator is
designed to generate images based on input masks so that the syn-
thetic image and corresponding mask can be used as a pair to train a
segmentation model. Here, an encoder-decoder ResNet52, is adopted
forG. It consists of nine residual blocks78, two stride-2 convolutions for
downsampling, and two transposed convolutions for upsampling. All
non-residual convolutional layers are followed by batch
normalization79 and the ReLU activation. All convolutional layers use
3 × 3 kernels except the first and last layers that use 7 × 7 kernels.

Distributed discriminators. In our framework, each discriminator has
the same structure as that in PatchGAN52. The discriminator classifies
eachof the overlappingpatches of the input image as real or fake. Such
architecture assumes patch-wise independence of pixels in a Markov
random field fashion52,80, and the patch is large enough (70 × 70) to
capture the difference in geometrical structures such as background
and tumors.

The generator can learn the joint distribution of multiple isolated
datasets through adversarial learning. Then, it can be used as an image
provider to generate training samples for some downstream tasks.
Assuming the distribution of synthetic images, pŷ, is the same or
similar to that of the real images, pdata, we can generate one large
unified dataset, which approximately equals to the union of all the
datasets in medical entities. In this way, all private image data from
each entity are utilized without sharing. To evaluate the synthetic
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images, we use the generated samples in segmentation tasks to illus-
trate the effectiveness of the proposed DSL.

Objective function
The DSL is based on the conditional GAN81. The objective function is:

min
G

max
D1 :DN

V ðD1:N ,GÞ

=
P
j2½N�

π j Ex∼ sj ðxÞ Ey∼pdataðyjxÞ logDjðyjxÞ
hn

+Eŷ∼pŷðŷjxÞ logð1� DjðŷjxÞÞ
io ð1Þ

The goal of Dj is to maximize Eq. (1), while G minimizes it. In this
way, the learned G(x) with maximized D(G(x)) can approximate the
real data distributionpdata(y∣x) andD cannot tell ‘fake’data fromreal. x
follows a distribution s(x). In this paper, We assume that the joint
distribution sðxÞ= PN

j = 1 π jsjðxÞ, where sj(x) is marginal distribution of
j-th dataset and πj represents the prior distribution. In the experiment,
we set sj(x) to be a uniform distribution and π j / jSjj, resulting in a
uniform distribution s(x). For each sub-distribution, there is a corre-
sponding discriminator Dj which only receives data generated from
prior sj(x). Similar to previous works52,82, we incorporate noises by
using Dropout83 at several layers of the generator G in both training
and inference, instead of providing a Gaussian noise as input to the
generator.

The losses of Dj and G are defined in Eq. (2) and Eq. (3),
respectively.

LDj
=

1
m

Xm
i = 1

� logDjðy j
i jxiÞ � logð1� Djðŷ j

i jxiÞÞ
h i

, ð2Þ

LG =
1

Nm
P

π j

XN
j = 1

π j

Xm
i = 1

½logð1� Djðŷ j
i jxiÞÞ+ λ1L1ðy j

i ,ŷ
j
i Þ+ λ2LPðy j

i ,ŷ
j
i Þ�:

ð3Þ
where m is the minibatch size. The LG contains perceptual loss (LP)84

and L1 lossbesides the adversarial loss. In this study,G andDj are not on
the same server and thus Eq. (3) needs to be split into two parts Eq. (4)
and Eq. (5) in order to back-propagate the losses to G.

LGj
=

1
m

Xm
i = 1

½logð1� Djðŷ j
i jxiÞÞ+ λ1L1ðy j

i ,ŷ
j
i Þ+ λ2LPðy j

i ,ŷ
j
i Þ�: ð4Þ

∇ŷ =
1

N
P

π j

XN
j = 1

π j ½∇ŷ j �, ð5Þ

where ∇ŷ j =∂LGj
=∂ŷ j is computed at node Dj based on loss in Eq. (4)

and then sent back to G for aggregation (Eq. (5)). The learning process
is summarized in Supplementary Algorithm 1. We trained 200 epochs
for all tasks and updated each discriminator once in each training
iteration. The gradient-based updates can adopt different gradient-
based learning rules. We used Adamoptimizer85 with a learning rate of
0.0002 in our experiments.

Extension for multi-modality datasets
For a use case of multi-modality data, assuming cmodalities, the local
data center j has a set of multi-modality image y j

i = ðy j
i,1,:::,y

j
i,cÞ asso-

ciated with each label image x j
i . A simple way of handling the multi-

modality image in our frameworkwould be treating the cmodalities of
one sample as a c-channel image. Thus the only change needed is the
number of channels of the input layer of D and an output layer of G. In
this setting, the learning task of D could be easier and converge very
fast since different modalities have different contrast patterns, and

more information can be used to differentiate the real and the ‘fake’
data. However, the task of Gmay becomemore challenging to learn. It
is because, on one hand, the G needs to learn more complex data
distribution to generate multiple modalities with different contrasts.
On the other hand, the easily-learned D may learn some trivial dis-
criminative features and thus cannot provide helpful feedback to G to
guide its learning.

To balance the task difficulty of the G and D’s, we extend our
framework by deploying multiple discriminators at each entity. Every
single modality has its discriminator in one data center, and the G
receives losses from the multiple Ds for a multi-modality data sample.
In this way, each D can focus on learning discriminative features for
one specificmodality andprovidemoremeaningful feedback toG. The
objective function can be extended from Eq. (1) as:

min
G

max
D1:c
1:N

V ðD1:c
1:N ,GÞ

=
P
j2½N�

π j Ex∼ sj ðxÞ
Pc
k = 1

Eyk ∼pdataðyk jxÞ logDj,kðyk jxÞ
h(

+Eŷk ∼pŷðŷk jxÞ logð1� Dj,kðŷk jxÞÞ
io

,

ð6Þ

where Dj,k represents the discriminator for the k-th modality at the
center j.

Besides, another advantage of the proposed multi-modality fra-
mework is that it enables learning from missing modality data. Let Cj

denote the set of indexof availablemodality for center j, if data center j
misses the k-thmodality for example, then Cj = {1, . . . , k − 1, k + 1, . . . , c}.
In this case, center j only needs to deploy c − 1 discriminators during
the learning. The learning process has no difference except that it only
collects losses of available discriminators for Cj to update the G and
only use a subset of the synthetic images fŷ j

k jk 2 Cjg to update the
corresponding {Dj,k∣k∈Cj} in center j. Because the discriminators for
different modalities in different entities are all independent, the G can
still learn to generate all modalities, assuming that the missing mod-
ality in one center is available in some other data centers. The loss
function of D is the same, while the loss function of G can be adjusted
as the following:

LG =
1

Nm
P

π j

XN
j = 1

π j

Xm
i= 1

X
k2Cj

logð1� Dj,kðŷ j
i,k jxiÞÞ

h

+ λ1L1ðy j
i,k ,ŷ

j
i,kÞ+ λ2LPðy j

i,k ,ŷ
j
i,kÞ

i
:

ð7Þ

After training, the learned G can act as a synthetic image provider
to generate multi-modality images from the conditional variable, a
mask image. As a result, it can also be used for missing modality
completion. For instance, if a data center has data (y1, . . . , yk−1, yk+1, yc)
with the k-th modality missing and the corresponding mask image x,
we can use the synthetic image at the k-th channel of G(x) as a sub-
stitute. Our approach is different from the existing methods that
predict the targetmodality from anothermodality53,86 in the sense that
it can generate multiple modalities to handle randomly missing mod-
ality problems, and thus does not require a specific model for specific
modality pair for the input and output.

Extension for temporal datasets
Another variation of DSL contains a central generator and multiple
distributed temporary discriminators located in data centers. Suppose
the training starts at time t − 1 with Kt−1 online local data centers. The
central generator Gt−1 learns the distribution of all online inputs and
outputs synthetic images. The local discriminators, fD1

t�1, . . . ,D
Kt�1
t�1 g

learn to identify the synthetic images from the local real images. At
time t, the new data centers are online and the real data and dis-
criminators of t − 1 are no longer available. The central generator Gt
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tries to learn the distribution of new data and retain the mixture dis-
tribution learnt from previous data. The learning of new data is
achieved by a digesting loss and the memory of previously learnt
knowledge is kept by using a reminding loss.

We assume the conditional distribution is consistent over time.
The loss function of TDGAN consists of two parts:

VtðGt ,D
1:Kt
t Þ= min

Gt

LDigesting + λ � LReminding

Digesting Loss : LDigesting =
Δ
max
D1:Kt
t

XKt

j = 1

π j
tEx∼ s jt ðxÞ

Ey∼pdataðyjxÞ½logD
j
t ðyjxÞ�

n

+Eŷj ∼pŷðŷ j
t jxÞ

½logð1� D j
t ðGtðxÞjxÞÞ�

o
Reminding Loss : LReminding =

Δ
Ex∼ st�1ðxÞEŷ∼pŷðŷjxÞ½k GtðxÞ � Gt�1ðxÞk2�

ð8Þ

The digesting loss, LDigesting, utilizes the mixture cross-entropy
loss term to supervise the generator to learn from the new data at time
t. The reminding loss, LReminding, is formulated as a squared norm loss
to enforce the generator to memorize the learned distribution of
past data.

Distributed FID for image quality measurement
The Frechet Inception Distance (FID)32 has been widely used to eval-
uate the image qualify by calculating the distance between the statis-
tics of feature vectors of the real and generated images. The definition
of FID is:

FID= jjμ1 � μ2jj2 + Trðσ1 +σ2 � 2*
ffiffiffiffiffiffiffiffiffiffiffiffi
σ1*σ2

p
Þ, ð9Þ

where μ1 and μ2 refer to the feature-wise mean of the real and
generated images, σ1 and σ2 are the covariance matrices for the real
and generated feature vectors, Tr refers to the traceoperation in linear
algebra.

Though FID is an idealmetric to find the bestmodel when training
a GAN26,87, we are unable to compute one FID score in distributed
learning because a joint set of the isolated real data does not exist.
Therefore, we propose a new metric named distributed FID (DistFID)
to calculate the weighted average distance between each real dataset
and the synthetic database. The DistFID is defined as:

DistFID=
XN
j

wjðjjμ j
1 � μ2jj2 + Trðσ j

1 +σ2 � 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ j
1 � σ2

q
ÞÞ ð10Þ

in which each of the N entities host a dataset Sj of size jSjjwith feature
statistics ðμ j

1 ,σ
j
1Þ. The weight of each center wj = jSjj=

PN
j = 1 jSjj. At the

beginning of training DSL, each client center sends the feature-wise
statistics (μ j

1 and σ j
1) to the central center. Then, the central center can

use the synthetic images and compute the DistFID value based on Eq.
(10) to evaluate the generator. We validated the consistency between
the FID and DistFID scores in Supplementary Fig. 2.

Learning of downstream task
In this study, we used segmentation as the downstream machine-
learning task and also evaluated a classification task. After obtaining a
well-learned image generator from the DSL, we can generate synthetic
medical images frommask (label) images. In our experiments, to fairly
compare the effect of the synthetic images with the real samples, we
adopted the same U-Net88 as the segmentation model and VGG34 net-
work as the classificationmodel to learn on different sets of 2D images.
During training the downstream task, we withheld 20% samples from
the training data as the validation set to select the model with the best
Dice score to test.We used Adamoptimizer with a learning rate of 0.01
to learn segmentation in our experiments. For the cardiac CTA and
brain MRI segmentation tasks, a combination of cross-entropy (CE)

and Dice was used as the loss function. For the nuclear segmentation
task, CE loss was used. For the classification task, the binary cross-
entropy loss was used. We inferred every 2D image in testing, and for
the cardiac CTA and brain MRI data we computed the 3D metrics by
stacking up the 2D images for the same subject, which are reported in
Results. Note that, the reported standard deviations in the Results
section were computed with the degrees of freedom equaling the
number of samples.

Quantitative metrics
The Dice score (Dice) and 95% quantile of Hausdorff distance (HD95)
are adopted to evaluate the segmentation performance on cardiac
CTA and BraTS1874. The Dice score measures the overlap between
ground-truth mask G and segmented result S. It is defined as

DiceðG,SÞ= 2jG \ Sj
jGj+ jSj ð11Þ

The Hausdorff Distance (HD) evaluates the distance between bound-
aries of ground-truth and segmented masks:

HDðG,SÞ= maxfsup
u2∂G

dðu,∂SÞ, sup
v2∂S

dðv,∂GÞg ð12Þ

where ∂ means the boundary operation, dðu,∂SÞ= infv2∂S k u� vk2 is
minimum distance from vertex u to surface ∂S and sup represents the
supremum and inf the infimum. Because the Hausdorff distance is
sensitive to outliers in G or S, we use the 95% quantile Hausdorff dis-
tance (HD95):

HD95ðG,SÞ= maxfsup95

u2∂G
dðu,∂SÞ, sup95

v2∂S
dðv,∂GÞg, ð13Þ

where the sup95 is the 95%-th maximum value. In addition, we report
the average Surface Distance (SD) as follows:

SDðG,SÞ= 1
2

1
j∂Gj

X
u2∂G

dðu,∂SÞ+ 1
j∂Sj

X
v2∂S

dðv,∂GÞ
( )

: ð14Þ

For nuclei segmentation, we utilize the object-level Dice89 and the
Aggregated Jaccard Index (AJI)75:

AJIðG,SÞ=
PnG

i = 1 jGi \ SðGiÞjPnG
i= 1 jGi ∪SðGiÞj+

P
k2OjSk j

ð15Þ

where nG is the number of ground-truth objects in G, SðGiÞ represents
the segmentedobject that hasmaximumoverlapwithGi with regard to
the Jaccard index, and O is the set containing segmentation objects
that have not been assigned to any ground-truth object.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are all publicly available. TheWHS data
are available through the MM-WHS Challenge64–66 at https://zmiclab.
github.io/zxh/0/mmwhs/. TheASOCAdataset67,68 is available at https://
asoca.grand-challenge.org/. The CAT08 dataset can be obtained by
contacting the challenge organizers69. The WHS masks for the ASOCA
and CAT08 can be obtained at https://github.com/tommy-qichang/
DSL_All_Code/tree/main/data. The brain data are available through
BraTS 2018 Challenge72–74 at https://www.med.upenn.edu/sbia/
brats2018.html. The nuclei dataset75 is available as the MoNuSeg
Challenge training set at https://monuseg.grand-challenge.org/Data/.
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Source data are provided with this paper. Specifically, we provide the
rawdata of Fig. 2b, Fig. 3b, Fig. 5b, Table 2, Table 3, Table 4, and Table 5
to reproduce the plots and statistics of results of this study in a public
repository90 at https://github.com/tommy-qichang/DSL_All_Code/
tree/main/data. In the file SourceData.xlsx, each sheet represents the
source data of a figure or a table.

Code availability
DSL is implemented in Python 3.7 using PyTorch framework 1.6.091. It is
implemented in a stand-alone environment based on the PyTorch
implementation of pix2pix52 (https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix), and a distributed environment based on
FedML92. The implementation of comparing method FedSeg can be
found at https://fedsegment.github.io/home. The AsynDGAN30 can be
found at https://github.com/tommy-qichang/AsynDGAN. The
FLGAN45,46 and FedMed-GAN23 are re-implemented in the FedML fra-
mework. The source codes of DSL, FLGAN, FedMed-GAN, and the
segmentationused in this study canbe found in apublic repository90 at
https://github.com/tommy-qichang/DSL_All_Code.

References
1. Domingos, P. M. A few useful things to know about machine

learning. Commun. ACM 55, 78–87 (2012).
2. Vogt, N. Machine learning in neuroscience. Nat. Methods 15,

33–33 (2018).
3. Libbrecht, M. W. & Noble, W. S. Machine learning applications in

genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015).
4. Vamathevan, J. et al. Applications of machine learning in drug dis-

covery anddevelopment.Nat. Rev. DrugDiscov. 18, 463–477 (2019).
5. Wang, Z., Zhou, M. & Arnold, C. Toward heterogeneous information

fusion: bipartite graph convolutional networks for in silico drug
repurposing. Bioinformatics 36, i525–i533 (2020).

6. Tran, K. A. et al. Deep learning in cancer diagnosis, prognosis and
treatment selection. Genome Med. 13, 1–17 (2021).

7. Giger, M. L. Machine learning in medical imaging. J. Am. College
Radiol. 15, 512–520 (2018).

8. Mukherjee, P. et al. A shallowconvolutional neural network predicts
prognosis of lung cancer patients in multi-institutional computed
tomography image datasets. Nat. Mach. Intelligence 2,
274–282 (2020).

9. Team, N. L. S. T. R. et al. The national lung screening trial: overview
and study design. Radiology 258, 243 (2011).

10. Papanicolas, I., Woskie, L. R. & Jha, A. K. Health care spending in the
united states and other high-income countries. JAMA 319,
1024–1039 (2018).

11. Deng, J. et al. Imagenet: a large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern Recognition,
248–255 (IEEE, 2009).

12. Bankert, E. A. &Amdur, R. J. Institutional ReviewBoard:Management
and Function (Jones & Bartlett Learning, 2006).

13. for Disease Control, C., Prevention. et al. HIPAA privacy rule and
public health. guidance fromCDC and the USdepartment of health
and human services. Morb Mortal. Weekly Rep. 52, 1–17 (2003).

14. Annas, G. J. et al. HIPAA regulations-a new era of medical-record
privacy? N. Engl. J. Med. 348, 1486–1490 (2003).

15. Regulation, P. General data protection regulation. Intouch (2018).
16. Goddard, M. The EU general data protection regulation (GDPR):

European regulation that has a global impact. Int. J. Market Res. 59,
703–705 (2017).

17. Ribaric, S., Ariyaeeinia, A. & Pavesic, N. De-identification for privacy
protection in multimedia content: a survey. Signal Process. Image
Commun. 47, 131–151 (2016).

18. DuMont Schütte, A. et al. Overcoming barriers to data sharing with
medical image generation: a comprehensive evaluation.NPJ Digital
Med. 4, 1–14 (2021).

19. Ding, K. et al. A large-scale synthetic pathological dataset for deep
learning-enabled segmentation of breast cancer. Sci. Data 10,
231 (2023).

20. Singh, N. K. & Raza, K. Medical image generation using generative
adversarial networks: a review.Health Informatics: A Computational
Perspective in Healthcare 77–96 (2021).

21. Frid-Adar, M. et al. GAN-based synthetic medical image augmen-
tation for increased CNN performance in liver lesion classification.
Neurocomputing 321, 321–331 (2018).

22. Chen, C. et al. Deep learning for cardiac image segmentation: a
review. Front. Cardiovasc. Med. 7, 25 (2020).

23. Xie, G. et al. FedMed-GAN: Federated domain translation on unsu-
pervised cross-modality brain image synthesis. Neurocomputing
546, 126282 (2023).

24. Mo, K. et al. Sex/gender differences in the human autistic brains: a
systematic review of 20 years of neuroimaging research. Neuro-
Image: Clin. 32, 102811 (2021).

25. Viana-Ferreira, C., Ribeiro, L. S. & Costa, C. A framework for inte-
gration of heterogeneous medical imaging networks. Open Med.
Inf. J. 8, 20 (2014).

26. Kairouz, P. et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning 14, 1–210 (2021).

27. Konečnỳ, J. et al. Federated learning: Strategies for improving
communication efficiency. Preprint at https://arxiv.org/abs/1610.
05492 (2016).

28. Pati, S. et al. Federated learning enables big data for rare cancer
boundary detection. Nat. Commun. 13, 1–17 (2022).

29. Ghosh, A., Hong, J., Yin, D. & Ramchandran, K. Robust federated
learning in a heterogeneous environment. Preprint at https://arxiv.
org/abs/1906.06629 (2019).

30. Chang, Q. et al. Synthetic learning: Learn from distributed asyn-
chronized discriminator GAN without sharing medical image data.
In IEEE Conference on Computer Vision and Pattern Recognition,
13856–13866 (2020).

31. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. &Wermter, S. Continual
lifelong learning with neural networks: a review. Neural Netw. 113,
54–71 (2019).

32. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter,
S. GANs trained by a two time-scale update rule converge to a local
nash equilibrium. Adv. Neural Inf. Process. Syst. 30,
6629–6640 (2017).

33. Rasouli, M., Sun, T. & Rajagopal, R. FedGAN: Federated generative
adversarial networks for distributed data. Preprint at https://arxiv.
org/abs/2006.07228 (2020).

34. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In International Conference on
Learning Representations (2015).

35. Qu,H. et al. LearndistributedGANwith temporarydiscriminators. In
European Conference on Computer Vision, 175–192
(Springer, 2020).

36. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A. & Mukho-
padhyay, D. A survey on adversarial attacks and defences. CAAI
Trans. Intell. Technol. 6, 25–45 (2021).

37. Yan, C. et al. A multifaceted benchmarking of synthetic electronic
health record generation models. Nat. Commun. 13, 7609
(2022).

38. Chang, C.-C. & Lin, C.-J. Libsvm: a library for support vector
machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).

39. Shokri, R., Stronati, M., Song, C. & Shmatikov, V. Membership
inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), 3–18 (IEEE, 2017).

40. Salimans, T. et al. Improved techniques for training GANs. Adv.
Neural Inf. Process. Syst. 29, 2234–2242 (2016).

41. Dwork,C. &Roth, A. et al. The algorithmic foundationsof differential
privacy. Found. Trends Theor. Comput. Sci. 9, 211–407 (2014).

Article https://doi.org/10.1038/s41467-023-40687-y

Nature Communications |         (2023) 14:5510 14

https://github.com/tommy-qichang/DSL_All_Code/tree/main/data
https://github.com/tommy-qichang/DSL_All_Code/tree/main/data
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://fedsegment.github.io/home
https://github.com/tommy-qichang/AsynDGAN
https://github.com/tommy-qichang/DSL_All_Code
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1906.06629
https://arxiv.org/abs/1906.06629
https://arxiv.org/abs/2006.07228
https://arxiv.org/abs/2006.07228


42. Bagdasaryan, E., Poursaeed, O. & Shmatikov, V. Differential privacy
has disparate impact on model accuracy. Adv. Neural Inf. Process.
Syst. 32, 15479–15488 (2019).

43. Brown, A. D. & Marotta, T. R. Using machine learning for sequence-
level automated MRI protocol selection in neuroradiology. J. Am.
Med. Inf. Assoc. 25, 568–571 (2018).

44. Ellingson, B. M. et al. Consensus recommendations for a standar-
dized brain tumor imaging protocol in clinical trials. Neuro-
oncology 17, 1188–1198 (2015).

45. Hardy, C., Le Merrer, E. & Sericola, B. MD-GAN: multi-discriminator
generative adversarial networks for distributed datasets. In IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 866–877 (IEEE, 2019).

46. Cao, L. et al. FL-GAN: feature learning generative adversarial net-
work for high-quality face sketch synthesis. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sci-
ences 2020EAP1114 (2021).

47. Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning:
challenges, methods, and future directions. IEEE Signal Process.
Magazine 37, 50–60 (2020).

48. Li, T. et al. Federated optimization in heterogeneous networks. In
Proc. of Machine Learning and Systems 2, 429–450 (2020).

49. Vcelak, P., Kryl, M., Kratochvil, M. & Kleckova, J. Identification and
classification of DICOMfileswith burned-in text content. Int. J.Med.
Inf. 126, 128–137 (2019).

50. Zhu, L. & Han, S. Deep leakage from gradients. In Federated
Learning, 17–31 (Springer, 2020).

51. Schwarz, C. G. et al. Identification of anonymous MRI research
participants with face-recognition software. N. Engl. J. Med. 381,
1684–1686 (2019).

52. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation
with conditional adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 1125–1134 (2017).

53. Cai, L., Wang, Z., Gao, H., Shen, D. & Ji, S. Deep adversarial learning
for multi-modality missing data completion. In 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
1158–1166 (2018).

54. Yang,D. et al. Federated semi-supervised learning forCOVID region
segmentation in chest CT using multi-national data from China,
Italy, Japan. Med. Image Anal. 70, 101992 (2021).

55. Jiang, M. et al. Dynamic bank learning for semi-supervised feder-
ated image diagnosis with class imbalance. In International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention, 196–206 (Springer, 2022).

56. Liu, Q., Chen, C., Qin, J., Dou, Q. & Heng, P.-A. FedDG: Federated
domain generalization onmedical image segmentation via episodic
learning in continuous frequency space. In Proc. IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
1013–1023 (2021).

57. Dayan, I. et al. Federated learning for predicting clinical outcomes
in patients with covid-19. Nat. Med. 27, 1735–1743 (2021).

58. Zhang, Y. et al. DatasetGAN: Efficient labeled data factory with
minimal human effort. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 10145–10155 (2021).

59. Zhang, H., Koh, J. Y., Baldridge, J., Lee, H. & Yang, Y. Cross-modal
contrastive learning for text-to-image generation. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
833–842 (2021).

60. Yi, H. et al. Towards general purpose medical ai: continual learning
medical foundation model. Preprint at https://arxiv.org/abs/2303.
06580 (2023).

61. Wang, D. et al. MedFMC: a real-world dataset and benchmark for
foundation model adaptation in medical image classification. Pre-
print at https://arxiv.org/abs/2306.09579 (2023).

62. Zhang, S. & Metaxas, D. On the challenges and perspectives of
foundation models for medical image analysis. Preprint at https://
arxiv.org/abs/2306.05705 (2023).

63. Gao, Y. et al. Training like a medical resident: universal medical
image segmentation via context prior learning. Preprint at https://
arxiv.org/abs/2306.02416 (2023).

64. Zhuang, X. & Shen, J. Multi-scale patch and multi-modality atlases
for whole heart segmentation of mri. Med. Image Anal. 31,
77–87 (2016).

65. Zhuang, X. Multivariate mixture model for myocardial segmenta-
tion combiningmulti-source images. IEEE Trans. PatternAnal.Mach.
Intell. 41, 2933–2946 (2018).

66. Luo, X. & Zhuang, X. X -metric: an N-dimensional information-the-
oretic framework for groupwise registration and deep combined
computing. IEEE Tran. Pattern Anal. Mach. Intell. 45,
9206–9224 (2023).

67. Gharleghi, R. et al. Automated segmentation of normal and dis-
eased coronary arteries - the ASOCA challenge. Comput. Med.
Imaging Graph. 97, 102049 (2022).

68. Gharleghi, R. et al. Annotated computed tomography coronary
angiogram images and associated data of normal and diseased
arteries. Sci. Data 10, 128 (2023).

69. Schaap, M. et al. Standardized evaluation methodology and refer-
ence database for evaluating coronary artery centerline extraction
algorithms. Med. Image Anal. 13, 701–714 (2009).

70. Wang, W. et al. Few-shot learning by a cascaded framework with
shape-constrained pseudo label assessment for whole heart seg-
mentation. IEEE Trans. Med. Imaging 40, 2629–2641 (2021).

71. Duan, Q. et al. SenseCare: a research platform for medical image
informatics and interactive3Dvisualization. Preprint at https://arxiv.
org/abs/2004.07031 (2020).

72. Menze, B. H. et al. Themultimodal brain tumor image segmentation
benchmark (brats). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).

73. Bakas, S. et al. Advancing the cancer genome atlas glioma MRI
collections with expert segmentation labels and radiomic features.
Sci. Data 4, 170117 (2017).

74. Bakas, S. et al. Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment, and overall
survival prediction in the brats challenge. Preprint at https://arxiv.
org/abs/1811.02629 (2018).

75. Kumar, N. et al. A dataset and a technique for generalized nuclear
segmentation for computational pathology. IEEE Trans. Med. Ima-
ging 36, 1550–1560 (2017).

76. Qu, H., Yan, Z., Riedlinger, G. M., De, S. & Metaxas, D. N. Improving
nuclei/gland instance segmentation in histopathology images by
full resolution neural network and spatial constrained loss. In
International Conference on Medical Image Computing and
Computer-Assisted Intervention, 378–386 (Springer, 2019).

77. Reinhard, E., Adhikhmin, M., Gooch, B. & Shirley, P. Color transfer
between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001).

78. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 770–778 (2016).

79. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proc. of
International Conference on Machine Learning 37, 448–456 (2015).

80. Li, C. & Wand, M. Precomputed real-time texture synthesis with
markovian generative adversarial networks. In European Con-
ference on Computer Vision, 702–716 (Springer, 2016).

81. Mirza, M. & Osindero, S. Conditional generative adversarial nets.
Preprint at https://arxiv.org/abs/1411.1784 (2014).

82. Mathieu, M., Couprie, C. & LeCun, Y. Deep multi-scale video pre-
diction beyond mean square error. In International Conference on
Learning Representations (2016).

Article https://doi.org/10.1038/s41467-023-40687-y

Nature Communications |         (2023) 14:5510 15

https://arxiv.org/abs/2303.06580
https://arxiv.org/abs/2303.06580
https://arxiv.org/abs/2306.09579
https://arxiv.org/abs/2306.05705
https://arxiv.org/abs/2306.05705
https://arxiv.org/abs/2306.02416
https://arxiv.org/abs/2306.02416
https://arxiv.org/abs/2004.07031
https://arxiv.org/abs/2004.07031
https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1811.02629
https://arxiv.org/abs/1411.1784


83. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Sala-
khutdinov, R. Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

84. Johnson, J., Alahi, A. & Fei-Fei, L. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on
Computer Vision (2016).

85. Kingma,D. P.&Ba, J. Adam:Amethod for stochastic optimization. In
International Conference on Learning Representations (2015).

86. Zhang, Z., Yang, L. & Zheng, Y. Translating and segmenting multi-
modal medical volumes with cycle- and shape-consistency gen-
erative adversarial network. In IEEE Conference on Computer Vision
and Pattern Recognition (2018).

87. Karras, T. et al. Analyzing and improving the image quality of sty-
legan. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 8110–8119 (2020).

88. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional net-
works for biomedical image segmentation. In International Con-
ference on Medical Image Computing and Computer-assisted
Intervention, 234–241 (Springer, 2015).

89. Qu, H. et al. Weakly supervised deep nuclei segmentation using
partial points annotation in histopathology images. IEEE Trans.Med.
Imaging 39, 3655–3666 (2020).

90. Chang, Q. et al. Mining multi-center heterogeneous medical data
with distributed synthetic learning. tommy-qichang/DSL_All_Code.
https://doi.org/10.5281/zenodo.8111579 (2023).

91. Paszke, A. et al. Pytorch: an imperative style, high-performance
deep learning library. Adv. Neural Inf. Process. Syst. 32,
8026–8037 (2019).

92. He, C. et al. Fedml: a research library and benchmark for federated
machine learning. In Neural Inf. Process. Syst. Workshop on Scal-
ability, Privacy, and Security in Federated Learning (2020).

Acknowledgements
We thank Qing Xia and Wenji Wang for helping to generate segmenta-
tion masks for CAT08 and ASOCA datasets using their method70. This
work was partially supported by grants from National Science Founda-
tion (1747778, 1849238, 1951890, 2212301, 2235405) (D.N.M.), and the
Centre for Perceptual and Interactive Intelligence (CPII) Ltd under the
Innovation and Technology Commission (ITC)’s InnoHK (H.L. and
S.Z.). H.L. and S.Z. are PI and co-PI of the CPII.

Author contributions
Q.C., Z.Y., and M.Z. jointly designed experiments, interpreted the data,
and wrote the paper. Q.C. and Z.Y., implemented experiments with the

help of H.Q. and X.H. H.Z., L.B., and S.A. helped to review and analyze
the experimental results. H.L., S.Z., and D.N.M. supervised the project.
All authors discussed the results and implications and commented on
the manuscript at all stages.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40687-y.

Correspondence and requests for materials should be addressed to
Hongsheng Li, Shaoting Zhang or Dimitris N. Metaxas.

Peer review information Nature Communications thanks Chuan Ma,
Chao Yan, and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

Article https://doi.org/10.1038/s41467-023-40687-y

Nature Communications |         (2023) 14:5510 16

https://doi.org/10.5281/zenodo.8111579
https://doi.org/10.1038/s41467-023-40687-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Mining multi-center heterogeneous medical data with distributed synthetic learning
	Results
	Overview of approach
	Distributed synthetic learning
	Multi-modality distributed synthetic learning
	Missing-modality completion distributed synthetic learning
	Continual synthetic learning
	Membership inference risk evaluation

	Discussion
	Methods
	Data collection and processing
	Network architecture
	Central generator
	Distributed discriminators
	Objective function
	Extension for multi-modality datasets
	Extension for temporal datasets
	Distributed FID for image quality measurement
	Learning of downstream task
	Quantitative metrics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




