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DNA methylation profiling to determine the
primary sites of metastatic cancers using
formalin-fixed paraffin-embedded tissues

Shirong Zhang1,2,15, Shutao He3,4,15, Xin Zhu5,15, YunfeiWang 6, Qionghuan Xie6,
Xianrang Song7, Chunwei Xu8, WenxianWang5, Ligang Xing 7, Chengqing Xia6,
Qian Wang9, Wenfeng Li10, Xiaochen Zhang11, Jinming Yu7, Shenglin Ma1,12 ,
Jiantao Shi 3 & Hongcang Gu 13,14

Identifying the primary site of metastatic cancer is critical to guiding the
subsequent treatment. Approximately 3–9% of metastatic patients are diag-
nosedwith cancer of unknownprimary sites (CUP) even after a comprehensive
diagnostic workup. However, a widely accepted molecular test is still not
available. Here, we report a method that applies formalin-fixed, paraffin-
embedded tissues to construct reduced representation bisulfite sequencing
libraries (FFPE-RRBS). We then generate and systematically evaluate 28
molecular classifiers, built on four DNA methylation scoring methods and
seven machine learning approaches, using the RRBS library dataset of 498
fresh-frozen tumor tissues from primary cancer patients. Among these clas-
sifiers, the beta value-based linear support vector (BELIVE) performs the best,
achieving overall accuracies of 81-93% for identifying the primary sites in 215
metastatic patients using top-k predictions (k = 1, 2, 3). Coincidentally, BELIVE
also successfully predicts the tissue of origin in 81-93%ofCUPpatients (n = 68).

Cancer causes approximately 10 million deaths worldwide and more
than 3 million in China alone1,2, of which 90% are due to metastasis3.
For most patients with metastatic cancer, the tissue of origin can be
determined by a comprehensive diagnostic workup, either in the

early or metastatic stages4. However, the remaining 3–9% of cases
have to be assigned as cancer of unknown primary sites, making this
heterogeneous group of cancers the seventh or eighthmost frequent
malignancy and the fourth most common cause of cancer death5–8.
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Accurate identification of the primary site is the starting point for
cancer diagnosis, and it is critical for guiding the subsequent treat-
ment of metastatic cancer9,10. Genetic characterization of cancer
of unknown primary sites (CUPs) is also beneficial for some patients.
For example, Rassy et al. investigated the clinical response of
234 CUP patients to immune checkpoint inhibitors (ICIs) and con-
cluded that patients with a tumor mutation burden of more than ten
mutations per megabase generally have a favorable prognosis11.
Second, several retrospective studies indicate that 15–20% of CUP
patients who receive site-specific chemotherapy have improved
overall survival (OS) compared to patients treated with empiric
chemotherapy6,12–14. The remaining 80–85% do not have a favorable
outcome despite identifying the primary tumor site. However, a
meta-analysis of 244 CUP trials identified weaknesses in the experi-
mental design of many studies15. The authors proposed two com-
prehensive methods for CUP clinical studies that incorporate the
latest detection and treatment options. Therefore, if future clinical
trials are conducted accordingly, it is likely that more CUP patients
will have an encouraging prognosis15. Finally, a definitive diagnosis
may spare patients the anxiety or severe psychiatric problems caused
by uncertain cancer types16.

To determine the primary site of metastatic cancer, author-
itative organizations have established guidelines consisting of phy-
sical checkups, pathological investigations, laboratory tests, and
imaging-based studies4,17. Among these, immunohistochemistry
(IHC) with antibodies against tumor antigens has been the “gold
standard” for the past two decades18. Yet, the challenges remain:
hand-picked antibody panels are primarily subjective, and the IHC
analysis can identify primary sites in only 50–65% of patients with
metastases and an even lower rate of 20–25% in CUP patients19,20.

Driven by the hypothesis that metastatic tissues preserve the
molecular signatures of primary sites, gene expression-based assays
utilizing either RT-qPCR or microarrays have been developed and
applied to classify the tissue of origin in metastatic cancer with
accuracies ranging from 52.5% to 87%14,21–25. Although some tests have
been independently validated and applied in the clinic, they gen-
erally require samples containing at least 40–80% tumor cells23–30. In
addition, the ubiquitous presence of RNase further confines the
application of RNA-based tests31, especially when using highly
degraded RNA from formalin-fixed, paraffin-embedded (FFPE)
samples32,33.

Compared to the single-stranded RNA, the double-stranded
nature and the absence of a reactive 2’-hydroxyl group on the pen-
tose ring make DNA more attractive for genetic testing34,35. DNA
methylation, the addition of a methyl group to the cytosine almost
exclusively in the context of CpG dinucleotides, shows both cell- and
tissue-specific patterns in the human genome36–38. This feature and
characteristic DNA methylation patterns, global hypomethylation
and localized hypermethylation, promote the development of DNA
methylation-based classifiers to determine the histogenetic origin of
cancer6,39,40 The classifier (EPICUP) established using DNA methyla-
tion microarray data correctly identifies the tissue of origin for 87%
of CUP patients41. However, the microarray platform is uncommon in
diagnostic laboratories and generally requires a large amount of DNA
(300 ng) from FFPE tissue, which limits its application6.

We have previously reported reduced representation bisulfite
sequencing (RRBS), a cost-effective method that enriches the CpG-
rich portion of the human genome. RRBS coversmost promoters, the
majority of CpG islands (CGIs), and a reasonable amount of other
genomic features42–44. In this study, we presented a method specifi-
cally designed to generate RRBS libraries using FFPE samples and
developed machine learning-based classifiers to predict the primary
site of metastatic cancer. The performance of the best classifier was
systematically evaluated.

Results
Specimen and patient characteristics
To create a comprehensive DNA methylation database and build an
appropriate molecular classifier, we excluded samples from 7 primary
and 40 metastatic tumor patients due to poor DNA quality or RRBS
libraries that failed the quality control (Fig. 1a). Specimens from 27
patients, including 19 with primary tumors and 8 with metastatic
tumors, were used for assay development and evaluation. Due to late
patient enrollment, RRBS libraries generated from 8 patients (5 with
primary tumors and 3withmetastatic tumors)were not included in the
downstream analyses. However, all patients with CUPwere included in
the study regardless of sample and RRBS library quality. Finally, the
training set of libraries was constructed using fresh-frozen (FF) tumor
tissues from 498 patients with ten common primary cancers, repre-
senting 75% and 80% of male and female cancer cases in China,
respectively (Table 1; Supplementary Data 1)45. The primary tumor
tissues were evaluated by experienced pathologists to make sure that
each sample had a good representation of tumor cells (60–70%).
GenomicDNAwas isolated from the FF tissues to ensureDNA integrity,
thus guaranteeing the quality of our reference database. Instead of FF
samples, the validation samples were FFPE tissues, which preserve the
morphological and cellular information of derived tissues46,47 from 215
patients with metastatic cancer (Table 1, Fig. 1a, and Supplementary
Data 1). The criterion for tumor cell content in this cohort was low, 10%
ormore, tomake the test widely applicable in the clinic.Of note, 78 out
of 215 samples (36.3%) were biopsied from lymph nodes where tumors
of epithelial origin oftenmetastasize (Table 1; SupplementaryData 1)48.

Development and validation of the bisulfite sequencing-
based assay
Genomic DNA samples isolated from FFPE tissues were highly degra-
ded in almost all cases49. RRBS was initially designed to target
40–220bp fragments to assess genome-wide DNA methylation
changes42,43. To investigate the feasibility of FFPE samples for methy-
lation profiling, we developed a method called FFPE-RRBS (Fig. 1b).
First, the degraded DNAwas end-polished by removing the phosphate
group from the 5’-terminus so that DNA fragments without MspI
digestion would not be included in the sequencing library, a necessary
step to ensure that each sequenced fragment contains at least oneCpG
site44. Next, we selected a buffer (CutSmart, NEB, USA) that worked
well for dephosphorylation and the downstream reactions. Lastly, all
five initial enzymatic reactions were performed sequentially in the
same tubewithoutDNApurification. FFPE-RRBS allowed the assay time
to be reduced from 6 to 9 days to ~20 h compared to published RRBS
methods (Fig. 1b)43,44.

To evaluate the reliability of FFPE samples for methylation pro-
filing, we generated 19 paired FF- and FFPE-RRBS libraries and com-
pared the datametrics of the two library types (SupplementaryTable 1;
Fig. 2a–c). The mean read counts were comparable, 37.42 million (M)
for the FF-RRBS libraries and 40.61M for the FFPE-RRBS libraries. In
terms of alignment rate, 68.96% (95% CI, 67.75%-70.17%) weremapped
to the reference genome for the FF-RRBS libraries compared to 66.74%
(95% CI, 64.26%–68.68%) for the FFPE-RRBS libraries (Supplementary
Table 1). Bisulfite conversion rates, a parameter to quantify the per-
centage of unmethylated cytosines correctly converted to uracil, were
very high for both (FF, 99.88%; FFPE, 99.63%). However, we observed
that the FFPE-RRBS libraries had a narrow size distribution, and the
mean insert library sizes were smaller compared to the FF-RRBS
libraries (FF: 118 bp; FFPE: 82bp, P = 1 × 10−10, Fig. 2a and Supplemen-
tary Table 1), consistent with a previous report50. Interestingly, each of
the FF-RRBS libraries (n = 19) detected on average about 4.24% of CpGs
at ≥5x when randomly sampling 800K sequencing reads; in contrast,
each of the paired FFPE-RRBS (n = 19) covered about 3.50% of CpGs at
≥5x (P = 3.92 × 10−3, Supplementary Fig. 1a). Nevertheless, the FFPE-
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RRBS libraries showed a deeper mean coverage for the CpG sites
within CGIs (FF: 42.88x, FFPE: 74.17x; P = 1.94 × 10−6, Fig. 2b), which also
translated into a better coverage for CGIs (Fig. 2c). This seems rea-
sonable since RRBS is purposely designed to enrich CpG-rich regions,
which may also contain more MspI sites (C|CGG). Therefore DNA
degradation has less detrimental effects on CGIs than on CpG-poor
regions42. In addition, the correlations of theDNAmethylation features
from all four methylation scoring methods between the paired sam-
ples were significantly better than the unpaired samples. The mean
methylation of the paired samples demonstrated the highest correla-
tion (Fig. 2d), suggesting that the optimized FFPE-RRBS assay was
reliable in capturing the DNA methylation signals.

To explore whether the methylation characteristics of primary
cancer reflect those of metastatic cancer, we used paired primary and
metastatic cancer tissues to construct 16 FFPE-RRBS libraries. Similar
numbers of sequencing reads were obtained, 59.8M (95% CI,
55.66–63.94M) for primary cancers and 59.41M (95%CI, 53.05–65.77M)
for metastatic cancers (Supplementary Table 2). The distribution of
library sizes, themean coverage of CpGs across CGIs, and the CGIs with
decent coverage all illustrated similar patterns between the library pairs
(Fig. 2e–g; Supplementary Table 2). Furthermore, the beta and CHALM
values showed better correlations (correlation coefficients ≥0.94) than
the other twomethylation evaluationmethods (Fig. 2h). In addition, we
compared themethylation profiles ofmetastatic tumor tissues (25 liver,
8 lung, and 3 stomach tissues) (Table 1; Supplementary Data 1) with
those of the initial tumor sites and the primary tumor occurring at the
metastatic sites. The results showed that the correlation between the
metastatic tissues and the initial tumor tissues was significantly higher,
regardless of how the methylation alterations were calculated (Sup-
plementary Fig. 1b).

We lastly investigated the reproducibility of the FFPE-RRBS assay
by selecting 12 samples with a sufficient amount of genomic DNA
from 4 cancer types, including lung, breast, liver, and colorectal
cancer, and generating triplicate libraries for each sample. As shown
in Supplementary Fig. 2, the triplicate libraries exhibited a good
correlation with the PCC (Pearson correlation coefficient) values
ranging from 0.84 to 0.99, indicating that our FFPE-RRBS protocol is
highly reproducible. Together, our data indicated that the strategy of
using the FF-RRBS data from primary cancer for model construction
and the FFPE-RRBS data of metastatic cancer for validation was
logistic and feasible.

Identifying the primary sites of metastatic cancers
We constructed 28 classifiers by applying the four methylation eva-
luation methods and seven machine learning approaches to the
training set data generated from 498 primary cancer samples. The
classifiers were then evaluated by using the validation dataset of 215
FFPE-RRBS libraries that passed the quality control (Supplementary
Data 2). The beta value and MHL-based methylation measurements
outperformed the other twomethods (PDR and CHALM) regardless of
the machine learning methods applied, each having 6 out of 7 classi-
fiers with AUC ≥0.8 (Fig. 3a and Supplementary Table 3). BELIVE, the
beta value-based linear support vector classifier, achieved the best
overall performance and was further characterized.

The values of recall, precision, and F1 score for BELIVE exhibited
considerable variation among different cancer types, with recall ran-
ging from 0.59 (esophagus) to 0.90 (colon and rectum) and precision
varying from 0.52 (head and neck) to 1.00 (colon and rectum) (Fig. 3b;
Supplementary Table 4). The F1 scores of five cancer types were
greater than0.80, whereas the twocancer types had relatively lower F1

a

b

Patients participated 
(n=836)

Excluded due to sample quality (n=47)
Patients with primary tumors (n=7)
Patients with metastatic tumors  (n=40)

Patients enrolled (n=789) 

Test set (n=68) 
FFPE samples from 

CUP patients 

Training set (n=498; FF)
Primary tumors 
Breast (n=61)
Cervix (n=46)
Colon and rectum (n=55)
Esophagus (n=44)
Head and neck (n=48)
Liver and gallbladder (n=46)
Lung (n=57)
Ovarian (n=49)
Stomach (n=48)
Thyroid (n=44)

(Adjacent normal n=57)

External validation set    
(n=4702; TCGA)

Breast (n=783)
Cervix (n=307)
Colon and rectum (n=786)
Esophagus (n=185)
Head and neck (n=528)
Liver and gallbladder (n=377)
Lung (n=828)
Ovarian (n=10)
Stomach (n=395)
Thyroid (n=503)

Assay development and evaluation (n=27)*
Primary tumor patients (n=19) 
(38 paired FF and FFPE samples)
Breast (n=5); Colon and rectum (n=5)
Lung (n=5); Stomach (n=4)

Metastatic tumor patients  (n=8, FFPE) 
(16 paired primary and metastatic specimens)

Esophagus (n=8)
* Eight patients (5 primary and 3 metastatic) weren’t   

included in downstrean tests.

Validation set (n=215; FFPE)
Metastatic tumors

Breast (n=26)
Cervix (n=9)
Colon and rectum (n=31)
Esophagus (n=17)
Head and neck (n=20)
Liver and gallbladder (n=9)
Lung (n=26)
Ovarian (n=17)
Stomach (n=29)
Thyroid (n=31)

Illumina
Sequencing

Extended one-tube RRBS reaction

FFPE tissue slide 
Degraded

genomic DNA
End-polished
genomic DNA

Bisulfite conversion
& PCR enrichment 

Mspl digestion, end-repair,
A-tailing, adapter ligation

Fig. 1 | Experimental roadmap of the study. a Flow chart of participants.
b Schematic diagram of the FFPE-RRBS protocol. Genomic DNA was isolated from
FFPE tissue. The degraded genomic DNA was then end-polished by depho-
sphorylation. Subsequent enzymatic reactions, including MspI digestion, end-

repair, A-tailing, and adapter ligation, were performed in the same tube without
DNA cleanup. After bisulfite conversion, the library DNA was enriched by PCR and
sequenced on an Illumina NovaSeq 6000 sequencer.
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values, 0.61 for esophagus cancer and 0.63 for head and neck cancer.
The slightly poorer performance was probably due to higher mole-
cular heterogeneity, which is consistent with previous reports51–53.
Notably, among the correctly predicted samples, most were identified
with high confidence (probability >75%), indicating that the prediction
was reliable (Fig. 3c). BELIVE achieved anoverall prediction accuracyof
81% (Fig. 3e) with an AUC of 0.95 (Fig. 3d). When considering top-k
accuracy51, BELIVE achieved a top-3 accuracy of 93% (Fig. 3e) with a
median sensitivity of 0.92 across all cancer types (Fig. 3f). Not sur-
prisingly, tumor cell content was positively correlated with prediction
accuracy (Fig. 3g). Downsampling analysis of 70 FFPE-RRBS libraries
with 24Mreadsormoreshowed that increasing sequencingdata could
improve the prediction accuracy to some extent (Fig. 3h). To investi-
gate the relationship between sequencing depth and prediction
accuracy, we divided FFPE-RRBS libraries (n = 69) into low (≤0.5;
n = 49) and high tumor content groups (>0.5; n = 20). Downsampling
analysis of both low and high tumor content FFPE-RRBS libraries with
24M reads or more indicated that increasing sequencing data could
also improve the prediction accuracy (Supplementary Fig. 3). Never-
theless, 10M paired-end reads at 150 bases were sufficient, and 174
(80.9%) FFPE-RRBS libraries met this requirement.

In addition, WGBS has been considered the gold standard for
genome-wide methylation profiling and can cover most CGIs.
We generated WGBS libraries using 10 metastatic tumor
tissues, including breast (n = 2), lung (n = 1), thyroid (n = 1), colon
and rectum (n = 2), ovary (n = 2), esophagus (n = 1), and stomach

(n = 1) and then performed the correlation analysis by comparing
the beta value of CGIs derived from the WGBS and corresponding
RRBS libraries. The results showed that all 10 paired libraries
had a good correlation with PCC values ranging from 0.87 to
0.96 (Supplementary Fig. 4). Most importantly, BELIVE correctly
predicted the primary sites using the WGBS dataset (Supplementary
Table 5).

Validation on an external cohort
To validate BELIVE using the DNA methylation data from The Cancer
GenomeAtlas (TCGA), we first examined howmanyCGIs were covered
by both RRBS and the Illumina 450K methylation array. The compar-
ison indicated that 60% (11,353) of the CGIs were in the shared pool
(Supplementary Fig. 5). We then used the microarray data from 4702
patients with the 10 most common primary cancers to evaluate the
RRBS-based classifier. The test revealed high but variable recall values
ranging from0.81 (lung) to 1.0 (ovarian, liver, and gallbladder) (Fig. 4a;
Supplementary Table 6). Precision values were not less than 0.91 for
almost all cancer types except for stomach cancer (0.64). In particular,
most primary cancers were identified with high confidence (>75%
probability) (Fig. 4b). The overall accuracy was 92% with an AUC of
0.99 based on the top-1 prediction, while the accuracy based on the
top-3 prediction was as high as 98% with an AUC of 0.99 (Fig. 4c, d;
Supplementary Table 6). The median sensitivity across all cancers was
0.99 for the top three predictions (Fig. 4e). In general, the cancers that
showed better prediction accuracy using metastatic cancer samples
were also highly likely to be correctly identified using primary cancer
samples in the TCGA project. For example, the classification of breast,
thyroid, colorectal, and rectal cancers all showed an AUC value >0.97
(Supplementary Table 4; Fig. 4c). BELIVE showed a relatively poor
performance for esophagus cancer with an AUC of 0.92, probably due
to tumor heterogeneity51–53.

BELIVE prediction on the tissue of origin for CUP patients
We lastly evaluated the classifier using the FFPE samples from a test
cohort of 68 CUP patients whose primary sites were identified by
additional pathologic analysis and clinical examination after our test-
ing. BELIVE correctly identified the primary sites in 55 out of 68
patients (~81%) using the top-1 prediction (Table 2; Supplementary
Data 3). Moreover, the top-3 prediction achieved an accuracy of
approximately 93% (63 out of 68),with the correctly predictedprimary
sites ranking second in six patients and third in two patients. Of note,
one female patient (No. 7) manifested metastases in multiple sites,
including the left lower abdomen, retroperitoneal and bilateral ingu-
inal lymph nodes, and bone. The patient was diagnosed with thyroid
cancer seven years ago, and the tumor was surgically removed. IHC
analysis and H&E staining of two consecutive biopsies from the ingu-
inal mass in November 2019 and June 2020 supported the diagnosis of
poorly differentiated adenocarcinoma with signet ring cell carcinoma
(Supplementary Fig. 6a). However, neither gastroscopy nor colono-
scopy revealed any malignant lesions. Therefore, the tissue of origin
remained unknown. Methylation analysis of the second FFPE tissue
from the inguinalmass predicted the stomach as the primary site. This
conclusion was confirmed by H&E staining and IHC testing of the
biopsied tissue from the gastric lesion in September 2020 (Supple-
mentary Fig. 6b), suggesting that BELIVE is a sensitive method for the
diagnosis of CUP.

Discussion
FFPE-RRBS is a streamlined method for DNA methylation profiling
using degraded DNA from FFPE tissue. The method applies the CutS-
mart buffer for five sequential enzymatic reactions and eliminates the
DNA cleanup step after each enzymatic reaction. Consequently, the
reactions canbeperformed in a single tube, significantly reducingDNA
loss and enabling the generation of RRBS libraries with nanogramDNA

Table 1 | Characteristics of primary and metastatic cancer
patients

Metastatic cancer (n = 215) Primary cancer (n = 498)

Cancer types, n (%)

Breast 26 (12) 61 (12.2)

Cervix 9 (4.2) 46 (9.2)

Colon and rectum 31 (14.4) 55 (11)

Esophagus 17 (7.9) 44 (8.8)

Stomach 29 (13.5) 48 (9.6)

Head and neck 20 (9.3) 48 (9.6)

Liver and bile duct 9 (4.2) 46 (9.2)

Lung 26 (12) 57 (11.4)

Ovary 17 (7.9) 49 (9.8)

Thyroid 31 (14.4) 44 (8.8)

Clinical stage, n (%)

I 2 (0.9) 95 (19.1)

II 5 (2.3) 156 (31.3)

III 49 (22.8) 159 (31.9)

IV 120 (55.8) 88 (17.7)

Unknown 39 (18.1) 0 (0)

Biopsy site, n (%)

Lymph node 118 (54.9)

Liver 25 (11.6)

Abdominal cavity 11 (5.1)

Lung 8 (3.7)

Pelvic cavity 5 (2.3)

Hydrothorax 4 (1.9)

Pleura 4 (1.9)

Chest wall 3 (1.4)

Neck 3 (1.4)

Stomach 3 (1.4)

Others 30 (14.0)

Unknown 1 (0.5)
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inputs. Data metrics generated from FF- and FFPE-RRBS libraries
showed a marked difference in the size distribution due to the nature
of FFPE, and the result is consistent with previous reports46,50. How-
ever, FFPE-RRBS provided a deeper and more uniform coverage of
CpGs in CGIs than FF-RRBS, probably because the short DNA frag-
ments from CGIs still have a high chance of preserving two or more
MspI sites54. Notably, the mean methylation levels of CGIs between
paired FF and FFPE-RRBS libraries showed a strong correlation (med-
ian correlation of 0.96).

The best classifier, BELIVE, can predict the primary sites with an
overall accuracy of 81%with anAUCof 0.95 and a top-3 accuracy of 93%
using 215 diverse FFPE tissues, including 36.3% from lymph nodes.
Furthermore, BELIVE coincidentally identified the tissue of origin in
approximately 81% (55 of 68) and 93% (63 of 68) CUP patients using the
top-1 and top-3 prediction methods, respectively. In the real world of
cancer diagnosis, the top-k accuracy is informative because it helps
physicians narrow down the possibilities51. Another reason is related to
the technical caveat of biopsy, where the tumor cell content is likely to
bebelow the lowdetection limit; thus, the top-1 prediction corresponds
to the biopsied tissue rather than the tissue of cancer origin55. Meta-
static cancers or CUPmay also have multiple primary sites, making the
top-kpredictionsmore realistic53. It is worth noting that BELIVE, trained
with FF-RRBS data, is compatible with the methylation array data. Our
classifier predicts the primary cancer types of 4702 patients with an
overall accuracy of 92%. The prediction accuracy of BLIVE is compar-
able to the classifier EPICUP,whichwas trained andvalidated usingonly
microarray-basedmethylation data6. BLIVE appears to outperform IHC,
which relies onmanual interpretation andmay be limited by the lack of
antigens in poorly differentiated cancers56.

Several features of the test are noteworthy. Our test applies to a
wide range of tumor cell contents (10–90%), whereas mRNA- and
microRNA-based classifiers mostly require samples with tumor cell
contents of at least 40–80%23–30. Another robustness of this test is
that it only needs a small amount of genomic DNA (10–50 ng). In
comparison, the assay using the methylation microarray platform
demands a minimum of 300 ng of DNA6, which is sometimes unrea-
listic, especially when samples are obtained from fine needle aspi-
rates or core biopsies57. The weakness of our study is that the
classifier was only established for ten cancer types. However, our
method can be easily extended to other cancer types once the sam-
ples are available for training and validation.

The treatment and potential outcome of metastatic cancer are
largely dependent on the primary site7,41. An atypical scenario is that
patients with melanoma of unknown primary (MUP), which accounts
for approximately 3% of all melanomas, tended to have a better out-
come than those with melanoma of known primary (MKP) prior to the
era of novel therapy with ICIs58. This is also true with the more recent
use of immunotherapy, possibly due to increased immunogenicity in
patients with MUP. Nevertheless, identifying the tissue of origin is
generally required for metastatic cancer patients with uncertain or
unknown primary sites. Other scenarios that require identification of
the primary site include the development of secondary cancers after
cure of the primary cancer and poorly differentiated or undiffer-
entiated cancers. It is estimated that 15% or 16% of cancer patients may
need an accurate test to identify theprimary sites6,53. Awidely accepted
concept in the medical community is that at least 15–20% of CUP
patients have a favorable prognosis with primary site-directed
therapy4. Typical CUP subgroups with a positive clinical outcome
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include neuroendocrine carcinoma of unknown primary, squamous
cell carcinoma involving cervical lymph nodes, single metastatic
deposit of unknown primary, papillary adenocarcinoma of the peri-
toneal cavity in women, isolated axillary nodal metastases in women,
and osteoblastic bone metastases and prostate-specific antigen
expression inmen. Excitingly, additional subgroups of CUPwith better

prognoses, such as colorectal, renal, and pulmonary, have recently
emerged and may benefit from tailored treatment plans59. With the
increasing number of new treatment options, such as targeted thera-
pies and immunotherapies, the test that can accurately identify the
primary site of cancerwill benefit thousands of cancer patients10,21,60. In
particular, there is emerging evidence that certain genetic features,
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Fig. 4 | Performance of the BELIVE algorithm on the TCGA DNA methylation
microarray dataset (n = 4702). a BELIVE performance in tissue of origin detection
for patients diagnosed with primary cancers in the TCGA project. Sample size and
recall are plotted at the top of the confusion matrix, while precision is plotted on
the right. The columns in the matrix show the primary cancer sites predicted by
BELIVE, and the rows show the actual sites. Colored squares along the diagonal
represent the percentage of primary sites correctly identified by BELIVE. b The bar
graph (top) shows the proportion of samples whose primary sites were correctly
identified at different confidence levels; the area plots (bottom) show the

proportion (y-axis) of samples whose primary sites were correctly classified with
greater than or equal to a confidence level (x-axis). c ROC curves for prediction of
primary sites in patients with primary cancer.dTop-k (k = 1, 2, 3, 4, 5) accuracies for
predicting primary sites in patients with primary cancer. e Sensitivities of the
BELIVE algorithm based on the top-k-ranked predictions. The red line shows the
median sensitivity of BELIVE in predicting the primary sites of ten cancers, while the
blue and green lines correspond to the sensitivities for the best and worst per-
forming cancers. Source data are available in a supplementary file.

Fig. 3 | Comparison of 28 classifiers and the performance of BELIVE in pre-
dicting the primary sites of metastatic cancer (n = 215). a The radar plot illus-
trates the area under the curve (AUC) values of 28 classifiers.bBELIVEperformance
in detecting the primary sites of ten common metastatic cancers. Sample size and
recall are plotted at the top of the confusion matrix, while precision is plotted on
the right. The rows in thematrix show the primary cancer sites predicted by BELIVE
and the columns show the authentic primary cancer sites. The colored squares
along the diagonal represent the percentage of primary cancers correctly identified
by BELIVE. c The bar chart (top) shows the proportion of samples whose primary
sites were correctly identified with different confidence levels; the area charts
(bottom) show the proportionof samples (y-axis) whose primary sites ofmetastatic
cancers were correctly classified with greater than or equal to a confidence level

(x-axis). d ROC curves for the classification of primary metastatic sites. e Top-k
accuracies for predicting primary sites of metastatic cancers. f Sensitivities of
BELIVE based on top-k predictions. The red line shows the median sensitivity of
BELIVE for predicting primary sites across the ten cancers, while the blue and green
lines correspond to the sensitivities for the best and worst performing cancers.
g Prediction accuracies of BELIVE for different bins of tumor cell content.
h Prediction accuracies were calculated over different inputs of sequencing data.
The top 70 FFPE-RRBS libraries with more than 24 million paired-end reads were
subjected to a downsampling analysis. After randomly dropping a fraction of the
sequencing reads, the remaining data was used to test BELIVE’s prediction accu-
racy. Of the 70 libraries, 53 with 32 million or more sequencing reads were also
evaluated. Source data are available in a supplementary file.
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such as chromosomal instability (CIN) and specific gene mutations,
can be used as biomarkers to guide the use of ICI in CUP patients.
However, clinical trials are still needed to investigate the relationship
between CIN, gene mutations, and immunotherapies61.

In conclusion, FFPE-RRBS is a reproducible and streamlined
method for DNAmethylation profiling using degraded DNA fragments
isolated from FFPE samples. Based on RRBS data, BELIVE can effec-
tively identify the tissue of origin for metastatic cancer and CUP
patients. Incorporating additional cancer types into the classifier will
further expand its clinical application, which is currently undergoing
extensive evaluation.

Methods
This study was approved by the institutional review board (IRB) of the
participating hospitals, including Hangzhou First People’s Hospital,
Zhejiang Cancer Hospital, Shandong Cancer Hospital and Institute, and
Hefei Cancer Hospital of the Chinese Academy of Sciences. Written
informed consent was obtained from the patients. Our investigation
was conducted in accordance with all relevant ethical regulations.

Patients and samples
Participants enrolled in this study included: (1) two retrospective
cohorts of patients diagnosed with either primary cancer (n = 510) or
metastatic cancer (n = 258) between April 2015 and July 2021; (2) a
prospective cohort of patients (n = 68) initially classified as havingCUP
between July 2021 andApril 2023 (Fig. 1a). Criteria for diagnosis of CUP
were based on NCCN guidelines17. Patient eligibility criteria are
described in the Supplementary Materials and Methods.

In total, we collected 510 FF tumor samples, 57 adjacent normal
tissues, and 258 FFPE tissues from metastatic cancer patients for
assay development and testing. The study also included 68 FFPE
samples from CUP patients with a definitive diagnosis at the end of
the study. Medical histories were obtained for all patients. Board-
certified pathologists re-evaluated tumor histology. DNA methyla-
tion microarray (Illumina 450K) data of the ten most common can-
cers from the TCGA project were downloaded and used for cross-
validation (n = 4702).

Immunohistochemistry analysis
IHC staining and analysis were performed using a combination of
antibodies as previously described62. The IHC panel in this study
included antibodies against Arg-1, Bcl‐2, Bcl-6, CA IX, CA125, CAM5.2,
CD10, CD117, CD20, CD21, CD3, CD34, CD45, CD56, CDX-2, CEA, c-
erbB-2, CgA, CK, CK(HMW), CK18, CK19, CK20, CK5/6, CK7, CK8/18,
CR, Desmin, E-cadherin, EGFR, EMA, ER, Galectin-3, GATA-3, Glut-1,
GPC-3, GS, Hepatocyte, HSP70, IMP3, INI-1, MUC-1, MUC5AC, MUC-6,
MUM-1, Napsin-A, P16, P40, P504s, P53, P63, Pax5, Pax-8, PR,

SATB2, SMARCA4, Syn, TFE3, TG, TTF-1, Villin, Vimentin and
WT-1 (Supplementary Data 4). All IHC images were independently
reviewed by pathologists.

RRBS library preparation and sequencing
The assay was conducted using genomic DNA purified from either
10–20mg of FF tissue or 5–8 of 5–10 µm FFPE tissue sections. Board-
certified pathologists reviewed an H&E stained slide to ensure that
tumor cells accounted for 10% or more of the cell population and that
thenecrosis areawas less than50%.GenomicDNAwas isolated fromFF
tissues and FFPE sections using the TIANamp Genomic DNA Kit
(TIANGEN, Beijing, China) and TIAamp FFPE DNA Kit (TIAGEN, Beijing,
China), respectively, per the manufacturer’s recommendations.

Genomic DNA (10–50ng) from FFPE samples was treated with 0.5
units of shrimpalkaline phosphatase (rSAP, NewEnglandBiolabs, USA)
in l5μl of 1x CutSmart buffer (New England Biolabs, USA) at 37 °C for
50min. The rSAP was then inactivated at 75 °C for 20min. Depho-
sphorylated DNA was treated with 5 units of MspI (New England Bio-
labs, USA) at 37 °C for 90min in a final reaction of 16 µl, followed by
heat-inactivation of the restriction enzyme at 70 °C for 10min. The
digested DNA was end-repaired and A-tailed in an 18 µl reaction con-
taining 2.5 units of Klenow enzyme (3’−5’ exo-New England Biolabs,
USA), 0.2mM dATP, 40 nM dCTP and 40 nM dGTP (New England
Biolabs, USA). The reactionwas incubated at 30 °C for 25min, 37 °C for
25min, and heat-inactivated at 70 °C for 10min. Barcodedmethylated
adaptors (0.1μM) were then ligated to the dA-tailed DNA fragments in
a 21μl reaction containing 0.5mM ATP, 80 units of T4 ligase (New
England Biolabs, USA), and 1× CutSmart buffer at 16 °C for at least 3 h.
The T4 DNA ligase was then heat-inactivated at 70 °C for 15min.
Adapter-equipped DNA fragments were purified using 1.6× SPRI beads
(Agencourt AMPure XP, Beckman Coulter) and then eluted with 40μl
H2O. The eluted DNA was subjected to sodium bisulfite conversion
according to the manufacturer’s recommendations (Qiagen, Ger-
many). Bisulfite converted DNA was PCR amplified using primers
consisting of Illumina i7 and i5 indexes and thermocycler conditions
were 98 °C for 1min, then 6 cycles of (98 °C for 20 s, 58 °C for 30 s,
72 °C for 1min) followed by 12 cycles of (98 °C for 20 s, 65 °C for 30 s,
72 °C for 1min), then 72 °C for 2min followed by 4 °C hold. PCR pro-
ducts were purified using 1.5x SPRI beads and quantified using an
Agilent 2100 Bioanalyzer. FFPE-RRBS libraries were subjected to 150
cycles of paired-end sequencing runs on a NovaSeq 6000 platform
(Illumina, USA) with a 30% PhiX spike-in. For FF tissues, RRBS libraries
were constructed using 10–20 ng DNA without rSAP treatment63, but
the libraries were sequenced as described above.

RRBS data processing
Approximately 8 gigabases of RRBS data were obtained for each library.
Adapter and barcode sequences were removed using Trim Galore
(version 0.6.2)64. The trimmed reads were mapped to the human gen-
ome version hg19 using BSMAP65, with the options “-q 20 -f 5 -r 0 -v 0.05
-s 16 -S 1”. The resulting BAM files were then converted to mHap files
using the mHapTools (version 1.0)66. CpG methylation metrics were
extracted using the MethylDackel tool developed by Devon Ryan
[https://github.com/dpryan79/MethylDackel]. We filtered out samples
with low bisulfite conversion rates (<99%), low mapping ratios (<50%),
and insufficient numbers of CpGs (<0.8 million) at 10x coverage. Con-
sequently, RRBS libraries from 498 primary tumors, 215 metastatic
tumors, and 68 CUP patients were subjected to further analysis.

Feature selection and classifier construction
We first computed the methylation levels of CGIs using four methods,
including mean methylation (beta value)67, proportion of discordant
reads (PDR)68, cell heterogeneity-adjusted clonal methylation
(CHALM)69, and methylated haplotype load (MHL)70. Only CGIs with
coverage >100x were further analyzed. Next, we applied the two-sided

Table 2 | BELIVE prediction accuracy in 68 CUP patients

Diagnosed
cancer type

Patients (n) Top-1 Pre-
diction (n)

Top-1
Accuracy

Top-3 Pre-
diction (n)

Top-3
Accuracy

Lung 19 18 95% 18 95%

Head
and neck

17 12 71% 16 94%

Stomach 8 8 100% 8 100%

Colorectum 7 4 57% 6 86%

Ovary 5 4 80% 4 80%

Liver and
bile duct

6 6 100% 6 100%

Cervix 2 1 50% 2 100%

Thyroid 3 1 33% 2 67%

Esophagus 1 1 100% 1 100%

Total 68 55 81% 63 93%
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Wilcoxon rank sum test to select CGIs that could be employed as
biomarkers from the training dataset of 498 FF primary tumors and 57
adjacent normal tissues. Noteworthily, the CGIs should meet the fol-
lowing conditions: (1) The methylation level of a selected CGI in one
cancer type should show a significant difference compared to other
cancer types (FDR ≤0.01). For this purpose, we calculated the methy-
lation level of eachCGI in one cancer type, compared it with that in the
remainingnine cancer types, and selectedonly the cancer type-specific
CGI, regardless of whether it is hypomethylated or hypermethylated.
(2) The selected CGI should also have a significantly different methy-
lation level (FDR ≤0.01) compared to that in the control group of 57
tumor-adjacent normal tissues. The code for the selection of CGIs is
available at https://github.com/heshutao0420/cup.

Thus, 28 classifiers were developed by using four sets of selected
biomarkers and categorizing the biomarkers of different cancer types
using the Scikit-learn package, which included sevenmachine learning
approaches, including AdaBoost, k-nearest neighbor (KNN), logistic
regression (LGR), linear support vector classifier (LinearSVC), Naïve
Bayesian (NB), random forest (RF), and support vectormachine (SVM).
Specifically, we used a Bayesian optimization approach to select the
hyperparameters and then divided the 498 FF-RRBS libraries into
training and validation datasets according to the ratio of 4:1. To bal-
ance the number of RRBS libraries in the training and validation sets,
the SMOTE function from the imblearn Python library was employed.
For the training set, we used the hyperopt Python library to select the
following hyperparameters: (1) Adaboost: the maximum number of
estimators at which the boosting stops, the learning rate; (2) KNN: the
number of neighbors, the algorithm used to compute the nearest
neighbors, and the weight function used in the prediction; (3) LGR: the
penalty, the inverse of the regularization strength, the algorithm used
in the optimizationproblem; (4) LinearSVC: normused in penalization,
loss function, tolerance for stopping criteria, regularization para-
meters,multi-class strategy, themaximumnumber of iterations to run;
(5) NB: additive (Laplace/Lidstone) smoothing parameter; (6) RF:
maximum depth of the tree, number of features to consider when
searching for the best split, number of trees in the forest, feature
selection criteria; (7) SVM: regularization parameter, kernel type to be
used in the algorithm, kernel coefficient. After optimizing the hyper-
parameters, the prediction probability of each model was calibrated
using the CalibratedClassifierCV function from the Scikit-learn pack-
age on the corresponding validation set. The codes are available at
https://github.com/heshutao0420/cup.

These classifierswere evaluated by using themethylation features
extracted from the validation dataset of 215 FFPE tissues, and only the
best one was further evaluated. Quantitative metrics, including preci-
sion, recall, F1 score and accuracy, were used to evaluate the perfor-
mance of the classifiers. TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) were calculated based on the con-
fusion matrix. The formulas used to calculate the quantitative metrics
were presented as follows:

Recall = TP=ðTP+FNÞ: ð1Þ

Precision=TP=ðTP+FPÞ: ð2Þ

F1 = 2ðrecall � precisionÞ=ðrecall + precisionÞ: ð3Þ

Accuracy = ðTP+TNÞ=ðTP+FP+TN+FNÞ: ð4Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RRBS and WGBS datasets generated in this study were deposited
in the NCBI Gene Expression Omnibus (GEO) under accession code
GSE231984, which included the following SubSeries: training set
(accession code: GSE230193), validation set (accession code:
GSE231969), CUP test set (accession code: GSE233087), WGBS set
(accession code: GSE233088). The processed data in bedGraph and
mHap format are freely available at GEO, which is sufficient to repro-
duce the results in this study. We have deposited the raw data in the
Genome Sequence Archive (GSA) under the accession number
HRA005166 under controlled access. Access can be requested through
Hongcang Gu (gu_hongcang@cmpt.ac.cn) and will be made available
for non-commercial use for a minimum of 5 years. The DNA methyla-
tionmicroarray (Illumina 450K) data of the tenmost common cancers
used in this study are available in the TCGA database. The source data
generated in this study were recorded in the source data files. Source
data are provided with this paper.

Code availability
The script was implemented using Python 3.6.11 and R 4.0.0. Other
tools andpackages used for data analysis include: numpy 1.19.1, pandas
1.1.5, scipy 1.5.2, sklearn 0.23.3, imblearn 0.0, hyperopt 0.2.5, argparse
1.1, matplotlib 3.5.2, glob2, ggplot2 3.3.5, and GenomicRanges 1.34.0.
The codes used in this study are available from Zenodo [https://
zenodo.org/record /8022705]71. The codes are maintained and upda-
ted at https://github.com/heshutao0420/cup.
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