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An invertible, invariant crystal
representation for inverse design of
solid-state materials using generative
deep learning

Hang Xiao 1, Rong Li2, Xiaoyang Shi3, Yan Chen4 , Liangliang Zhu 2,5 ,
Xi Chen 1 & Lei Wang 6,7

The past decade has witnessed rapid progress in deep learning for molecular
design, owing to the availability of invertible and invariant representations for
molecules such as simplified molecular-input line-entry system (SMILES),
which has powered cheminformatics since the late 1980s. However, the design
of elemental components and their structural arrangement in solid-state
materials to achieve certain desiredproperties is still a long-standing challenge
in physics, chemistry and biology. This is primarily due to, unlike molecular
inverse design, the lack of an invertible crystal representation that satisfies
translational, rotational, and permutational invariances. To address this issue,
we have developed a simplified line-input crystal-encoding system (SLICES),
which is a string-based crystal representation that satisfies both invertibility
and invariances. The reconstruction routine of SLICES successfully recon-
structed 94.95% of over 40,000 structurally and chemically diverse crystal
structures, showcasing an unprecedented invertibility. Furthermore, by only
encoding compositional and topological data, SLICES guarantees invariances.
We demonstrate the application of SLICES in the inverse design of direct
narrow-gap semiconductors for optoelectronic applications. As a string-based,
invertible, and invariant crystal representation, SLICES shows promise as a
useful tool for in silico materials discovery.

The past decade has seen rapid progress of inverse molecular design
using generative models (GMs)1: de novo design of drugs2,3, synthetic
routes of organic compounds4,5, as well as generative design of mole-
cular electronics6,7. For molecules, there are several invertible and
invariant representations such as simplifiedmolecular-input line-entry

system (SMILES)8, International Chemical Identifier (InChI)9, and
molecular-graph10. Invertibility means that representations can be
reversed or transformed back to their original structures, whereas
invariances indicate that representation after rotation, translation, and
permutation is mapped to the same structure without these
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operations. A representation that satisfies both invertibility and
invariances is necessary to enable general and property-driven inverse
design using GMs. Unlike molecules, however, applying GMs to
inversely design solid-state materials remains a long-standing
challenge11, owing to the lack of an invertible, invariant and
periodicity-aware crystal representation that covers the majority of
elements across the periodic table.

Several attempts have been made to address this challenge. A 3D
image-based representationwas first proposed byNoh et al.12 and later
enhanced by many studies including Hoffmann et al.13, Court et al.14,
and Long et al.15,16. However, 3D image-based representations are not
rotationally invariant and training 3D data models is computationally
expensive. Some previous studies directly use lattice vectors and
atomic coordinates for structure representation, but thesemodels are
not invariant to Euclidean transformations17–20. Crystal graph is an
invariant representation that encodes both atomic and bonding
information between atoms. It was proposed by Xie and Grossman21 in
the original Crystal Graph Convolutional Neural Networks (CGCNN)
work and was utilized in many improved variants of CGCNN22, which
have made major impacts on data-driven material property predic-
tions. However, crystal graph is not invertible, hence it is not suitable
for the inverse design of crystals usingGMs. Recently, CrystalDiffusion
Variational Autoencoder (CDVAE) was proposed by Xie et al.23 to
explore the generation of stablematerials. Utilizing the invariantmulti-
graph representation, CDVAE reconstructs the input crystal structure
in a diffusion process. Nonetheless, its reconstruction rate for crystal
structures in the MP-20 dataset24 (comprising over 45,000 materials
with unit cells containing up to 20 atoms from the Materials Project25)
is merely 45.43%, demonstrating its limited invertibility. In short, no
work has demonstrated an invertible crystal representation that
satisfies full invariances.

In this work, we propose a string-based invertible crystal repre-
sentation that guarantees invariances, simplified line-input crystal-
encoding system (SLICES). The reconstruction of crystal structures
fromSLICES strings involves three steps: (1) initial structure generation
with graph theory techniques26, (2) optimization based on chemically
meaningful geometry predicted with modified Geometry Frequency
Noncovalent Force Field (GFN-FF)27, and (3) structural refinement
using universal graph deep learning interatomic potential28. The
reconstruction routine of SLICES considerably outperforms past
methods in accurately rebuilding input crystal structures while main-
taining invariances. We showcase the applications of SLICES in

designing direct narrow-gap semiconductors for optoelectronic
applications via deep generative models. Additionally, SLICES-based
inverse design framework significantly outperforms past approaches
in generating materials with a desired property.

Results
SLICES representation
Graphs provide a natural representation for modeling molecules and
crystals. Amolecule is represented as an undirected finite graphwhere
nodes and edges represent atoms and bonds, respectively (Fig. 1a).
However, crystals cannot be represented as undirected finite graphs
since they have infinite periodic 3D structures. To this end, a finite
graph representation of the infinite periodic structure, called the
quotient graph, was introduced by Chung et al.29 (Fig. 1b). In quotient
graphs, atoms and bonds in the unit cells of crystal structures are
represented by nodes and edges, respectively. The quotient graph by
itself does not provide a unique representation of a crystal structure.
To ensure a one-to-one relationship between crystal structures and
their quotient graphs, it is necessary to add labels denoting transla-
tional periodicity and directions to the edges of quotient graphs29.

A SLICES string always begins with symbols of atoms in the unit
cell (Fig. 1b), encoding the chemical composition of the corresponding
crystal structure. In SLICES, edges are represented explicitly in the
form u v x y z (Fig. 1b), where u v are node indices and x y z denotes
the location of the unit cell to connect to. In essence, edge labels
specify the translation vectors needed to connect unit cells. For
instance, in Fig. 1b, the edge e4 has the label ‘0 0 1’, indicating that e4
connects node C0 to the copy of C1 shifted one unit along the c axis.
Edge labels, which specify the translational periodicity of edges, are
the defining feature of SLICES. They enable the construction of sui-
table initial guess structures derived from graph theory (see Methods
section for details). Thus, we constructed the string representation for
crystal structures by encoding the atomic symbols, node indices, and
the aforementioned edge labels (Fig. 1b). To disambiguate node indi-
ces fromedge labels in the string representation,weutilize ‘o’, ‘+’ and ‘-’
to denote ‘0’, ‘1’ and ‘−1’ in edge labels, respectively. This encoding
guarantees that ‘0’ and ‘1’ in SLICES refer exclusively to node indices,
eliminating potential confusion during model training.

Encoding all atoms within the unit cell in SLICES eliminates the
need to incorporate crystal symmetry groups, simplifying the con-
struction rules for SLICES. Although this results in a less compact
representation, this trade-off is justified given that state-of-the-art
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Fig. 1 | The analogy between simplified molecular-input line-entry system
(SMILES) and simplified line-input crystal-encoding system (SLICES). a The
molecular graph serves as an intermediary to translate between molecules and

SMILES strings. b Likewise, the labeled quotient graph serves as an intermediary to
translate between crystal structures and SLICES strings.
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natural language processing (NLP) models excel at handling long
sequences, rendering compactness less important. Owing to its simple
and clear definition, SLICES could be useful in chemical description
and informatics of solid-state materials.

While graph-based representations are more intuitive for crystal
structures, string-based representation allows us to take advantage of
the extensive and rapidly evolving field of NLP. Based on this con-
sideration, we opted for a string representation over graph-based
approaches in this work.

Encoding crystal structures as SLICES strings
Many methods have been developed to analyze the connectivity of
crystal structures following Pauling’s pioneering work in 1929 that
introduced the concept of bond strength. For instance, minimum dis-
tance method, Brunner’s method30, Hoppe’s method of effective coor-
dination numbers (EconNN)31 and crystal near-neighbor method32 are
well-established methods for identifying near-neighbor environments,
and have been implemented in the “local_env” module of the
Pymatgen33 package. Among thesemethods, EconNN31 offers a relatively
good compromise between speed, accuracy and robustness to atomic
perturbation34. Therefore, analyses of the local chemical environments
are performed with EconNN31 implemented within Pymatgen33 to define
edges (bonds) for SLICES. Specifically, encoding a crystal structure as a
SLICES string involves three steps: (1) Parsing thecrystal structure froma
file (e.g., Crystallographic Information File35) into a Structure object
using Pymatgen33; (2) Constructing a structure graph based on the
Structure object using the EconNN31 algorithm; (3) Extracting the che-
mical composition, bonding connectivity, and translation vectors from
the structure graph to generate the corresponding SLICES string.

Reconstruction of original crystal structures from SLICES
strings
While it is relatively straightforward to create a string-based repre-
sentation for crystal structures, the difficulty lies in ensuring its

invertibility, a key requirement for its implementation in inverse
design. In 2003, Delgado-Friedrichs & O’Keeffe36 developed a graph
theory approach to obtain Euclidean embeddings of periodic graph
with the maximum acceptable crystal symmetry. This is known as the
periodic graph’s barycentric embedding, where every node is placed in
the center of gravity of its neighbors. Therefore, the barycentric
embedding of a labeled quotient graph corresponding to a SLICES
string may provide a suitable initial guess structure for reconstructing
the original crystal structure.

Note that the barycentric embedding is an embedding with
maximum acceptable crystal symmetry. However, crystal structures
do not always have maximum acceptable symmetry. In 2011, Eon26

generalized the concept of barycentric embedding, and proposed a
graph-theoretical framework for the systematic generation of non-
barycentric embeddings with lower symmetry. Eon’s method enables
systematic optimization of initial guess structures to satisfy certain
geometrical constraints. Based on Eon’s method, Boyd and Woo37

developed a topology-based Metal–organic framework (MOF) con-
structor called ToBasCCo.

Inspired by these works, we developed a three-step reconstruc-
tion scheme from SLICES strings to crystal structures. This recon-
struction scheme will be denoted as ‘SLI2Cry’ throughout the
remainder of this text. An example of the reconstruction process for
NdSiRu (mp-5239 in Materials Project database) is shown in Fig. 2.

(I) Initial guess structure generation using Eon’s topology-based
method26.

The SLICES string was converted into its corresponding labeled
quotient graph GðV , EÞ with n nodes and m edges. vi = ðsiÞ 2 V is the
node i with atomic symbol si, and ej = ðuj ,vj ,xj ,yj,zjÞ 2 E is the edge j
connecting node uj in the original unit cell to node vj in the cell shifted
by xja+ yjb+ zjc, where a,b,c are lattice basis vectors.

Based on Eon’s method26, if ej is given, metric tensor Z and edge
vectors represented in fractional coordinates of the unit cell,Ω, can be

Fig. 2 | Intermediate structures generated during reconstructing the crystal
structure of NdSiRu (mp-5239) from its SLICES string. The original structure of
NdSiRu (0)was converted into its SLICES string. The reconstructionprocess started
from generating barycentric embedding (1) using graph theory, followed by
rescaling the barycentric embedding to obtain the rescaled structure (2) with
modified Geometry Frequency Noncovalent Force Field (GFN-FF). Then, the
rescaled structure was optimized based on chemically meaningful geometry pre-
dicted with modified GFN-FF to yield the chemically meaningful non-barycentric

embedding, denoted as the ZL*-optimized structure (3), followed by structural
refinement with the universal interatomic potential for materials based on graph
neural networks with three-body interactions (M3GNet IAP) to obtain the IAP-
refined structure (4), which matches well with the original structure (0). For com-
parison, direct refinement of the rescaled structure with M3GNet IAP yielded the
IAP-refined rescaled structure (5), which significantly deviates from the original
structure (0).
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calculated. Z and Ω have following forms:
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where Z consists of dot products of the lattice basis vectors, andΩ is a
function of co-lattice vectors, L* (see Methods for details). Eon26

showed that co-lattice vectors L* of an embedding quantify its total
deviation from its original barycentric embedding. When L* is a zero
matrix, the combination of Z and Ωð0Þ defines a barycentric
embedding ofG in Cartesian coordinates. Otherwise, the combination
of Z andΩðL*Þ defines non-barycentricCartesian embeddings ofG. The
details of constructing barycentric and non-barycentric embeddings
from ej are provided in Methods section. The barycentric embedding
generated from SLICES of NdSiRu is shown in Fig. 2 as structure 1.

(II) Optimization of the non-barycentric embedding based on
chemically meaningful geometry predicted with modified GFN-FF27.

In step (I), the barycentric embedding was constructed using a
purely mathematical approach, without considering the chemical
informationof nodes (si). As a result, the lengths of latticebasis vectors
are not chemically meaningful. For example, the barycentric embed-
ding of NdSiRu has very small lattice parameters a, b and c (Fig. 2).
Therefore, the chemical information in SLICES should be utilized to
find a chemically sensible version of the barycentric embedding.

In 2020, Spicher and Grimme27 proposed a universal force field,
GFN-FF, capable of effectively modeling a diverse set of systems, ran-
ging from organic molecules to inorganic crystals for elements up to
atomic number 86. GFN-FF accepts Cartesian coordinates and ele-
mental composition as input, and subsequently generates a covalent
topology encoded in a neighbor list, based on inter-atomic distance
criteria. From this topology, GFN-FF calculates a set of topology-based
electronegativity equilibrium (EEQ) charges qt. Subsequently, all
potential energy terms can be constructed primarily based on the
neighbor list and qt. The topological nature of GFN-FF allows us to
develop a modified GFN-FF, capable of estimating bond lengths and
angles from SLICES. Specifically, we modified GFN-FF to take the
neighbor list constructed based on si and ej as input, and to output
equilibrium bond lengths lGFN�FF

j and equilibrium bond angles
θGFN�FF
jk . The details of how we modified GFN-FF are provided in

Methods. In summary, thismodifiedGFN-FF is capable of transforming
composition and connectivity into chemically sensible geometry.

The equilibrium bond lengths lGFN�FF
j predicted by modified

GFN-FF was used to rescale the barycentric embedding constructed in
step (I). For brevity, we denote this rescaled barycentric embedding of
G in Cartesian coordinates as the rescaled structure. The rescaled
structure of NdSiRu, denoted as structure 2 in Fig. 2, exhibits sig-
nificantly improved lattice parameters.

To compare bond lengths and bond angles of a specific non-
barycentric embedding with lGFN�FF

j and θGFN�FF
jk , an inner product

matrix g of edge vectors was constructed as follows,

g =Ω L*
� �

� Z � Ω L*
� �� �t ð2Þ

whose diagonal elements represent squared lengths of the edges,
gjj = ðljÞ2, and off-diagonal elements contain angular components
between edge j and k, gjk = lj lk cosθjk . A target matrix T was

constructed with Tjj = ðlGFN�FF
j Þ2 and Tjk = l

GFN�FF
j lGFN�FF

k cosθGFN�FF
jk .

An objective function was defined as follows,

O=
X

ðTjk � gjkÞ2 ð3Þ

which is the sumof squared differences between the targetmatrix
and the inner product of edge vectors in a specific non-barycentric
embedding. By manipulating Z and L* to minimize O, the chemically
meaningful non-barycentric embedding was obtained. For brevity, we
denote this chemically meaningful non-barycentric embedding ofG as
the ZL*-optimized structure. The ZL*-optimized structure of NdSiRu is
shown inFig. 2 as structure3, ofwhich bond lengths aremuchcloser to
the values of the original structure (structure 0 in Fig. 2).

(III) Structural refinement of the ZL*-optimized structure with
M3GNet IAP28

Although GFN-FF is capable of modeling a wide range of systems,
its discontinuous potential energy surface makes it unsuitable for
optimizing crystal structures directly. Recently, Chen and Ong28

developed a universal interatomic potential for materials based on
graph neural networks with three-body interactions (M3GNet IAP),
which enables high fidelity structural optimization for materials of
diverse chemistries. To this end, the ZL*-optimized structure obtained
in step (II) was further refined with M3GNet IAP, resulting in the IAP-
refined structure (structure 4 in Fig. 2) that matches well with the
original structure (structure 0 in Fig. 2). However, direct refinement of
the rescaled structure from step (II) with M3GNet IAP resulted in the
IAP-refined rescaled structure (structure 5 in Fig. 2) that substantially
deviates from the original structure, highlighting the critical role of
ZL*-optimization targeting GFN-FF geometry (step II) in the success of
SLI2Cry.

Benchmark on crystal structure reconstruction
The reconstruction performance of SLI2Cry is evaluated by the simi-
larity between the reconstructed and original crystal structures. To
evaluate the similarity, we utilized the StructureMatcher function of
Pymatgen33 v.2022.11.7 (Supplementary Note 1). The reconstructed
and original crystal structures are deemed similar if they satisfy the
matching criteria of StructureMatcher. In particular, two sets of match
settings for StructureMatcher were used. Loose: a fractional length
tolerance of 0.3, a site tolerance of 0.5, and an angle tolerance of 10º;
Strict: a fractional length tolerance of 0.2, a site toleranceof0.3, and an
angle tolerance of 5º. The loose/strict match rate for a dataset is
defined as the percentage of reconstructed crystal structures that
meet the corresponding loose/strictmatching criteriawhen compared
to the original structures in the dataset. The MP-20 dataset24 curated
by Xie et al.23 was selected in our benchmark. It contains 45,229 struc-
turally and chemically diverse crystal structures, including most
experimentally known crystals with 1- 20 atoms in the unit cell. 89
elements from the periodic table are covered in this dataset.

SLI2Cry is universally applicable across datasets without the need
of training. This is attributed to SLI2Cry’s rule-based steps (I) and (II)
that require no training, along with the pre-trained, transferable
interatomic potential employed in step (III). Therefore, all data points
in MP-20 dataset can be used as testing data. It is noteworthy that the
SLICES representation can cover all elements of the periodic table.
However, the modified GFN-FF potential employed in step (II) limits
the applicability of SLI2Cry to crystal structures containing atoms with
atomic numbers up to 86. This restriction leaves uswith 42985 crystals
(95.04%) in the filtered MP-20. Additionally, while Eon’s method26,
applied in step (I), is applicable for 3D crystal structures, it fails for low-
dimensional (0D, 1D, or 2D) structures such as molecular or layered
crystals due to fragmented quotient graphs. A potential solution is a
hierarchical graph approach treating low-dimensional structural units
as nodes in quotient graphs, which is planned for future work. Con-
sequently, we eliminated crystals with low-dimensional structural
units, bringing the filtered MP-20 down to 40,330 crystals (89.17%).
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Table 1 illustrates the reconstruction performance of SLI2Cry for
the filtered MP-20 dataset (40,330 crystals): Under the strict criteria,
thematch rate of rescaled structures stands at 77.87%, suggesting that
the combination of Eon’s topology-based method and rescaling of the
unit cell with modified GFN-FF effectively generates satisfactory initial
guess structures. Following the optimization based on chemically
meaningful geometry predicted with modified GFN-FF in step II, the
match rate saw a 6.7% increase to 84.57%. Additionally, further struc-
tural refinement with the IAP during step III boosted the match rate to
92.55%. Direct refinement of the rescaled structures without step II
only yielded an 86.83% match rate. This highlights the important role
of the optimization targeting modified GFN-FF geometry in step (II) to
the success of SLI2Cry. Given that SLICESmaintains invariances byonly
encoding topology and composition, a match rate of 92.55% is
impressive.

Under the loose setting, the match rates are as follows: rescaled
structures: 91.36%, after ZL*-optimization (step II): 94.05%, after IAP
relaxation (step III): 94.95% (slight improvement). However, running
IAP structural refinement directly on the rescaled structure (skip step
II) caused a 0.78% decrease inmatch rate. This can be attributed to the
relatively loose matching criteria in the loose setting, allowing for the
inclusion of some problematic rescaled structures as matches. Sub-
sequent IAP refinement of them yielded worse structures that then
failed to meet the loose criteria.

Furthermore, we analyzed four representative cases where
SLI2Cry faced challenges in reconstructing original crystal structures
(Supplementary Note 2 and Supplementary Fig. 1). The findings indi-
cate that further improving the accuracy and robustness of modified
GFN-FF in step (II) could enhance the performance of SLI2Cry.

The reconstruction performances of previous methods were
evaluated for the MP-20 dataset (45,229 crystals) under the loose
setting23, and their results were compared with SLI2Cry in Table 2.
When applied to the 45,229 crystals within the MP-20 dataset, SLI2Cry
achieved a match rate of 84.66%. This figure is lower than the 94.95%
match rate observed on the filtered MP-20 dataset comprising 40,330
crystals. This decrease can be attributed to the inapplicability of
SLI2Cry to 10.83% of the MP-20 dataset, primarily due to either high
atomic numbers exceeding 86or lowdimensionality. Nevertheless, the
achieved match rate of 84.66% still significantly surpasses that of
CDVAE23 (45.43%) and Fourier-transformed crystal properties (FTCP)20

(69.89%). Note that FTCP lacks invariance to Euclidean transforma-
tions since it encodes absolute coordinates and lattice parameters. In
contrast, SLI2Cry maintains invariances while achieving higher recon-
struction performance than FTCP, primarily owing to SLI2Cry’s strat-
egy of combining an initial guess derived from graph theory with the
optimization based on chemically meaningful geometry predicted by
the modified GFN-FF. The reconstruction of the filtered MP-20 data-
base (40,330 crystals) was completed within one hour on a work-
station with 2 Xeon E5-2699v4 processors (2x22 cores, 2.2 GHz),

indicating SLICES is suitable to be integrated into inverse design
pipelines of crystals.

Additionally, we evaluated the performance of SLI2Cry on the
filteredMP-21-40, which comprises 23,560materials with 21–40 atoms
per unit cell from the Materials Project (see Methods section for
details). Despite a minor performance decrease compared to that of
the filtered MP-20 dataset (Table 1), SLI2Cry still accomplished high
match rates of 87.88% (loose) and 83.73% (strict) on the filteredMP-21-
40 (SupplementaryTable 1). Notably, crystalswith 1–40 atomsper unit
cell account for 77.1% of all entries in Materials Project database,
highlighting the broad applicability of SLI2Cry.

We also assessed SLI2Cry on 339MOFs with 21–40 atoms per unit
cell from the Quantum MOF database38 (filtered QMOF-21-40). The
match rates of 6.19% under loose criteria and 2.95%under strict criteria
indicate the current limitation of SLI2Cry in reconstructing MOFs
(Supplementary Note 3).

Applying SLICES: Inverse design of direct narrow-gap semi-
conductors for optoelectronic applications
We showcase the application of SLICES for the inverse design of direct
narrow-gap semiconductors targeting optoelectronic applications.
The inverse design workflow consists of four stages (Fig. 3): (1) A
general recurrent neural network (RNN)39 was trained on theMaterials
Project25 database to learn the syntax of SLICES strings; (2) A specia-
lized RNN was then developed by tuning the general RNN using a
dataset of direct narrow-gap semiconductors; (3) The specialized RNN
was used to generate large volumes of SLICES strings, whichwere then
reconstructed into crystal structures; (4) These crystal structures were
screened to identify new direct narrow-gap semiconductors.

We set four design criteria: target bandgap, stability, composition
novelty and structural uniqueness. Specifically, (1) direct bandgap (at
Perdew-Burke-Ernzerhof (PBE)40 level) EPBE

g = 0.325 (±0.225) eV, (2)
energy above hull Ehull < 50 meV/atom, (3) the composition must be
different from entries in the Materials Project database, and (4) the
structure should display low structural similarity to structures in
training sets. We considered the tendency of PBE40 to underestimate
bandgap by an order of 0.6–1 eV for small bandgap crystals41 when
choosing the bandgap range. Moreover, direct bandgap enables
applications of candidates in optoelectronics.Meanwhile, crystals with
Ehull < 50 meV/atom are assumed to be synthetically accessible42 due
to finite temperature effect and the error of density functional theory.

The task for material discovery using GMs is twofold: learning the
syntax of the SLICES representation and learning topological/compo-
sitional features targeting key properties.We initially trained a general
RNN on the “general dataset” (Fig. 3), which includes crystals struc-
tures from the Materials Project that satisfy four conditions: (1) 1–10
atoms in the unit cell, (2) formation energy Ef orm<0, (3) containing
atoms with atomic number up to 86, and (4) without low-dimensional
structural units. We fine-tuned a specialized RNN to learn features
predictive of direct narrow bandgap. This was achieved by training it
on crystal structures from the general dataset with a direct bandgap
EPBE
g = 0.325 (±0.225) eV. Arús-Pous et al.43 demonstrated that using

randomized SMILES improves generative model performance over
canonical SMILES. Therefore, we applied SLICES randomization (data
augmentation) to both the general dataset (30,085 SLICES) and the
transfer dataset (364 SLICES), resulting in 764,546 and 11,373 SLICES

Table 1 | Reconstruction performance of SLI2Cry for the filtered MP-20 dataset (40,330 crystals)

Setting Match rate (%)

Rescaled structure ZL*-optimized structure IAP-refined structure IAP-refined rescaled structure

Strict 77.87 84.57 92.55 86.83

Loose 91.36 94.05 94.95 90.58

Table 2 | Reconstruction performance for the MP-20 dataset
(45,229 crystals) under the loose setting

Method CDVAE FTCP SLI2Cry

Match rate (%) 45.4323 69.8923 84.66
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strings respectively. The randomization was achieved by arbitrary
permutations of atomorder andedgeorder inSLICES strings. TheRNN
architecture applied here was based on the work of Yuan et al.6 (refer
to ref. 6 for model details). Leveraging a one-hot encoding of SLICES,
the general RNN and specialized RNNwere trained for 10 epochs and 8
epochs, respectively (Supplementary Table 2).

We used the specialized RNN to generate ~10 million SLICES
strings. Among them, ~3.4 million strings were decoded into crystal
structures, while reconstruction was unsuccessful for ~6.6 million
strings. This is primarily due to duplicated edges within these strings.
This underscores the difficulties of RNNs in learning the complex
syntax of long SLICES strings. State-of-the-art NLP architectures like
Transformer44 could help address this challenge, and is planned for
future study. Through a multi-step high-throughput screening pro-
cess, we identified 14 new direct narrow-gap semiconductors that met
our design criteria. First, we removed candidates with compositions
existing in the MP database, narrowing down to 1.24 million candi-
dates. Next, to avoid duplicates from data augmentation, we kept the
highest symmetry representatives of candidates with identical com-
positions, reducing to ~0.11 million candidates. We evaluated struc-
tural uniqueness between designed and training crystals using a
dissimilarity value based on site coordination information32. Values
near zero signify identical structures, whereas values surpassing 1
represent substantial structural differences. Subsequently, candidates
with structural dissimilarity less than 0.75 (Materials Project’s thresh-
old) to training structures were eliminated, leaving ~0.03 million can-
didates. It’s worth noting that about 27.5% candidates have a
dissimilarity value above 0.75, indicating the SLICES-based RNNmodel
can design crystals that are unlikely to be discovered by elemental
substitution. Furthermore, we removed candidates with M3GNet IAP-
predicted energy above hull EIAP

hull ≥ 50 meV/atom. Then, using Ato-
mistic Line Graph Neural Network (ALIGNN)45 model
jv_optb88vdw_bandgap_alignn46, we eliminated candidates with
EALIGNN
g <0:1 eV (less likely to be a semiconductor), narrowingdown the

search space to 1,002 candidates. Finally, after performing structural
relaxation (MPRelaxSet33) and band structure calculation at PBE40 level

using Vienna Ab-initio Simulation Package (VASP)47,48, we discovered
14 new direct narrow-gap semiconductors meeting our design criteria
(structures, bandgaps and Ehull are shown in Fig. 4). The band struc-
tures of these materials are depicted in Fig. 5.

A workstation with dual Xeon E5-2699v4 CPU (2x22 cores, 2.2
GHz) and a NVIDIA RTX 2080 Ti GPU was employed to run the inverse
design scheme (Supplementary Note 4). In total, 14 potentially syn-
thetically accessible direct narrow-gap semiconductors with unique
compositions and structures were inversely designed in less than 11
days on this workstation.

Benchmarks on material generation and property optimization
To compare the generation andproperty optimization performance of
SLICES-based inverse design frameworks with FTCP20 and CDVAE23, we
trained an unconditional RNN (termed as ucRNN) and a conditional
RNN (denoted as cRNN) on the filtered MP-20 dataset (see Methods
section and Supplementary Table 2 for details).

We evaluated thematerial generation performance of the SLICES-
based ucRNN model using structural and compositional validity
metrics proposedbyXie et al.23 Specifically, a structure is deemed valid
if the minimal atomic distance exceeds 0.5 Å, while compositional
validity requires overall charge neutrality as determined by Semi-
conducting Materials from Analogy and Chemical Theory49 v2.5.2. We
sampled 10,000 SLICES strings using the ucRNNmodel and evaluated
the validity metrics on 9,428 reconstructed crystals (see Methods
section for details). Our method achieves a higher validity than FTCP,
while achieving a similar validity as CDVAE (Table 3).

We evaluated the property optimization performance of the
SLICES-based cRNN model using the success rate proposed by Xie et
al.23 Specifically, the success rate (SR) is defined as the percentage of
crystals achieving 5, 10, and 15 percentiles of the formation energy
distribution of the training set. The goal of property optimization is to
minimize the formation energy per atom for the generated materials.
We sampled 1000 SLICES strings using the cRNNmodel and evaluated
the SR on 782 reconstructed crystals (seeMethods section for details).
Our method considerably outperforms CDVAE and FTCP (Table 3),

SLICES syntax Topological & 
compositional features

General dataset
Materials Project crystals with Natom [1, 

10] and Eform<0
(30,085 crystals)

Transfer dataset
Direct bandgap semiconductors with Eg

PBE

[0.1, 0.55] eV, Natom [1, 10] and Eform<0 
(364 crystals)

Transfer learning

General RNN Specialized RNN

Sampling

New direct narrow-gap 
semiconductors

(1,235,046)
Composition uniqueness

(110,390)
Symmetry

(30,378)
Structure dissimilarity

(1,002)
EAH & Eg prescreen

(14)
EAH & Eg screen

(9,996,344)
SLICES strings

(3,397,371)
Decoded structures

Fig. 3 | The workflow for inverse design of direct narrow-gap semiconductors
targeting optoelectronic applications. The inverse designworkflow started from
training a general recurrent neural network (RNN) on the Materials Project data-
base to learn the syntax of SLICES, followedby training a specializedRNNby tuning

the general RNN using a dataset of direct narrow-gap semiconductors. Then, the
specialized RNN was used to generate ~10 million SLICES strings, which were
reconstructed into ~3.4 million crystal structures. These crystal structures were
filtered to identify new direct narrow-gap semiconductors.
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showcasing the potential of SLICES for inverse design of solid-state
materials.

Discussion
We present SLICES, a string-based, invertible and invariant crystal
representation. Analogous to SMILES representation for molecules,
SLICES encodes the topology and composition of crystal structures
into strings. SLI2Cry reconstructs input crystal structures in three
steps: (1) Initial structure generation with graph theory techniques; (2)
Optimization using chemically meaningful geometry predicted with
modified GFN-FF; (3) Structural refinement with the M3GNet IAP.
SLI2Cry outperforms past methods in reconstructing input structures
while still preserving invariances. To our knowledge, SLICES is the first
invertible crystal representation that satisfies full invariances. Utilizing
SLICES-based RNN models, we inversely designed new direct narrow-
gap semiconductors with unique compositions and structures. More-
over, SLICES-based inverse design framework considerably outper-
formspast approaches in generatingmaterials with a desiredproperty.

While SLICES’ current reconstruction scheme is the best achiev-
able now, further improvements in reconstruction performance are
possible. First, graph theory techniques utilized in step (I) are inade-
quate to handle low-dimensional crystals like molecular or layered
crystals. A hierarchical graph approach that treats low-dimensional
structural units as nodes in quotient graphs could potentially address
this, which requires future work. Second, the modified GFN-FF in step
(II) could be replaced with a universal force field that covers the entire
periodic table and provides high-accuracy bond length/angle predic-
tions from geometry-independent inputs.

While SLICES can encode the chemical connectivity of MOFs,
SLI2Cry faces challenges for reconstructingMOFs fromSLICES strings.
To develop an invertible representation for MOFs (termed MOF-
SLICES), we propose encoding structural building units (SBUs) like
organic ligands and metal clusters as single nodes when constructing
quotient graphs. The SBU symbols can be represented by their indices
in a predefined SBU database. For rebuilding MOFs from MOFSLICES
strings, we can build upon the topology-based MOF construction
algorithm proposed by Boyd and Woo37. This hierarchical graph

approach that simplifies SBUs into quotient graph nodes could
potentially enable MOF reconstruction, which is planned for
future work.

Utilizing other pre-trained ALIGNN models for prescreening and
JARVIS-Tools50 for ab initio validation, this inverse design framework
can be adapted for discovering various functional materials, such as
topological materials and high-TC superconductors. Just as SMILES
enables advancedNLPmodels likeTransformer44 for inversemolecular
design, as demonstrated by Bagal et al.51 with MOLGPT, a GPT52-style
decoder for de novo molecular discovery. Analogously, SLICES could
empower GPT decoders to inversely design solid-state materials by
representing crystals as strings. In summary, as a string-based, inver-
tible, and invariant crystal representation, SLICES showcases potential
as a useful tool for the inverse design of functional crystalline
materials.

Methods
Eon’s topology-based method
Graph theoretical terms. Here, we first introduce some basic graph
theoretical terms that will be mentioned frequently below.

Cycles in a graph are non-empty paths in which only the starting
and ending nodes are the same.

Co-cycles are sets of edges, if removed, would cut a connected
graph into two disjoint subgraphs.

Constructing edges vectors. For an labeled quotient graph with m
edges and n nodes, Delgado-Friedrichs & O’Keeffe36 proposed that
edges vectors in fractional coordinates of the unit cell,Ω, is obtained as
follows:

Ω=B�1 � α ð4Þ

where B is a m×m matrix of cycle/co-cycle basis vectors and α is a
m× 3 matrix of lattice/co-lattice vectors.

The cycle basis of a graph represents an irreducible depiction of
all possible cycles within it. A cycle basis vector is a sum of the edges
(accounting for orientation) within it. For instance, e1 and �e2 form a
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Fig. 4 | Top and side views of 14 new direct narrow-gap semiconductors. For each material, the values of bandgap at Perdew-Burke-Ernzerhof (PBE) level (EPBE
g ) and

energy above hull (Ehull) are provided.
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cycle (Fig. 1b) which is represented in terms of edges ðe1,e2,e3,e4Þ as
ð1,� 1,0,0Þ. The minimum spanning tree algorithm was used to con-
struct the cycle basis for labeled quotient graphs of crystals. That is,
the cycle basis of a graph can be systematically constructed by
selecting cycles formed by combination of a path in the minimum
spanning tree and an edge outside the tree. For connected graphs, the
basis of the cycle space consists of m� n+ 1 vectors, which corre-
spond to the firstm� n+ 1 rows of matrix B. The remaining n� 1 rows
of matrix B consist of co-cycle basis vectors. The co-cycle basis can be
constructed by summing all outward oriented edges (flip the edge if it
is inward oriented) from the first n� 1 nodes of the graph. For

instance, a co-cycle basis vector for the graph in Fig. 1b is the sumof all
outward oriented edges of node C0, i.e., ð1,1,1,1Þ.

Equation (4) shows that B transforms the edge vectors in Ω to
their lattice/co-lattice representation in α. The first m� n+ 1 rows of
matrix α are called “lattice vectors” L and the remaining n� 1 rows
correspond to co-lattice vectors L*. A lattice vector translates points
within the unit cell to an equivalent point in a repeating unit of the
crystal lattice. The lattice vector of a cycle can be constructed by
summing edge labels (translation vectors) in a cycle. For instance, in
Fig.1b, e1 (translation vector: ð0,0,0Þ) and --e2 (translation vector:
ð�1,0,0Þ) form a cycle, so the lattice vector of this cycle is ð�1,0,0Þ.

SrCaZnAs2 CaCd2AsP MgZn2As2

Na2Mg2BiAs Li2Zn2SbP

Cs2Zn2As2 SrCaBiAu

CsKLiSb
Rb4SbAu3

Ca6Sn2PF
Rb2NaSb

d f

g h

j k l

m n

i

a b

e

c

Mg2CdAs2

Na2Cd2P2

Rb2Zn2P2

Fig. 5 | Perdew-Burke-Ernzerhof (PBE) band structures of 14 promising direct narrow-gap semiconductor candidates. Source data are provided as a Source Data file.
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A co-lattice vector is analogous to a lattice vector, except defined
on a co-cycle rather than a cycle. Thus, it can be constructed by
summing the edges vectors in a co-cycle. The co-lattice vectors L* in
any barycentric embedding is a zero matrix. This is because all nodes
are the center ofmass of their neighboring nodes, resulting in the sum
of the edges vectors of the first n� 1 nodes being null vectors. To this
end, co-lattice vectors of an embedding can be used to quantify the
deviation of the embedding from its barycentric embedding. By uti-
lizing co-lattice vectors L* as variables in an objection function, we can
optimize the fractional coordinates of nodes to match the geometry
predicted by modified GFN-FF.

Having constructed B and α, then edge vectorsΩ can be obtained
using Eq. (4). OnceΩ has been determined, the fractional coordinates
of all nodes can then be readily calculated.

In the case of labeled quotient graph of diamond in Fig. 1b, we can
construct its Bdia and αdia as follow:

Bdia =

1 �1 0 0

1 0 �1 0

1 0 0 �1

1 1 1 1

0
BBB@

1
CCCA,αdia =

�1 0 0

0 �1 0

0 0 �1

0 0 0

0
BBB@

1
CCCA ð5Þ

Using Eq. (4), we can obtain Ω 0ð Þdia as:

Ω 0ð Þdia =
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ð6Þ
To calculate fractional coordinates of nodes, we can first place

node C0 at ð0,0,0Þ. The fractional coordinate of node C1 can then be
obtained by adding the first row in Ω 0ð Þdia to the position of C0,
resulting in ð�1=4,� 1=4,� 1=4Þ.

Constructing the metric tensor. To construct an embedding of
labeled quotient graph in Cartesian space, we have to calculate metric

tensor Z =
a � a a � b a � c
b � a b � b b � c
c � a c � b c � c

0
@

1
A. Eon26 showed that the metric tensor

of the barycentric embedding corresponding to a labeled quotient
graph can be obtained as follow:

Z = LA � P � LA
� �t ð7Þ

where LA is a 3 ×m matrix containing cycle basis vectors, and P is an
orthogonal projection matrix. The kernel K of projection matrix P is a
basis for cycles whose edge labels sum to the null vector. The use of
this projection matrix ensures that when constructing the metric
tensor from the edge space, cycles with translation vectors summing
to zero are mapped to the zero vector. P is obtained as follow53:

P = I � Kt � K � Kt� ��1 � K ð8Þ

If the cycle basis of a labeled quotient graph has a rank of 3, the
projection matrix reduces to the identity matrix, I. For instance, the
cycle space of the labeled quotient graph in Fig. 1b has 3 basis vectors.
For the diamond structure in Fig. 1b, we can obtain its metric tensor
Zdia using Eq. (7) as:

Zdia =

1 �1 0 0

1 0 �1 0

1 0 0 �1

0
B@

1
CA � I �

1 1 1

�1 0 0

0 �1 0

0 0 �1

0
BBB@

1
CCCA =

2 1 1

1 2 1

1 1 2

0
B@

1
CA ð9Þ

As a result, the latticeparameters of its barycentric embedding are
a=b= c =

ffiffiffi
2

p
,α =β= γ =60�. These parameters properly describe the

primitive cell of diamond, except the length of the lattice vectors
needs to be rescaled, owing to the barycentric embedding is obtained
in a pure mathematical way.

Constructing barycentric/non-barycentric embeddings. Once the
metric tensor Z and edge vectors ΩðL*Þ have been determined, the
barycentric/non-barycentric Cartesian embeddings of a labeled quo-
tient graph can be easily calculated.

Modification of GFN-FF
GFN-FF is implemented in the semiempirical extended tight‐binding
(XTB)54 package. We built a new module, xtb_io_reader_top, to accept
neighbor lists as input and store the neighbor list in topo%nb. More-
over, we modified xtb_gfnff_ini, xtb_gfnff_ini2, xtb_gfnff_rab,
xtb_gfnff_setup to initialize newGFFCalculator with topo%nb (without
relying on Cartesian coordinates of atoms (mol%xyz)). Additionally,
instead of calculating the coordination number of atoms (cn(i)) with
Cartesian coordinates of atoms, cn(i) is set to the normal coordination
number of that atom type (param%normcn(mol%at(i))). All modifica-
tions of the XTB package are shown in the forked XTB repository
(https://github.com/xiaohang007/xtb).

Since GFN-FF implemented in XTB is designed for finite systems
such as molecules or clusters, we simulate periodic boundary condi-
tions using finite clusters (3 × 3 × 3 supercells) extracted from crystals.
Specifically, the modified GFN-FF takes the neighbor list of the finite
cluster (3 × 3 × 3 supercell) constructed based on the labeled quotient
graph as input, and outputs equilibrium bond lengths/angles aswell as
relevant force constants of the finite cluster. Then, the equilibrium
bond lengths/angles and relevant force constants corresponding to
the central unit cell of 3 × 3 × 3 supercell cluster are extracted and used
to optimize the non-barycentric embedding in step (II) of SLI2-
Cry (Fig. 2).

Filtered MP-21-40 dataset
MP-21-40 comprises 24,959 materials with 21-40 atoms per unit cell
from the Materials Project database. In MP-21-40, we select mate-
rials with formation energy smaller than 2 eV/atom and energy
above the hull smaller than 0.08 eV/atom to exclude unstable
materials, following Xie et al.23. After excluding crystals containing
atoms with atomic numbers beyond 86 and those with low-
dimensional structural units, the filtered MP-21-40 dataset con-
sists of 23,560 crystals.

ucRNN/cRNN Models for SLICES String Generation
The ucRNN model was trained on the filtered MP-20 dataset (40,330
SLICES). We applied data augmentation to the filtered MP-20 dataset,
resulting in 2,009,115 SLICES strings. The RNN architecture applied
here is the same with the RNN models used in the inverse design of
direct narrow-gap semiconductors (Supplementary Table 2). The
ucRNN was trained for 10 epochs. We sampled 10,000 SLICES strings
using the ucRNNmodel. However, themajority of these SLICES strings
contained duplicated edges that impeded reconstruction by SLI2Cry,

Table 3 | Generation performance and property optimization
performance

Method Generation performance (%) Property optimiza-
tion perfor-
mance (%)

Structural validity Compositional validity SR5 SR10 SR15

FTCP20,23 1.55 48.37 2.00 4.00 5.00

CDVAE23 100.0 86.70 78.0 86.0 90.0

SLICES 99.72 84.43 97.4 99.2 99.6
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owing to the difficulties of RNNs in learning the complex syntaxof long
SLICES strings. Using advanced NLP architectures like Transformer44

could help address this challenge and is planned for future work. A
simple workaround applied in this study was removing all duplicated
edges to correct syntax errors, enabling successful reconstruction of
9428 materials from the 10,000 sampled strings. We then evaluated
the validity metrics on these 9428 generated structures to assess the
ucRNN’s performance.

The cRNNmodelwas also trainedon thefilteredMP-20dataset for
controlled generation of crystals with desired formation energy. The
model schematic of cRNN for training and generation is given in
Supplementary Fig. 2a. For training, formation energies of crystals in
MP-20 were passed as conditions alongside the SLICES string. The
architecture of the cRNNmodel is illustrated in Supplementary Fig. 2b.
To enable conditional generation, we extended the ucRNN with an
additional dense layer that transforms the user-specified formation
energy into a tensor. The concatenation of this tensor with the
embedding tensor of SLICES is fed into a 3-layer stacked gated recur-
rent unit (GRU). The cRNN was also trained for 10 epochs (Supple-
mentary Table 2).

For generation, we input a desired formation energy to the
model to sample crystals. To generate crystals with minimal for-
mation energy, we sampled 1000 SLICES strings for each of the
formation energy targets (−3.0, −4.0, −4.5, −5.0, and −6.0 eV/atom).
After removing duplicated edges in sampled strings, we used SLI2-
Cry to reconstruct the corresponding crystals. The distribution of
formation energy (predicted by M3GNet) of reconstructed crystals
under these targets are depicted in Supplementary Fig. 2c. As seen
in Supplementary Fig. 2c, the distribution of formation energy with
target = −3.0, −4.0, −4.5 eV/atom is generally centered around the
desired value, when taking into account the deviations between
M3GNet predictions and PBE calculations. However, setting the
target to lower values (−5.0, −6.0 eV) had an adverse impact, owing
to the scarcity of training data samples exhibiting formation ener-
gies below −4.5 eV/atom (Supplementary Fig. 2c). In summary, the
lowest mean formation energy predicted by M3GNet was achieved
using a target of −4.5 eV/atom. Based on this observation, formation
energies (at PBE level) of crystals generated with a target of −4.5 eV/
atom were used to evaluate the success rate of property
optimization.

Software implementation
SLICES has been implemented as a Python package. It is published
under the GNU Lesser General Public License v2.1, which is an open-
source license that is recognized by the Open Source Initiative. The
operating systemneeded for compilation and execution is GNU/Linux.
For ease of installation and reproduction of the reconstruction
benchmark and the inverse design case study, a Docker image with
pre-installed SLICES v1.4 package, modified XTB (commit: 0fcba9e)54

package, M3GNet v.0.2.4, Pymatgen33 v.2022.11.7, Pytorch v.1.13.0,
ALIGNN45 v.2023.1.10, Jarvis-tools50 v2023.1.8 is provided. Note that
VASP47,48 requires a commercial license and is not distributed in this
Docker image.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The inverse design data of direct narrow-gap semiconductors and the
data for reconstruction, material generation, and property optimiza-
tion benchmarks are available at Figshare55 (https://doi.org/10.6084/
m9.figshare.22707472, Version 2). Source data are provided with
this paper.

Code availability
The SLICES source code is available on GitHub (https://github.com/
xiaohang007/SLICES). The SLICES documentation is hosted at https://
xiaohang007.github.io/SLICES/. SLICES v1.456 (https://doi.org/10.5281/
zenodo.8421021)wasused to generate all results in thiswork. ADocker
image containing pre-installed SLICES and dependencies is available
on Docker Hub (docker pull xiaohang07/slices:v3) and Figshare57

(https://doi.org/10.6084/m9.figshare.22707946, Version 1) to facilitate
reproducibility. The modified XTB package (commit: 0fcba9e) can be
found at https://github.com/xiaohang007/xtb.
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