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Higher-order singularities in phase-tracked
electromechanical oscillators

Xin Zhou 1,8 , Xingjing Ren1,8, Dingbang Xiao1, Jianqi Zhang2, Ran Huang3,
Zhipeng Li4, Xiaopeng Sun1, Xuezhong Wu1 , Cheng-Wei Qiu 4,
Franco Nori 3,5 & Hui Jing 6,7

Singularities ubiquitously exist in different fields and play a pivotal role in
probing the fundamental laws of physics and developing highly sensitive
sensors. Nevertheless, achieving higher-order (≥3) singularities, which exhibit
superior performance, typically necessitates meticulous tuning of multiple
(≥3) coupled degrees of freedom or additional introduction of nonlinear
potential energies. Here we propose theoretically and confirm using
mechanics experiments, the existence of an unexplored cusp singularity in the
phase-tracked (PhT) steady states of a pair of coherently coupled mechanical
modes without the need for multiple (≥3) coupled modes or nonlinear
potential energies. Bymanipulating the PhT singularities in an electrostatically
tunable micromechanical system, we demonstrate an enhanced cubic-root
response to frequency perturbations. This study introduces a new phase-
tracking method for studying interacting systems and sheds new light on
building and engineering advanced singular devices with simple and well-
controllable elements, with potential applications in precision metrology,
portable nonreciprocal devices, and on-chip mechanical computing.

Singularities, sometimes referred to as catastrophes, arise in diverse
disciplines and play an essential role in describing how the properties
of an object, that are dependent on certain controlling parameters,
change qualitatively even if the controlling parameters vary
minimally1,2. The unusual landscapes near these singularities are very
useful for enhancing the sensitivities of detection3–12, suppressing
noise13–17, as well as generating nonreciprocity8,9,18–30. Higher-order
singularities have the potential to provide higher performance and
engender richer physics10–17,31–35. However, constructing and adjusting
such higher-order singularities is typically challenging due to the
requirement for multiple (≥3) coupled degrees of freedom10,31–33.

Interestingly, nonlinearities can facilitate the emergence of higher-
order singularities, such as dynamical “pitchfork” bifurcation
points12–17,36–43 and higher-order exceptional points (EP’s)11,34,35, while
requiring fewer degrees of freedom. Exploring these phenomena not
only expands our understanding of singularity dynamics but also
paves the way for engineering more controllable singular devices.
Nevertheless, these nonlinearities are often associated with well-
established nonlinear potential energies.

The study of novel singularities in optical systems has been con-
ducted extensively8,9. However, thus far, the exploration of novel sin-
gularities in micro/nanoelectromechanical systems, which exhibit
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broad applications44–51, exceptional in-situ controllability42,43,52–56, and
rich interactive phenomena52–58, remains relatively limited.

Here, we demonstrate theoretically and experimentally the
existence of an unexplored third-order singularity in the phase-
tracked (PhT) steady states of a pair of coherently coupled
mechanical modes. Notably, by examining the equiphase contour of
the coherent-coupling phase response, we find that the system can
exhibit bistability in a way qualitatively different from the Duffing
nonlinearity. The boundaries of stability are constituted by a series
of saddle-node bifurcation points, leading to the singularity named
folds1,37 to describe the abrupt transitions that occur during para-
metric sweeping across these boundaries. Two folds tangentially
merge at a “pitchfork” bifurcation point referred to as a nexus31,
which defines a cusp singularity if projected onto the parameter
plane1,37. By investigating the state information associated with
these singularities, we find that these correspond to transitions
between oscillation phases characterized by chirality. Experimental
validation of the cusp singularity is achieved in an electrically tun-
able microelectromechanical resonator. Our findings demonstrate
that the PhT cusp singularity enables enhanced detecting sensitiv-
ity, exhibiting a cubic-root response that surpasses binary EP
singularities.

Results
Concept
We investigate a pair of coherently coupled mechanical modes char-
acterized by adjustable natural frequencies ω1,2 and matched dissipa-
tion rate γ, as conceptually depicted in Fig. 1a. In this study, the
coherent coupling is produced by the rotation-induced Coriolis
effect59, presenting anangular velocityΩ-dependent coupling strength
g = 2κΩ, where κ ≈0.85 represents the Coriolis-coupling coefficient.
One of the modes, namely mode 1, experiences linear excitation
through an applied external sinusoidal force denoted as F0 cosðωdtÞ,
while the secondmode, mode 2, is not driven. The linear displacement
response of each mode is mathematically described as
q1,2 = jq1,2j cosðωdt + θ1,2Þ, wherein ∣q1,2∣ and θ1,2 correspond to the
amplitude and phase responses, respectively.

In the scenario where the two modes reach degeneracy
(Δω ≡ω2 −ω1 = 0), the open-loop amplitude-frequency response ∣q1∣ of
the driven mode exhibits normal mode splitting as a function of the
coupling strength g52. Correspondingly, the associated phase response
θ1 of the driven mode is visualized by the colored surface in Fig. 1b.
Here, we analyze the “tomography” of the driven-mode phase
response, by keeping θ1 a constant oscillation phase−π/2. To achieve
this PhT closed-loop oscillation, a phase-locked-loop (PLL) is

Fig. 1 | Higher-order singularities in phase-tracked (PhT) dynamics: concept.
aSchematic representationof the realization.Mode 1, drivenby anexternal force, is
coherently coupled tomode2,which remains free.A PLL is employed to enable PhT
closed-loop oscillations. In this study, the coherent coupling is produced by the
rotation Ω

!
induced Coriolis effect, resulting in a coupling strength of g = 2κΩ, with

κ =0.85. bOpen-loop phase-frequency response (θ1, colored surface) of the driven
mode 1 as a function of the coupling strength g in the degenerate case, Δω =0. The

PLL adjusts the drive frequency to track the phase θ1 = −π/2. The PhT frequencyω*
d

exhibits a “pitchfork” bifurcation. cBifurcationpatterns ofω*
d at typical degeneracy

conditions. d The ω*
d as a function of degeneracy condition Δω and coupling

strength g. The green (red) region of the surface represents the stable (unstable)
regime. The projection of the stability boundaries (blue curves) made up of the
bifurcation points to the parameter planemanifests two parabolic loci merged at a
cusp (cyan curves).
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implemented, as depicted in Fig. 1a. By examining the black contour in
Fig. 1b, we observe that the PhT closed-loop frequency (referred to as
ω*

d) satisfying the condition θ1 = −π/2 exhibits a “pitchfork” bifurcation
relative to the coupling strength g. Notably, this bifurcation arises
solely from the landscape of the linear phase response θ1, distin-
guishing it from its counterparts that relay on nonlinear potential
energies12,37,42. Remarkably, this “pitchfork” bifurcation point is pre-
cisely located at the threshold between weak and strong coupling.

As the degeneracy is broken, the perturbed “pitchfork” bifurca-
tion of ω*

d splits into a saddle-node bifurcation and a stable branch, as
illustrated in Fig. 1c. Through the continuous adjustment of Δω, ω*

d
manifests as a partially folded 3D surface (Fig. 1d). The functional
relationship between the PhT frequency ω*

d, the coupling strength g,
and the degeneracy condition Δω can be accurately described by the
cubic equation (see Supplementary Note 3):

ðω*
d � ω1Þ ω*

d � ω2 +
i
2
γ

� �
ω*

d � ω2 �
i
2
γ

� �
� 1

4
g2ðω*

d � ω2Þ=0, ð1Þ

which describes a cusp singularity because equ. (1) is right-equivalent
to the universal unfolding of Thom’s codimension-two catastrophe60,61

(see Methods).
The inflectional region (highlighted in red) within the folded ω*

d
surface in Fig. 1d is made by the unstable bifurcation branches. This
instability arises due to the system’s pronounced divergence when
subjected to perturbations (see Supplementary Note 4). If the control
parameters g andΔω steer across the stability boundariesmade by the
saddle-node bifurcation points adiabatically, catastrophic jumps in the
oscillation state take place, defining the singularity called folds. The
folds tangentially merge at the “pitchfork” bifurcation point (star in
Fig. 1d), giving rise to a nexus and amarkedly twistedω*

d geometry. The
projection of the nexus onto the Δω-g parameter plane defines a cusp
singularity1,37. The singularities of folds and cusp are mathematically
characterized by the discriminant of the cubic Eq. (1) (details see
Supplementary Note 5).

Experimental realization
To implement the configuration illustrated in Fig. 2a, we utilize a pair
of four-node standing-wave modes in a capacitive microelec-
tromechanical disk resonator62. These modes denoted as 1 and 2,
possess nearly degenerate natural frequencies ω1,2/2π ≈ 3.85 kHz,
alongside equivalent dissipation rates γ = 2π × 55.8mHz. Notably, the
deformations of these modes strictly adhere to an in-plane pattern. In
Fig. 2b, we present a micrograph portraying an identical device to the
one employed in our experimental setup. Our device is the core of a
high-performance micro gyroscope48,49,62 (see Supplementary Note 1
for more details).

The coherent coupling between modes 1 and 2 is achieved
through the rotation-induced Coriolis effect (see Supplementary
Note 2). In Fig. 2a, we indicate the distributions of vibrational velocity
for the modes along the outline of the disk resonator. The red, blue,
and magenta arrows represent the radial, tangential, and total velo-
cities of different mass points, respectively. The resonator is mounted
on a rotating rate table, a specialized device in the inertial system
industry that canprovideprecise rotationalmovement, to facilitate the
out-of-plane rotation at a controlled angular velocity Ω. The Coriolis
force acting on eachmass point is determined by the cross product of
the rotation vector Ω

!
and the velocity vector. The Coriolis force dis-

tribution caused by the radial (tangential) velocity distribution of one
mode is proportional to the tangential (radial) velocity distribution of
the other. Collectively, the rotation introduces vibrational interactions
between the near-degenerate modes, characterized by a strength
denoted by 2κΩ. When transformed from the standing-wave to the
traveling-wave basis, the Coriolis coupling can be interpreted as a

rotational Doppler effect63, also regarded as an acoustic analog of the
Zeeman effect18.

The experimental setup is shown in Fig. 2b (see Supplementary
Note 1 for more details.). To drive mode 1 into linear vibration, two
alternating actuation signals are selectively applied on the electrodes
positioned at the antinodes of mode 1. The differential driving con-
figuration effectively eliminates the undesired crosstalk actuation to
mode 2. The antinodal displacements of the two modes, q1,2, are
transduced through charge amplifiers and subsequently detected
using a lock-in amplifier based on the Homodyne method (see Meth-
ods). By applying a direct current tuning voltage Vt to the electrodes
located at the antinodes of mode 2, we are able to modify the natural
frequencies ω1,2 (Fig. 2c), thereby facilitating adjustments to the
degeneracy condition Δω through the introduction of electrostatic
negative stiffness (see Methods). The θ1 = −π/2 PhT oscillations can be
realized by enabling the PLL in Fig. 2b.

We commence our analysis by examining the open-loop fre-
quency responses of the system when the PLL is deactivated. In
Fig. 2d, e, and f, we present the amplitude (∣q1,2∣) and phase (θ1,2)
responses as functions of the angular velocity (Ω) and driving fre-
quency (ωd) under different degeneracy conditions of Δω = 0, − γ,
and γ, respectively. In the degenerate case where Δω = 0, the system
enters the strong-coupling region, when the Coriolis-coupling rate
surpasses the dissipation, as expressed by 2κΩ ≥ γ. The presence of
normal mode splitting, evident in the ∣q1∣ responses shown in
Fig. 2d, leads to mode hybridization. The eigenfrequencies are
precisely determined by ω± = ½ω1 +ω2 ± ðΔω2 + 4κ2Ω2Þ1=2�=2 (dot-
dashed curves in the ∣q1∣ responses). Notably, the Coriolis coupling
induces vibrations in mode 2, as evidenced by the ∣q2∣ responses. In
the θ1 responses, the θ1 = − π/2 equiphase contours accurately
reproduce the bifurcation patterns predicted in Fig. 1c. The
“pitchfork” bifurcation point is located atΩ0 = γ/(2κ). In cases where
the degeneracy is broken (Δω ≠ 0), the symmetry of normal mode
splitting in the ∣q1∣ responses is broken, and the θ1 = − π/2 equiphase
contour in the θ1 responses illustrates a stable branch and a saddle-
node bifurcation (Fig. 2e, f).

To investigate the PhT states, we activate the PLL, which serves to
regulate the driving frequencyωd, in order tomaintain the phase at the
set value θ1 = −π/2. We first adjust the value of Vt to ensure Δω ≈0, and
vary Ω adiabatically, ranging from zero to 80º/s. The PhT frequencies
obtained from both experimental measurements and theoretical cal-
culations arepresented inFig. 2g.When the angular velocity falls below
the strong-coupling threshold, ω*

d remains locked to ω1. However, at
the threshold point (cusp), Ω0 = 11.83º/s, ω*

d transitions randomly to
one of the two stable bifurcation branches. In Fig. 2g, the upper stable
branch is experimentally observed.

Next, we proceed tomodify Δω by adjusting Vt adiabatically while
maintaining Ω at specific predetermined values. The variation in the
PLL-controlled ω*

d is presented in Fig. 2h. The experimental results are
depicted by the blue dashed (upward) and red solid (downward)
curves, showcasing the outcomes of Vt sweeps in opposite directions.
If Ω >Ω0, the sweeping curves encounter abrupt discontinuities at
certain Vt values known as catastrophes or singularities. A hysteresis
loop is formedby the twoupward anddownwardcurves at the sameΩ,
with its size decreasing asΩ is reduced until it disappears whenΩ ≤Ω0.
The observed singularities, mapped to the Vt–Ω parameter plane, are
shown in Fig. 2i, which coincide well with our theoretical predictions
(see Supplementary Note 5).

State information
In the following, we will delve into the details of the state information
corresponding to each PhT frequency. We will show that the “pitch-
fork” bifurcation is caused by the breaking of chiral symmetry, and the
singularities are associated with transitions of oscillation phases with
different chiralities.
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The PhT state can be described by the vector
ψ
�� �

= cos ϕ
2 1j i+ eiϑ sin ϕ

2 2j i, where f 1j i, 2j ig represents the orthonormal
basis of modes 1 and 2, ϕ � 2 arctanðjq2j=jq1jÞ represents the polar
angle, and ϑ ≡ θ2 − θ1 represents the relative phase or azimuthal angle.
We emphasize that all states involved in this study are classical. As
shown in Fig. 3a, this state vector can be projected onto a classical
Bloch sphere with coordinates ðS1,S2,S3ÞT, where S1 = sinϕ cos ϑ,

S2 = sinϕ sin ϑ, and S3 = cosϕ stand for the ellipticity, chirality, and
orientation, respectively (see Supplementary Note 6). Each state is
represented by a polarization pattern within the q1–q2 plane. The
regions of instability, bistability, and monostability on the Bloch
sphere are depicted in light red, light green, and gray colors, respec-
tively. The front and back hemispheres correspond to PhT states with
positive and negative angular velocities, respectively.

Fig. 2 | Experimental realization of higher-order singularities in micro-
electromechanics. a Two near-degenerate in-plane standing-wave modes of a
microelectromechanical disk resonator are used to realize the scheme in Fig. 1a.
b Experimental setup. Mode 1 is driven differentially by a force F0 cosðωdtÞ, while
mode 2 remains unexcited. The device is mounted on a rotating rate table to
introduce an out-of-plane rotation Ω

!
. The charge amplifiers transduce the anti-

nodal displacements of both modes, q1,2, which are then recorded and demodu-
lated by a lock-in amplifier, to yield their amplitude and phase responses. The PhT
condition is enabled by activating the PLL to lock the phase of mode 1 in quad-
rature, θ1 = −π/2. The degeneracy condition Δω can be adjusted by applying an
electrostatic tuning voltage Vt to the antinodal electrodes of mode 2. c Natural
frequencies of the modes, ω1,2, versus tuning voltage Vt. d–f Experimental

frequency responses of the amplitude and phase versus the angular velocity Ω for
thedegeneracy conditionsΔω ≈0 (d),− γ (e), and γ (f). Thedot-dashedcurves in the
∣q1∣ responses represent the eigenfrequencies. Colored contours in the θ1 responses
indicate the θ1 = −π/2 PhT frequencyω*

d, confirming (d) the “pitchfork” bifurcation
and (e, f) the saddle-node bifurcations. g PhT frequency ω*

d measured by the PLL
versus the angular velocity Ω at degeneracy. The error bars are the standard
deviation. The colored curve is the theoretical result. h PLLmeasured ω*

d when the
tuning voltage Vt is adiabatically swept at constant angular velocities. The blue
dashed (red solid) curves depict the Vt-increasing (decreasing) sweeps, illustrating
singularities and hysteresis if Ω0 >Ω0. The gray surface is the theoretical result.
i Singularities projected onto the Vt-Ω plane. The white-faced points (light blue
curves) are experimental (theoretical) data.
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The state evolution of the “pitchfork” bifurcation when Δω = 0 is
shownby the red trajectories on the Bloch sphere in Fig. 3a. Initially, at
Ω = 0, the system is initialized in state 1j i, characterized by horizontally
linear polarization. As Ω is increased to reach the weak–strong-cou-
pling thresholdΩ0, the system evolves into a state exhibiting 45º linear
polarization (blue point), where ∣q1∣ = ∣q2∣ and ϑ =0. Upon further
increase of Ω beyond Ω0, the state bifurcates into three distinct
branches. The middle branch is unstable, leading the system to ran-
domly transition to one of the degenerate stable branches. These
stable branches correspond to states predominantly exhibiting either
clockwise circular polarization, represented as CWj i= ð 1j i+ i 2j iÞ=

ffiffiffi
2

p
,

or counter-clockwise circular polarization, represented as
CCWj i= ð 1j i � i 2j iÞ=

ffiffiffi
2

p
. This process signifies a spontaneous breaking

of chiral symmetry. The PhT frequency ω*
d of the CWj i ( CCWj i)

dominant state increases (decreases) due to the Doppler effect
induced by the positive rotation18,63, resulting in the frequency
bifurcation.

In the degeneracy-broken cases (Δω ≠0), the state evolutions
associated with the bifurcation patterns in Fig. 2e, f are shown by the
orange and magenta trajectories on the Bloch sphere in Fig. 3a,
respectively. The introduction of rotation immediately leads to the
breaking of chiral symmetry, as shown by the stable branches on the
upper hemisphere. A series of saddle-node bifurcation points (white-
faced points) on the lower hemisphere constitute the folds (blue
curves). Two folds tangentially merge at the “pitchfork” bifurcation
point referred to as the nexus (blue point), forming a cusp singularity.

Subsequently, we demonstrate that the frequency singularities or
catastrophes are associated with transitions of different oscillation
phases. To capture the variations in oscillation phases, we introduce
the order parameter N as the relative population of the chiral states

CWj i and CCWj i, thereby characterizing distinct oscillation phases
(see Supplementary Note 7). Specifically, the order parameter is
defined as N � hψjCWihCWjψi�hψjCCWihCCWjψi

hψjCWihCWjψi+ hψjCCWihCCWjψi = sinϕ sinϑ, which equals
the chirality. The process of spontaneous symmetry breaking under-
lying the “pitchfork”bifurcation shown in Fig. 2g is illustrated inFig. 3b.
This process represents a second-order transition from the chiral
symmetric oscillation phase (N =0) to the chiral-symmetry broken
oscillation phase (N ≠0). The second-order oscillation phase transi-
tion point is associated with the cusp singularity.

The order parameters corresponding to the upward (downward)
sweeps depicted in Fig. 2h, are shown by the blue dashed (red solid)
curves in Fig. 3c. These curves signify first-order transitions from the
CCWj i ( CWj i) dominant oscillation phase to the CWj i ( CCWj i) domi-
nant oscillation phase. The first-order oscillation phase transition
points are associated with the fold singularities.

Cubic-root sensitivity
It has been revealed that the singularities are very sensitive to para-
meter perturbations3–9,12, owing to the sharp changes in topology near
these points. Here, we demonstrate that the PhT singularity nexus
exhibits an enhanced cubic-root sensitivity to perturbations, surpass-
ing that of the conventional binary EP singularities3–6.

In Fig. 4a, we observe that at the singularity nexus (Ω =Ω0 and
Δω =0), the PhT frequencyω*

dðΩ0Þ aligns with the natural frequency of
the driven mode, ω1. Otherwise, if the degeneracy is broken Δω ≠0,
ω*

dðΩ0Þ deviates suddenly but continuously from ω1. This deviation,
δωX =ω

*
dðΩ0Þ � ω1, demonstrates a sharp change when Δω shifts away

from the nexus, as shown in Fig. 4b. To assess the impact of pertur-
bations that can affect the degeneracy condition, denoted as ϵ (∼Δω),
we consider the sensing output δωX of ϵ in the vicinity of the nexus, as

c

�1�

�2�

�CW�

�CCW�

Nexus

a

UnstableBistableMonostable

Δω =−γ

Δω =0

Δω = γ

Singularities

S3

Ω0

b

S2

S1 �
� −κΩ

κΩ

ωd
*

ωd
*

�
� Experiment

Theory

0 20 40 60 80
Ω (°/s)

−1

0

1

N
N

−1

1

0 0
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80−20
−18

−16

Vt (V)

Ω
 (°

/s
)

Fig. 3 | State information. a Classical Bloch sphere describing the PhT states. The
red, orange, andmagenta trajectories represent the state evolutions corresponding
to the bifurcation patterns for degeneracy conditions Δω =0,− γ, and γ, respec-
tively. The arrows indicate the Ω-increasing direction. The blue curve represents
the singularities, which are composed of a series of bifurcation points. The PhT
frequency of the CCWj i ( CWj i) increases (decreases) because of the rotational
Doppler effect. b The order parameter N corresponding to the “pitchfork”

bifurcation measurement in Fig. 2g, illustrating the spontaneous breaking of chiral
symmetry at Ω0, or a second-order transition of oscillation phase. Here, N is
defined as the chirality. Error bars are the standard deviation. c N corresponds to
the catastrophe measurement in Fig. 2h. Singularities or catastrophes can be con-
sidered as first-order transitions of different oscillation phases. The gray surface is
the theoretical result.
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illustrated by the red curve in Fig. 4c (see Supplementary Note 8). On a
logarithmic scale, this sensing output exhibits a cubic-root response
near the nexus: δωX∼ ϵ1/3, as shown in Fig. 4d, confirming the cubic
nature of the singularity nexus. To experimentally verify this cubic-
root behavior, we maintain a fixed rotation rate Ω0 and introduce a
fine-tuning voltage Vt to sweep across the nexus. By converting Vt to ϵ
(seeMethods), the experimental input-output data are represented by
the red circles in Fig. 4c, d, which coincide well with the cubic-root
simulation.

We conduct a comparison between the sensitivities generated by
the PhT singularity nexus and a binary EP singularity, which is pro-
duced by a passive parity-time-symmetric system with a chosen
damping difference equal to the dissipation of our system (see Sup-
plementary Note 8). The blue dashed curves in Fig. 4c, d reveal a
dependency of ϵ1/2 for the eigenfrequency split δωEP near the EP. It is
noteworthy that the sensitivity exhibited by the PhT singularity nexus
exceeds that of the binary EP3–6, and is on par with the third-order EP10.
Moreover, both δωEP and δωX demonstrate significant improvements,
when compared to the standard output δωDP∼ ϵ of the diabolic-point
(DP) system, as denoted by the black dot-dashed curves in Fig. 4c, d.

Discussion
In summary, our study has discovered a cusp singularity in the phase-
tracked coherent-coupling dynamics of a pair of microelec-
tromechanical modes. By utilizing highly controllable elements, our
finding enables the construction of advanced singularities. This dis-
covery holds promise for engineering novel electromechanical devices
and opens up new possibilities for phase-related interactive dynamics
investigations in various fields, including optics, optomechanics, and
hybrid quantum systems. Furthermore, we present an alternative
approach for creating bistability and bifurcations by establishing a

phase-tracked closed-loop oscillation in a coupled system without
relying on nonlinear potential energy. This not only enhances our
understanding of closed-loop oscillation dynamics but also extends
coherent control into the singularity region.

The PhT singularity holds potential for various applications such
as precise sensing, rapid mode switching, and mechanical
computing64. The abstraction of the closed-loop oscillations into bits,
independent of vibration amplitudes, offers potential advantages in
terms of power consumption and lifetime. Additionally, the PhT cusp
catastrophe can also facilitate the realization of closed-loop controlled
nonreciprocal state transfer (see Supplementary Discussion 1). In
contrast to previous studies that rely on two-parameter-controlled
encircling24–30,34,35, we demonstrate the achievement of nonreciprocal
state transfer through the highly desirable single-parameter (voltage)-
controlled traversal, resulting in an impressive isolation ratio of 59
decibels. Moreover, the PhT cusp singularity resulting from Coriolis
coupling can be directly used to enhance gyroscope sensitivity and
achieve deep-sub-linewidth mode matching.

While our experimental demonstration focuses on Coriolis cou-
pling, it is theoretically possible to realize the same effects using
ordinary linear coherent coupling (see Supplementary Discussion 2).
Future research can delve into PhT singularities originating from dif-
ferent types of coupling53,55,65–68, explore the interplay between differ-
ent kinds of singularities, and investigate phase-tracked dynamics in
many-body systems with an increased number of degrees of
freedom32,69,70.

Methods
Electrostatic frequency tuning
The tuning voltage Vt introduces electrostatic negative stiffness to
bothmodes 1 and 2, given byω2

1,2ðV tÞ=ω02
1,2ð0Þ � T 1,2ðV0 � V tÞ2, where
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ω
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Fig. 4 | High sensitivity near the PhT cusp singularity. a The PhT frequencyω*
d as

a function of angular velocity Ω and degeneracy condition Δω. The contours of
Ω =Ω0 (dark red curve) and Δω =0 (green curves) portray the sharp variation ofω*

d

near the singularity nexus (blue point). b The PhT frequency at the critical angular
velocityω*

dðΩ0Þ and its shift fromω1,δωX =ω
*
dðΩ0Þ � ω1 as functions ofΔω. Here,ω0

represents ω1 at Δω =0. In the range of −0.25γ ≤Δω ≤0.25γ, Frequency output δωX

decreases monotonically with Δω. c Frequency output δωX near the singularity

nexus versus the natural-frequency perturbation ϵ =Δω from both simulation (red
solid curve) and experiment (red circles). The eigenfrequency splits near an EP
(blue dashed curve) and a DP (black dot-dashed curve) are also simulated. Error
bars are the standard deviation. d Logarithmic plot of the absolute data in c. The
PhT cusp singularity has a cubic-root output, providinghigher sensitivity compared
to the EP and DP.

Article https://doi.org/10.1038/s41467-023-43708-y

Nature Communications |         (2023) 14:7944 6



ω0
1,2ð0Þ represents the natural frequencies of the bare mechanical

modes. The electrostatic tuning factors T1,2 are proportional to the
capacitive area, the inverse modal mass, and the inverse cubic of the
capacitive gap. The stiffness perturbation induced by V0 exists even in
the absenceof the tuning voltageVt and canbe included in the intrinsic
natural frequencies. By defining ω2

1,2ð0Þ=ω02
1,2ð0Þ � T 1,2V

2
0, and

assuming that the electrostatic stiffness perturbation is small relative
to the intrinsic stiffness, we have

ω1,2ðV tÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

1,2 ð0Þ+T 1,2 ð2V0V t � V 2
t Þ

q

≈ω1,2 ð0Þ+K1,2 ð2V0V t � V 2
t Þ:

ð2Þ

Here, the tuning coefficients are defined as K1,2 = T1,2/[2ω1,2(0)].
The experimentally measured natural frequencies ω1,2 as func-

tions of Vt are represented by the red and blue data points in Fig. 1c.
These data points are fitted (curves) to the model (2) with parameter
values ω1(0) = 2π × 3852.92Hz, ω2(0) = 2π × 3856.43Hz, and V0 = 2.5 V.
The fitted tuning coefficients are K1 = 1.29 × 10−2 rad s−1 V−2 and
K2 = 6.40 × 10−2 rads−1 V−2. Furthermore, the relationship between the
difference of natural frequencies (degeneracy condition),Δω =ω2 −ω1,
and the tuning voltage Vt can be expressed as:

ΔωðV tÞ=Δωð0Þ+ ðK2 � K1Þð2V0V t � V 2
t Þ, ð3Þ

where Δω(0) =ω2(0) −ω1(0).

Homodyne measurement
The capacitive transducers pick up the antinodal displacements of the
two micromechanical modes, represented as q1 and q2, which can be
expressed as qj = jqjj cosðωdt + θjÞ for mode j (j = 1, 2). These signals are
then converted to voltage signals by the integrated charge amplifiers
on a printed circuit board. Finally, a two-channel lock-in amplifier
(Zurich Instruments HF2LI) is used to record the voltage signals. To
determine the amplitudes ∣q1,2∣ and phases θ1,2 relative to the driving
signal, dual-phase demodulation techniques are employed. Specifi-
cally, the process involves splitting qj(ωd, t) and individually mixing it
with the driving reference signal cosðωdtÞ and a copy of it that is phase-
shifted by π/2. The equations representing this mixing process are as
follows,

jqjj cosðωdt +θjÞ× cosðωdtÞ=
jqj j
2 cosθj + cosð2ωdt +θjÞ
h i

,

jqjj cosðωdt + θjÞ× cos ωdt +
π
2

� �
=

jqj j
2 sinθj � sinð2ωdt + θjÞ
h i

:

After removing the high-harmonic components using low-pass filters,
the in-phase component Xj =

jqj j
2 cosθj and the quadrature component

Y j =
jqj j
2 sinθj are obtained. By transforming these components into

polar coordinates, we can derive the amplitude ∣qj∣ and phase θj as
follows:

jqjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
j + Y

2
j

q
,θj = arctan

Y j

X j
:

Codimension-two nature of the PhT singularity
The governing equation (1) of the PhT singularity can be expanded as

δ3 � Δω
2

δ2 +
1
4
ðγ2 � Δω2 � g2Þδ +

Δω
4

ðγ2 +Δω2 + g2Þ=0, ð4Þ

where δ � ω*
d � ðω1 +ω2Þ=2. The ordinary cubic equation (4) is right-

equivalent to

X3 +AX +B=0, ð5Þ

which is the universal unfolding of Thom’s codimension-two cusp
catastrophe60,61. Here, the new variable is defined as
X = δ � Δω=6=ω*

d � ðω1 + 2ω2Þ=3, and the two parameters A and B
are given by

A = 1
4 γ2 � 4

3Δω
2 � g2

� �
,

B = Δω
4

2
3 γ

2 + 8
27Δω

2 + g2

3

	 

,

respectively. In other words, the PhT singularity of this study is clas-
sified as a codimension-two cusp singularity. The codimension-two
nature indicates that one has to control at least two parameters to
construct such a cusp-embedded surface.

Data availability
Data relevant to the figures and conclusions of this manuscript are
available at https://doi.org/10.6084/m9.figshare.19609350.

Code availability
The codes used for the numerical calculations are available from the
corresponding author upon reasonable request.
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