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SEMORE: SEgmentation and MORphological
fingErprinting by machine learning
automates super-resolution data analysis

Steen W. B. Bender 1,2,3, Marcus W. Dreisler 1,2,3, Min Zhang 1,2,3,
Jacob Kæstel-Hansen 1,2,3 & Nikos S. Hatzakis 1,2,3,4

The morphology of protein assemblies impacts their behaviour and con-
tributes to beneficial and aberrant cellular responses. While single-molecule
localizationmicroscopy provides the required spatial resolution to investigate
these assemblies, the lack of universal robust analytical tools to extract and
quantify underlying structures limits this powerful technique. Herewe present
SEMORE, a semi-automaticmachine learning framework for universal, system-
and input-dependent, analysis of super-resolutiondata. SEMORE implements a
multi-layereddensity-based clusteringmodule to dissect biological assemblies
and a morphology fingerprinting module for quantification by multiple geo-
metric and kinetics-based descriptors. We demonstrate SEMORE on simula-
tions and diverse raw super-resolution data: time-resolved insulin aggregates,
and published data of dSTORM imaging of nuclear pore complexes, fibroblast
growth receptor 1, sptPALM of Syntaxin 1a and dynamic live-cell PALM of
ryanodine receptors. SEMORE extracts and quantifies all protein assemblies,
their temporal morphology evolution and provides quantitative insights, e.g.
classification of heterogeneous insulin aggregation pathways and NPC geo-
metry in minutes. SEMORE is a general analysis platform for super-resolution
data, and being a time-aware framework can also support the rise of 4D super-
resolution data.

Biomolecules form diverse assemblies with high spatial ordering such
as clusters, biomolecular condensates or aggregates, both during
regular and aberrant cellular function. The morphology of these
diverse assemblies, i.e., geometry, topology, size, shape and internal
structure can have a significant impact on their properties and often
inhibit their functions1. Examples include heterogeneous assemblies
for metabolons2 and signalosomes3,4, genome5,6, phase-separated or
membrane-less organelles1,7 and nuclear pore complexes8,9 but also
protein aggregates which underlie many neurological disorders10–13.

Various approaches including ensemble14–18 and single molecule
studies19–23 have been employed to study the morphology of

biomolecular assemblies. The implementation of Single-Molecule
Localization Microscopy (SMLM) has revolutionized cell biology by
capturing biological assemblies at nanoscale spatial resolution in bio-
logical samples. Stochastic Optical Reconstruction Microscopy
(STORM)24, PhotoActivated Localization Microscopy (PALM)25,26,
Points Accumulations for Imaging in nanoscale Topography (PAINT27

and DNA-PAINT28) as well as REal-time kinetics via binding and Pho-
tobleaching Localization Microscopy (REPLOM)19 are SMLM techni-
ques that surpass the diffraction limit by individual molecule
localization through fluorescent probes. For both STORM and PALM,
these localisations are achieved throughphoto switchable blinking, for
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PAINT by the reversible association with the target. REPLOM utilizes
the kinetic behaviour of self-assembly systems and photobleaching by
surface docking in a photo-unstable environment, unlocking the
temporal resolution of self-assembly kinetic pathways. Despite pro-
gress in acquiring these information-rich data sets, the analysis and
identification of individual protein assemblies in SMLM are often reli-
ant on manual annotations or system-specific approaches which are
resource and time-strenuous and lack generalisation29–31.

The advancement of machine learning-based approaches32–42 has
been instrumental for quantitative image analysis30,43,44 and has the
potential to resolve the bottleneck of extraction of assemblies of
interest in super-resolution data. In general, these approaches can be
broadly categorised as either supervised or unsupervised, each of
which has advantages and limitations30. Supervised algorithms are
highly accurate when large amounts of annotated data are available
albeit annotations require extensive manual labor and expert knowl-
edge and the resulting model is often suitable for one specific data set
or task. This imposes some challenges in exploring unmapped biolo-
gical systems with no a priori knowledge and potentially limits their
use as a general tool41,45,46. Unsupervised approaches such as OPTICS47

and DBSCAN48 can overcome someof these limitations for coordinate-
based input data. Their performancehowever is often limited by a one-
size-fits-all approach. This often results in laborious human interven-
tion in model tuning, restricting their adaptation to heterogeneity in
localization densities and assembly sizes in varying experimental
data43,49.While these approaches supportmultidimensional data input,
temporal information is not incorporated into distance coordinate
systems, rendering clustering algorithms ineffective for handling a
temporal axis. The above challenges limit the robust, generalised

extractionofprotein assemblies’geometry andkinetics across systems
in SMLM.

Here we present SEMORE, an unsupervised machine learning
pipeline that allows the rapid agnostic and precise transformation
from raw spatiotemporal localization SMLM data into individualized
protein assemblies by mapping their diverse morphologies by an
extensive set of descriptive features. We show that SEMORE provides
unbiased unsupervised clustering, andmorphological cluster variation
in time, without a priori knowledge and for diverse simulated and
experimental data sets: heterogeneous growth pathways of insulin
aggregates, the dimensions of individual nuclear pore complexes, size
of individual clusters of fibroblast growth receptors 1, temporal evo-
lution of syntaxin 1a clusters and dynamic clustering of ryanodine
receptors (RyR). The implementation of temporal dependence in
morphological variations is a promising platform to handle static or
dynamic super-resolution data and enables in-depth temporal-
dependence analysis and segmentation of complex structures.

Results
SEMORE: Segmentation and Morphological Fingerprinting
SEMORE’s architecture consists of two main modules: a clustering
module and a morphological fingerprinting module. The model can
accept as input any set of x, y, coordinates (Fig. 1a) that is routinely
produced in super-resolution approaches such as STORM, PALM,
PAINT and DNA-PAINT29,50,51. Additionally, SEMORE has the capability
to incorporate temporal information, allowing for the processing of x,
y, and t (time-resolved) localization data, as introduced by recent
methods such as REPLOM, that included the temporal dimension in
SMLM19. Utilizing its two independent modules and requiring minimal
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Fig. 1 | Schematic illustration of SEMORE, an automated pipeline to agnosti-
cally cluster and classify temporarily and morphologically distinct protein
aggregates. a SEMORE input is a set of x, y SMLM input (PALM or STORM) or x, y, t
time-resolved SMLM (TR-SMLM) (REPLOM input) coordinates of individual locali-
zation/aggregation events, here shown for temporally resolved insulin aggregation
imaged using the REPLOM19 approach on a TIRF microscope. b The first step of
SEMORE clusters data by a density-based clusteringmethod in three dimensions of
the spatial coordinates, x and y, and time, t. Colours indicate clusters and scale bar
shows 10 μm. c The second step is a temporal refinement of the initial clusters to
identify and dissect underlying sub-clusters, utilizing a time-directional clustering

through the iteration of frames. d The final output of the temporal refinement is a
set of individual spatially resolved structures that are now separable even if grown
close to other aggregations. e Each identified cluster is fed to a morphology-
fingerprintingmodule that computes four groupsof descriptive features, including
circularity of the morphology, graph network within the aggregation, general
symmetry, and geometric interior. Combined these feature groups construct the
individual self-assembly fingerprint of a total of 40+ features. f The calculated
morphology fingerprints are stored for each extracted protein assembly allowing
for complete quantification and insights into the distribution of heterogeneous
morphology or growth pathways. Source data are provided as a Source Data file.
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human intervention, SEMORE outputs a list of individualized clusters
along with their complete morphological quantification (Fig. 1d).

The clustering module of SEMORE consists of multiple steps that
self-parameterize based on the input data and are scale invariant due
to the inherent 3D axis standardization (see Methods). This allows
SEMORE to operate independently of the imaging and cluster dimen-
sions and achieve high classification accuracies solely based on the
number of localizations contained within the protein assembly given
the spanning area. This is designed to account for the inherently het-
erogeneous nature of biological assembly systems, in size, scale, spa-
tial overlap, density, and morphology as well as the variability across
experimental configurations that challenges current analytical tools.
The pipeline initially inspects high-density areas in a standardized
Euclidean 3D space, using a hyperparameter space pre-defined for this
region, and provides an appropriate model choice based on a data-
driven decision. The chosen density-based scanning model, either
HDBSCAN or DBSCAN, extracts high-density regions of biomolecules
(clusters or aggregates) from low-density regions (noise) (Fig. 1b). The
initial clustering contains an added topological fail-safe to prevent the
detection of nonsensical structures (see Methods). If a temporal
dimension is available, the high-density regions are treated through
our temporal refinement (Fig. 1c). Segmentation in time and temporal
refinement is strictly required to dissect spatially overlapping struc-
tures within high-density areas. The clustered output is further refined
by subjecting all identified assemblies to a smart density filter to
eliminate falsely predicted assemblies that do notmeet agnostic, data-
derived density criteria (Supplementary Fig. 1). The result is a robust
clustering model outcompeting current methods and building, to the
best of our knowledge, towards the first general-purpose approach for
dynamic SMLM (see Methods and Supplementary Fig. 4).

Themorphological fingerprinting module of SEMORE is designed
to capture inherent structural variations and morphological diversity
across different structure types or even within the same structure
family. Fingerprinting has been employed as unique identifiers in sig-
nal processing52, genetics37 and recently to dissect and predict the
identity of heterogeneous diffusion38. In SEMORE, the fingerprinting
module takes individual assemblies and generates a unique fingerprint
consisting of 40+ descriptive features. They are based on circularity,
symmetry, graph network statistics and geometric densities (see
Fig. 1e, Supplementary Table 1, and Methods). Circularity (5 features):
Describes different estimators for circular resemblance, resulting in a
multivariate feature-set, depicting ratios of circular properties. Sym-
metry (7 features): extracts the balance of points occurrences and
extent around the 2D-axis with origin at the structure middle. Graph
networks (25+ features): includes density and edge-based character-
istics such as “longest-shortest path” that provides structural insight
for simple or complex as well as convex or concave bounding poly-
gons. Geometric (3 features): retrieves the average density aspect and
an estimate of the furthest connecting location pairs, offering precise
size estimations. The number and identity of features are constructed
as diverse as possible so as to agnostically capture a diverse set of
protein clustering morphologies and maximize applicability across
biological systems without a priori knowledge. Note that some of the
features can have overlapping interpretations. This overlap does not
affect the overall method accuracy as only features that enhance the
classification are taken into account, however, they can collectively
contribute to a detailed description of the system at hand. If better
features are identified in the future, they can be conveniently imple-
mented into SEMORE further extending its potential. Besides provid-
ing statistical insights, the morphology fingerprinting module enables
the clustering of distinct self-assembly structures and identifies mor-
phology diversity within the same structure family. The latter is par-
ticularly important given our recent study on time-resolved protein
aggregation found insulin exhibits diverse aggregation growth
mechanisms: anisotropic and isotropic19,53.

Accurate extraction of individual assemblies across diverse
biologically inspired growth types
To assess SEMORE’s performance for structure extraction in noisy
environments, we simulated 3 biologically inspired aggregational
types: 1) Symmetric isotropic growth; representing high-density
spherical structures with a density drop at the edges of the structure
(Fig. 2a), inspired by isotropic-spherulite growth in biological and
physical systems54,55 (see Methods). 2) Sterically driven growth;
representing more asymmetrical random growth where structures
may branch and create morphologically distinct assemblies based on
minimizing steric hindrance (second-row Fig. 2a). 3) Fibril growth;
depicting the growth of thin and branching fibrils commonly seen in
alpha-synuclein aggregation56 (third-row Fig. 2a). After the structures
have been simulated, noise is either uniformly added in 3 dimensions
(x, y, t) to the whole field of view or added as heterogeneous noise
from randomly placed noise seeds (see Methods) These different
structures are simulated 50 times in a 40×40 μm FOV each with 10, 10
and 25 individual aggregates in each simulated movie. Their start and
end frames as well as the growth extends of the structures are ran-
domly drawn (see Methods), often resulting in overlapping and het-
erogeneous structures resembling real data (Fig. 2a).

SEMORE precisely classified all 3 types of morphologies in this
stress test with F1 scores ranging from 84–98% even in very noisy
conditions.More specifically, isotropic growth classification reached a
median accuracy of 83% and an F1 score of 84 ± 4%. The confusion
matrices in Fig. 2b displays the agreement between the ground truth
and the predicted labels. Most misclassifications stem from the low-
density edges of these isotropic assemblies hidden in noise and in
comparison, the simpler approach DBSCAN/HDBSCAN achieved
5 ± 1%/ 36 ± 10% accuracy with a 6 ± 2%/ 40 ± 10% F1 score. Sterically
driven aggregation classification accuracy of 83 ± 7% and an F1 score of
90 ± 3%. Again, most misclassification stems from the edges of these
assemblies and the competing DBSCAN/HDBSCAN achieves 40 ± 10%/
22 ± 6% mean accuracy with an F1 score of 43 ± 11%/ 26 ± 7%. Fibril
classification reached a 94 ± 2% accuracy and an F1 score as high as
98 ± 1% even for overlapping fibrils (see Fig. 2). The overlap of fibrils
demanded a more conservative search range for the initial clustering
but showcases utility and strength of temporal refinement as DBSCAN/
HDBSCAN achieved 54± 13%/ 30 ± 7% mean accuracy and 60± 14%/
40 ± 8% F1 score. The median classification accuracy of SEMORE
remained above 85% for a range of noise density levels and was prac-
tically independent of noise being homogeneous or heterogeneous
(see Methods, Supplementary Fig. 2 & 3). While at extremely low noise
ratios i.e., ten times lower than signal or no noise, the smart density
filter can result in the removal of true positives, we recommend using
the full SEMORE pipeline for data with noise (Supplementary Fig. 3).
Unsupervised clustering often requires hyperparameter tuning how-
ever the clustering module of SEMORE provides highly accurate
unsupervised classification with minimal human tuning (see Methods)
and manages to separate overlapping structures of all simulated
aggregation types demonstrating its versatility and its broad applic-
ability. Importantly, the temporal element of SEMORE allows the
identification of fibrils growing within spherulites, which is otherwise
impossible with current state-of-the-art approaches (see Supplemen-
tary Fig. 4).

To further evaluate the performance of SEMORE on segmentation
and analysis of dynamic SMLM data we performed a series of stress
tests on simulated data. We first evaluated SEMORE’s ability to track
morphological changes in time using simulated data of 3 types of
spatially overlapping protein clustering morphologies with temporal
information included. Snapshots of SEMORE’s clustering in time pro-
vide visual confirmation of SEMORE’s ability to track morphological
changes in time (see Supplementary Fig. 5 for snapshots of simulated
and Supplementary Fig. 6 for experimental data). Further quantifica-
tion of SEMORE’s ability to accurately track and segment spatially
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overlapping protein assemblies in time reveals growth onset times
across 3 morphological classes are predicted with an average offset of
just ~13 frames (Supplementary Fig. 6). Subsequently, we test the
clustering module on simulated, sparse structures containing as little
as 4, 8, 15 and 25 point detections akin to data of protein oligomer-
ization (see Supplementary Figs. 7 and 8). SEMORE analyses the entire
field of view at once and extracts structures down to 4detectionswhile
maintaining >90% accuracy at biologically relevant noise-to-signal
ratios. Themorphological fingerprintingmodule can further refine the
false positive detections from noise with as little as 4 detections,
achieve full separation from noise at 8 detections and classify mor-
phological classes in true structures at 15 detections (see Supple-
mentary Figs. 8 and 9).

Lastly, we evaluated its performance on degenerative structures
that shrink in time, akin to protein de-polymerisation. SEMORE accu-
rately segments 3 anisotropically degenerative morphologies show-
casing it can be used to analyze dynamic shrinkage or
depolymerisation of protein clusters (see Supplementary Fig. 10). In
essence SEMORE only requires <10 detections to accurately segment
and classify heterogeneous structures with dynamic morphologies
further demonstrating its operational utility and potential for
4D SMLM.

Morphological fingerprinting captures defining features separ-
ating heterogeneous assemblies
Todemonstrate the utility of themorphologicalfingerprintingmodule
of SEMORE, each of the extracted aggregates by the clusteringmodule
was transformed into a morphological fingerprint. This resulted in
unique fingerprints quantifying each of the 2256 individual aggregates
and their respective feature ranking, offering mechanistic insights on

the morphology features that allow identity dissection (see Fig. 3 with
additional simulated examples in Supplementary Figs. 7–9 & 11–15 and
the experimental examples in Supplementary Figs. 22 and 23). To
obtain a visual and qualitative representation of the morphological
fingerprints we utilized a Uniform Manifold Approximation and Pro-
jection (UMAP) followed by a Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). Dimensionality reduction of the
embedded morphological fingerprints displays a well-defined separa-
tion of the three simulated growth types into distinct clusters
(Fig. 3a, b).

Inspection of the clusters reveals that in addition to grouping
extracted aggregates, SEMORE also captures a fourth-class containing
noise, (Fig. 3b, c). The noise detections are induced by loosened
restrictions in the smart density filtering (see Methods) in the fibril
simulations to evaluate performance in challenging experimental set-
tings with imperfect segmentation steps. The resulting UMAP from an
unperturbed smart density filtering is depicted in Supplementary
Fig. 12. The noise isolation in the embedded space showcases the
strength of the morphological fingerprinting module in structure
classification and its potential as a post-processing module. Classifi-
cation performance reaches >99% accuracy, (Fig. 3c, d) showcasing
that the noise correction dramatically improves classification accuracy
and allows for quantification of classification performance by viewing
each identified cluster in the embedded fingerprint space as a
prediction.

We evaluated how morphological fingerprinting can dissect the
diverse types of otherwise similarmorphologies by three approaches.
Firstly, utilizing a second UMAP embedding and DBSCAN of the cir-
cularity feature subset offered additional investigation of the fibril
cluster in the embedded fingerprint space (see Fig. 3b). This resulted

Fig. 2 | Performance evaluation of SEMORE clusteringmodule on classification
of three diverse types of morphologies inspired by biological systems. a Three
classes of time-resolved aggregations were simulated to capture a broad aspect of
biological systems (seeMethods): isotropic, where aggregates grow radially, where
aggregates grow in response to steric hindrance and branching fibrils where
aggregates grow linearly followed by branching. The three inserts depict the gen-
eral pipeline for cluster identification: From left to right Aggregates with diverse
finalmorphologies are produced in a frame-by-framemanner, with the amount and
locationsof particles randomly drawnbasedonprevious localizations and start and
end times randomly drawn. Uniform noise is added in all three dimensions (x, y,
time). The model accurately predicts diverse aggregates, showcased by different

colours. The black point corresponds to data points predicted as the wrong label,
i.e., either noise predicted as an aggregate point or multiple predicted aggregates
for the same ground truth label (FP) while the brown points correspond to
aggregational locations predicted as noise (FN). b Quantification of operational
performanceby a confusionmatrix. Predictions are shown from50experiments for
each aggregation type, each containing 10 individual aggregations for isotropic and
random, and 25 for fibril growth. Errors are standard deviations calculated across
accuracies for each individual aggregate. Common classification metrics for the
evaluation are shown in the table on the right side of the corresponding confusion
matrix. Source data are provided as a Source Data file.
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in two spatially separated clusters corresponding to branching and
non-branching fibrils which independently can be achieved by boos-
ted decision tree classification using all fingerprint features directly
(see Supplementary Fig. 13). Secondly, by investigating the isotropic
and anisotropic clusters which revealed more continuous spaces
given their more smooth growth behaviours as compared to
branching of fibrils, yet with clear spatial separation of fingerprint
features (see Supplementary Fig. 14). Lastly, SEMORE was able to
correctly classify the identity of diverse morphologies in high-density
regions reaching an F1 score of >98% (See Supplementary Fig. 11).
Although, morphological fingerprints represent unsupervised output
these results demonstrate their versatility in supervised classification
to extend beyond distinguishing between fundamentally different
morphology families, i.e., fibrils vs isotropic, to also capture hetero-
geneity within the same morphology family i.e., branching fibrils vs
non-branchingfibrils.Wefind themorphologicalfingerprinting needs
just 8 detections to fully separate true detections from noisy and 15
detections to further classify the morphology class of the true
detections (Supplementary Figs. 7 and 8). Such expressive power is
required to provide mechanistic insights for most biological assem-
blies as they often follow one assembly mechanism but still exhibit
heterogeneity in their finalmorphologies and themapping ofwhich is
currently an analytical challenge57.

A central element of SEMORE is that it inherently performs
temporal segmentation thus offering the potential to capture gra-
dual morphological changes in super-resolution data. To evaluate
SEMORE’s performance we simulated dynamic morphology varia-
tion between three major morphologies (fibril-like, isotropic, and
sterically-hindered) (Supplementary Figs. 15 and 26). We simulated
thirty structures of each morphology class (totalling 90), placed
these sequentially in random order whilst ensuring no identical

morphology consecutively. Between each of the ninety structures
100 positions are constructed by interpolation (see Methods)
resulting in 8900 intermediate structures. UMAP representation in
Supplementary Fig. 26 shows SEMORE accurately captures distinct
morphology classes and reliably tracks their gradual dynamic mor-
phology change by placing intermediate structures on a gradient
between the distinct morphology classes of where the transition is
happening. Note, the UMAP is simply a visualization tool to show the
structure of the high dimensional data manifold of the 8900 mor-
phological fingerprints, it is not a requirement for usage and may
vary for specific cases. As these structures exist in a continuous
space SEMORE allows future users to identify dynamic morpholo-
gical variations and decide on system-specific decision boundaries
for each of the structures.

Blinking is a common challenge in SMLM, especially for PALM and
dSTORM, and may lead to artificial clustering29 and misinterpretation
of protein assemblymorphology.Wemap the effect of blinking on the
morphological fingerprinting module using data with and without
simulated blinking (seeMethods). SEMORE remains largely unaffected
by blinking achieving segmentation accuracies above 90% and reliably
differentiatesmorphological classes from just 15 detections regardless
of blinking (see supplementary Fig. 9).

In addition to blinking, protein assemblies can exhibit biological
behaviour involving significant morphological changes (e.g., spherical
to tubular), or as discussed in the evaluation of the clustering module
above, depolymerisation. To this end, we evaluated SEMORE’s ability
to track the temporal evolution of morphology between diverse
morphologies, i.e., from fibril-like to spherical to asymmetric. SEMORE
clearly tracks morphologies in time and transitions while outputting
the most distinguishing features of each morphology offering impor-
tant mechanistic insights (supplementary Fig. 15).

Fig. 3 | Performance evaluation ofMorphology fingerprintingmodule on three
diverse assemblymorphologies. a The three diverse morphological structures of
Fig. 2 are subjected to the morphology fingerprinting module. Each colour repre-
sents a cluster but brown-red that represents noise detections. b The derived fea-
tures are dimensionality reduced by a 3-component UMAP to visualize the
separation of the identified clusters in the latent space and the grouping of the
diverse morphologies. The dimensionality-reduced features are clustered using
DBSCAN to identify groups of fingerprints. The four identified cluster groups are
displayed, corresponding to three different simulated aggregational structures, as
well as a cluster containing only pure noise. (Spherical zoom, points coloured by
frame value), Further analysis of the group corresponding to fibrils by an additional
3-component UMAP and a new DBSCAN (square dashed line zoom on top),

identified two local clusters mainly containing branched and non-branched fibrils
respectively (see Supplementary Fig. 13) (spherical zoom, points coloured by frame
value). c The count of each simulation type is found through a simple investigation
of clusters 1 to 4,where cluster 2 only contains data from the fibril simulation and is
deemed noise by visual inspection. d Confusion matrix of classification accuracy
for each cluster after the removal of noise, Cluster 1 predicts fibril (sensitivity
99.92%, F1 99.96%), 3 random(sensitivity 99.21%, F1 99.31%), and 4 isotropic growth
(sensitivity 99.58%, F1 99.38%), resulting in an average F1 score at 99.55 ± 0.21%,
clearly showing the descriptive information of morphology captured within the
fingerprinting. Errors are standard deviations calculated across all aggregates.
Source data are provided as a Source Data file.
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Precise extraction and quantification of experimental super-
resolution data
To evaluate how SEMORE performs and generalizes on experimental
data across experimental systems we tested its efficiency on two
diverse, yet representative, data structures found in SMLM: Time-
resolved spatiotemporal localizations of insulin aggregates by
REPLOM19 and typical, static super-resolution data from dSTORM of
nuclear pore complexes (NPC)58 and fibroblast growth receptor 1
(FGFR1)35 as well as dynamic live-cell PALM of ryanodine receptors
(RyRs)59 and sptPALM of syntaxin 1a (Sx1a)60.

Studies of aggregating insulin using the super-resolution
approach REPLOM, offering real-time recordings of the aggregation
growth, revealed insulin aggregates by two distinct pathways: an iso-
tropic pathway, generating radially grown spherical structures and an
anisotropic pathway, generating more elongated asymmetric struc-
tures consistent with the presence of multiple nucleation sites. When
the raw x, y, t coordinates of insulin aggregation events were fed to
SEMORE, the clusteringmodule automatically extracted 139 individual
insulin aggregate structures (Fig. 4a) despite them displaying large
heterogeneity in their morphology. The identified structures are lar-
gely spatially overlapping, an element that would challenge their
proper separation bymanual inspection or current tools. However, the
implementation of the temporal element of SEMORE capturing time-
dependent morphological evolution allowed their rapid and precise
spatial separation, thus mitigating potential morphology mis-
interpretation (Fig. 4a and Supplementary Fig 5). Snapshots of the
successful capture of insulin aggregation during its growth combined
with the insulin aggregation initiation time point identification by
SEMORE are displayed in Supplementary Fig. 6. The fingerprinting
module of SEMORE provided 2 well-defined clusters of insulin aggre-
gates as identified byDBSCAN (eps = 1) (Fig. 4b) (seeMethods). Cluster

1 contains sparse elongated morphologies indicative of anisotropic
structureswhileCluster 2 contains dense isotopically grown structures
in agreement with published results19. SEMORE required a fewminutes
to correctly and agnostically identify all 139 clusters as compared to
days by manual annotation by experts and did so automatically,
without any hyperparameter tuning. This supports that SEMOREoffers
agnostic insights on heterogeneous growth pathways and morpholo-
gies of actual insulin aggregation automatically, with minimal human
intervention, accelerating data analysis from weeks to minutes. Fea-
ture ranking (see Methods and Supplementary Fig. 16) on the other
hand, offers users to inspect the distinguishing features of hetero-
geneous growth pathways to derive mechanistic insights.

We further demonstrated SEMORE’s ability to utilize the temporal
dimension in experimental data using three additional published data
sets: Firstly, dSTORM data of fibroblast growth receptor 135, where
SEMORE utilizes the data’s reported frames for temporal refinement
together with smart density filtering to accurately extract protein
clusters, prune false positive detections and provide cluster size esti-
mation (Supplementary Fig. 17). Secondly, super-resolved dynamic
data syntaxin 1a spatial clustering by sptPALM60, where SEMORE
accurately captures clusters, their morphological evolution in time
(Supplementary Fig. 18). Thirdly, super-resolved live-cell PALM data of
ryanodine receptors (RyRs)59. SEMORE accurately captures RyR clus-
ters with a granularity infeasible by current methods such as DBSCAN
alone (Supplementary Fig. 19). While in experimental data sets it is
hard to strictly define ground truth SEMORE outputs qualitatively
outputs identical predictions with current states of the art. The fact
that SEMORE operates across dynamic experimental SMLM data out-
putting clusters and their properties in agreement with published
analysis, further highlights its potential as a robust universal tool for
4D cellular biology.

Fig. 4 | The SEMORE pipeline generalizes across widely diverse experimental
systems, time-resolved insulin aggregation and Nuclear Pore complex (NPC)
assembly. a Top: Final frame of accumulated super-resolution localizations from
temporally resolved insulin aggregation. Bottom: Identification of each aggregate
depicted as a distinct colour and calculation of its corresponding fingerprint by
SEMORE. The scale bar shows 10μm. b The collective fingerprints are processed
through a 2-component UMAP and clustered using DBSCAN, resulting in two
clusters: cluster 1 (red) contains low-density elongated anisotropic growth pat-
terns, and cluster 2 (gray) contains isotopically grown high-density spherical-like
structures. c Nine representative aggregates for each of the anisotropic and

isotropic clusters, with points coloured by frame value. d Top: Accumulated super
localizations of NPC assemblies from ref. 58. Bottom: Identification of each
assembly depicted as distinct colour and calculation of its corresponding finger-
print by SEMORE. The scale bar shows 1μm. e Processed fingerprints of NPC and
2-component UMAP and clustered using DBSCAN in 3 clusters: Cluster 1 (green)
corresponds to individual NPC assemblies, cluster 2 (black) to overlapping NPC
assemblies and cluster 3 (gray) to noise. fOverlay of the clustered NPC color-coded
based on their classification. Scale bar shows 1μm. g extracted radius of NPC con-
sistent with earlier reports63. Source data are provided as a Source Data file.
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Finally, we tested SEMORE’s ability to extract assemblies and
perform quantification on a completely different system: super-
resolution imaging by dSTORM of Nuclear Pore Complexes (NPC)58.
The data set consists of static images recorded by dSTORM, only
requiring the SEMORE’s morphological fingerprinting module.
Through a simple DBSCAN, 285 segmentations were extracted and
directly fed into the SEMORE pipeline. The fingerprinting module
outputs per NPC an individual unique morphological fingerprint
resulting in three distinct clusters in the UMAP embedded space:
Individual NPCs, spatially overlapping NPCs and noisy detections
(Fig. 4f, g) This allows direct quantification of geometric features
offering insights into spatial ordering andgeometry on individual NPC,
that are otherwise convolvedbyoverlapping structures or noise. Using
the morphological fingerprint as a post-processing step to isolate
individual NPC we find the diameter of NPC to be 114 ± 18 nm (N = 213)
consistent with earlier reports61 showcasing the utility of SEMORE in
extracting protein assemblies and enabling analysis.

The summary of these results on a diverse set of experimental
systems demonstrates the ability of SEMORE to generalize to com-
pletely different sets of biological systems, imaging and experimental
conditions, noise types, and molecular scales without any a priori
knowledge of their structure.

Discussion
The advent, and widespread application, of SMLM, have enabled the
imaging of cellular structures with a level of detail that was previously
unattainable with live cell imaging. Despite the exponential growth of
SMLM imaging techniques, the analysis of the acquired data often
relies on manual curation and system-specific analysis, a resource and
time expensive process relying on domain expertise. These analytical
challenges limit this powerful tool in the determination of protein
assemblies’ morphology and kinetics impeding our understanding of
both the self-assembly mechanisms and, consequently, the physiolo-
gical responses of these structures especially in systems with no a
priori knowledge.

Herewe introduce and validate SEMORE an automatic toolbox for
morphological fingerprinting to dissect and classify diverse morphol-
ogies of protein assemblies achieved from SMLM. SEMORE was
designed as a modular, agnostic and unsupervised toolbox to assist
analysis across biological systems and experimental configurations
unlocking mechanistic insight and unbiased kinetic pathway classifi-
cation. SEMOREconsists of twomodules, one for time-aware structural
extraction and the second for fingerprint calculations. These two
modules are designed to be used either as a general pipeline, or
separately for any given purpose. Using a broad set of features max-
imizes applicability across biological systems and feature ranking can
reveal the features of greatest importance providing key mechanistic
insights into the given system. SEMORE is currently optimized for
laterally stable assemblies, albeit the temporal refinement does handle
lateral movement below the agnostic, data-derived search range
defined per assembly basis (seeMethods). Future versions are planned
to include our diffusional analysis framework for motion-aware clus-
tering analysis. Blinking has insignificant effect on SEMORE analysis,
however, we recommend common aberrations such as blinking and
vibrational or spherical aberrations to be corrected prior to use of
SEMORE to avoid any potential misinterpretation of the data. We
envision SEMORE’s application across diverse systems, the continuous
extension of the fingerprinting module and the generation of libraries
of protein assemblymorphologies. Libraries ofmorphological features
could aid mapping of assembly characteristics to their identity and
function for the advancement of biological understanding, and sta-
tistical approaches and be the basis for future supervised learning
purposes (Supplementary Fig. 13).

SEMORE directly predicts on experimental data circumventing
the need for large manually annotated data sets and ensures its

widespread applicability across systems without the need for retrain-
ingor of a priori knowledge. In essence, the onlyhuman intervention in
transiting from raw x, y, (t) coordinates of biomolecular assemblies to
outputting their diverse morphologies is selecting the initial para-
meters of the DBSCAN or HDBSCAN.We demonstrate this operational
utility on five diverse experimental data sets: temporarily resolved
protein aggregation by REPLOM, static nuclear pore complex and
fibroblast growth receptor 1 (supplementary Fig. 17) imaging by
dSTORMaswell as two experimentaldata obtained fromdynamic, live-
cell PALM (Supplementary Figs. 18 & 19), as well as multiple ground
truth simulated data sets. In all cases, relevant structures are precisely
extracted and featured. Effectively, SEMORE operates across five
experimental data sets, with spatial dimensions spanning 3 orders of
magnitude, from nanometers58 to micrometers19, and temporal
dimensions spanning from milliseconds60 to seconds19. This fact pro-
vides strong support for SEMORE as a universal, input-independent
model for the SMLM community to use in conjunction with, or to be
incorporated into SMAP, or as a convenient standalone toolbox.

Current advances in live-cell and live-tissue imaging44,52,62, optical
imaging techniques allow tissue-scale 4D cell biology33,39,41, but cur-
rently, available analytical pipelines are inadequate for automatic and
agnostic analysis of the temporal evolution of high-content protein
clustering imaging data. SEMORE is, to the best of our knowledge, the
first toolbox that automatically and agnostically analyses and classifies
temporal evolution of morphology changes of protein clustering in
super-resolution images, addressing a significant bottleneck of the
field. SEMORE can serve as a platform accommodating the wealth of
4D cell data of e.g. coated pits formation, synuclein fibrillation in cells,
protein phase separation, and actin filament elongation, to mention a
few20,22,56. We anticipate the methodology to be directly applicable
across biological systems, imaging and experimental conditions, or
laboratories, to dissect diverse types of static or dynamic protein
assemblies resolved by super-resolution imaging.

Methods
Mathematical definitions
For all distance calculations both in real and parameter space, unless
different is stated, Euclidean distance is used and defined as

dðp,qÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � q1
� �2 + p2 � q2

� �2 + . . . + pn � qn

� �2
q

ð1Þ

Statistical distributions are calculated as follows:

Gaussian distribution : NðxÞ= 1

σ
ffiffiffiffiffiffi
2π

p � e�1
2ð

x�μ
σ Þ2 ð2Þ

Poisson distribution: PðkÞ= λke�λ

k!
ð3Þ

For data transformation, both Standardized and MinMax are
used throughout the SEMORE pipeline and are performed as follows:

Standardized: x̂ =
x � μ
σx

ð4Þ

MinMax scaler : x̂ =
x � xmin

ðxmax � xminÞ
ð5Þ

Performance metrics are used to evaluate the performance of
different classification tasks.

For the task of summarizing the classification performance dif-
ferent aggregation approaches are used for completeness or chosen
based on applicability: Micro) Accumulating all outcomes for each
individual entry and calculating a total statistic. Macro) Calculating the
desired performance metric on a label basis followed by averaging
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across labels. Weighted) Calculating the performance metric as in
Macro, butweighing eachentryby the total number of TP. To restrain a
possible bias in reported classification evaluation metrics towards
larger aggregates, the macro average is generally used unless other-
wise stated. The accuracy of the clustering segmentation is defined as:

Accuracy=
TP

ðTP + FP + FNÞ ð6Þ

for each aggregate resulting in a performance metric based on cor-
rectly annotated localizations, disregarding the relative size of the
cluster. TP: True positive, FN: False negative (when the aggregate data
points have been predicted as noise) and FP: False positive (When an
aggregating point is predicted as another aggregate, happens when
two independent aggregates are predicted for the same ground truth
aggregate). As this is treated on an aggregate basis, there would be no
TN to conclude. For general performance, the Precision, Recall and
F1 score are calculated as:

Precision =
TP

TP + FP
ð7Þ

Recall =
TP

TP + FN
ð8Þ

F1 = 2 � Precision � Recall
Precision+Recall

ð9Þ

SEMORE clustering module
The presented pipeline of SEMORE’s clustering module of temporally
resolved structures is as follows:
1. Standardization of spatiotemporal localizations by z-score in all

3 dimensions (x, y, t) to ensure equal distance measure and
density impact effectively ensuring scale invariance for the
clustering module.

2. Initial clustering by either Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) or High Density-Based Spatial
Clustering of ApplicationswithNoise (HDBSCAN)or. Themodel is
chosen agnostically based on the general density of the field of
view (FOV) where for less than 1500 data points per standardized
area the DBSCAN is used. The primary objective of the initial
clustering is to identify regions of interest with significant
probability of containing a target structure or potentially contain-
ing overlapping structures. It is not necessary to have precise
clustering as later fine-graining and temporal refinement
improves the segmentation, but more accurate initial segmenta-
tion can result in an overall better performance.

3. Topological failsafe to prevent nonsensical clustering in experi-
mental data. It is assumed that there is at least one region of
interest in a given FOV, but if the initial clusteringmodel does not
find any regions, a density analysis is performed to identify the
best suggestion for a high-density area, thus refining and
improving the initial clustering. The density analysis is done
through a Gaussian blur applied to the 2D binned locations, and
the biggest contour region containing the 90th percentile of the
density is chosen to be the only initial cluster.

4. Temporal refinement and semi-supervised hyperparameter
choices is then done for all initially found regions of interest with
the goal of dissecting whether identified regions are single clus-
ters or individual clusters grown to overlapover time. The regions
are “re-scaled” through a MinMax scaler to capture all locations
and achieve comparable scaling in the time axis compared to the
Euclidean space. For each region, a region-specific search range is
calculated from the pairwise distance of all data points in the

region. This search range is defined as the square root of the 95%
confidence interval of the standard error on the mean for the
interquartile distances.

distinvestigated 2 IQRðpdistÞ ð10Þ

rsearch =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEM � 1:96

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95%CISEM

p ð11Þ
The search range value is used both in the search for new
aggregational seeds as well as linking localizations to existing
aggregates signifying growth. The temporal refinement is done in
a frame iterative manner, from lowest to highest, for each frame
the corresponding data points accumulate as points for investi-
gation. All data points for investigation are initially label-free and
get labeled assigned in the following way: For each step, a
DBSCAN (eps = search range, min_sample = 50) is fitted on the
label-free points of investigation for detection of new aggrega-
tion seeds, while a radius-based nearest neighbor (r = search
range) model is fitted on the already labeled points and predicts
on label-free points for the investigation to classify further
growth of existing assemblies. Data points not assigned are still
label-free in the next step until all frames have been investigated,
in which any data points left unlabeled are considered noise.

5. Smart density filter to ensure that the SEMORE clustering mod-
ule extracts only actual localizations and not noisy detections, a
density filter is applied, based on the assumption and observation
that aggregates have a higher density than noise. The noise den-
sity is estimated in the intermediate step, between the first and
second steps of the clusteringmodule, by randomly selecting 500
data points from the initially found noise and calculating the
density of each point. To avoid underestimation induced by the
empty space from the high-density areas, only densities above the
25th percentile is used to calculate the mean and standard
deviation. An identified structure must have a density of one
standard deviation plus the average density to be extracted as an
actual structure by temporal refinement, otherwise, it is classified
as a noisy detection. Furthermore, a minimum data-point
requirement is also added, which is included as a “and” statement
for the filter (see Supplementary Fig. 1).

SEMORE Morphology fingerprinting
The fingerprintingmodule consists of 40+ total features deriving from
fourmain feature classes: 1) Symmetry, 2)Geometric, 3) graphnetwork
and 4) circularity, the description for each feature is found in Sup-
plementary Table 1. All features are computed directly on clusters
identified by the clustering module but works directly on any set of
localizations. To ensure consistency in feature computation, all iden-
tified structures have their localizations standardized and projected,
so the major axis points in the same direction across structures.

Symmetry. For calculation of the symmetry (7 features), the center of
mass is subtracted from the positions centering all points around the
origin. The symmetry features of localizations can be computed based
on counts per quadrant.

Geometric. For the geometric (3 features), a Delaunay triangulation is
performed on all localizations in a given structure, fromwhich triangle
edge distances are used to fit a lognormal distribution, pruning any
identified triangle edges with less than a corresponding 5% right-tailed
probability with the remaining edges allow for accurate and compu-
tationally effective area estimation as seen in Supplementary Fig. 20.

Graph network. The graph network (25+ features) is initiated through
a radius-to-neighbors graph with the radius as the distance threshold
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obtained from theGeometric feature class. From the resulting graph, a
minimumspanning tree is constructed using the lengthof connections
as “weights”.

Circularity. Calculation for the Circularity (5 features) feature class is
based on a contour line around the highest density area in the aggre-
gate identified by a two-dimensional histogram. Specifically, the 2D
histogram counts are Gaussian-blurred followed by a binary threshold
filter at the 90-percentile producing a set of border coordinates (see
Supplementary Fig. 21).

Hyperparameters of SEMORE
The general hyperparameters of SEMORE clusteringmodule consist of
the native parameters in the initial clustering module (DBSCAN or
HDBSCAN) which as default, in this work, are set to values identified
empirically as broadly well-performing for capturing areas of interest
in data containing localizations produced by protein aggregation (as
presented in this article). It is important to note that the agnostic
parameters used for temporal refinement and output filtering are
dependent on calculations made from the high-density areas, they are
robust and small permutations will not have a significant effect.
However, extreme over-clustering in the initial step can result in faulty
output. Additional hyperparameters, while less likely to need adjust-
ments, are investigate_min_sample as well as radius_ratio which by
default are set to 50 and 1.96 respectively. These parameters are used
in the temporal refinement, investigate_min_sample is used for the
DBSCAN tofind aggregation start seedswhile radius_ratio is used in the
general search range for both DBSCAN and aggregate growth. inves-
tigate_min_sample should only be changed if an incorrect number of
underlying clusters are generally initiated through the temporal
refinement while radius_ratio changes the growth extends each frame,
this should only be adjusted if underlying aggregates are mainly one-
sided dominated i.e., the first initiated aggregate engulfs most of the
high-density area. The last parameters are rough_min_points, final_-
min_points and filter_mode which all affect the filtering of aggregates
between the first and second layers with rough_min_points filtering to
small aggregates before the temporal refinement, while the final_-
min_points does the same after the temporal refinement, and filtering
type set to strict, loseor none,which control if an aggregate has topass
both the density and point amount filtering, only one of them or none
of them. In general, SEMORE clustering achieves high performance
with out-of-box settings as seen in (Supplementary Figs. 2–4). For all
default values of hyperparameters, we direct the reader to GitHub.

Simulations and treatment
The simulation is based on typical structures observed in protein
aggregation experimental data and is created in a frame-iterative
manner within a 40 µmx 40 µm field of view. Aggregates are initialized
from a randomly drawn or given starting point within the first 300
frames, with a minimum aggregation time of 100 frames and a max-
imum experiment time of 400 frames. The number of points added
per frame is randomly drawn from a type-specific distribution, all with
the possibility of adding zero.

Isotropic growth. The symmetric isotropic aggregates are simulated
using a Gaussian Kernel Density Estimator (KDE) that is fitted to the
available points, with the bandwidth increasing as a function of the
growth time:

bandwidth= ðð f rame� f ramestartÞ=ðf rameend � f ramestartÞ*f rameend + 1Þ*10
ð12Þ

Next, a uniformly drawn number of points (between 0 and 30) is
sampled from the fitted KDE and added to the total number of points
in the aggregate. The KDE is then refitted to the updated set of points,

resulting in a symmetrical circular aggregate that increases in size
over time.

Sterically hindrance (random). The steric hindrance growth simula-
tion resembles a Monte Carlo method, where the underlying prob-
ability of growing a specific branch, depends on the hindrance in that
area. This is a more natural, stochastic growth pattern which we dub-
bed “random aggregate”. In this approach, for each of the last 50
added points (or what is available if less), a candidate for a newpoint is
drawn from a unit Gaussian distribution around the point. For each
candidate, the distance is calculated to 50 or fewer current points. A
measure of steric hindrance is then calculated using the formula:

hindrance=
X

expð�distance2Þ ð13Þ

A Poisson-drawn number (average 10) of points with the lowest
hindrance is then selected and added to the set of points. Drawing
from the sterically affected underlying distribution results in increased
branching and heterogeneous aggregate structures compared to the
isotropic simulations.

Fibril growth. To simulate the thin and branching structures com-
monly observed in fibril aggregates, a directed diffusion scheme was
used with a starting direction drawn from a uniform distribution
(between 0 and 2π). At each step, 3 major features must be drawn: the
number of points to be added, new direction and distance. The num-
ber of points to be added is determined by a Poisson distribution with
an average of 1. Direction and distance are both drawn from aGaussian
distribution, to depict a directed rod-like structure the new direction
has the previous direction as themeanand a standarddeviation ofπ/4,
while the distance is simply having a mean of 100 nm and a standard
deviation of 20 nm. Furthermore, for each step, there is a low prob-
ability of the fibril branching out. The angle of the branching is also
drawn from another Gaussian distribution with the previous direction
+/- π/4 as the mean with π/16 as the standard deviation, the plus or
minus indicates which side of the fibril the branch is sprouting from
and is determined from a Bernoulli trial with p = 50%. For the simula-
tions used, the probability of branching was set to 0.5% with a max-
imum number of branches set to 3.

Sparse aggregate simulations. Small, sparse aggregates were simu-
lated for the Supplementary Figs. (7–9) to evaluate the effect of
number of detections on both the clustering module and morpholo-
gically fingerprinting. These structures were inspired by nanos-
tructures and simulated in a 3μmx3μmregionof interest. Temporally
resolved fibril and static elliptical structures were simulated for 4, 8, 15
and 25 points. For each simulated experiment 30 protein assemblies
were grown equally distributed between the two morphology types
and noise was applied either uniformly or heterogeneously (see
respective method sections).

Sparse fibril simulation. The temporally resolved fibril structures
were created as per the described Fibril growth in methods with a
mean elongation distance of 20 and sigma of 5.

Sparse elliptical structure simulations. The non-temporally resolved
ellipse structures were inspired by Nieves et al35 and created using two
Gaussian distributions with sigmas of 10 and 20 to draw x and y values
respectively. In addition, random rotations were applied to the fin-
ished structure. Randomly drawn individual frames were assigned to
each localization in these structures stochastically, representing SMLM
data obtained from conventional static methods.

Blinking noise from ground truth. Blinking noise-induced structures
were produced through inspiration fromNieves et al.35. A ground truth
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structure was simulated as either fibril or elliptic as seen in methods.
For each position in the ground truth structure 1–6 detections were
uniformly drawn. Centered on the ground truth position these addi-
tional detections were displaced by a localization error drawn from a
Gaussian distribution with a unique sigma drawn from a lognormal
distribution with a mean of 3 and a sigma of 0.28 as per Nieves et al.35.
The original ground truth detections are not included in the final
structure.

Treatment of simulated data. For all protein assembly segmentation
in simulated studies, the hyperparameter investigatet_min_sample is
changed from the default 50 to 25 lowering the requirement of
aggregate seed detection. This is possible because, in real experi-
ments, noise can be induced by small non-aggregating clumps of
docking which are mistakenly seen as growth seeds. This has been
counter-measured by the default settings of SEMORE temporal
refinement hyperparameters. However, simulated studies have a con-
trolled and perfectly uniform distributed noise, removing these
clumps and therefore lowering the requirement of aggregate seed. All
hyperparameters remain default throughout the aggregate dissection
unless different is stated. For DBSCAN and HDBSCAN comparison,
hyperparameters were optimized for a representative image for each
simulation and used throughout the analysis.

For the segmentation of the symmetric isotropic aggregates,
the SEMORE was initialized with the HDBSCAN hyperparameter clus-
ter_selection_epsilon changed from 0.03 to 0.05. This was done for the
initial clustering to capture the edges of the isotropic aggregates. This
part has a drastically lower density than the middle of the aggregate,
the default values of the HDBSCAN would not have included it in the
initial clustering. The random aggregateswere segmentedwithout any
further changes to the hyperparameters.

The highest amount of hyperparameter alterations was required
by the fibril segmentation. Due to the smaller spatial size, lower den-
sity, and rod-like structure of these aggregates, adjustments were
necessary for both the initial clustering and temporal refinement
processes. Specifically, the HDBSCAN used in the initial clustering had
to be tuned to detect smaller aggregates and areas, min_cluster_size
was changed to 60,min_samples to 30 and clustering_selection_epsilon
was set to 0 these settings allowed for the initial clustering to capture
the aggregates while minimizing additional noise inclusion. For the
temporal refinement to properly dissect the fibril from either overlap
or noise, the radius_ratio was lowered to 1, as this allows for a smaller
search range, and therefore includes minimal noise.

The out-of-box SEMORE fingerprint module was directly applied
to all the segmented aggregates, the unique morphology fingerprint
was concatenated into one large dataset, blinding the original simu-
lation origin. The accumulated fingerprint was reduced in dimension-
ality through a 3-component UMAP (n_neighbors = 5, min_dist = 0.1)
revealing the 4 prominent clusters. Additionally, the circularity feature
class of the fibril aggregates were treated independently through the
same UMAP, to reveal the morphology diversity from branching to
non-branching fibrils, which were thoroughly performance tested (see
Supplementary Fig. 13).

Sparse aggregate treatment. While the general low density of the
simulations, will cause SEMORE to select DBSCAN as the initial clus-
tering model, minor changes to the min_sample hyperparameter were
introduced to improve segmentation of the sparse aggregates, the
change was min_sample = 10, 7, 5, 3 for 25-, 15-, 8- and 4-point settings
respectively, only additional change was to requirement of final
aggregates sizes to be larger than 5 points.

For all sparse structures, the morphology fingerprinting (exclud-
ing “N_points” to counter any correlation between segmented size of
noise detections and actual protein assemblies being used classifica-
tion) was extracted and used to produce 2-component UMAP

representations for visualizing the structural information contained
within the morphological fingerprint.

Induced blinking noise structure treatment. The SEMORE finger-
printing module was applied directly to the simulated structures
without the SEMORE clustering module, due to its static nature, and
the aim of investigating the fingerprint’s robustness to perturbations.
The fingerprints of the ground truth structures were extracted and
visually compared to their blinking-noise counterparts through an out-
of-box 2-componentUMAP embedding. Each structurewas embedded
individually and coloured-coded correspondingly to the morphology
class type to enable a fair and transparent visual comparison.

Creation and treatment of dynamical changing morphology. To
simulate a protein assembly with dynamic morphology in which
morphology class transitions within classes and in between classes of;
fibril, isotropic and sterically hindered asymmetric, multiple protein
assemblies were simulated for each morphology class. 125 protein
assemblies were created in 25 intervals, the 3 types of morphologies
were equallydistributedandpruned to amaximumof 200points. Each
structure was sorted with respect to its morphology class and appen-
ded to the final temporally evolving structure, with each structure
being a new temporal morphology state. This results in a rapidly
changingmorphologywhere each temporal statewas embeddedusing
a 2-component UMAP.

Heterogeneous noise generation by perturbation and noise seeds.
Non-uniform noise was generated by placing 5–25 noise seeds uni-
formly in the field of view. Each noise seed contributes 20–50 points
Gaussian from their noise seed origin with a sigma of 320 nm. To fur-
ther reduce uniformity all noise points drawn from these Gaussian
noise seeds are further displaced randomly by a Gaussian with mean
20000nm and sigma 100nm distribution.

Experimental data and treatment
Real-time observations of insulin aggregation using REPLOM. 10
data sets containing locations obtained from experiments containing
human insulin amyloid-spherulite aggregates were provided and pro-
duced through REPLOM as seen in Zhang et al.19. Each data set was
treated through both SEMORE out-of-box clustering and fingerprint-
ing. For Isotropic and anisotropic separations, the circularity features
alongside L_s_ratio and L_l_ratiowereused for theUMAP (min_dist = 0.1,
n_neighbors = 10) embedding, from which a DBSCAN (eps = 0.7,
min_sample = 5) were used to classify the two presented clusters in the
UMAP-embedding and visualized along its circularity estimate
for Fig. 4.

Nuclear pore complex imaged by dSTORM. Images containing
dSTORM assay of nuclear pore complexes were downloaded from
https://srm.epfl.ch/ dataset page original from Li et al.58, the locations
were extracted using simple in-house detection software with no
correction for x,y-drift as only the first 20,000 (out of 150,000) frames
were used to achieved suitable amount locations to perform the
required analysis. The locations were up scaled by multiplying x and y
132 nm/pixel and 142 nm/pixel respectively from where only a subset
of the locations contained in the middle of the experiment was
investigated (Sub-set rectanglemask drawnby [5000nm, 5000 nm] to
[12,500nm, 12,500nm] corners). The locations were clustered by
DBSCAN (eps = 50, min_sample = 20) which resulted in 283 clusters.
Themorphology fingerprint was extracted for all found clusters by the
SEMORE fingerprint module without Gaussian fits the underlying
density distributions (mu_N,sig_N and W_N). All features were used in
the UMAP (min_dist = 0.2, n_neighbors = 10) embedding from which
the 3 presented clusters were extracted using a DBSCAN (eps = 0.8,
min_sample = 5). The “Area” feature was extracted from embedding
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cluster “1” and used to calculate the radius assuming a circle: r =
ffiffiffi
A
π

q
.

The radius distribution was fitted with a Gaussian distribution through
maximum likelihood from which both mean and standard deviation
was found. The diameter error was found through error propagation
as σd =

ffiffiffiffiffiffiffiffi
4σ2

r

p
.

Statistics & reproducibility
This study includes no statistical test and no data were excluded.
SEMORE works directly on data without supervised learning, thus
always blind to test data, and model evaluation was performed on
multiple diverse experimental systems, as well as, simulations chosen
to resemble experimental observations. These test sets provide bio-
logically relevant sample sizes and variance. All data and scripts are
publically available for reproducibility. The experiments were not
randomized before evaluation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available on GitHub under https://
github.com/hatzakislab/SEMORE and the electronic research database
of University of Copenhagen with https://doi.org/10.17894/ucph.
7f5ea282-faa5-4519-987d-13df11073a7b. In addition, we refer to the
original publications of the data: Zhang et al.19, Nieves et al.35, Li et al.58,
Hou et al.59 and Wallis et al.60. We thank Hou et al.59 for generously
donating data. Source data are provided with this paper.

Code availability
All code is written in python, and can be accessed on GitHub:
https://github.com/hatzakislab/SEMORE, https://doi.org/10.5281/
zenodo.10371199.
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