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Spatial relationships in the urothelial and
head and neck tumor microenvironment
predict response to combination immune
checkpoint inhibitors

Alberto Gil-Jimenez 1,2, Nick van Dijk3, Joris L. Vos 4,5, Yoni Lubeck6,
Maurits L. vanMontfoort6, Dennis Peters 7, ErikHooijberg 6,AnnegienBroeks7,
Charlotte L. Zuur 4,5,8, Bas W. G. van Rhijn9,10, Daniel J. Vis1,2,12,
Michiel S. van der Heijden 1,3,12 & Lodewyk F. A. Wessels 1,2,11,12

Immune checkpoint inhibitors (ICI) can achieve remarkable responses in
urothelial cancer (UC), whichmay depend on tumormicroenvironment (TME)
characteristics. However, the relationship between the TME, usually char-
acterized by immune cell density, and response to ICI is unclear. Here, we
quantify the TME immune cell densities and spatial relationships (SRs) of 24
baseline UC samples, obtained before pre-operative combination ICI treat-
ment, using multiplex immunofluorescence. We describe SRs by approx-
imating the first nearest-neighbor distance distribution with a Weibull
distribution and evaluate the association between TME metrics and ipilimu-
mab+nivolumab response. Immune cell density does not discriminate
between response groups. However, the Weibull SR metrics of CD8+ T cells or
macrophages to their closest cancer cell positively associate with response.
CD8+ T cells close to B cells are characteristic of non-response.We validate our
SR response associations in a combination ICI cohort of head andneck tumors.
Our data confirm that SRs, in contrast to density metrics, are strong bio-
markers of response to pre-operative combination ICIs.

Immune checkpoint inhibitors (ICI) block inhibitory signals
between immune and neoplastic cells that can result in cancer
cell killing1. Inhibitors targeting PD-1 and PD-L1 have shown dur-
able responses in a subset of urothelial cancer (UC) patients2,3.

Still, most tumors do not respond to treatment1,4, and ICI causes
grade≥3 immune-related adverse events in 10% of UC patients5.
Therefore, it is crucial to identify biomarkers that aid the strati-
fication of responding patients so that alternative lines of
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treatment can be considered for non-responding patients and
prevent unnecessary toxicities.

The surrounding of a tumor, known as the tumor microenviron-
ment (TME), contains immune cells, normal epithelial cells, and
fibroblasts that continuously interact6. Components of the TME indi-
cative of pre-existing immunity have shown associationswith response
to ICI, such as CD8+ T cell infiltration and transcription factors related
to T cell activity7–11. However, biomarkers do not behave consistently in
UC trials. For instance, the baseline presence of CD8+ T cells correlates
with ICI monotherapy response in the pre-operative (anti-PD-L1)7 or
metastatic setting12. Still, in pre-operative ICI combination therapy
(anti-PD(L)−1 + anti-CTLA-4), the response is independent of CD8+ T
cell density9,10. The lack of robust response biomarkers highlights the
need to dissect tumor-immune interactions in more detail13.

A technology enabling a TME characterization at single-cell reso-
lution is multiplex immunofluorescence (mIF), which spatially profiles
a tissue slide usingmultiple antibodies simultaneously14,15. MIF-derived
metrics were found to predict anti-PD-1 and anti-PD-L1 response across
different tumor types16, highlighting its ability to quantify crucial
immune components that determine ICI response. Typically, mIF data
are summarized as immune cell densities, informing about immune
cell counts, and typically topologically assessed in different compart-
ments, i.e., tumor and stroma17.

By definition, immune cell density and abundancemetrics ignore
the immune interactions relevant to an anti-tumor response18. Ignoring
these interactions is suboptimal, asmany immune interactions require
proximity. For instance, a T cell receptor and antigen interaction
require physical binding, which requires the cells involved to be in
close proximity to each other. In contrast, an immunosuppressive TME
will have few immune cells close to cancer cells due to their inability to
infiltrate a tumor19. Such distance or adjacency patterns between cells
at the TME can be measured through their spatial relationship (SR),
allowing for a mathematical description amenable to downstream
analysis20. Notably, associations between SRs at the TME and
prognosis18,21,22 and response to monotherapy ICIs have been reported
across different cancer types23–25. The SRs allow for quantitative
exploration of the TME, providing a basis for improving our under-
standing of tumor immunology and scrutinizing new associations with
ICI response. SRs in the UC’s TME are poorly understood and, to our
knowledge, largely unexplored in pre-operative combination ICI
treatments, and this study aims to address that.

Several analytical frameworks aim tomeasure the SRs of the TME,
such as cell-cell interactions and tissue modules, using spatially
resolved protein-derived data across multiple data types19. Meth-
odologies are predominantly topologically based (graph-, networks-,
and cell-counting-basedmethods) or distance-based20. Distance-based
methods, such as the first-nearest-neighbor (1-NN) distribution, allow
modeling proximity patterns within the TME using spatially-resolved
data in a simple yet informativemanner. Because distances following a
1-NN distribution are asymmetrical, approaches that estimate the 1-NN
distribution mean25 provide inadequate data summaries. A common
approach to model 1-NN distributions is through the cumulative dis-
tribution function (CDF), known as the G-function. Nevertheless, the
downstreamanalyses require an additional summaryby estimating the
area under the curve (AUC) at a predefined threshold26,27. Currently,
there is a lack of spatial methodologies that describe the distance
distribution without using a threshold and that model variation
between individuals.

In this study, we spatially profile cancer cells, T cells, macro-
phages, and B cells using mIF and present a methodology to quantify
the TME SRs using 24 pre-operative baseline tumor resection UC
samples from the NABUCCO trial10. In NABUCCO, pre-operative com-
bination ICI with ipilimumab and nivolumab is administered in UC. We
fit a Weibull distribution to the 1-NN distance distribution between
pairwise cell relationships to extract a two-parameter describing the

distribution. These spatial descriptions outperform immune cell den-
sities when quantifying the differences in immune cell SRs between
response groups to ICI. To demonstrate the generalizability of our
findings, we confirm the baseline associations between SRs and
response in an independent cohort of 25 mostly HPV-negative head
and neck squamous carcinoma (HNSCC) patients receiving pre-
operative ipilimumab and nivolumab treatment28.

Results
Multiplex immunofluorescence and modeling of immune cell
densities and spatial relationships of urothelial and head and
neck cancer samples
We collected multiplex immunofluorescence (mIF) data from baseline
formalin-fixed, paraffin-embedded (FFPE) stage-III urothelial cancer
(UC) samples (n = 24), of patients recruited in the NABUCCO trial
(Fig. 1A, Table 1). Patients received pre-operative combination ICI,
consisting of two or three cycles of ipilimumab (anti-CTLA-4) and
nivolumab (anti-PD-1)10. We determined the position and identity of
cells using mIF and identified B cells, T cells (CD8+ T cells, FoxP3+

T cells, and T-helper cells), macrophages, and cancer cells (Fig. 1B).
Negative cells scored negative for all the antibodies (CD8-, CD3-,
FoxP3-, CD20-, CD68-, PanCK-); this group contains all stromal cells and
immune cells not covered by our antibody panel. Next, by comparing
the local density of cancer and negative cells, we virtually segmented
the tissue into the tumor and stroma compartments (Fig. 1C, Supple-
mentary Fig. 1) and quantified immune cell density in both compart-
ments (Fig. 1D, Supplementary Data 1).

We quantified the pairwise SRs between all cell types in the TME
using the first nearest-neighbor (1-NN) distance statistic (Supplemen-
tary Data 2). In brief, the statistic is measured between a reference cell
type (cell from) and a target cell type (cell to). The distances between
each reference cell type and their closest target cell type yielded a 1-NN
distance vector (Fig. 1E). Then, wefitted aWeibull distribution function
using a non-linearmixed effect model to summarize the 1-NN distance
distribution. The model has two parameters: shape and scale, which
uniquely describe the properties of the 1-NN distance distribution
(Fig. 1E, top) in a threshold-independent manner. We estimated the
Weibull parameters (scale and shape) for all 49 pairwise relationships
between cell types for all samples using the data from the whole tissue
slide. Additionally, we evaluated the threshold-dependent G-function
derived from the cumulative distribution function (CDF) of the 1-NN
distance distribution and broadly documented in the spatial statistics
literature29. The G-functions were summarized by computing the area
under the curve (AUC) at different thresholds T,whichwe refer to as G-
AUC-T (which included T = 25 [Fig. 1E, bottom], T = 50 μm and T =
100μm) across all pairwise cell type SRs and samples.

We then compared the spatial (Fig. 1E) and density (Fig. 1D)
parameters with response to ICIs and compared their predictive power
(Fig. 1F). Lastly,wevalidated the associations betweenTMEparameters
and response in an independent cohort of mostly HPV-negative head
and neck squamous cell carcinoma (HNSCC, n = 25) using baseline
primary tumor samples of patients recruited in the IMCISION trial that
received pre-operative ipilimumab and nivolumab combination treat-
ment (Fig. 1G).

Exploration of spatial relationships across the urothelial cancer
tumor micro-environment
We quantified the SRs for all pairwise relationships of immune, cancer,
and negative cells by estimating the Weibull parameters (shape, scale)
characterizing the 1-NN distance distributions (Fig. 1E). Next, we
explored the shape-scale parameter space across patients (Fig. 2A).

To illustratewhat theWeibull parameters (shape, scale) represent,
we use four combinations of the SR metrics that characterize distinct
instances of cellular spatial distributions (Fig. 2A, colored dots). For
the green dot in Fig. 2A, we observe that the 1-NN distance distribution
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is characterized by relatively low distances (Fig. 2B, green curve),
which originate from the black cells being close to a pink cell (Fig. 2C,
“Low scale, High shape”). The low scale/high shape value signals den-
sely packed pink cells, meaning there is always a pink cell close to a
black cell. Another type of SR characterized by relatively short 1-NN
distances but with a higher variance in 1-NN distances, is illustrated in
Fig. 2A, B (orangedot and curve). It represents anSRwhereoneorboth

cell types are arranged in overlapping, densely packed clusters, such as
the pink and black cells in Fig. 2C (“Low scale, Low shape”). Cases with
an even larger spread in distances (Fig. 2A, B, purple dot and curve)
from theblack to the nearest pink cells, aredescribedbyhigh scale and
low shape parameter values (Fig. 2C, “High scale, Low shape”). Lastly,
the cyan dot (Fig. 2A) represents a 1-NN distribution shifted towards
higher 1-NN distances (Fig. 2B, cyan curve), characteristic of a
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repulsion pattern, i.e., where both cell types are clustered in relatively
large clusters (Fig. 2C, “High scale, High shape”). Therefore, increasing
the scale parameter results in an increase of the distance distribution
spread (i.e., thedistributionwidth, SupplementaryFig. 2A, B),while the
shape parameter is related to the distinct forms of the distribution
behavior (Supplementary Fig. 2C-F, Supplementary Fig. 3).

Furthermore, the associated threshold-dependent G-function
results showed corresponding differences between the four scenarios,
which is expected, as the G-function is the cumulative distribution of
the 1-NN distances (Fig. 2D, Eq. 4). However, in contrast to the Weibull
approach, a threshold value (T) is required to generate the summary
metric G-AUC-T.

We then dissected the SRs by reference and target cell type to
explore patterns of SRs across the TME (Fig. 2E). First, we investigated
self-self relationships, which are relationships between cells of the
same type. The self-self relationship for tumor cells falls in the “Low
scale, High shape” scenario, with shorter distances between cells as
tumor cells are typically densely packed in the tumor regions (Fig. 2E-1,
blue dots and arrow). Similar behavior was observed for negative cells,
indicating a tight packing of negative cells (Fig. 2E-2, red dots and
arrow). Then, we explored the self-self relationships of immune cells.
We observed B cells clustering for all patients (Fig. 2E-3, orange dots
and arrow). We did not observe the same clustering behavior for self-
self SRs of other immune cell types (e.g., green dots in Fig. 2E-6, which
shows a behavior more akin to the “Low scale, Low shape” scenario).
Subsequently, we assessed the SRs between different cell types. We
observed a high variation in the Weibull parameters across samples
and pairwise cell type combinations (Fig. 2E) and a dependence on the
SR perspective, i.e., whether a given cell type is the cell type from or
the cell type to, which can be attributed to the asymmetric property of
the 1-NN statistic, as illustrated in Supplementary Fig. 4.

In short, we created a framework to quantify, interpret, and study
SRs in the TME using the Weibull parameters extracted from the 1-NN
distance distributions. The framework allows exploring distinct cel-
lular organization patterns and quantifying specific SRs (e.g., T cell to B
cell vs. B cell to T cell) amenable for downstream analyses aimed at
furthering our understanding of the TME and its relationship to
response to ICIs.

Comparison between spatial relationship metrics derived from
the first nearest neighbor distance statistic
A common approach to extracting parameters from the 1-NN distance
distribution statistic is through the G-function, which represents the
cumulative density function (CDF) of the 1-NN distribution and
requires a particular threshold to summarize the data for downstream
analyses. We compared our Weibull parameters with the G-function
summary. We evaluated the G-function using its area under the curve
(AUC) up to a 25-μmdistance, which we defined as the “G-AUC-25”. We
chose this threshold after inspecting the distance region in which the
G-function showed the highest variability. Because we observed
variability in G-functions across pairwise cell-type relationships, other
thresholds were evaluated and denoted as “G-AUC-T”, in which T
denotes the threshold in micrometers. We observed a non-linear
relationship between the shape, scale and the G-AUC-25 (Fig. 3A), G-
AUC-12 and G-AUC-50 (Supplementary Fig. 5A, B).

Upon summarizing the G-function, and for a given SR’s G-AUC-25
value, we observed that the associated shape and scale parameters can
show substantial variation (Fig. 3A; e.g., dots colored in redmapping to
a wide range of shape parameter values). Figure 3A highlights a pair of
SRs with large differences between their shape or scale parameters,
which can be visually confirmed by their 1-NN curves (Fig. 3B, D, F). In
contrast to the Weibull parameters, the corresponding G-AUC-25

Fig. 1 | Profiling of immune cell density and spatial relationships of the uro-
thelial cancer tumor micro-environment by multiplex immunofluorescence.
A Biopsy samples from 24 patients from the NABUCCO trial were profiled using
mIF. B Cell type classification by comparing antibody marker positivity. C Tissue
segmentation into tumor and stroma regions by comparing the local densities of
cancer cell marker positive and negative cells. D Immune cell density in the tumor
and stroma compartments was calculated in each tissue compartment (tumor and
stroma). E SRs were summarized using the 1-NN statistic studied from a reference
cell type to a target cell type. The resulting 1-NN distances vector was studied using
2 approaches:modeling aWeibull distribution to the ProbabilisticDensity Function
(PDF) (top), and using the cumulative distribution function (CDF) using the
G-function. F Association of SR parameters with ICI response and comparison of

the discriminative power between SR and density TME parameters. G Validation of
associations between SR parameters and response identified in UC in an indepen-
dent cohort of HNSCC tumors. Icons from panel A, B, F and G were adapted from
bioIcons (cancerous-cell-1, lymphocytes-4, macrophage, t-lymphocyte, b-lympho-
cyte, fibroblast-1 licensed under CC-BY 3.0 Unported by Servier), flaticon.com
(bladder icon, https://www.flaticon.com/free-icon/bladder_1453578; head neck
icon, https://www.flaticon.com/free-icon/injection_4418017). TME: tumor micro-
environment; SR: spatial relationship; mIF: multiplex immunofluorescence; ICI:
immune checkpoint inhibitors; 1-NN: first nearest neighbor; PDF: probabilistic
density function; CDF: cumulative density function; G-AUC-T: G-function evaluated
at a threshold T; T: threshold; UC: urothelial cancer; HNSCC: head and neck
squamous cell carcinoma. Source data are provided with this paper.

Table 1 | Clinical trial, treatment and sample characteristics for the cohorts used in this study

NABUCCO NCT03387761 IMCISION NCT03003637

Sample size 24 25a

Cancer type Urothelial cancer Head and neck cancer

Tissue source Bladder, n = 24 (100%) Oral cavity, n = 24 (96%) Oropharynx, n = 1 (4%)

Tissue sampling Transurethral resection (primary tumor, FFPE) Primary tumor biopsy (FFPE)

Treatment type Pre-operative (neoadjuvant) Pre-operative (neoadjuvant)

Treatment dosage
per cycle

1: ipilimumab 2: ipilimumab + nivolumab 3: nivolumab 1: ipilimumab + nivolumab 2: nivolumab

Tumor type Primary, n = 24 (100%) Primary, n = 20 (80%) Recurrence, n = 5 (20%)

HPV-positivity (%) n/a 23 (92%)

Response definition Pathological response assessment (complete pathologi-
cal response or residual disease)

Pathological response assessment combined with comparison of tumor cells
decrease from baseline vs. on-treatment sample

Response (%) 14 (58%) 9 (36%)

Clinical Stage cT3-4aN0M0 n = 14 (58%) cT2-4aN1-3M0 n = 10 (42%) cT2N0 n = 5 (20%) cT3-4aN0M0 n = 10 (40%) cT2-4aN1-3M0 n = 10 (40%)

Sex (%) Male n = 18 (75%) Male n = 20 (80%)
aOnly samples from IMCISION Arm B (combination ICIs) have been used in this manuscript.
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values do not differ substantially between the pairmembers (Fig. 3C, E,
G, showing the G-function curves corresponding to the pairs in Fig. 3B,
D, F, respectively), which can hinder interpretations on the associated
SR. Specifically, comparing Figs. 3B, C, we observe that while the
Weibull parameters arequite different (scale = 14 and shape = 6.4 for B-
light, scale = 14 and shape = 3.0 for B-dark) the G-AUC-T values are
quite similar (G-AUC-25 = 11.5 for B-light and G-AUC-25 = 11.8 for B-
dark). While in the other examples, the differences in the G-AUC-25
values were small, we found that higher values of the summary
threshold could better capture the difference between the SR pairs in
Fig. 3E (Weibull density in 3D) and Fig. 3G (Weibull density in 3F).

To further illustrate differences between SRs captured by the
shape or scale parameters but not by the G-AUC-25 parameter, we
compared G-AUC-Ts for different pairwise cell-cell relationships
(Supplementary Fig. 5C). Here, for different samples but the same SRs
(e.g., Macrophages to B cell), the magnitude of the increase in the G-
AUC-T value when altering the evaluation threshold T, depending on
the studied pairwise cell-cell relationship, the G-function’s shape
(rapidly or slowly reaching the maximum value), and the sample. In
some SRs, the G-AUC’s increase was linear (e.g., Cancer cell to cancer
cell) because the G-function saturated at low thresholds (Supplemen-
tary Fig. 5D). Still, in others (e.g., Macrophages to B cell), the increase
was not always linear because the G-function reaches saturation at
higher thresholds (Supplementary Fig. 5D). Therefore, when using a
G-function statistic, such as the G-AUC-T, the SR quantification criti-
cally depends on the threshold used.

In short, our data shows that the G-function threshold introduces
variance in the downstreammetric G-AUC-T. Furthermore, optimizing

the threshold to maximize the effect size of SR-biomarkers for treat-
ment response creates a risk of overfitting. Therefore, different results
using the same SR data can be obtained when varying the threshold,
which can hinder downstream interpretation.

Spatial relationships associated with immune checkpoint
blockade response
Multiplex immunofluorescence data are usually summarized as cell
type fractions or immune cell density. We quantified the density of
T cells, B cells, and macrophages in both the tumor and stromal
compartments. However, we found no significant differences between
response groups (Fig. 4A), indicating no differences between response
groups in immune cell abundances in either the tumor and stromal
compartments. In addition, immune cells spatially distribute following
configurations of immune phenotypes30, being Excluded (high
immune cell abundance in the stroma), Inflamed (high immune cell
abundance in the tumor), and Desert (low immune cell abundance in
the tumor and stroma). We quantified exclusion ratios (ratio between
stromal and intratumoral immune cell density) and used them as a
proxyof immunephenotypes for each immune cell. However, againwe
found no significant associations with treatment response (Fig. 4B),
suggesting similar immune cell configurations in the response groups.

Motivated by the invariance between immune cell abundances
and density ratios in the TME between response groups, we investi-
gated whether spatial relationships derived from the TME were pre-
dictive of response to ICI combination treatment. We first investigated
whether the SRs of all pairwise cell types, characterized by theWeibull
parameters (shape and scale), were associated with clinical response
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the coloring denotes the reference cell type (cell type from); i.e. the orange dots
represent spatial relations studied from B cells to cancer cells. Cohort averages for
their associated SR parameters are highlighted as big dots for each cell type-cell
type combination. SR: spatial relationship; TME: Tumor microenvironment; 1-NN:
First nearest neighbor. Source data are provided with this paper.
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(Fig. 1F). After correction formultiple hypothesis testing, we identified
nine SRs that were associated with clinical response (FDR <0.10) for
the Weibull parameters shape and scale (Fig. 4C, D). The association
between G-AUC-T and response using a rank-based statistic strongly
depended on the selected value of the threshold, with the fold change
decreasing with increasing values of the threshold (T) (Supplementary
Fig. 6). When selecting a low threshold value (T = 25 μm), we found no
significant associations between SRs quantified by G-AUC-25 and
response (Supplementary Fig. 6A). Upon increasing the threshold
value (T = 50 μm), we found three associations between SRs quantified
byG-AUC-50 and response (Supplementary Fig. 6B), of which twowere
also identified using the Weibull parameters and one SR (FoxP3+ T cell
to negative cell) was trending but not significant (FDRscale = 0.21,
FDRshape = 0.11) using the Weibull parameters (Supplementary
Figs. 6, 7).

To guide interpretation, we computed, for each SR significantly
associated with clinical response to combination immunotherapy
and each patient, the median 1-NN distances (Fig. 4E) and compared
them using a rank-based statistic. Median distances exhibit a non-
linear relationship with the shape and scale parameters (as indicated
in Eq. 6) but provide enhanced clarity in the interpretation of our
findings. In responding tumors, the distances from either CD8+

T cells or macrophages to the closest cancer cells were smaller than
in non-responders (median 1-NN distance CD8+ T cell to cancer cell,
responders = 4 ± 3μm, non-responders = 18 ± 15μm; Macrophage to
cancer cell, responders = 4 ± 2μm, non-responders = 10.2 ± 7μm).
Conversely, responding tumors had the largest 1-NN distances for the
SR from CD8+ T cells or macrophages to the closest negative cell
(median 1-NN distance CD8+ T cell to negative cell, responders = 9 ±
8μm, non-responders = 3 ± 1μm; Macrophage to negative cell, med-
ian 1-NN distance responders = 12 ± 10μm, non-responders = 4 ± 1
μm). Despite the clear differences in the associated median 1-NN

distances, the G-function approach did not identify the associations
of the SRs with response at a low threshold (T = 25 μm, Supplemen-
tary Fig. 3A) nor the associations of the SRs involving CD8+ T cells and
response at a higher threshold (T = 50 μm, Supplementary Fig. 3B,
FDR = 0.14 and FDR= 0.20 for CD8+ T cell to cancer cell and CD8+ T
cell to negative cell, respectively). Furthermore, non-responding
tumors were characterized by small distances from CD8+ T cells to B
cells (median 1-NN distance CD8+ T cell to B cell, responders = 66 ±
27μm, non-responders = 36 ± 27μm) when compared to responding
tumors. We identified an association between the SR from cancer
cells to CD8+ T cells and response with a small fold change for the
shape parameter (|FCshape | = 0.11, FDRshape = 0.09), pointing to a
difference in distribution that was not detected in terms of median
1-NN distances (Supplementary Figs. 7A-E, p = 0.98), suggesting
that this may well be a false positive. Lastly, the single SR
biomarker identified by the G-function approach at 50 μm but not at
a 25 μm threshold (FoxP3 T cell to negative cell, FDRG-AUC-25 = 0.12,
FDRG-AUC-50 = 0.04, Supplementary Fig. 6 and Supplementary Fig. 7J)
that was not identified by the Weibull approach was trending (Sup-
plementary Fig. 7I, FDRshape = 0.11) and showed relative differences in
the associated median 1-NN distances (Supplementary Fig. 7F).

In contrast to the SRs, the immune cell density and exclusion
ratios were not associated with response. We confirmed, using simu-
lated data, that density affects SRs between rare (e.g., immune to
immune cells) but not between abundant and rare cell types (e.g.,
cancer to immune cells) (Supplementary Note 1). To further confirm
independence between density and SR metrics in the predictive set-
ting, we compared the predictive power for clinical response of the SR
Weibull parameters (shape and scale) and their associated relevant
density and exclusion metrics. The comparisons were made for each
SR that was significantly associated with treatment response. For
example, the SR from CD8+ T cells to cancer cells was associated with
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Fig. 4 | Association of spatial relationships with response to pre-operative
ipilimumab+nivolumab in urothelial cancer. A Volcano plot showing the fold
change on the intratumoral and stromal immune cell densities between response
groups (x-axis) and statistical significance by t-test adjusted bymultiple hypothesis
testing (y-axis).BVolcanoplot showing the fold change on the exclusion ratio (ratio
between stromal and intratumoral immune cell density) between response groups
(x-axis) and statistical significance by t-test adjusted bymultiple hypothesis testing
(y-axis). C Volcano plot showing the fold change on the shape parameter between
response groups (x-axis) and statistical significance by t test adjusted by multiple
hypothesis testing (y-axis). D Volcano plot showing the fold change on the scale
parameter between response groups (x-axis) and statistical significance by t-test
adjusted by multiple hypothesis testing (y-axis). E Median first nearest-neighbor
distance distribution per response group as calculated by the associated shape and
scale for the SRs that are significantly associated with response to ICI treatment
(n = 14 independent responders and n = 10 independent non-responders) and sta-
tistical significance by a Mann–Whitney test. No adjustments were made for mul-
tiple comparisons. F ROC curve AUCs of the discriminative power of distinct TME
parameters when predicting ICI response on n = 14 independent responders and
n = 10 independent non-responders: all spatial parameters (green), all spatial
parameters, density and exclusion ratio metrics (gold), all density metrics (pink),
and exclusion ratio between stroma and tumor density (blue). Confidence intervals
(error bar of each barplot) denote the 95% confidence interval as estimated by
bootstrapping the 24 samples 500 times as implemented in pROC. The linesdenote
whether a statistical significance on the associated AUC was achieved. Significance

symbols above bar plots denote whether the AUC is significantly different from
AUC=0.5 as assessed by a two-sided Mann–Whitney test. Significance symbols
between bar plots denote whether the ROC-AUC-spatial (green) is significantly
greater than the ROC-AUC-spatial-density-exclusion (gold) or ROC-AUC-density
(pink) or ROC-AUC-exclusion (blue). Statistical significance between ROC curves
was assessed by re-calculating AUCs by bootstrapping each ROC plot 500 times,
and significance was assessed by a one-sided t test as implemented in pROC. Exact
p-values are reported in the Source Data file. No adjustments weremade to correct
for multiple comparisons. G Logistic regression deviance of a univariate logistic
regression model predicting ICI response (n = 14 independent responders and
n = 10 independentnon-responders) using as apredictor the shape, the scale, or the
G-function evaluated at different thresholds (G-AUC-T). Variability on the AIC was
evaluated by leave-one-out cross-validation on the 24 samples and significancewas
tested by Student’s t test. No adjustments were made for multiple comparisons.
The box plots in each panel show the middle 50% of the data, with the box itself
representing the median and the interquartile range (IQR) between the 25th and
75th percentiles. The whiskers extend from the box to the furthest data points
within 1.5 times the IQR from the median. Unless otherwise stated, all statistical
tests were two-sided. Significance symbols: *p <0.05, **p <0.01, ***p <0.001. ICI:
Immune checkpoint inhibitor; 1-NN: first nearest neighbor; ROC: Receiver operat-
ing characteristic; AUC: area under the curve; TME: tumor microenvironment; G-
AUC-T: G-function evaluated at a threshold T; T: threshold; logit: logistic regres-
sion; LOO: leave-one-out cross validation. Source data are providedwith this paper.
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response (FDRshape= 0.01, FDRscale = 0.09). We compared its predictive
power with the CD8+ T cell density (intratumoral and stromal) and the
exclusion ratio of CD8+ T cells. For this comparison, we employed a
logistic regression model and the resulting area under the ROC curve
(AUROC). TheAUROCs for the five SR associations (depicted in Fig. 4E)
and the associated density and exclusion metrics are shown in Fig. 4F.
No density or exclusionmetric reached significance as all 95% CI of the
associated AUROCs included AUROC=0.5. In contrast, all the SR
Weibull parameters reached significance with AUROC values around
0.8 and 95% CI that do not include AUROC=0.5 (Table 2, Supple-
mentary Fig. 8), highlighting the superior predictive power of the SR
metrics. Lastly, we tested whether adding density and exclusion ratio
as covariates to the SR-based model improved the performance, but
this was not the case (Fig. 4F, Table 2).

Next, we compared different SR metrics derived from the 1-NN
distance distribution (shape, scale, G-AUC-T at different T) for their
ability to describe clinical response. To do so, we compared the Wei-
bull parameters to the G-AUC-T metrics in the predictive setting.
Specifically, we compared the logistic regression deviance, in which
lower values indicate better model fits. We did so for the six SRs that
were found to be significantly associated with response. The SR from
CD8+ T cells to cancer cells model showed that the shape or the scale
parameters scored significantly better than the G-AUC-T trained
models for T = 25, 50, and 100 (Fig. 4G). For the remaining SRs sig-
nificantly associated with clinical response (Fig. 4C, D), we observed

that the models trained using Weibull parameters (shape and scale)
outperformed themodels trainedusingG-functionparameters, except
for the SR frommacrophages to negative cells and from CD8 T cells to
B cells whereG-AUC-25 performed similarly as in theWeibull approach
(Supplementary Fig. 9).

In summary, we observed thatmIF-derived spatial relationships in
the TME hold superior predictive power for clinical response com-
pared to immune cell density or immune phenotypes. Our results
convincingly demonstrate that the Weibull parameters (shape and
scale) are superior to the G-function metrics (G-AUC-T) in predicting
clinical response to combination checkpoint therapy.

Validation of spatial relationships biomarkers of ICI response in
a cohort of head and neck cancer
We tested whether our spatial biomarkers also predicted response in
other cancer types. We used a cohort of head and neck squamous cell
carcinoma (HNSCC) patients from the IMCISION trial28 to validate our
findings. A subset of 25 IMCISION patients was treated with pre-
operative ipilimumab+nivolumab (similar to NABUCCO), and suc-
cessfully provided tumor sample profiling with the samemIF antibody
panel as the UC cohort (Fig. 1G, Table 1).

We first compared the SR parameter space in HNSCC (Supple-
mentary Data 3) with that of the UC cohort. We observe the same
C-shape distribution in the shape-scale space as we observed in UC
(Fig. 5A). Second, we found a high concordance between NABUCCO

Table 2 | Predictive power of logistic regression models as measured by the ROC-AUC for logistic regression models trained
using only spatial metrics (shape, scale), density metrics (intratumoral and stromal density), exclusion ratio metrics (ratio
between stromal and intratumoral density), and all metrics (all the metrics above)

Spatial relationship Features included in model AUC (95% CI) P-value against Spatial
ROC-AUC

CD8+ T cell to cancer cell Spatial (shape and scale) 0.86 (0.70, 0.98) –

CD8+ T cell to cancer cell Density (Intratumoral CD8+ T cell density and Stromal CD8+ T cell density) 0.6 (0.34–0.85) 0.005

CD8+ T cell to cancer cell Exclusion ratio (ratio between Stromal CD8+ T cell density and Intratumoral CD8+

T cell density)
0.64 (0.40−0.86) 0.02

CD8+ T cell to cancer cell All TME features (spatial + density + exclusion ratio) 0.89 (0.74–0.99) 0.79

CD8+ T cell to negative cell Spatial (shape and scale) 0.79 (0.59–0.95) –

CD8+ T cell to negative cell Density (Intratumoral CD8+ T cell density and Stromal CD8+ T cell density) 0.60 (0.34–0.84) 0.03

CD8+ T cell to negative cell Exclusion ratio (ratio between Stromal CD8+ T cell density and Intratumoral CD8+

T cell density)
0.64 (0.39–0.86) 0.08

CD8+ T cell to negative cell All TME features (spatial + density + exclusion ratio) 0.82 (0.63–0.96) 0.73

Macrophage to cancer cell Spatial (shape and scale) 0.89 (0.73–0.99) –

Macrophage to cancer cell Density (Intratumoral Macrophage density and Stromal Macrophage density) 0.65 (0.41–0.86) 0.02

Macrophage to cancer cell Exclusion ratio (ratio between Stromal Macrophage density and Intratumoral
Macrophage density)

0.68 (0.46–0.88) 0.03

Macrophage to cancer cell All TME features (spatial + density + exclusion ratio) 0.89 (0.74–0.99) 0.76

Macrophage to negative cell Spatial (shape and scale) 0.83 (0.64–0.96) –

Macrophage to negative cell Density (Intratumoral Macrophage density and Stromal Macrophage density) 0.65 (0.41–0.86) 0.04

Macrophage to negative cell Exclusion ratio (ratio between Stromal Macrophage density and Intratumoral
Macrophage density)

0.68 (0.45–0.89) 0.08

Macrophage to negative cell All TME features (spatial + density + exclusion ratio) 0.87 (0.71–0.99) 0.92

CD8+ T cell to B cell Spatial (shape and scale) 0.86 (0.68–0.98) –

CD8+ T cell to B cell Density (Intratumoral B cell density and Stromal B cell density)a 0.72 (0.48–0.91) 0.16

CD8+ T cell to B cell Exclusion ratio (ratio between Stromal B cell density and Intratumoral B cell
density)

0.48 (0.23–0.72) 0.008

CD8+ T cell to B cell All TME features (spatial + density + exclusion ratio) 0.88 (0.70–0.99) 0.58

P-value against spatial ROC-AUC denotes the difference between eachmodel and themodel trained spatial metrics from the associated SR by bootstrapping 500 times (testing whether the AUC is
greater). Confidence intervals of ROCswere estimated bybootstrapping samples 500 times. Error bars denote the 95% confidence interval as estimated bybootstrapping the 24 samples 500 times
as implemented inpROC. Significancewas estimated byevaluatingwhether the ROC-AUC is significantly greater than theROC-AUC-spatial (ROCplot builtwith spatial parameters) by re-calculating
AUCsbybootstrapping eachROCplot500 times, andsignificancewas assessedbya one-sided t-test as implemented in pROC.Noadjustmentsweremade to correct formultiple hypothesis testing.
ROC receiver operating characteristic, AUC area under the curve, SR spatial relationship, CI confidence interval.
aCD8+ T cell density was not included in the model as it was already included in the density models of the SRs CD8+ T cell to Cancer cell and CD8+ T cell to negative cell.
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and IMCISION for the shape and scale population averages across
pairwise SRs between all cell types (Fig. 5B, Supplementary
Figs. 10A,D). These results suggest that thedistance between cell types
follows a characteristic pattern preserved across these two cancer
types. For instance, similar behavior of B cell to B cell 1-NN distances
compatible with the “Low scale, High shape” behavior was observed
in HNSCC.

Next, we evaluated whether the SR biomarkers of ICI response
identified in UC were also predictive of reaching a major patholo-
gical response upon combination ICI in the HNSCC cohort. The
validation was assessed for the strongest biomarkers (FDR < 0.04)
to maximize the likelihood of validation, which involved the SRs
CD8+ T cells to cancer cells and Macrophages to cancer cells from
Fig. 4C-D. Both SRs showed the same direction of association with
response in HNSCC (Fig. 5B) and, importantly, showed a statisti-
cally significant association with response after multiple testing
correction: CD8+ T cells to cancer cells (FDRshape=0.045) and
macrophages to cancer cells (FDRshape=0.0076, FDRscale =
0.00094) (Supplementary Fig. 11A, B), which matches with the
spatial proximity behavior (lower 1-NN distances) identified in the
responding UC tumors (Fig. 4E). We confirmed the earlier estab-
lished superiority of the SR metrics over density metrics by show-
ing that, in the HNSCC cohort, immune cell density was not
associated with response (Supplementary Fig. 11C), except for
stromal macrophage and CD8+ T cell densities.

In conclusion, the TME spatial biomarkers for pathological
response to ICI combination treatment in UC validated in an HNSCC
cohort, suggesting that theSRsbetweenCD8+ T cells andmacrophages

to cancer cells could be an important context-independent biomarker
for clinical response to ipilimumab+nivolumab.

Discussion
Advances in ICI have resulted in pembrolizumab (anti-PD1) becoming
the second-line standard of care for advancedUC3, and avelumab (anti-
PD-L1) as the standard of care for maintenance after chemotherapy
treatment31. Results frompre-operative clinical trials show that patients
can have a pathological complete response to only two or three
cycles of immunotherapeutic treatment9,10,32,33. Thesepromising clinical
results need biomarkers that stratify individual patients and improve
our understanding of the immunological background of (non-)
response. In this study, we provided a comprehensive quantitative
explorationof the, thus far, poorly characterizedSRs in theUCTME.We
show the potential for clinical utility in predicting the response to pre-
operative combination ICIs and provide a quantitative basis for follow-
up research.

We found an association between the proximity of the SR from
CD8+ T cells to cancer cells and response inUC and confirmed that this
association also holds in HNSCC. In contrast, no differences between
response groups in CD8+ T cell density were found, revealing that
abundance alone is likely insufficient to explain treatment response.
Tumorswith an immune excludedphenotype exhibit an enrichment of
CD8+ T cells at the stroma due to mechanisms preventing T cells from
reaching the tumor. Quantifying immune phenotypes is not trivial as
distinct patterns of exclusion and topography exist17,34. In our study,
we used exclusion ratios and densities as a proxy to estimate immune
phenotypes, but we found no difference between response groups. In
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Fig. 5 | Validation of spatial relationship biomarkers of ICI response in an
independent cohort of pre-operative ipilimumab+nivolumab in head and neck
cancer. A Scale vs. shape SR parameters fitted on the 1-NN distribution for the
25 samples and the 7 × 7 cell type combinations obtained in the head and neck
cancer data (right, IMCISION) and UC data (left, NABUCCO). B Scatter plot of the
scale-shape parameter space by neighbor cell type (cell to) obtained in the
IMCISION trial data. Cohort averages for their associated spatial parameters are
highlighted as big dots for each cell type-cell type combination. C Median first
nearest-neighbor distance distribution in head and neck cancer samples per
response group (n = 9 independent responders and n = 16 independent non-
responders) as calculated by the associated shape and scale for the SRs that
significantly (FDR < 0.04) associated with response in UC and statistical sig-
nificance by a Mann–Whitney test. No adjustments were made for multiple

comparisons (adjustments for multiple hypothesis testing were done on the
shape and scale parameters space in Supplementary Fig. 11). The box plots in each
panel show the middle 50% of the data, with the box itself representing the
median and the interquartile range (IQR) between the 25th and 75th percentiles.
The whiskers extend from the box to the furthest data points within 1.5 times the
IQR from the median. Unless otherwise stated, all statistical tests were two-sided.
Icons from (A, B, F, G) were adapted from bioIcons (cancerous-cell-1, lympho-
cytes-4, macrophage, t-lymphocyte, b-lymphocyte, fibroblast-1 licensed under
CC-BY 3.0 Unported by Servier), flaticon.com (bladder icon, https://www.flaticon.
com/free-icon/bladder_1453578; head neck icon, https://www.flaticon.com/free-
icon/injection_4418017). SR: spatial relationship; ICI: immune checkpoint inhibi-
tors; 1-NN: first nearest neighbor; UC: urothelial cancer. Source data are provided
with this paper.
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contrast, our SR parameters served as a distance metric that objec-
tively quantifiesproximity differences betweenCD8+ T cells and cancer
cells between response groups. Therefore, while abundances or ratios
between abundances of CD8+ T cells were insufficient to explain
response to combination ICIs, a more complex quantification of their
relative spatial distribution in relation to cancer cells was a more
informative way to describe their behavior within a tumor. Our
observations suggest that therapeutic strategies that enhance CD8+ T
cell migration closer to cancer cells may overcome resistance to ICI.
These results align with the observation that immunosuppressive
mechanisms, such asTGF-beta signaling, are associated inUC10,12 with a
CD8+ T cell excluded phenotype and resistance to ICI35. Similar results
have been reported in the ICI context for melanoma, in which
responding tumors to different ICI treatments were characterized
using a 1-NN statistic by proximity between proliferating antigen-
experienced CD8+ T cells (CD45RO+Ki67+) and their closest cancer
cell23. Moreover, in gynecological and non-small cell lung cancer, the
SR between tumor-infiltrating lymphocytes (TIL) and non-TILs (e.g.,
cancer cells) demonstrated its utility for clinical outcomeprediction in
an ICI cohort24, which is compatible with our observations in UC
and HNSCC.

We found that the proximity of macrophages to cancer cells was
positively associated with response in the UC and HNSCC cohorts.
Interpretation of this candidate biomarker warrants further investi-
gation due to the plasticity and potential pro- or anti-tumorigenic
behavior of macrophages36, which results in macrophage subtype
heterogeneity not covered by ourmIF antibody panel. Literature in the
ICI context suggests that macrophages can express PD-L1 and PD-137

but can also prevent T cells from reaching cancer cells38. Data from
pancreatic cancer suggest that anti-tumorigenic macrophages (M1-
macrophages) are closer to cancer cells than pro-tumorigenic macro-
phages (M2macrophages)39, which indicates that our proximity signal
between macrophages and cancer cells in responding tumors may
originate from an M1-type macrophage lineage. In locally advanced
esophageal squamous cell carcinoma treatedwith chemoradiotherapy
and SHR-1210 (anti-PD-1 ICI), a prognostic signal using the 1-NN sta-
tisticmedian reported PD-L1+ tumor cells closer to PD-L1- macrophages
associated with a better OS after treatment25. Lastly, non-responding
tumors were associated with close proximity between B cells sur-
roundingCD8+ T cells, which is in linewith thehighbaseline expression
of genes involved in B cell signaling we found in non-responding UC
tumors in NABUCCO10.

We compared the spatial and densitymetrics’ predictive power to
corroborate the SR metrics’ importance. Our results show a superior
predictive power for SR metrics and enhance the limited view that
count-derived data, such as density or exclusion ratios, provide of the
TME. Furthermore,we compared the SRquantifications onourWeibull
parameters with the conventional G-function.While both are based on
the 1-NN distance statistic, we showed that the G-function dependence
on a distance threshold (T) reduced its utility for group comparisons
because the associated G-function’s range of values, variance, and
predictive power was threshold dependent. Besides, due to the het-
erogeneity in the G-function evaluations across cell-cell pairwise rela-
tionships, there is no unique optimal threshold that maximizes
differences between clinical groups of interest for all SRs. Therefore,
optimizationmethodologies for the threshold of choicedependon the
SR and cohort, potentially leading to under- or over-fitting and gen-
eralization issues. Earlier work on the G-function metric usage for
pancreatic cancer grade prediction reported that a single threshold
evaluation cannot model all the inherent signals from the data26. A
higher predictive power could only be achieved by discretizing the
G-function at multiple thresholds, which limits its interpretability and
utility because of an increased number of summary parameters26. On
the other hand, our Weibull parameters (shape and scale) allowed for
an invariant summary of the SRs without any threshold, which was

achieved by, instead of having an empirical summary or discretizing it,
modeling all its inherent structure using a curve-fitting approach.
Furthermore, themixedmodelmethodology allowedus to smooth the
data and model the parameter variance at a cohort level, making it
more suitable for group comparisons when correlating them with
clinical phenotypes of interest because of the reduced leverage of
outlier samples40.

The validation of our TMEcandidate biomarkers for pre-operative
combination ICIs response identified in UC indicates biologically
relevant SR differences consistent across cancer types. Crucially,
despite HNSCC being a different organ and morphologically distinct
tumor type, showing variability within their biopsy locations (oral
cavity, oropharynx), using our proposed spatial approach, we
observed similar average SR distances in both tumor types. A combi-
nationof pathological complete response andnear-complete response
defined response for exploratory analyses in IMCISION (HNSCC).
However, in NABUCCO (UC), treatment response was defined as a
pathological complete downstaging at the time of surgery. The
response rate in IMCISION was lower than in NABUCCO (36% vs. 58%,
p = 0.04), thus decreasing the statistical power to quantify differences
between response groups. Despite these differences and the relatively
small sample sizes (24 and 25 for NABUCCO and IMCISION, respec-
tively), the translatability of our findings on the associations between
the SR parameters identified in our UC cohort and treatment response
in the HNSCC cohort is promising.

Limitations of our study include the number of antibody markers
profiled inmIFdata, which restricted the types of cellswe could detect.
Transurethral resections provide a superficial spatial sampling of the
whole TME architecture, therefore allowing for limited profiling of the
tumor margin, which is known to contain a higher abundance of
immune cells in UC34 compared to intratumoral tissue. Nevertheless,
the literature suggests that transurethral resection (TUR) material in
UC is representative of the whole UC tumor spatial heterogeneity in
~58-73% of cases at an immune cell density level41, but their associated
SRs remain yet unexplored. Limitations to our methodological fra-
mework include quantifying SRs by studying only the first nearest
neighbor and not beyond. While considering higher-order neighbors
could facilitate exploring more distant spatial patterns, the trade-off
involves a compromise in the interpretability of the data. Network or
graph-based approaches would allow for a broader spatial repre-
sentationof the TME.However, these topology-basedmethods usually
ignore distances and require more complex SR representations. Fur-
thermore, combinations of samples and pairwise cell type SRs invol-
ving noisy distance distributions, such as SRs derived from lowly-
populated cells (e.g., FoxP3+ T cells in a subset of UC samples), are
excluded from the analysis only when convergence is not reached in
the mixed model fitting. However, only 2% of our SRs (24 out of 1176
SRs)were rejected for this reason.While thismight have consequences
in associations with clinical outcomes of interest (e.g., clinical
response), such rare cell types SRs lack robustness. Lastly, our sample
sizes are relatively small, and our results warrant further validation in
independent and larger cohorts.

In short, our study provides a systematic framework to quantify
SRs. It demonstrates that SRs provide a complementary summary of
the TME outperforming count-derived metrics, such as density, for
identifying biomarkers with a clinical utility. Our results reveal proxi-
mity between CD8+ T cells to cancer cells and macrophages to cancer
cells as candidate biomarkers for response to pre-operative combi-
nation ICIs, which have been thus far unexplored and provide a com-
plementary view of the TME that warrants further investigation.

Methods
Study oversight
The studies from this manuscript received approval from the institu-
tional review board of the Netherlands Cancer Institute - Antoni van
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LeeuwenhoekHospital. The execution of these studies strictly adhered
to the protocols and Good Clinical Practice Guidelines outlined by the
International Conference on Harmonization, along with the principles
established in the 1964 Declaration of Helsinki. Approval for the trial
protocols and any subsequent amendments was obtained from the
Medical Research Ethics Committee of the Netherlands Cancer Insti-
tute—Antoni van Leeuwenhoek Hospital (MREC AVL, https://english.
ccmo.nl/mrecs/accredited-mrecs/mrec-netherlands-cancer-institute-
the-antoni-van-leeuwenhoek-hospital). Before enrolling in the clinical
trials, all participating patients provided written informed consent to
partake in the studies.

Urothelial cancer study population and treatment
(NABUCCO trial)
Twenty-four pre-treatment Urothelial Cancer (UC) samples from the
NABUCCO trial (NCT03387761, Cohort 1) were used for analyses. In the
trial patients underwent a combination treatment (2 or 3 cycles) of
ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) prior to surgical
resection. The trial cohort consisted of high-grade stage III muscle-
invasive urothelial cancer (cT3-4aN0M0 or cT1-4aN1-3M0). Details of
the trial are reported10.

Response to treatment was evaluated by pathological response
assessment on radical surgery. Tumors with a complete pathological
response (ypT0N0) or residual disease (<=ypT1N0) were classified as
responders (n = 14), and tumors with a >=ypT2N0 were classified as
non-responders (n = 10).

Head and Neck squamous cell carcinoma population and treat-
ment (IMCISION trial)
Thirty-one head and neck squamous cell carcinoma (HNSCC) tumor
samples of multiple subsites (oral cavity n = 27, oropharynx, n = 4)
were obtained from the IMCISION trial (NCT03003637). Patients
underwent either two cycles of nivolumab (Arm A, n = 6) or a com-
bination treatment of 2 cycles of ipilimumab (anti-CTLA-4) and
nivolumab (anti-PD-1) (Arm B, n = 25) prior to surgical resection. The
trial cohort consisted of HNSCC tumors with a histological grade T2‒
T4N0‒N3b and metastatic grade M0 primary or recurrent of mostly
HPV-negative head and neck squamous cell carcinoma (HPV nega-
tive, n = 23; HPV positive, n = 2). Details of the trial can be found
elsewhere28. Only samples from Arm B (n = 25) were analyzed in this
manuscript.

Response to treatment was evaluated by pathological response
assessment on surgery and by comparison of tumor cells decrease
from baseline to on-treatment samples28. Tumors with <=10% tumor
cell percentage (TCP) at surgery and a decrease of 90-100% in tumor
cells from baseline to on-treatment were classified as major patholo-
gical responders (MPR, n = 9); tumors with <=50%TCP at surgery and a
decrease of 50-89% in tumor cells from baseline to on-treatment were
classified as partial pathological responders (PPR, n = 1); else tumors
were classified as no pathological responders (NPR, n = 15). Patients
with anMPR were classified as Responders, and patients with a PPR or
NPR were classified as Non-Responders.

Multiplex immunofluorescence
Multiplex immunofluorescence (mIF) was performed on pre-operative
baseline formalin-fixed paraffin-embedded (FFPE) tumor resections
and assessed on an immune panel (DAPI, PanCK, CD8, CD3, FoxP3,
CD20, CD68) as previously described for UC10 (NABUCCO) and
HNSCC28 (IMCISION). The experimental protocol and data processing
is reported elsewhere10,28.

Antibodies used for the NABUCCO trial dataset were CD3 (1/400
dilution, Clone P7, Cat RM-9107-S, ThermoScientific), CD8 (1/100
dilution, Clone C8/144B, Cat M7103, DAKO), CD68 (1/500 dilution,
Clone KP1, M0814, Dako), FoxP3 (1/50 dilution, Clone 236 A/47, Cat
ab20034, Abcam), CD20 (1/500 dilution, Clone L26, cat M0755, Dako),

PanCK (1/100 dilution, Clone AE1AE3, CatMS-343P, ThermoScientific).
Antibodies used for the IMCISION trial dataset were CD3 (clone SP7,
ThermoScientific, CatalogNo: RM-9107-S, LotNo: 9107S1805A), CD8
(clone C8/144B, DAKO/Agilent, CatalogNo: M7103, LotNo: 20048132),
CD68 (clone KP1, DAKO / Agilent, CatalogNo: M0814, LotNo:
20040389), FoxP3 (clone 236 A/47, DAKO/Agilent, CatalogNo:
ab20034, LotNo: GR3220121-1), CD20 (clone L26, DAKO / Agilent,
CatalogNo: M0755, LotNo: 20038880), PanCK (clone AE1AE3, Ther-
moscientific, CatalogNo: MS-343P, LotNo: 343P1205H).

Upon mIF profiling, cells were segmented by marker positivity,
and classified as Cancer cells (PanCK+), CD8 T cells (CD3+CD8+), FoxP3
T cells (CD3+FoxP3+), CD4 T cells (CD3+CD8-FoxP3-), Macrophages
(CD68+) and B cells (CD20+).

Multiplex immunofluorescence in IMCISION was assessed as in
NABUCCO and the experimental protocol is published in the original
manuscript28. To ensure consistency in the mIF spatial data between
the HNSCC and UC cohorts, including similar tumor purity, for each
sample from IMCISION we aligned analysis methods by discarding
stromal tissue residing beyond 150 μmdistance from the tumor tissue
by filtering out all cells classified as belonging to the ‘Stroma com-
partment’ (by segmentation) if their closest cancer cell lay beyond
150 μm by using the nncross method from spatstat.

The data subjected to downstream analysis represented the
position of each cell in the tissue (x- and y-coordinates of the nuclei)
and its corresponding cell type.

Segmentation of tumor and stroma compartments
To segment the tumor and stroma regions from each tissue, we first
split each individual tissue island from each sample biopsy using
dbscan v1.1-6 (density-based spatial clustering of applications with
noise) by setting the size of the epsilon neighborhood to 300 and the
minimum number of points in the epsilon neighborhood to 50 (Sup-
plementary Fig. 1A). Each tissue island was named foci.

To segment the tumor and stroma compartments for each focus,
we first computed the kernel density estimation (KDE) of the point
pattern defined by cancer cells (KDEtumor), and by negative cells
(KDEnegative). The KDE was estimated as implemented by density in the
stats v3.6.3 package. The smoothing bandwidth for the KDE was
optimized using likelihood cross-validation as implemented in bw.ppl
in spatstat v1.64-1. Then, the KDEs were normalized to their maximum
value (KDEtumor = KDEtumor / max(KDEtumor)) to allow comparison
between the KDE of the tumor and negative cells. To segment the
tissue, for each position populated by a cell, we compared both KDEs,
and classified them as “Tumor” when KDEtumor > KDEnegative and as
“Stroma” otherwise (Supplementary Fig. 1B-C).

Calculation of tumor and stroma compartment areas
To compute the covered area by each segmented tissue compartment
(“tumor” or “stroma”), we first computed the kernel density estimation
(KDE) of the point pattern defined by the cancer cells (KDEtumor) and
normalized by maximum KDE intensity. Then, to compute the area of
the tumor compartment, we filtered out all the KDE pixels with a
normalized intensity <0.1. We selected this threshold based on visual
exploration for all cells. We then estimated the tumor compartment
area as the aggregated area of all non-filtered pixels from KDEtumor

(thus with intensity >= 0.1).
To compute the total tissue area, we also computed the

KDEnegative and normalized it by themaximumvalue.We then summed
the KDEtumor and KDEnegative, and filtered out pixels with a normalized
intensity <0.1. We then estimated the Total tissue area as the aggre-
gated area of non-filtered pixels from (KDEtumor + KDEnegative) (inten-
sity >= 0.1).

To estimate the area of the “stroma” compartment, we subtracted
the “tumor area” from the “total tissue” area (Supplementary Fig. 1D).
This process was performed for each foci.
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Spatial analysis: quantification of the first nearest neighbor (1-
NN) distance distribution
The spatial relationships between all cells within the tumor micro-
environment were studied using the first-nearest neighbor (1-NN)
statistic as implemented in spatstats. In brief, the approach is studied
from a reference cell type to a neighbor cell type. For each reference
cell type (“cell type from”), the distance to the closest neighbor cell
type (“cell type to”) was measured using nndist (Fig. 1E). Then, we
constructed a histogram from the vector of 1-NN distances. We
smoothed the distribution by sliding a 5-μm window across the 1-NN
histogram and iteratively counting the frequency of the 1-NN dis-
tances for each micrometer. We normalized the distribution to
achieve a unit area under the curve (AUC) by dividing for the
numerical AUC. SRs were quantified using the data from the whole
tissue slide (i.e., not making a distinction beween tumor and stroma
compartments).

Spatial analysis: fitting of Weibull distribution to the 1-NN
distances vector
To summarize the 1-NN distance distribution, we fitted a Weibull dis-
tribution to the empirical probability density function (PDF), which is a
2-parameter distribution basedon (the positive parameters) shape and
scale, defined as:

f ðx, b,aÞ= a
b

x
b

� �a�1
e�ðx=bÞa ð1Þ

Here, b denotes the scale, and a denotes the shape.
We implemented a methodology based on a functional data

analysis approach to fit the Weibull distribution. First, to have an
initial estimate of the distribution parameters for each patient
(n = 24) and cell type-cell type combination (n = 49), we employed
maximum likelihood estimation (MLE) using fitdist as implemented
on fitdistrplus v1.1.3 package to have an initial estimate of the scale
and shape parameters. Then, for each pairwise cell type relationship
(cell type from vs. cell to), we implemented a non-linear mixed effect
model (nlme v3.1-144) to fit a Weibull distribution on all patient
samples, having the shape / scale intercept as fixed effects (fixed =
a + b ~ 1) and allowing a random effect for the scale/shape on each
sample (random = list{sample=pdDiag(a + b ~ 1)}) by modeling the
correlation structure of the random effects a with diagonal positive-
definitematrix. The nlmemodel was implemented bymaximizing the
restricted log-likelihood (method = ‘REML’), with the parameters set
to their default values and the control values set as:

• 1000 maximum iterations for the optimization algorithm (maxI-
ter = 1000).

• 200maximum iterations for the optimization step which is inside
the nlme optimization process (msMaxIter = 200).

• 1e−1 tolerance for the PNLS step convergence criterion
(pnlsTol=1e−1).

• 1e−6 tolerance for the convergence criterion in nlme algorithm
(tolerance = 1e−6).

• Nonlinear minimization optimizer (opt = “nlm”).

To filter out low-quality distributions that lead to non-
convergence of the models, we sequentially filtered out samples
based on the number of cells (n) from the reference cell type (nFROM)
or neighbor cell type (nTO). First, we fitted a model with the data for
the 24 samples. If convergence was not achieved, we filtered out all
samples with fewer than 20 cells (nFROM < 20 or nTO < 20). If the
model still did not converge, we repeated filtering samples with fewer
than 50, 70, or 100 cells. The approach allowed us to model as much
data as possible unless the goodness of fit was compromised. For
24 spatial relationships forwhich a data fit could not be carried out (2%

of the total combinations of data points from 24 samples and 7 × 7 cell
type pairwise relationships) in our cohort.

Because the positivity constraint for the Weibull distribution
parameters (b >0, a > 0) could not be optimally implemented using a
constrained non-linear mixed effect model, we re-parameterized the
shape and scale parameters to force the values to be positive. In brief,
we re-parameterized the scale and shape employing new parametersA
and B, which were unconstrained:

a=
10

1 + e�A with A : unconstrained and a ϵ ð0,10Þ ð2Þ

b=
500

1+ e�B withB : unconstrained andb ϵ ð0,500Þ ð3Þ

Here, a is the shape and b is the scale.
Unless otherwise stated, the SR parameters reported in the

manuscript correspond to the ones calculated on the first-nearest
neighbordistributions using the spatial distribution of thewhole tissue
slide (thus, not using data stratified by tumor or stroma).

Sources of the variability of the SR parameters were also quanti-
fied, as reported in Extended Methods.

Spatial analysis: computation of the G-function
Alternatively to fitting a distribution to the 1-NN distance distribution,
we computed the G-function, which is defined as the cumulative dis-
tribution function (CDF) of the first-nearest neighbor distance dis-
tribution:

G� f unction ðrÞ=probabilityð1� NN distance ≤ rÞ ð4Þ

The G-function was computed as implemented by gest in the
spatstat package. Because our SRs were studied between different cell
types, we used the multitype nearest-neighbor function Gij(r) as
implemented in Gcross, which was calculated from the first nearest
neighbor distances from a cell of type i to the nearest point of type j.
Then, to summarize the G-function, we computed the Area Under the
Curve (AUC)of theG-function, namedG-AUC-T, at different thresholds
T’s, which included 25, 50, and 100 μm (i.e., G-AUC-25, G-AUC-50, and
G-AUC-100, respectively).

Spatial analysis: Weibull-derived G-function
Using the properties of the Weibull distribution, we analytically con-
structed the Cumulative Distribution Function (CDF) using the shape
and the scale parameters:

Analytical CDF ðrÞ= 1� expð�ðr=bÞaÞ ð5Þ

Here, b and a denote the scale and shape, respectively, and r denotes
the first nearest neighbor distance.

The Analytical CDF is analogous to the Analytical G-function. The
AUC of the Analytical CDF was evaluated at different distance thresh-
olds T’s, and referred to in the manuscript as Weibull-G-AUC-T.

Comparison of discriminative power between spatial and
density-related parameters
We compared the predictive power between ICI response groups of
the spatial-related parameters (shape, scale), density-based para-
meters (intratumoral and stromal immune cell density) and exclusion-
based parameters (ratio between stromal and intratumoral immune
cell densities). First, for each set of parameters (e.g., spatial-related
parameters), we trained a logistic regression model using glm to pre-
dict response. Then, a ROC curve was built using the logistic regres-
sion’s fitted values (probabilities) using pROC v1.17.0.1. For each ROC-
AUC, we tested whether the AUC was significantly different from
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AUC=0.5 using a two-sided Wilcoxon signed-rank test between cases
and controls. We used a bootstrapped approach (n = 500) to estimate
the confidence intervals of theROC-AUCs and to testwhether theROC-
AUCs from the spatial parameters were significantly greater than the
ROC-AUCs from either the density or the exclusion ratio parameters.

Comparison of discriminative power between Weibull-derived
or G-function-derived parameters
Logistic regression deviance of Weibull parameters (shape, scale) and
G-function parameters (G-AUC-T evaluated at different Ts) was eval-
uated by training univariate logistic regression (LR) models using data
from each feature as a predictor, and clinical response labels as the
dependent variable. Logistic regression deviance (logit deviance) was
assessed, in which lower values denote better model fits. The uncer-
tainty of the AIC was estimated by performing a leave-one-out (LOO)
variant of the analysis. A two-sided student’s t-test tested statistical
significance.

Spatial biomarker validation in HNSCC
We validated our top SR biomarkers associated with clinical response
in our UC cohort (NABUCCO). First, we selected the top two bio-
markers identified using our pipeline in UC (FDR <0.04 in either the
shape or scale parameter, which yielded the SRs CD8+ T cells to cancer
cells andMacrophages to cancer cells). Second, we evaluated the shape
and scale parameters for the biomarkers mentioned above between
clinical response groups in the external HNSCC (IMCISION) cohort
using a two-sided t-test and adjusted for multiple hypothesis testing
using the Benjamini-Hochberg method. Then, we evaluated the med-
ian 1-NN distances using the analytical derivation from the shape and
scale parameters:

Median 1� NN distance ðshape, scaleÞ= scale * ðln2Þ1=shape ð6Þ

Statistical analysis
Unless otherwise stated, a two-sided student’s t-test was used for
group comparisons. We modeled density and count data in a loga-
rithmic space. For spatial data, the shape of theWeibull parameters (a)
wasmodeled on a non-logarithmic scale, and the scale (b) was studied
on a logarithmic scale. Multiple hypothesis testing corrections were
done using the Benjamini–Hochbergmethod. Unless otherwise noted,
statistical significancewas defined asp < 0.05 and FalseDiscovery Rate
(FDR) < 0.10 (10%), and all statistical tests were two-sided. All statistical
analyses were performed in R 3.6.3. The following packages were used
in this study:

• Spatstat 1.6429

• Dplyr 1.0.4
• Fitdistrplus 1.1.3
• Patchwork 1.1.1
• Survival 1.3.24
• ComplexHeatmap 2.2
• Circlize 0.4.12
• Glmnet 4.1.1
• RColorBrewer 1.1.2
• Nlme 3.1.144
• Spastat 1.7.0
• Ggpubr 0.4.0
• Ggrepel 0.9.1
• Plyr 1.8.6
• Tidyverse 1.3.0
• Ggplot 2.3.3.3
• Tibble 3.0.6
• ggrastr version 1.0.1
• pROC 1.17.0.1

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The multiplex immunofluorescence data consisting of the spatial
coordinates and immune cell types linked with the clinical data used
for this manuscript are available from the authors upon request within
the restrictions of the informed consent. The institutional review
board of the Netherlands Cancer Institute will review every request.
After approval, the researcherwill need to sign theNetherlands Cancer
Institute data access agreement. Multiplex immunofluorescence
derived data (spatial parameters and densities) are made available as
Supplementary Data 1 and Source Data files to reproduce the findings
from the manuscript. All other data are available in the article and its
Supplementary files or from the corresponding author upon request.
Source data are available with this paper. Source data are provided
with this paper.

Code availability
Code to reproduce the main findings are available in a Github reposi-
tory: https://github.com/tropicalberto/nabucco_spatial_manuscript.
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