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Demonstration of hypergraph-state
quantum information processing

Jieshan Huang 1,7, Xudong Li1,6,7, Xiaojiong Chen1, Chonghao Zhai1, Yun Zheng1,
Yulin Chi1, Yan Li 1,2,3,4,5, Qiongyi He 1,2,3,4,5, Qihuang Gong 1,2,3,4,5 &
Jianwei Wang 1,2,3,4,5

Complex entangled states are the key resources for measurement-based
quantum computations, which is realised by performing a sequence of mea-
surements on initially entangled qubits. Executable quantum algorithms in the
graph-state quantum computing model are determined by the entanglement
structure and the connectivity of entangled qubits. By generalisation from
graph-type entanglement in which only the nearest qubits interact to a new
type of hypergraph entanglement in which any subset of qubits can be arbi-
trarily entangled via hyperedges, hypergraph states represent more general
resource states that allow arbitrary quantum computation with Pauli uni-
versality. Here we report experimental preparation, certification and proces-
sing of complete categories of four-qubit hypergraph states under the
principle of local unitary equivalence, on a fully reprogrammable silicon-
photonic quantum chip. Genuine multipartite entanglement for hypergraph
states is certificated by the characterisation of entanglement witness, and the
observation of violations of Mermin inequalities without any closure of dis-
tance or detection loopholes. A basic measurement-based protocol and an
efficient resource state verification by color-encoding stabilizers are imple-
mented with local Pauli measurement to benchmark the building blocks for
hypergraph-state quantum computation. Our work prototypes hypergraph
entanglement as a general resource for quantum information processing.

Graph states are the multiqubit entangled states, on which universal
measurement-based quantum computation (MBQC) can be carried
out by applying a sequence of measurements on qubits1,2. Figure 1a
shows a graph state ∣Gi= ðV , EÞ, in which one vertex (V) represents one
qubit andone edge (E) represents onepairwise entangling interaction2.
Mathematically, hypergraph is a generalization of graph. In quantum
physics, a generalization of the graph state is the hypergraph state
∣HGi in Fig. 1b, in which a hyperedge (HE) can arbitrarily entangle a
subset of multi-qubits in V3–6, rather than the two nearest qubits in the

graph state in Fig. 1a. The graph state is a special case of the two-
uniform hypergraph states. Processing such generalized hypergraph
states features interesting nonlocal properties7–9 and enables unique
capabilities in quantum computation10–13. For example, hypergraph-
state quantum computation achieves Pauli universality, meaning it
only requires Pauli measurements for MBQC11. It could allow the
emulation of non-trivial phases such as symmetry-protected topolo-
gical order in condensed matter physics12,13. The utilization of hyper-
graph states could also change the circuit-depth complexity and gain
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gates parallelization10. Recently, technological progress has lead to
creations of multiqubit graph states in the photonics14,
superconducting15, trapped ion16, and atomic systems17. By using
integrated photonic quantum technologies18,19, it has enabled the on-
chip generation and manipulation of graph states20–23. However, the
preparation of hypergraph states is rather challenging due to its
requirement of implementing a sequence of multiqubit entan-
gling gates.

In this work, we report the preparation, verification and proces-
sing of arbitrary four-qubit hypergraph states on a reprogrammable
silicon-photonic quantum chip. We realize the complete classes of 27
different four-qubit hypergraph states and 2 different graph states.
The Mermin test provides an experimental tool to verify the presence
of multiqubit entanglement, by which we verify entanglement without
any closure of the distanceor detection loopholes. Genuinemultiqubit
entanglement for hypergraph states is also certificated by character-
izing entanglement witness. We benchmark the implementation of
hypergraph MBQC protocol, providing the building blocks for blind
quantum computing with Pauli universality.

Results
Theory and scheme
Hypergraph states are n-qubit stabilizer states, which correspond to
mathematical hypergraphs with vertices (V) and (22

n�1) hyperedges
(HE) in total3–6. It can be described as:

∣HGi=
Y
e2HE

Ce∣+ i�n, ð1Þ

where Ce = I � 2∣1:::1i 1:::1h ∣, adding the Cm-Z (m < n) operations on the
qubits ∣+ i= ð∣0i+ ∣1iÞ=

ffiffiffi
2

p
connected by the hyperedge e. When Ce is

chosen as the CZ gate, it returns to the scenario of graph states1,2. The
preparation of the hypergraph states requires multiqubit entangling
interactions that correspond to the hyperedges connecting more than
two qubits. Figure 1b shows the quantum circuit for the preparation of
a hypergraph state, consisting of a sequence of Cm-Z gates. The Cm-Z
returns to the Toffoli gate form = 2, and to the CZ gatewhenm = 1. The
hypergraph states are real equally weighted states, and they can be
mapped to the boolean functions with the dual degeneracy of a global

phase factor. For the four-qubit hypergraph states, there are total
(22

4�1) enumerations. However, many of them are locally equivalent.
Any hypergraph states can be defined as locally equivalent if they can
be mutually transformed by repeatedly applying local unitary (LU)
transformations7,9. The rule of LU transformation is provided in
Methods and Fig. 1c caption. As a result, for the four-qubit case, there
are 27 different LU-classes of hypergraph states together with 2 LU-
classes of graph states. Figure 1d enumerates the 29 classes of
hypergraph and graph states. The LU equivalent states share the same
degree of entanglement, since only single-qubit operations are
performed locally on the qubits.

Using conventional quantum photonic methods, preparing
hypergraph states by operating the Cm-Z gates (Fig. 1b) is significantly
challenging. For example, implementing the three-qubit Toffoli gate
requires six CNOT gates. We propose a method to produce the
hypergraph states with a high successful probability. In this scheme,
quantum entanglement is translated from the photon sources to the
entangling gates, by which the difficulty of realizing the Cm-Z gate is
mapped to the generation of multidimensional (the local dimension-
ality of d dimensions) multiphoton (the number of n photons) entan-
gled states24,25; each qudit is mapped to Log2ðdÞ qubits, among which
arbitrary entangling gates can be applied determinately. Details and
scalability analysis of this method are provided in Supplementary
Note 2. In the experiment, we implement the scheme to realize four-
qubit hypergraph states on the quantum chip that translates four-
dimensional two-photon entanglement to the Cm-Z gates,m ≤ 3.

A programmable silicon-photonic quantum chip
Figure 2a reports a quantum photonic chip that allows arbitrary on-
chip preparation, operation, and measurement of four-qubit hyper-
graph states. The quantum chip shifts the task of constructing a gen-
eric multiqubit entangling gate to operating multipartite
entanglement from parametric nonlinear sources26,27. We implement a
qudit-qubit mapping in which the four-qubit states are encoded into
two-ququart states of photons and arbitrary entangling operations can
be performed28. The device consists of four main parts, i.e, entangle-
ment-generation, space expansion, local unitary operation, and
coherent compression, as shown in Fig. 2a. A four-dimensional Bell
state is first generated in integrated four-wave-mixing sources29, which
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Fig. 1 | Enumeration of all four-qubit hypergraph states under local unitary
transformation. a Topology of a four-qubit graph state, and b a four-qubit
hypergraph state. Vertices (V) represent qubits (Q1--Q4), and edges (E, black lines)
represent entangling interactions between two qubits, and hyperedges (HE,
colored close shapes) represent entangling interactions between multiple qubits.
Right plots: Quantum circuits for the preparations of graph state and hypergraph
state, shown in the left plots respectively. Vertical colored lines connecting reddots
represent the CZ, CCZ and CCCZ entangling gates. c An example to show the
principle of local unitary (LU) equivalence. Thehypergraphs are locally equivalent if
they can be mutually transformed by repeatedly applying the local unitary

operations on single-qubits, e.g, local Pauli operations X(k) and Z(k) on the qubit k.
The X(k) operation on the qubit k removes or adds these hyperedges in E(k)

depending on whether they exist already or not, where E(k) represents all hyper-
edges that contain qubit k but removing qubit k out. The Z(k) operation on the
qubit k removes the one-edge on the qubit k. step1 to step 2: the X3 operation on
Q3; step2 to step 3: the X1 operation onQ1; step3 to step4: the one-edge is removed
by a Z2 operation. d Enumeration of all 27 four-qubit hypergraph states that are
equivalent under LU transformation. The first two refer to two classes of star (∣Si)
and line (∣Li) graph states.
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results in a four-qubit state as ð∣0000i+ ∣0101i+ ∣1010i+ ∣1111iÞ=2. For
the idler single-photon, its operational space is subsequently expan-
ded for applying the arbitrary local unitary operation Uij which is
physically realized by universal linear-optic circuits30. The entire pro-
cess retains quantum coherence by space compression. The chip
allows implementations of multi-qubit controlled unitary Cm-U gates.
For example, the triply-controlled CCCZ gate can be obtained by set-
ting the configuration as U00 =U01 =U10 = II and U11 =CZ. The circuit
thus results in the (∣00i 00h ∣II + ∣01i 01h ∣II + ∣10i 10h ∣II + ∣11i 11h ∣CZ) gate,
which functions as the CCCZ gate. Similarly, other Cm-Z gates (m ≤ 3)
for generating the hypergraph states (see Fig. 1) can be realized or
compiled in the device. Details for state evolution, device fabrication
and experimental setup have been provided in Methods.

As an example, we characterize the multiqubit CCCZ entangling
gate, by employing an efficient method of generalized Hofmann
fidelity31. It requires only 4 × 24 = 256measurements, consisting of four
measurement settings in the partially conjugate product bases. In each
setting, three of the qubits are prepared and measured in the Pauli-Z
basis ∣0i,∣1i, while one qubit is prepared and measured in the Pauli-X
basis ∣± i. Figure 2b shows measured input-output truth tables for the
CCCZ gate. The CCCZ gate flips the phase only when the qubits are in
the ∣1111i state. A classical statistic fidelity (Fc) is defined to quantify the
results, Fc =

1
24
P24

i= 1 piqi, where pi, qi are theoretical and measured
distributions, respectively. They are measured to be Fc1 = 0.95(9),
Fc2 = 0.95(8), Fc3 = 0.974(8), and Fc4 = 0.958(9), demonstrating high-
fidelity CCCZ gate. This gives the lower bound Hofmann fidelity of the
gate Fc > Fc1 + Fc2 + Fc3 + Fc4 − 3 =0.84(9).

Preparation and verification of hypergraph states
Executing a sequence of multiqubit Cm-Z gates, similar to quantum
circuits in Fig. 1b, we create all 29 LU-classes of hypergraph and graph
states as shown in Fig. 1d. Note that quantum circuits are compiled in
experiment by means of combining the sequence of gates, as the Cm-Z
operators commute with each other. We reconstruct density matrices
for all these states by implementing quantum state tomographical
measurements with compressed sensing techniques32. Quantum state
fidelities Fq, that is defined as Fq = ðTr½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

p � ρ � ffiffiffiffiffiffi
ρ0

pp �Þ2, are estimated
from the measured (ρ) and ideal (ρ0) density matrices. Figure 3a
summarises the estimated fidelities Fq for all LU-classes of hypergraph
states and graph states. Though the standard tomographic approach
becomes impractical when increasing the number of qubits or at a low
photon counting rate,more efficient approaches are available for state
verification and fidelity estimation33.

We measure alternatively the entanglement witness to verify the
presence of genuinemultiqubit entanglement of the hypergraph states,
where all subsystems are genuinely entangled. The witness operator is
defined as Ŵ = I � 1

α ∣ψ
�
ψ
�

∣34,35, where α is the maximum overlap
between the given state ∣ψ

�
and product states in any bipartition.

Measuring the expectation valueofwitness provides anefficientway for
entanglement verification. As an example, we verified the hypergraph
state no.11 in Fig. 1d. We decompose the state into a linear combination
of products of single Pauli operators andmeasure their average values.
Experimental results are reported in Fig. 4, in good agreement with
theoretical ones. The measured witness value is hŴ i= � 0:42±0:1<0,
thus demonstrating strong genuine multipartite entanglement.

Fig. 2 | A reprogrammable silicon-photonic quantum chip for the arbitrary
preparation, operation, and measurement of four-qubit hypergraph states.
a Circuit diagram. The four-qubit hypergraph device is fabricated on a silicon-
nanophotonic quantum chip. The chip integrates more than 400 components for
the generation, operation, and measurement of four-qubit {Q1, Q2, Q3, Q4}
hypergraph states. Two-qubit states are mapped to a four-dimensional qudit state
in one single-photon as: {∣00iqubit ! ∣0iqudit, ∣01iqubit ! ∣1iqudit, ∣10iqubit ! ∣2iqudit,
∣11iqubit ! ∣3iqudit}. The multi-qubit controlled gate Cm-Z is enabled by a process of
“entanglement generation--space expansion--local operation--coherent compres-
sion". Reconfiguring the unitary operations Uij (i, j =0,1) allows the

implementations of Cm-Z gates. A sequence of controlled gates are compiled by
setting Uij accordingly. Right inset: a photograph for packaged silicon-photonic
quantum chip, which is wire bonded (gold lines) on a printed circuit board.
b Characterization of the CCCZ gate. Truth tables are measured in four different
input-output sets of conjugate product bases. {∣0i,∣1i} represents the computa-
tional basis, and ∣± i = ð∣0i ± ∣1iÞ=

ffiffiffi
2

p
represents theHadamardbasis. The probability

distributions are coded by colors and the key is provided at the right bottom. The
classical statistic fidelity (Fc) shown in the plots is used to characterize each truth
table. The CCCZ gate is characterized by the Hofmann fidelity estimated from four
tables in b.
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The Mermin test provides an experimental tool to verify the
presence of multiqubit entanglement that we adopt here to examine
thequality of hypergraph states and theperformanceof thedevice.We
measure the Mermin–Klyshko (MK) polynomials7,36 to verify genuine
multiqubit entanglement. Note that neither the detection nor distance
loophole is closed in our current experiment. Mermin parameters μ
and ~μ are defined to characterize the state ∣ψ

�
.

μðψÞ=Max½hψjMnjψi, hψjM 0
njψi�

~μðψÞ=Max½hψjMnjψi2 + hψjM 0
njψi2�,

(
ð2Þ

where the MK polynomials Mn and M 0
n for the n-qubit system are

defined by M1 = a1, Mn =
1
2Mn�1ðan +a

0
nÞ+ 1

2M
0
n�1ðan � a0

nÞ (so as M 0
n),

and {ai,a
0
i} are optimized single-qubit observables for the i-th qubit

(see Methods). Distribution of measured Mermin parameters {μ, ~μ}
can provide the sufficient condition for the verification of four-
qubit states as37: (I) If ∣ψ

�
is a separable state, μ ≤ 1. (II) If ∣ψ

�
is

bipartite 2-entangled, i.e, having a form ∣ψ12

�� ∣ψ34

�
or

∣ψ12

�� ∣ψ3

�� ∣ψ4

�
, ~μ≤ 2. (III) If ∣ψ

�
is tripartite 3-entangled, i.e,

having a form ∣ψ123

�� ∣ψ4

�
, ~μ≤4. By violating the Mermin inequal-

ities according to the above {μ, ~μ} distribution, the entanglement
structure can be verified, accordingly. For example, when the

Fig. 3 | On-chip characterization and verification of genuine multipartite
entanglement in the hypergraph states. aMeasured quantum state fidelities (Fq)
for all the 27 LU-equivalent classes of hypergraph states as well as 2 classes of graph
states. Insets: experimentally reconstructed density matrices of three states by the
quantum state topographic measurement. Column heights represent the absolute
values ∣ρ∣; colors represent the phases ArgðρÞ. The values in parentheses are ± 1σ

uncertainty, estimated by Monte Carlo methods considering Poissonian photon
statistics. b, c Measured Mermin parameters of μ and ~μ. Experimental results
confirm the maximum violations of the Mermin–Klyshko type inequalities, indi-
cated by the local hidden variable bound (e.g, blue line in c). Note the error bars for
the measured Fq, μ and ~μ are too small to be visible. Dashed lines are theoretical
results.

Fig. 4 | Measurement of entanglement witness for hypergraph states. Theore-
tical and experimental values for the decomposed product Pauli operators for the
hypergraph state no.11. A collection of in total 256 measurements in the basis of

product Pauli operators are performed. The average values for each operator are
color coded and the key is provided at the top. The expected witness operator hŴ i
is measured to be −0.42 ± 0.1.
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measured ~μ value is greater than 4, violating the (III) inequality, the
state must be at least 4-entangled.

Figures 3b, c report themeasuredMermin parameters μ and ~μ for
all the (27 + 2) classes of hypergraph (graph) states. When performing
measurement for each state, its local projectors {ai,a

0
i} for each qubit

are optimized by an algorithm and mapped to the reconfigurable
quantum chip, so as to maximize the violation of inequalities. The
algorithm and a full list of optimized projections are provided in
Supplementary Note 1. In Fig. 3b, the measured Mermin parameter μ
for all states strongly violates the local hidden variable (LHV) classical
bound. In Fig. 3c, themeasured values of ~μ reachmore than 90% of the
maximal achievable values according to quantum mechanics, con-
firming high-quality entanglement. The observation of ~μ greater than
4, violating the (III) inequalities, e.g, for the hypergraph states labeled
with a number of {6,11,20,25} and the star-type graph state labeledwith
S, thus identifies the genuine four-partite entanglement.

Hypergraph states for blind MBQC
We next show the implementations of hypergraph-state MBQC for
blind quantum computations10,11,38, as illustrated in Fig. 5a. The server

capable of preparing largely entangled resource states is destined to
securely share the MBQC resource states with the client who is only
able to perform simple measurements to execute computation39,40.
One main task for the client is to efficiently certificate the shared
resource states, and check the correctness of quantum computing
outcomes. Saying the server prepares the resource states indepen-
dently in each run, a typical strategy for the client is to require some
copies of the state and to perform verification before computation.
These tests can return a lower bound on the average fidelity of the
received states. From this result, the client can further estimate the
possible error rate in the following quantum computation.

Adopting the hypergraph states as the resource states can greatly
simplify the client’s requirement, as its Pauli universality requires only
simple Pauli measurements to be performed on qubits10,11, making it
particularly suitable for blind MBQC applications39,40. To benchmark
the basic operations in the hypergraph-state MBQC, we choose the
No.15 state in Figs. 1 and 2 (i.e, a unit cell of the Union Jack state in
Fig. 5b, the resource state for Pauli universal MBQC). We perform two
examples by using only Pauli measurements. In Fig. 5c, the qubit Q4 is
measured in the Pauli-Y basis. It results in a measurement-induced

Fig. 5 | Benchmarking the measurement-based protocol and efficient verifica-
tion of hypergraph states by Pauli universal measurements. a A diagram of
verified hypergraph-state quantum computing in a blind manner between the
server and the client. The server producesmultipartite hypergraph states and share
them with the client. For the client, only single-qubit Pauli measurements are
performed for the verification of resource states sent from the server and for the
execution ofMBQC.bA two-dimensional lattice of theUnion Jack statewhich is the
resource state for Pauli universalMBQC. Three vertices of each elementary triangle
are connected by an order-3 hyperedge (i.e, CCZ operation). Right plot: color-
encoding stabilizers for the Union Jack state, which is 3-colored regardless of the
number of qubits due to the symmetry. That means only three measurement set-
tings are sufficient to verify the state. The group of qubits in the red dashed boxes
represents a unit cell of the Union Jack state, which is the No.15 hypergraph state in
Figs. 1 and 2. c, d Implementations of basic measurement-based protocol on the
No.15 hypergraph state. In c, when measuring the qubit Q4 in the Y basis, an

operation of CZ 123ð
ffiffiffiffiffiffiffiffiffiffi
CZ 13

p ffiffiffiffiffiffiffiffiffiffiffi
CZ23

p
Þo4 where o4 = ± 1 is themeasurement outcome of

Q4, will add to the remaining three qubits. In d, it shows the state evolution when
projectively measuring the qubits Q1 andQ2 in the Z basis, respectively resulting in
a maximally entangled state or a product state between Q3 and Q4, determined by
the outcomesof themeasured qubitsQ1 andQ2. In c andd, quantumoperations on
the remaining qubits are determined by the measurement outcomes of detected
qubits. Experimentally reconstructed density matrices are shown in c and d, where
column heights represent the absolute values ∣ρ∣ and colors represent the phases
ArgðρÞ. The Fq values in parentheses are ± 1σ uncertainty, estimated from Monte
Carlo considering Poissonian photon statistics. e Experimental certification of state
fidelity of the Union Jack state’s unit cell by the colored stabilizers. K 0

i(i = 1, 2, 3)
represents the three colored Pauli stabilizers. A number of three measurements
represented by 3-color-encoding stabilizers, regardless of the number of qubits, is
sufficient to certify the state fidelity.
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operation on the remaining three qubits as CZ 123ð
ffiffiffiffiffiffiffiffiffiffi
CZ 13

p ffiffiffiffiffiffiffiffiffiffiffi
CZ23

p
Þo4,

where o4 = ± 1 is determined by the measurement outcome of Q4.
Using this operation togetherwithHadamardgates, arbitrary quantum
circuits can be simulated12. In Fig. 5d, measuring the qubits Q1 and Q2
in the Pauli-Z basis makes the qubits Q3 and Q4 collapse to either a
maximally entangled state or a product state. When doing so on the
large scale, the remaining state after measurements will be random
cluster states which canbe used to initialise and readout information12.

We then show that by only performing Pauli measurements, the
hypergraph states can be efficiently verified. That is, both the ver-
ification of the hypergraph resource states and their proceeding of
MBQC are enabled by solely performing Pauli measurements. We
adopt an approach of color-encoding stabilizers41 to verify the No.15
hypergraph state. The idea is to performPauli operators that commute
with the stabilizer operators of a certain groupof qubits, projecting the
state onto a joint eigenstate ∣ψj

E
. Measurements are defined by inde-

pendent sets of the hypergraph,where an independent set (denoted as
A) is a subgroup of qubits with no connected edge between them (�A is
the complement set of A). Different independent sets are represented
by distinct colors41. The operators Xj, Zk, and Ki all commute for i, j∈A,
k 2 �A, where Ki = Xi⊗∏e∈E,e∋i Ce/{i} is the stabilizer for the qubit i, and
Ce/{i} corresponds to the multqubit controlled-Z gate acting on neigh-
boring qubits around the vertex i enclosed by the hyperedge e. When
all the Xj and Zk are measured, it collapses the original state into a
shared eigenstate of the stabilizer Ki for all i∈A, that is
Ki∣ψi = ð�1Þti ∣ψji, where ti is givenbyoi +∑e∈E,e∋i(∏k∈e,k≠iok) and ð�1Þoi is
the measurement outcome of the qubit i. When ti equals to 1, it means
that the original state is stabilized by all theKi for i in setA, and this test
on A passes. The sameprocedure is repeated for all other independent
sets. Importantly, the number of test settings depends on the number
of colored independent sets to cover the entire hypergraph, instead of
the number of qubits, resulting in efficient verification. For example, as
shown in Fig. 5b, the Union Jack state is always a 3-color-encoding state
regardless of the number of qubits. For a s-color-encoding hypergraph
state, one colored testing set is randomly chosen in each test, and N
tests are repeated. If all N tests pass, the verified state fidelity can be
obtained as �F ≥ s � δ1=N � ðs � 1Þ, where δ is the significance level41. In
the experiment, we measure the average value of the joint projector
for each color (K 0

1,K
0
2,K

0
3 in Fig. 5e). This average value equals to the

passing probability �P for one single test, which equivalently (see
Methods) returns a lower bound of the state fidelity as
�F ≥ s � �P � ðs � 1Þ. Figure 5e shows the experimental results of the
Union Jack state’s unit cell state, which shows high-level single-test
passing probabilities with a mean value of 0.97(6). This gives a lower
bound of the average state fidelity of �F ≥0:91.

Discussion
We have experimentally realized, characterized and verified complete
classes of four-qubit hypergraph states on the reprogrammable pho-
tonic quantum chip. The Mermin-type inequalities and entanglement
witness were characterized to verify genuine multipartite entangle-
ment of the created hypergraph states. Basic measurement-based
protocols were implemented to prototype hypergraph-state quantum
computing with only Pauli measurement on single qubits. Mapping
qudits to qubits enables arbitrary multiqubit-controlled gates with
high fidelities and significantly improved photon rates (more than six
orders higher than that in graph states21,42,43), thus allowing the
benchmarking of hypergraph-state measurement-based quantum
computation. The hypergraph-state quantum devices can be further
scaled up using state-of-the-art devices and technologies, including
high-efficiency photon sources44,45, multi-photon multi-dimensional
entanglement devices24,25, large-scale silicon-photonic quantum
circuits29,46, and large-scale waveguide single-photon detectors47.

Analysis of scalability is provided in Supplementary Note 2. Moreover,
this scheme of implementing hypergraph states can be applied to
other degrees of freedom of photons, such as orbital angular
momentum modes24,48,49 and frequency modes23,50,51, which possess
natural high-dimensional scalability and strong controllability. Recent
technological advances in realizing high-dimensional entanglement
andmulti-qubit gates in superconducting52 and trapped ion systems53,
also promise experimental implementations of the hypergraph-state
quantum information processing in those systems. Our results may
cast light on the investigation of complex entanglement structures in
hypergraph states and the development of profound applications in
Pauli-universal blind quantum computations. Though the hypergraph-
state device demonstrated here is a type of noisy intermediate-scale
quantum device, universal measurement-based1,2,54 or fusion-based
quantum computing55 architectures using graph states could be
upgraded to the large-scale fault-tolerant implementation of
hypergraph-states quantum computing3–6.

Methods
Silicon-photonic quantum chip
The chip is fabricated by standard complementary metal-oxide-
semiconductor processes. The waveguide circuit patterns are
defined on an8 inches silicon-on-insulator (SOI) wafer through the 248
nm deep ultraviolet (DUV) photolithography processes and the
inductively coupled plasma (ICP) etching processes. Once the wave-
guides layer is fabricated, a layer of silicon dioxide (SiO2) of 1μm
thickness was deposited by plasma-enhanced chemical vapor deposi-
tion (PECVD). Finally, thermal-optical phase-shifters are patterned by a
layer of 50-nm-thick titanium nitride (TiN) deposited on top of wave-
guides. Single photons were generated and guided in silicon wave-
guides with a cross-section of 450nm× 220nm. The photon-pair
sources were designed with a length of 1.2 cm. Multimode inter-
ferometers (MMIs) with a width of 2.8μm and length of 27μm were
used as balanced beamsplitters. The chipwaswired-bounded on a PCB
and each phase-shifter was individually controlled by an electronic
driver. An optical microscopy image of the chip is shown in Fig. 2a.

Experimental setup
In our experiment, we used a tunable continuous wave (CW) laser at
the wavelength of 1550.12 nm to pump the nonlinear sources, which
was amplified to 100mWpower using an erbium-doped fiber amplifier
(EDFA). Photon-pairs of different frequencies were generated in inte-
grated sources by the spontaneous four wavemixing (SFWM) process,
and then spatially separated by on-chip asymmetric Mach-Zehnder
interferometers (MZIs). The signal photon was chosen at the wave-
length of 1545.32 nm and the idler photon at 1554.94 nm. Single-
photons were routed off-chip for detection by an array of fiber-
coupled superconducting nanowire single-photon detectors (SNSPDs)
with an averaged efficiency of 85%, and photon coincidence counts
were recorded by a multichannel time interval analyzer (TIA). The rate
of photons is dependent on the choice of projective measurement
bases. In the typical setting of our experiments, for example, when the
state is projected to the eigenbasis, the two-photon coincidence rate
was measured to be ~kHz, and the integration time in the projective
measurement was chosen as 5 s.

State evolution and the CmZ gates
Our quantum photonic chip is shown in Fig. 2a, which integrates more
than 400 photonic components, allowing arbitrary on-chip prepara-
tion, operation, and measurement of four-qubit hypergraph states.
Key ability includes the multiqubit-controlled unitary operations CmU,
where U represents the arbitrary unitary operation (e.g., U = Z in our
experiment) andm is the number of control qubits. The realization of
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multi-qubit CmU gates relies on the transformation from the entan-
glement sources to the entangling operations, by using the process
of “entanglement generation – space expansion–local operation
– coherent compression"28.

Firstly, the four-dimensional Bell state is created by coherently
exciting an array of four spontaneous four-wave mixing (SFWM)
sources. A pair of photons with different frequencies are then sepa-
rated by on-chip asymmetric Mech-Zehnder interferometers and rou-
ted to different paths, resulting in the four-dimensional Bell state29:

∣Bell
�
4 =

∣0isqudit∣0iiqudit + ∣1isqudit∣1iiqudit + ∣2isqudit∣2iiqudit + ∣3isqudit∣3iiqudit
2

,

ð3Þ

where ∣k
�
(k=0, 1, 2, 3) represents the logical bases of qudits, and the

superscripts of s, i represent the signal and idler single-photon,
respectively. The two-qubit states are mapped to the four-dimensional
qudit state in both of the signal and idler single-photon as the following:

∣00iqubit! ∣0iqudit
∣01iqubit! ∣1iqudit
∣10iqubit! ∣2iqudit
∣11iqubit ! ∣3iqudit

8>>><
>>>: ð4Þ

This results in the four-qubit state as:

∣Φi= ∣00isqubit∣00iiqubit + ∣01isqubit∣01iiqubit
2

+
∣10isqubit∣10iiqubit + ∣11isqubit∣11iiqubit

2
,

ð5Þ

where ∣k
�
(k =0, 1) represents the logical bases of qubits. For clarity, we

omit the subscript of qubit in the following.
Secondly, we expand the Hilbert space of the idler-photonic qubit

into a 4-dimensional space. After the space expansion process, we add
two ancillary qubits ∣ϕ

�i (third ququart) into the state:

∣Φi1 =
∣00is ∣00ii∣ϕ�i + ∣01is∣01ii∣ϕ�i + ∣10is∣10ii∣ϕ�i + ∣11is∣11ii∣ϕ�i

2
:

ð6Þ

Thirdly, the ancillary two-qubit ∣ϕ
�i are locally operated using

arbitrary two-qubit unitary gates representedbyUij.We applydifferent
unitary operations U00, U01, U10, and U11 on the ∣ϕ

�i (marked by dif-
ferent colors in Fig. 2a). This returns a state:

∣Φi2 =
∣00is∣00ii∣ϕR

�i + ∣01is∣01ii∣ϕY

�i
2

+
∣10is∣10ii∣ϕG

�i + ∣11i1∣11is∣ϕB

�i
2

,

ð7Þ

where subscripts of {R(ed), Y(ellow), G(reen), B(lue)} represent the
state after Uij. The Uij are realized by universal linear-optical circuits30.

Finally, to preserve quantum coherence, the which-process
information is erased in the coherent compression process. This
swaps the state information of the idler qubits as:

∣Φi3 =
∣00is∣ϕR

�i∣00ii + ∣01is∣ϕY

�i∣01ii
2

+
∣10is∣ϕG

�i∣10ii + ∣11is∣ϕB

�i∣11ii
2

,

ð8Þ

Through the post-selection procedure of projecting the last two qubits
into the superposition state ð∣00i+ ∣01i+ ∣10i+ ∣11iÞ=2, we coherently
compress the 16-dimensional space back into the 4-dimensional space

with a success probability of 1/4, and we obtain:

∣Φi4 =
∣00is∣ϕR

�i + ∣01is∣ϕY

�i + ∣10is∣ϕG

�i + ∣11is∣ϕB

�i
2

: ð9Þ

In short, the process of “entanglement generation-space expansion-
local operation-coherent compression" results in the multi-qubit
entangling gate as:

∣00i 00h ∣U00 + ∣01i 01h ∣U01 + ∣10i 10h ∣U10 + ∣11i 11h ∣U11: ð10Þ

By reprogramming the linear-optical circuits for local unitary opera-
tions Uij, we can realize different multi-qubits controlled unitary gates
suchasCmZ,m ≤ 3. For example, the triple-controlledCCCZgate canbe
obtained by setting the configuration as U00 =U01 =U10 = II and
U11 =CZ. The quantum chip thus enables the generation, operation
and measurement of arbitrary four-qubit hypergraph states.

Characterizations of the CCCZ gate
We here adopt the method proposed in ref. 31 to characterize the
CCCZ gate. Since the CCCZ gate is invariant with respect to the per-
mutation of the controlled and target qubits, we can characterize the
gate by measuring the input-output truth tables for four com-
plementary product bases. In these bases, three of the qubits are
prepared andmeasured in the computational basis states {∣0i,∣1i} while
the fourth qubit is prepared and measured in the Hadamard basis
states {∣+ i,∣�i}. Inputting the product state ∣ψi,ji returns a product
state of ∣ψðoutÞ

i,j i=UCCCZ ∣ψi,ji. The measured truth tables are shown in
Fig. 2. We define the average statistic classical state fidelity as
FcðjÞ =

P16
i= 1,k = 1 pikqik=16, where pik and qik are the theoretical and

measured distribution. According to the Choi-Jamiolkowski iso-
morphism, we define the Choi matrix of an ideal CCCZ gate as χ0, and
the experimental Choi matrix as χ, from which the quantum process
fidelity for the CCCZ gate can be written as Fχ =Tr½χχ0�=ðTr½χ0�Tr½χ�Þ,
where Tr½χ0�= 16 accounts for the normalization. We obtain the gen-
eralized Hodmann bound of fidelity31 (the lower bounded process
fidelity) for the CCCZ gate, which can be estimated from the four
above averaged state fidelities as Fχ ≥ Fc1 + Fc2 + Fc3 + Fc4 − 4.

Local unitary transformation
In this part, we show the rule of LU transformationwhen applying local
Pauli operations on the hypergraph states of ∣HGi= ðQe2ECeÞ∣+ i�n9,
where e is a hyperedge connecting vertices {i1, i2, . . . , im} and Ce = I �
2ð∣1ii1 ∣1ii2 � � � ∣1iim Þ � ð 1h ∣i1 1h ∣i2 � � � 1h ∣im Þ is the corresponding multiqubit
controlled-Z gates. To show the LU transformation, as an example, we
consider the case when applying the Pauli X-operation on the kth qubit.
The state can be written as:

Xk ∣HGi=Xkð
Y
e2E

CeÞ∣+ i�n

= ð
Y

e2E,e63k
CeÞXkð

Y
e2E,e3k

CeÞ∣+ i�n

= ð
Y

e2E,e63k
CeÞ � ½Xkð

Y
e2E,e3k

CeÞXk �∣+ i�n

= ð
Y

e2E,e63k
CeÞ � ð

Y
e2E,e3k

XkCeXkÞ∣+ i�n:

ð11Þ

Now we focus on to the single operator XkCeXk. Assume the edge e
connects vertices {1, 2, . . . ,m} and for simplicity we can assume k = 1 is
the first vertex (this does not sacrifice generality). Following the above
assumption, we can write the operator explicitly as:

XkCeXk =XkðI � 2∣11 � � � 1i 11 � � � 1h ∣ÞXk

= I � 2∣01 � � � 1i 01 � � � 1h ∣
ð12Þ
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Next step we separate Ce out on the left side. Notice that I =C2
e and

∣01 � � � 1i 01 � � � 1h ∣= ðI � 2∣11 � � � 1i 11 � � � 1h ∣Þ � ∣01 � � � 1i 01 � � � 1h ∣
=Ce∣01 � � � 1i 01 � � � 1h ∣

ð13Þ

Therefore, we have

XkCeXk = I � 2∣01 � � � 1i 01 � � � 1h ∣
=Ce � ðCe � 2∣01 � � � 1i 01 � � � 1h ∣Þ
=Ce � ðI � 2∣11 � � � 1i 11 � � � 1h ∣� 2∣01 � � � 1i 01 � � � 1h ∣Þ

=Ce � I � 2 � ð∣1i 1h ∣+ ∣0i 0h ∣Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ik

� ∣1 � � � 1i 11 � � � 1h ∣|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m� 1

0
BB@

1
CCA

=CeðIk � Ce=fkgÞ

ð14Þ

where Ce/{k} represents the multiqubit controlled gates corresponding
to a new hyperedge {1, 2, . . . , k − 1, k + 1, . . ,m}.

Finally, we complete the proof by substituting the above formula
into Eq.(11), which leads to

Xk ∣Gi= ð
Y

e2E,e63k
CeÞ � ð

Y
e2E,e3k

XkCeXkÞ∣+ i�n

= ð
Y

e2E,e63k
CeÞ � ð

Y
e2E,e3k

CeðIk � Ce=fkgÞÞ∣+ i�n

= ð
Y
e2E

CeÞ � ð
Y

e2E,e3k
Ce=fkgÞ∣+ i�n:

ð15Þ

Equation (15) shows the LU transformation rule: applying a local Pauli X
gate on a qubit equals to applying a series of multiqubit controlled-Z
gates which connect other qubits that share the same edge with it.

We take an example to illustrate local unitary transformation, as
shown in Fig. 1c. The initial state is

∣ψ
�
= ∣0000i+ ∣0001i+ ∣0010i+ ∣0011i
+ ∣0100i � ∣0101i+ ∣0110i+ ∣0111i
+ ∣1000i+ ∣1001i+ ∣1010i+ ∣1011i
� ∣1100i � ∣1101i � ∣1110i � ∣1111i

ð16Þ

After applying X3, which flips the third qubit, the state becomes

∣ψ
�
= ∣0000i+ ∣0001i+ ∣0010i+ ∣0011i
+ ∣0100i+ ∣0101i+ ∣0110i � ∣0111i
+ ∣1000i+ ∣1001i+ ∣1010i+ ∣1011i
�∣1100i � ∣1101i � ∣1110i � ∣1111i

ð17Þ

which can be quickly verified as the expression for the second hyper-
graph state in Fig. 1c. Following a similar procedure, the hypergraph can
be simplified to only two edges as shown in Fig. 1c. The rule of LU
transformation can be graphically described as the X(k) operation on
the qubit k removes or adds these hyper-edges in E(k) depending on
whether they exist already or not, where E(k) represents all hyper-edges
that contain qubit kbut removing qubit kout. The Z(k) operation on the
qubit k remove the one-edge on the qubit k.

Measurement basis for the Mermin–Klyshko (MK) polynomials
Wehere derive the basis used for the evaluation ofMK polynomialsM4

and M 0
4. The general form of Mn is given as37:

Mn =
1
2
Mn�1ðan +a

0
nÞ+

1
2
M 0

n�1ðan � a0
nÞ ð18Þ

where an and a0
n are single-qubit operators and M1 = a1. M

0
n can be

obtained by interchanging the terms with and without the prime. In

particular, for the four-qubit state, we then have M4 and M 0
4:

M4 =
1
2M3ða4 +a

0
4Þ+ 1

2M
0
3ða4 � a0

4Þ
M 0

4 =
1
2M

0
3ða4 +a

0
4Þ � 1

2M3ða4 � a0
4Þ:

(
ð19Þ

Similarly, {M3,M2} and {M 0
3,M

0
2} can be obtained. We instead use an

alternative way by dividing the original 4-qubit operators into 2-qubit
by 2-qubit parts because of the implementation of qubit-qudit
mapping in our device. This leads to the construction of the MK
polynomials M4 and M 0

4 from M2 and M 0
2:

M4 =
1
2 ½M2ða3a

0
4 +a

0
3a4Þ+M 0

2ða3a4 � a0
3a

0
4Þ�

M 0
4 =

1
2 ½M 0

2ða3a
0
4 +a

0
3a4Þ �M2ða3a4 � a0

3a
0
4Þ�:

(
ð20Þ

In experiment, we first measured the M2,M
0
2, ða3a

0
4 +a

0
3a4Þ and

ða3a4 � a0
3a

0
4Þ, and then estimated the MK polynomials M4 and M 0

4. A
total number of 64 bases are required forM4 andM 0

4, each of which is
determined by the choice of the corresponding ai and a0

i.

Efficient verification of hypergraph states
In blind quantum computation, clients use the expensive resource
states shared by the server to perform their measurements. In such a
scenario, the average fidelity of the states generated by the server has
to be verified before computation. Ideally, the clients are capable of
estimating a lower bound of the state fidelity and verifying genuine
entanglement, without much cost. We here use a protocol of color-
encoding stabilizers41. To achieve a verification of fidelity larger than
1 − ϵ0, the number of states required is given by

N =
lnðδÞ

lnð1� ϵ0=sÞ

� �
, ð21Þ

where s is the minimum number of colors in the hypergraph state, δ is
the significance level and ϵ0 denotes the error. This formula can be
better understood in the following form

δ ≥ ð1� ϵ0=sÞN , ð22Þ

where the right-hand side represents a total passing probability of the
total N tests for a state with an infidelity ϵ0. When this probability is
smaller than the chosen significance level and a passing event occurs
on the client side, we can draw the conclusion that the real infidelity of
the state generated from the server should satisfy ϵ < ϵ0 with a
significance level δ.

A simple transformation of Eq. (21) gives

�F ≥ s � δ1=N � ðs � 1Þ: ð23Þ

In the ideal case, if the generated state is exactly the target hypergraph
state, i.e, F = 1, the probability of passing the test is always 100%, while
increasing the number of tests will result in a tighter bound (smaller ϵ0).
In reality, for experimental stateswith non-unitfidelity, the total passing
probability will decrease exponentially with the number of tests N.
Whenwedefine the single-test passingprobability as �P, the total passing
probability will take the form of �P

N
, which should be kept above the

significance level δ. Therefore, for a selected significance level, the
maximumnumber of tests, which corresponds to the tightest boundon
fidelity, should satisfy �P

N
= δ. Replacing δ by �P

N
in Eq. (23) thus returns

�F ≥ s � �P � ðs � 1Þ: ð24Þ

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Article https://doi.org/10.1038/s41467-024-46830-7

Nature Communications |         (2024) 15:2601 8



Code availability
The code that support the findings of this study are available from the
corresponding author upon request.
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