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High hydrostatic pressure stimulates
microbial nitrate reduction in hadal trench
sediments under oxic conditions

Na Yang 1, Yongxin Lv 1, Mukan Ji2, Shiguo Wu3 & Yu Zhang 1,4,5

Hadal trenches are extreme environments situated over 6000m below sea
surface, where enormous hydrostatic pressure affects the biochemical cycling
of elements. Recent studies have indicated that hadal trenchesmay represent a
previously overlooked source of fixed nitrogen loss; however, themechanisms
and role of hydrostatic pressure in this process are still being debated. To this
end, we investigate the effects of hydrostatic pressure (0.1 to 115MPa) on the
chemical profile, microbial community structure and functions of surface
sediments from the Mariana Trench using a Deep Ocean Experimental Simu-
lator supplied with nitrate and oxygen. We observe enhanced denitrification
activity at high hydrostatic pressure under oxic conditions, while the anaero-
bic ammonium oxidation – a previously recognized dominant nitrogen loss
pathway – is not detected. Additionally, we further confirm the simultaneous
occurrence of nitrate reduction and aerobic respiration using a metatran-
scriptomic dataset from in situ RNA-fixed sediments in the Mariana Trench.
Taken together, our findings demonstrate that hydrostatic pressure can
influence microbial contributions to nitrogen cycling and that the hadal
trenches are a potential nitrogen loss hotspot. Knowledge of the influence of
hydrostatic pressure on anaerobic processes in oxygenated surface sediments
can greatly broaden our understanding of element cycling in hadal trenches.

The hadal trenches are deep-sea ecosystems (depth range of
6000–11,000m) featured by high hydrostatic pressure (≥ 60MPa)1,2.
Despite their extreme conditions, hadal trenches are hotspots of ele-
mental cycling with high organicmatter deposition rate andmicrobial
activities3–6. Recent investigations, grounded in both experimental
evidence and modeling results, have revealed that bioavailable nitro-
gen species (such as NH4

+, NO2
−, and NO3

−) are converted into biolo-
gically inert N2 in hadal sediments7–10. This continuous loss of nitrogen
leads to an elevated carbon-to-nitrogen ratio and even nitrogen-
limitation to benthic microorganisms11,12, which subsequently alters
the biogeochemical processes in the deep ocean floor. Thus, a

comprehensive understanding of the mechanism of nitrogen loss is
vital in deciphering the biogeochemistry of this unique environment.

Denitrification and anaerobic ammonium oxidation (anammox)
are the major known microbial processes that produce N2. These
processes are generally considered anaerobic13,14, and genes involved
in these processes have been identified in various trench sediments,
irrespective of oxygen availability7,15,16. Currently, anammox is recog-
nized as the dominant process responsible for nitrogen loss in anoxic
sediments, contributing significantly more than denitrification. For
instance, Thamdrup et al. studied the bottom-axis sediments from
Atacama Trench and Kermadec Trench, demonstrating the
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prominence of anammox, while denitrification generally occurred at
lower rates and was limited to the surface layer8. Zhou et al. reported
the heterogenous distribution of denitrification and anammox across
the Mariana Trench, with the anammox being more intensive in
bottom-axis sediments with stronger oxygen depletion compared to
the slope sites9. However, the contribution of denitrification on
nitrogen loss in oxygenated trench surface sediments is yet to be
investigated.

Microbial physiology, activities, andmetabolism in hadal trenches
are affected by hydrostatic pressure1,17. Under high hydrostatic pres-
sures, microorganisms prefer anaerobic metabolisms over aerobic
respiration. This is explained by the “common adaptation strategy”,
which speculates that anaerobic metabolisms cause less intracellular
oxidative stress than the latter17–19. Furthermore, high hydrostatic
pressures shift the redox ladder, leading to a greater reaction of Gibbs
free energy being generated from denitrification compared to that
under ambient pressure20. Therefore, we propose a hypothesis that in
hadal trench sediments where the hydrostatic pressure is extremely
high, denitrification is an energetically favorable pathway contributing
to the nitrogen loss in the oxygenated upper layer sediment. In this
study, we test this hypothesis using a specially-designed Deep Ocean

Experimental Simulator to ensure a continuous supply of oxygen,
using the Mariana Trench sediments as the inoculum (Fig. 1). We then
apply microbial activity analysis, metagenomic and metatran-
scriptomic analyses to decipher the mechanisms behind it.

Results
High hydrostatic pressures modified microbial community
trajectory
To investigate the influence of hydrostatic pressure on the microbial
community and functions, the sediment sample, collected at a water
depth of 6002m in the Mariana Trench, was sequentially incubated at
0.1, 40, 70, 90, and 115MPa for 15 days each with a continuous supply
of nitrate and dissolved oxygen. With the elevated hydrostatic pres-
sures, the cell numbers of both bacteria and archaea declined (except
for a slight increase for bacteria at 70MPa). Nevertheless, the bacterial
population consistently outnumbered the archaeal population by two
orders of magnitude (Fig. 2A, B and Supplementary Data 1).

The hydrostatic pressure had distinctive effects on bacterial and
archaeal community compositions. For the bacterial community, its
taxonomic composition dramatically shifted with increasing hydro-
static pressures: under 0.1MPa and 40MPa, Halomonadaceae (31.8%
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Fig. 1 | Cartoon shows the overall experimental and analytical design for
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and 23.6%, respectively) and Bacillaceae (44.0% and 43.0%, respec-
tively) were the dominant groups; Under hydrostatic pressures of 70,
90 and 115MPa, Halomonadaceae remained dominant (32.5–37.4%);
with the increased relative abundance of Thalassospiraceae (11.9%,
23.1% and 19.3%), Enterobacteriaceae (4.5, 6.6 and 8.2%), and Shewa-
nellaceae (5.4, 9.4 and 9.2%) (Fig. 2C; Supplementary Data 2). In con-
trast, the archaeal taxonomic composition remained stable under all
hydrostatic pressures with the dominance of Nitrosopumilaceae
(89.5–96.3%) (Fig. 2D and Supplementary Data 2).

High hydrostatic pressures promote anaerobic nitrate con-
sumption under oxic conditions
We monitored the fluxes of dissolved nitrogen species (NO3

−, NO2
−,

and NH4
+) and gaseous nitrogen species (N2O) across the entire incu-

bation. A relatively stable nitrate consumption (38.4–49.5μmol/day)
was observed under a continuous supply of dissolved oxygen (Fig. 3A
and Supplementary Data 3). Moreover, because the cell number
decreased under elevated hydrostatic pressures, the nitrate con-
sumption rate per cell actually increased (Figs. 2A and 3A). Net nitrite
production was also observed, with the rate being significantly higher
at 70MPa (3.00μmol/d) than those at 0.1 and 40MPa (one-way
ANOVA with Tukey’s multiple comparisons test, all p < 0.05) (Fig. 3B
and Supplementary Data 3).

The mechanism of the enhanced nitrate consumption was inves-
tigated using metagenomic and metatranscriptomic analyses. We
estimated the gene transcription levels based on the percentage of
gene transcripts (relative to all nitrogen transformation-related genes)

associated with each pathway of nitrogen cycling (Fig. 4A and Sup-
plementary Data 4). The napAB and narGHI genes involved in the first
step of dissimilatory nitrate reduction were transcribed more actively
at higher hydrostatic pressures. Specifically, the transcriptional activ-
ity of nitrate reduction to nitrite pathway accounted for 5.2% of all
nitrogen transformation-related genes at 0.1MPa, then increased to
9.6% at40MPa, 21.7% at 70MPa, 12.8% at90MPa, and 13.0% at 115MPa.
In additionally, genes involved in the terminal oxygen reduction were
abundant and actively transcribed over the entire incubation period
(Supplementary Fig. 1).

High hydrostatic pressure stimulates denitrification but sup-
presses the DNRA pathway
The NO2

− produced from NO3
− reduction has two alternative trans-

formation pathways. It can either be further reduced to NO, N2O, and
finally to N2 through denitrification, or to NH4

+ through the dissim-
ilatory nitrate reduction to ammonium (DNRA). The transcription level
of all genes involved in denitrification (nirS, nirK, norBC, and nosZ) was
up-regulated under high hydrostatic pressures (Fig. 4A and Supple-
mentary Fig. 2 and SupplementaryData 4). Specifically, the percentage
of nirS and nirK gene transcripts (NO2

− → NO) increased from 2.3% at
0.1MPa to 15.3% and 12.9% at 90MPa and 115MPa, respectively
(Fig. 4A). For norBC genes (NO → N2O), the transcripts increased from
4.0% at 0.1MPa to 9.9% at 40MPa, 20.2% at 70MPa, 28.6% at 90MPa,
but then dropped to 8.7% at 115MPa. For the nosZ gene (N2O→N2), the
transcripts increased from 3.1% at 0.1MPa to 19.3% at 90MPa and
36.8% at 115MPa, respectively (Fig. 4A). The enhanced denitrification
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activity coincided with the strengthened net N2O production rates at
high hydrostatic pressures. Specifically, the N2O production rate was
significantly higher at 70MPa (0.287 μmol/d), 90MPa (0.313μmol/d),
and 115MPa (0.284μmol/d) than that at 0.1MPa (0.189μmol/d) (one-
way ANOVA with Tukey’s multiple comparisons test, P <0.05) (Fig. 3C
and Supplementary Data 3).

As for the DNRA pathway, the chemical profile analysis showed
that the average net ammoniumproduction rate at 0.1MPa was higher
than those under high hydrostatic pressures (such as 90MPa and
115MPa), although the difference was not significant (one-way ANOVA
with Tukey’s multiple comparisons test, p =0.2629 (Fig. 3D). The
metatranscriptomic analysis showed that the transcription level for the
key genes (especially nirBD) in DNRA pathway was the highest (80.2%)
under 0.1MPa, which was then halved to 40.9% at 40MPa and 37.1% at
70MPa, and then further decreased to 20.7% and 24.5% when the
hydrostatic pressure rose to 90 and 115MPa, respectively (Fig. 4A).
Hence, this implies that the activity ofDNRApathwaydeclinedwith the
elevated hydrostatic pressures when the other environmental para-
meters were kept unchanged.

Sec-dependent N2O reductase is selected over Tat-dependent
N2O reductase under high hydrostatic pressures
The transcriptional activity of the nosZ gene, which catalyzes the last
step of denitrification leading to nitrogen loss through N2, was ele-
vated under 115MPa compared with any other hydrostatic pressure
used in this study (Supplementary Data 4; Supplementary Fig. 2).
Based on the phylogenetic analysis, we identified two types of nosZ
gene (i.e., Sec-dependent and Tat-dependent, Fig. 5A) in this flowing

incubation system. Most Sec-dependent nosZ gene sequences were
assigned to Flavobacteriale, whereas the Tat-dependent nosZ genes
mainly belonged to the Alphaproteobacteria and Gammaproteo-
bacteria (Supplementary Data 5). The metatranscriptomic analysis
found a higher fold change with elevated hydrostatic pressures in the
transcripts of the Sec-dependentnosZ than thoseof theTat-dependent
nosZ (especially at 115MPa, Sec vs. Tat = 245 vs. 45, Supplemen-
tary Fig. 3).

To confirm the preference of Sec-dependent over Tat-dependent
nosZ genes under high hydrostatic pressures, both genes were syn-
thesized and cloned into the piezotolerant Shewanella piezotolerans
WP3NR (Fig. 1D). We then performed heterologous gene expression
and activity assays of nitrous oxide reductase by quantifying the
consumption of the suppliedN2Ounder various hydrostatic pressures.
Our results showed that S. piezotolerans WP3NR with the Sec-
dependent nosZ gene exhibited a significantly higher N2O consump-
tion rate than that with the Tat-dependent nosZ gene (multiple t-tests,
p <0.0001) (Fig. 5B; Supplementary Data 6a). Additionally, after
incubating at 0.1, 20, and 40MPa for 24 h, the amount of N2O con-
sumed by the S. piezotolerans WP3NR with Sec-dependent nosZ gene
gradually increasedwith the elevated hydrostatic pressures,whichwas
the highest at 40MPa (56.08μmol). Transcriptomic analysis con-
sistently showed that the Sec-dependent nosZ gene was more actively
transcribed with increasing hydrostatic pressure, being significantly
higher than the Tat-dependent nosZ gene (multiple t tests, p <0.0001)
(Fig. 5C and Supplementary Data 6b). These results confirm that
microorganisms prefer to use Sec-dependent N2O reductase to reduce
N2O and to produce N2 under high hydrostatic pressures.
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The active microbial groups involved in denitrification during
incubation
A total of 63 metagenome-assembled-genomes (MAGs) with com-
pleteness >50% and contamination <10% were obtained from the six
metagenomic datasets derived from the inoculum and flowing incu-
bation sediment samples (Supplementary Data 7). These retrieved
MAGs were taxonomically annotated with the GTDB-Tk tool. They
were mainly affiliated with Proteobacteria (43 MAGs), Bacteroidota (9
MAGs), Actinobacteriota (4 MAGs), Firmicutes (2 MAGs) and Ther-
moproteota (2 MAGs) (Supplementary Data 7). The normalized abun-
dance (RPKG)of each recoveredMAG is shown in SupplementaryFig. 4
and Supplementary Data 7.

We then identified themicroorganisms that can participate in the
denitrification pathway at different hydrostatic pressures based on the
presenceof genes associatedwithdenitrification. Among the63MAGs,
40 MAGs contain these genes (Supplementary Data 8). We further
mapped the metatranscriptomic reads to these 40 MAGs, and found
that 31 MAGs were actively involved in the denitrification process
under at least one hydrostatic pressure condition (Supplementary
Data 8). Furthermore, the results showed that different microbial
groups were dominant drivers of denitrification under various hydro-
static pressures (Fig. 4B). Specifically, Halomonas titanicae was the
most abundant denitrifier across the entire incubation period, and its
denitrification-related genes (narGHI, norBC, and nosZ) were more
actively transcribed under higher hydrostatic pressures, especially
under 70, 90 and 115MPa. Marinobacter hydrocarbonoclasticus was
dominant at 40MPa with its abundance decreased under increased

pressures, but the transcriptional level of its denitrification-related
genes (nirS, norBC, and nosZ) increased under the elevated pressures.
The abundance of Thalassospira xiamenensis increased as pressures
increased, but its genes associated with denitrification (napAB, nirS,
norBC, and nosZ) were only active under 70, 90, and 115MPa. Idio-
marina loihiensis also participated in denitrification, in which the nirK
and norB genes were actively transcribed during incubation, however,
its abundance decreased with the elevated pressures. Lastly, the
abundance of Aequorivita vladivostokensis remained similar during
incubation, but its denitrification-related genes (nirK, norB, and nosZ)
were transcribed only under 115MPa (Supplementary Data 7, 8).

Other nitrogen transformation processes occurred in this flow-
ing incubation system
The nifDHK genes involved in nitrogen fixation were detected in
samples incubated at 40, 70, and 115MPa, with the highest transcrip-
tional activity being detected at 40MPa (Fig. 4A and Supplementary
Fig. 2). The nasAB and narB genes involved in assimilatory nitrate
reduction to nitrite were also identified and were most actively tran-
scribed at 70MPa (Fig. 4A and Supplementary Fig. 2). The nirA gene
involved in assimilatory nitrite reduction to ammonia was identified
only in themetagenomeof the inoculum sediment sample, but its RNA
transcript was not identified during the incubation (Supplementary
Data 4). Additionally, we did not identify any genes associated with
anammox (ie., hzs and hdh) during the incubation (Supplementary
Data 4). Ammonia monooxygenase gene (amoABC) and hydro-
xylamine dehydrogenase gene (hao) involved in the nitrification
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pathway were not detected during the entire flowing incubation per-
iod (Supplementary Data 4). This seemed to contradict the dominance
of ammonia-oxidizing archaea Nitrosopumilaceae in the archaeal
community obtainedby 16 S rRNAgene sequencing (Fig. 2B). However,
considering that the cell number of archaea, which consistently
decreased with the elevated hydrostatic pressures, was two orders of
magnitude lower than that of bacteria, the absence of ammonia
monooxygenase gene in subsequent metagenome and metatran-
scriptome may be explained by their low abundance and insufficient
sequencing depth.

The simultaneous denitrification and aerobic respiration under
high hydrostatic pressure
The simultaneous denitrification and aerobic respiration in trench
microorganisms under high hydrostatic pressure was verified in both
in vitro and in situ surface sediment samples. In the flowing incubation
experiments, the key genes (e.g., Cyo, Cyd, Cco, and Cox) involved in
terminal oxygen reduction were abundant and actively transcribed
under all incubation pressures (Supplementary Fig. 1), with the deni-
trification activity being enhanced with increased pressure (Fig. 4A). In
addition, we further analyzed the transcription of genes associated
with these pathways at theMAGs level. Our results showed that aerobic
respiration-related genes encoding terminal oxidases and
denitrification-related genes were actively transcribed concurrently in
many taxonomic groups, such as Halomonas titanicae, Marinobacter
hydrocarbonoclasticus, and Thalassospira xiamenensis (Supplemen-
tary Data 9).

Furthermore, to confirm this occurrence is happening in natural
trench environments, we analyzed the metatranscriptomic dataset of
in situ fixed surface sediments (0–10 cm) from the Mariana Trench.
These sediment samples were immediately fixed with RNALater after
being collected at the trench bottom (see “Methods”), therefore the
metatranscriptomic analysis on these samples could reveal the in situ
microbial activities. Our results showed that genes related to aerobic
and anaerobic energy metabolic pathways, such as respiratory elec-
tron transport chains, denitrification, and TCA cycle were actively
transcribed simultaneously (Fig. 6A and Supplementary Data 10).
Additionally, these genes were mainly assigned to Proteobacteria,
Actinobacteriota, Chloroflexota, Gemmatimonadota, Planctomyce-
tota, and Thermoproteota (Fig. 6A). Thus, Proteobacteria and Acti-
nobacteriota are concurrently capable of aerobic oxidation of organic
matter and denitrification pathway, which is consistent with the flow-
ing incubation experiments (Supplementary Data 9).

Discussion
In this study, simultaneous aerobic respiration anddenitrificationwere
observed in both incubation experiments and in situ hadal trench
environments, and increasing hydrostatic pressure promoted micro-
bial denitrification activities. The simultaneous oxygen consumption
and denitrification have been reported in permeable sediments from
coastal ocean21, but it is reported here for the first time that high
hydrostatic pressure promotes denitrification even under oxic condi-
tions. We propose that the enhanced denitrification at oxic conditions
under high hydrostatic pressure could be the result of energy
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arina

EG
V19470.1 N

itrous-oxide reductase Thiocapsa m
arina 5811

EG
W

55450.1 nitrous-oxide reductase endosym
biont of Tevnia jerichonana vent Tica

W
P 005958984.1 Sec-dependent nitrous-oxide reductase C

andidatus Endoriftia persephone

W
P 041039847.1 Sec-dependent nitrous-oxide reductase M

agnetospirillum
 m

agnetotacticum

BAE51890.1 N
itrous oxide reductase M

agnetospirillum
 m

agneticum
 AM

B-1

W
P 014066501.1 Sec-dependent nitrous-oxide reductase R

hodotherm
us m

arinus

W
P 012844504.1 Sec-dependent nitrous-oxide reductase R

hodotherm
us m

arinus

W
P 197537628.1 Sec-dependent nitrous-oxide reductase C

aldilinea aerophila

W
P 143714764.1 Sec-dependent nitrous-oxide reductase Therm

om
icrobium

 roseum
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M

06804.1 nitrous-oxide reductase N
2O

R
 N

2O
reductase plasm

id Therm
om

icrobium
 roseum

 D
SM

 5159
W

P 012871219.1 Sec-dependent nitrous-oxide reductase Sphaerobacter therm
ophilus

W
P 193322690.1 Sec-dependent nitrous-oxide reductase Pyrobaculum

 calidifontis
ABO

09344.1 nitrous oxide reductase apoprotein Pyrobaculum
 calidifontis JC

M
 11548

W
P 014288022.1 Sec-dependent nitrous-oxide reductase Pyrobaculum

 ferrireducens
W

P 012964663.1 Sec-dependent nitrous-oxide reductase Ferroglobus placidus
W

P 011222995.1 TAT-dependent nitrous-oxide reductase H
aloarcula m

arism
ortui

W
P 014040110.1 TAT-dependent nitrous-oxide reductase H

aloarcula hispanica
W

P 009486837.1 TAT-dependent nitrous-oxide reductase H
alobacterium

 sp. D
L1

W
P 006056051.1 TAT-dependent nitrous-oxide reductase H

alogeom
etricum

 borinquense

W
P 004056356.1 TAT-dependent nitrous-oxide reductase H

aloferax m
editerranei

W
P 015909904.1 TAT-dependent nitrous-oxide reductase H

alorubrum
 lacusprofundi

W
P 013879286.1 TAT-dependent nitrous-oxide reductase H

alopiger xanaduensis

ABF11779.1 putative nitrous-oxide reductase plasm
id C

upriavidus m
etallidurans C

H
34

W
P 029310164.1 TAT-dependent nitrous-oxide reductase C

upriavidus m
etallidurans

W
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U
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IES TAT-dependent nitrous-oxide reductase R
alstonia

W
P 014428125.1 TAT-dependent nitrous-oxide reductase R

ubrivivax gelatinosus

W
P 043816133.1 TAT-dependent nitrous-oxide reductase R

ubrivivax gelatinosus

W
P 010461606.1 TAT-dependent nitrous-oxide reductase Acidovorax radicis

W
P 008907311.1 M

U
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IES TAT-dependent nitrous-oxide reductase Acidovorax

W
P 013519884.1 TAT-dependent nitrous-oxide reductase Alicycliphilus denitrificans

W
P 005797511.1 TAT-dependent nitrous-oxide reductase Acidovorax delafieldii

W
P 012346513.1 TAT-dependent nitrous-oxide reductase Leptothrix cholodnii

W
P 002931085.1 TAT-dependent nitrous-oxide reductase Thauera sp. 28

W
P 002938410.1 TAT-dependent nitrous-oxide reductase Thauera sp. 27

W
P 081593401.1 TAT-dependent nitrous-oxide reductase Thauera linaloolentis

YNE 00 102 61
W

P 011766838.1 TAT-dependent nitrous-oxide reductase Azoarcus olearius

CAL95730.1 nitrous-oxide reductase Azoarcus olearius

CBL47341.1 Nitrous-oxide reductase gam
m

a proteobacterium
 HdN1

W
P 005675136.1 TAT-dependent nitrous-oxide reductase Lautropia m

irabilis

W
P 004264063.1 TAT-dependent nitrous-oxide reductase Thauera sp. 63

W
P 004305194.1 M

ULTISPECIES TAT-dependent nitrous-oxide reductase Thauera

EIF52799.1 nitrous-oxide reductase Burkholderia pseudom
allei 1026a

EIF66468.1 nitrous-oxide reductase Burkholderia pseudom
allei 1258a

AJX08371.1 nitrous-oxide reductase TAT-dependent Burkholderia pseudom
allei 1026b

AAU49344.1 nitrous-oxide reductase Burkholderia m
allei ATCC 23344

W
P 009953596.1 TAT-dependent nitrous-oxide reductase partial Burkholderia pseudom

allei

W
P 009891007.1 TAT-dependent nitrous-oxide reductase Burkholderia thailandensis

W
P 041703119.1 TAT-dependent nitrous-oxide reductase Pseudogulbenkiania sp. NH8B

W
P 011465471.1 TAT-dependent nitrous-oxide reductase Rhodoferax ferrireducens

YNE 40 5438 5
W

P 011311901.1 TAT-dependent nitrous-oxide reductase Thiobacillus denitrificans

YNE 40 5438 6
CAI09713.1 Nitrous-oxide reductase Arom

atoleum
 arom

aticum
 EbN1

W
P 011239371.1 TAT-dependent nitrous-oxide reductase Arom

atoleum
 arom

aticum

W
P 007806446.1 TAT-dependent nitrous-oxide reductase Rhodanobacter spathiphylli

W
P 015448325.1 TAT-dependent nitrous-oxide reductase Rhodanobacter denitrificans

W
P 039953375.1 TAT-dependent nitrous-oxide reductase Rhodanobacter thiooxydans

W
P 010626204.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Halomonas

YNE 90 1529 9

YNE 70 371 10

YNE 0.1 1171 11

YNE 115 695 1

YNE 40 2286 9

W
P 003293365.1 TAT-dependent nitrous-oxide reductase Pseudomonas stutzeri

YNE 40 6621 4

YNE 00 51379 1

YNE 00 11627 1

YNE 00 66725 1

WP 005324393.1 TAT-dependent nitrous-oxide reductase Aeromonas media

YNE 90 7483 2

YNE 00 49759 1

YNE 00 40271 1

YNE 40 10000 1

YNE 0.1 7205 3

YNE 00 43866 2

YNE 00 19899 1

YNE 00 464 11

YNE 40 9534 3

YNE 00 212425 1

WP 010466100.1 TAT-dependent nitrous-oxide reductase Pseudomonas mandelii

EIK64386.1 nitrous-oxide reductase Pseudomonas fluorescens Q8r1-96

WP 204126811.1 TAT-dependent nitrous-oxide reductase Pseudomonas ogarae

WP 010566675.1 TAT-dependent nitrous-oxide reductase Pseudomonas extremaustralis

WP 025214363.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Pseudomonas

AFT72543.1 Nitrous oxide reductase apoprotein Alcanivorax dieselolei B5

WP 014996594.1 TAT-dependent nitrous-oxide reductase Alcanivorax dieselolei

WP 003138228.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Pseudomonas

YNE 115 106 99

YNE 90 77 103

YNE 70 84 103

YNE 40 76 103

YNE 0.1 83 103

WP 011786520.1 TAT-dependent nitrous-oxide reductase Marinobacter nauticus

YNE 90 6094 2

YNE 70 118 30

YNE 40 93 123

YNE 0.1 2980 2

YNE 00 92523 1

YNE 00 185217 2

YNE 00 122709 1

WP 039882106.1 TAT-dependent nitrous-oxide reductase Marinobacter manganoxydans

YNE 00 5060 6

YNE 0.1 4591 1

YNE 00 8536 5

WP 007349527.1 TAT-dependent nitrous-oxide reductase Marinobacter sp. ELB17

WP 014872410.1 TAT-dependent nitrous-oxide reductase Marinobacter sp. BSs20148

WP 044326370.1 TAT-dependent nitrous-oxide reductase Methylophaga nitratireducenticrescens

WP 011397207.1 TAT-dependent nitrous-oxide reductase Hahella chejuensis

YNE 115 72 246

YNE 90 47 151

YNE 70 1932 7

YNE 40 2853 5

YNE 0.1 2840 3

YNE 00 6315 2

WP 011220925.1 TAT-dependent nitrous-oxide reductase Photobacterium profundum

WP 006230023.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Photobacterium

WP 011769805.1 TAT-dependent nitrous-oxide reductase Psychromonas ingrahamii

WP 004747054.1 TAT-dependent nitrous-oxide reductase Vibrio tubiashii

WP 004414975.1 TAT-dependent nitrous-oxide reductase Vibrio orientalis

WP 019439930.1 TAT-dependent nitrous-oxide reductase Moritella marina

WP 017221252.1 TAT-dependent nitrous-oxide reductase Moritella dasanensis

WP 006030627.1 TAT-dependent nitrous-oxide reductase Moritella sp. PE36

AAZ27785.1 nitrous-oxide reductase Colwellia psychrerythraea 34H

WP 041737171.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Colwellia

WP 011496652.1 TAT-dependent nitrous-oxide reductase Shewanella denitrificans

WP 011867196.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Shewanella

WP 008045430.1 TAT-dependent nitrous-oxide reductase Reinekea blandensis

YNE 00 1784 9

WP 006915220.1 TAT-dependent nitrous-oxide reductase Salinisphaera shabanensis

YNE 115 53 185

YNE 90 40 185

YNE 70 43 102

YNE 40 40 185

WP 007089838.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Thalassospira
WP 008280101.1 TAT-dependent nitrous-oxide reductase Roseovarius sp. TM1035
WP 040651354.1 TAT-dependent nitrous-oxide reductase Roseovarius sp. 217
YNE 00 15525 3

WP 010396551.1 MULTISPECIES TAT-dependent nitrous-oxide reductase ParacoccusWP 011750448.1 TAT-dependent nitrous-oxide reductase Paracoccus denitrificans
WP 007426212.1 TAT-dependent nitrous-oxide reductase Oceaniovalibus guishaninsula

WP 012179854.1 TAT-dependent nitrous-oxide reductase Dinoroseobacter shibae
EIE51575.1 nitrous-oxide reductase Citreicella sp. 357
WP 009572663.1 TAT-dependent nitrous-oxide reductase Celeribacter baekdonensis

EEX11538.1 nitrous-oxide reductase Ruegeria lacuscaerulensis ITI-1157

YNE 00 2834 1
WP 010443091.1 TAT-dependent nitrous-oxide reductase Ruegeria conchae

YNE 00 888 22
AAV97190.1 nitrous-oxide reductase plasmid Ruegeria pomeroyi DSS-3

WP 011241834.1 TAT-dependent nitrous-oxide reductase Ruegeria pomeroyi

WP 019294814.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Leisingera

WP 008206422.1 TAT-dependent nitrous-oxide reductase Roseobacter sp. SK209-2-6

ABG31176.1 nitrous-oxide reductase Roseobacter denitrificans OCh 114

WP 011567796.1 TAT-dependent nitrous-oxide reductase Roseobacter denitrificans

WP 013963021.1 TAT-dependent nitrous-oxide reductase Roseobacter litoralis

YNE 00 15525 2WP 041375337.1 TAT-dependent nitrous-oxide reductase Polymorphum gilvum

WP 055660829.1 TAT-dependent nitrous-oxide reductase Roseibium aggregatum

AEV37636.1 Nitrous-oxide reductase Pseudovibrio sp. FO-BEG1

YNE 00 96144 1WP 008332248.1 TAT-dependent nitrous-oxide reductase Maritimibacter alkaliphilus

YNE 00 42735 2WP 009452055.1 TAT-dependent nitrous-oxide reductase Nitratireductor indicus

EKF40769.1 nitrous-oxide reductase Nitratireductor indicus C115

WP 016688342.1 TAT-dependent nitrous-oxide reductase Neisseria sicca

WP 003741062.1 MULTISPECIES TAT-dependent nitrous-oxide reductase Neisseriaceae

UNV84244.1 TAT-dependent nitrous-oxide reductase Neisseria macacae ATCC 33926

QXW94462.1 TAT-dependent nitrous-oxide reductase Neisseria sicca ATCC 29256

WP 003748612.1 TAT-dependent nitrous-oxide reductase Neisseria mucosa

WP 003712466.1 TAT-dependent nitrous-oxide reductase Neisseria lactamica

WP 003675787.1 TAT-dependent nitrous-oxide reductase Neisseria cinerea

WP 003789171.1 TAT-dependent nitrous-oxide reductase Kingella kingae

WP 019389752.1 TAT-dependent nitrous-oxide reductase Kingella kingae

WP 003787274.1 TAT-dependent nitrous-oxide reductase Kingella kingae

WP 003784611.1 TAT-dependent nitro
us-oxide reductase Kingella denitrifi

cans

WP 002641702.1 TAT-dependent nitro
us-oxide reductase Simonsiella muelleri

WP 003798976.1 TAT-dependent nitro
us-oxide reductase Kingella oralis

WP 003805087.1 TAT-dependent nitro
us-oxide reductase Alcaligenes faecalis

ADP17863.1 nitro
us-oxide reductase Achromobacter xylosoxidans A8

WP 013395171.1 TAT-dependent nitro
us-oxide reductase Achromobacter xylosoxidans

WP 006386544.1 MULTISPECIES TAT-dependent nitro
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Fig. 5 | The phylogenetic tree of NosZ protein sequences in this study with
other knownNosZ protein sequences fromprevious studies and the enzymatic
evidenceofN2O reductionactivity assay for twocladesofnosgenecluster, Tat-
dependent and Sec-dependent nosZ genes at hydrostatic pressures. A The
phylogenetic tree is constructed by IQ-TREE2 with the LG + F + R9 model. All nosZ
gene sequences in this study are in red font. The Sec-dependent nosZ amino acid
sequences aremarked in purple and the Tat-dependent nosZ amino acid sequences
are marked in green. B Monitoring of the change in N2O consumption by Tat-
dependent and Sec-dependent nosZ genes after incubation at 0.1, 20, and 40MPa

for 24h. The N2O consumption data are presented as mean values with standard
deviation based on n = 3 biologically independent samples. C Barplot shows the
transcriptional activity (TPM) of Tat-dependent and Sec-dependent nosZ genes
after incubation at 0.1, 20, and 40MPa for 24 h. The TPM data are presented as
mean values with standard deviation based on n = 3 biologically independent
samples. The p values are analyzed using multiple t-tests. The significant variables
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p ≤0.01; *** p ≤0.001; **** p ≤0.0001). Source data are provided as a Source
Data file.
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preservation requirements and to avoid oxidative stress response. By
genome-centric analysis, our results showed that aerobic respiration-
related genes and denitrification-related genes were transcribed con-
currently under higher pressures within a diverse range of denitrifiers,
such as Halomonas titanicae,Marinobacter hydrocarbonoclasticus and
Thalassospira xiamenensis (Fig. 6A). This is consistent with previous
studies that energy metabolism and high-pressure adaptation were
coordinated in marine denitrifiers and nitrate reducers. For example,
the transcriptional level of genes involved in energy metabolic path-
ways, such as glycolysis, dissimilatory nitrate reduction, denitrifica-
tion, and TCA cycle was stimulated by high hydrostatic pressure in
Halomonas titanicae ANRCS8122. Marine nitrate reducers, Camini-
bacter mediatlanticus and Thermovibrio ammonificans with higher-
energies yielding capacity, were better adapted to high hydrostatic
pressures23. Additionally, as shown in this study, the energy preserva-
tion mechanism was also observed within the denitrification pathway,
where Sec-dependent N2O reductase dominated over Tat-dependent
(Fig. 5). Similar energy conservation mechanism has also been repor-
ted in extreme environment-tolerant Pyrobaculum calidifontidis and
Salinibacter ruber, both of which contain Sec-dependent N2O
reductase24. The dominance of the Sec-dependent nosZ genes also
occurs in low-nutrient groundwater25. Besides, high hydrostatic pres-
sures induce intracellular oxidative stress (Supplementary Fig. 5),
which impairs physiological functions17,22,26,27. Under oxidative stress,
cells prefer to use nitrate rather than oxygen as the terminal electron
acceptor to prevent further reactive oxygen species (ROS)
accumulation22. Thus, energy preservation for cellular maintenance
and the avoidance of oxidative stress under high hydrostatic pressures
could be one of the mechanisms behind the enhancement of deni-
trification over aerobic respiration even under oxic conditions.

Chemical zonation (i.e., redox zone) refers to the vertical sub-
division of natural environments based on the sequential thermo-
dynamic availability of electron acceptors to oxidize organic matter
during respiration processes28,29. The redox zones in the sedimentary
environment were typically subdivided into aerobic respiration,
nitrate reduction, manganese reduction, iron reduction, sulfate
reduction, and methanogenesis zones29. The enhanced denitrification
at high hydrostatic pressure under oxic conditions potentially leads to
the restructuring of chemical zonation in deep-sea surface sediments
and subsequently revises geochemical cycling processes therein. The
enhanced denitrification at oxygenic niches, where denitrification was
previously considered impossible, will lead to an upward increased
thickness of the typical nitrogenous zone in sediments, and subse-
quently, the enhanced nitrogen loss (Fig. 6B). The enhanced deni-
trification under high hydrostatic pressure and its co-existence with
aerobic respiration has not been recognized in the geochemical gra-
dients and models30,31. The acknowledgment of such a phenomenon
could greatly broaden our understanding of the biogeochemical
cycling of key elements in hadal trenches and give rise to new research
frontiers.

Denitrification and anammox are the main pathways leading the
fixed nitrogen loss in trenches, but with distinct environmental niche
preferences14,32–34. The distribution of anammox bacteria varied sub-
stantially in the global ocean water column, but preferred oxygen
deficient zone35. The maximum N2 production rates were reported to
be about 0.02 ~ 2–nmol N/(day·cm3) in the Kermadec Trench and
Atacama Trench, where both ecosystems were dominated by ana-
mmox bacteria8. In comparison, denitrifiers are widely distributed in
the global ocean, especially abundant in the sediment with high
organic matter36. We demonstrated that denitrification was respon-
sible for the continuous nitrogen loss when organic carbon was sup-
plied (Figs. 3 and 4A, “Methods”). Similar results have also been
reported in the Yap Trench16 and Challenger Deep sediments37. Under
laboratory conditions, we observed that the rate of nitrogen loss
(N–N2O) caused by denitrification-derived N2O alone was ~ 4.6–nmol

N/day/mL under 70MPa with 125mL of Mariana Trench sediment as
the initial inoculum (see “Methods”) Although the N2 production was
unfortunately not measured because of technical limitation, the
denitrification-derived N2 is expected to contribute to additional
nitrogen loss. Moreover, complete denitrification often requires a
complexmicrobial consortium to achieve38, a series of partial products
(NO2

−, NO, N2O) may be generated, which allows syntrophic relation-
ships between denitrifiers and other microorganisms to be
established7,9,37. This suggests that the denitrification-dominated eco-
system could support a greatermicrobial diversity than the anammox-
dominated ecosystem, thus providing a possible mechanism for the
maintenance of microbial diversity in hadal trenches.

Here we demonstrated that denitrification is the bio-preferable
energetic pathway under high hydrostatic pressures and contributes
to the nitrogen loss from generally oxygenated upper layer sediment
in hadal trenches. We observed that high hydrostatic pressure pro-
motes denitrification activity even under oxic conditions, presenting
an indication that hydrostatic pressure has the potential to modify the
niche breadth and the activity ofmicroorganisms. Thismodification, in
turn, influences their contributions to the elemental cycling processes
within hadal trenches. The differential distributions of denitrifiers and
anammox bacteria with varied nitrogen loss rates suggest that nitro-
gen loss hotspots may exist across the global ocean floor.

Methods
Samples collection and continuous flowing incubation at dif-
ferent hydrostatic pressures under oxic conditions
The sediment sample for high-pressure incubationwasobtainedby the
Jiao Long Human Occupied Vehicle (HOV) from the northern slope of
the Mariana Trench (142.2516°E, 11.6639°N) at Dive 119 station with a
water depth of 6002m during the cruise on R/V Xiangyanghong09
Cruise DY37-II in June 2016. The collected sediments were sliced into
4 cm interval layers and were immediately preserved in multiple
70MPa (approximately the pressure at the sampling site) pressure-
retaining vessels on shipboard and stored at 4 °C until used for sub-
sequent experiments. In addition, we collected surface sediment at the
Mariana Trench at water depths of 8207–10,898m during the R/V
Tansuoyihao Cruise TS-21 fromAugust to December 2021 (142.5947°E,
11.3649°N; 142.5926°E, 11.3867N; 142.5869°E, 11.3740 °N; 142.5602°E,
11.3619°N; 142.5602°E, 11.3619°N; 142.1562°E, 11.1615°N; 142.1572°E,
11.1590°N; 142.3429°E, 11.1970°N; 142.3429°E, 11.1970°N; 142.2038°E,
11.3393°N; 142.2166°E, 11.3350°N). These sedimentswere collected and
immediately fixed with RNALater at in situ condition via a specially
designed in situ fixation sampler, and used for metatranscriptomic
analysis. Sample collection and transportation have been permitted by
the Federated States ofMicronesia, with the permit number FM-XXRS-
23522. The research complies with all relevant ethical regulations.

The above 20 cm layers of sediments were used as the inoculum
for the incubation (hereafter referred to as inoculum sediments)
(Fig. 1A). The concentration of NOx

− (NO2
− and NO3

−) in the overlying
water sample was 213.7μg/L (1.98μmol/L) as shown in the previous
study39. During incubation, the inoculum sediment was suspended in
the chemically defined marine medium which was modified from
Widdel and Bak40 and contained (/L): NaCl (Cat. No. 10019318, Sino-
pharm Chemical Reagent, China) 26.0 g, MgCl2·6H2O (Cat. No.
10012818, Sinopharm Chemical Reagent, China) 5.0 g, CaCl2·2H2O
(Cat. No. 20011160, SinopharmChemical Reagent, China) 1.4 g, Na2SO4

(Cat. No. 10020518, Sinopharm Chemical Reagent, China) 4.0 g,
KH2PO4 (Cat. No. 10017618, Sinopharm Chemical Reagent, China)
0.1 g, KCl (Cat. No. 10016318, Sinopharm Chemical Reagent, China)
0.5 g, D-( + )-glucose (Cat. No. DX0145, Sigma-Aldrich, Germany) 5.4 g,
NaNO3 (Cat. No. 10019918, Sinopharm Chemical Reagent, China)
100 µmol (as sole nitrogen source), bicarbonate solution 30mL, trace
element mixtures 1mL, vitamin mixture 1mL, thiamine solution 1mL,
and vitamin B12 solution 1mL. Glucose was provided as the organic
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carbon source and electron acceptor to investigate the microbial
nitrate reduction process, according to previous studies41,42. The
homogenized slurry was purged with continuous argon flushing to
achieve a dissolved oxygen concentration of 100 µmol/L (this value is
based on the oxygen concentration of ~100 µmol/L in the 0–20 cm
sediment layers at ~6000m deep site3). Then, it was transferred into
the Deep Ocean Experimental Simulator (DOES, which is specially
designed to construct an environment in the laboratory that is similar
to the deep biosphere, in terms of temperature, hydrostatic pressure,
flow rate, pH, nutrient availability, etc.19) and incubated in a flow-
through mode at a flow rate of 0.3mL/min (Fig. 1B). The incubation
was performed at 4 °C, and the incubation hydrostatic pressures
(0.1MPa, 40MPa, 70MPa, 90MPa and 115MPa) were changed every
15 days.

Biochemical analysis
Tomonitor themetabolic activities, the consumptionof nitrate, aswell
as the production of ammonium, nitrite, and nitrous oxide were ana-
lyzed. Sampling of the above chemical parameters was conducted
every 3 days without depressurization throughout the incubation
experiments. The concentrations of dissolved inorganic nitrogen
species (NO3

−, NO2
−, and NH4

+) were quantified using an AA3 Auto-
Analyzer system (Seal Analytical, UK). The concentration of gas N2O
was measured by an Agilent 6890N Gas Chromatograph (Agilent
Technologies, USA). The initial concentration of dissolved oxygen was
measured using the Microx 4 oxygen meter (PreSens, Germany). The
concentration difference between the inlet and outlet of this DOES
system was multiplied by the flow rate (0.3mL/min) to calculate the
corresponding consumption and production rates of these nitrogen-
ous compounds (nitrate and nitrite, ammonium, nitrous oxide). We
further estimated the nitrogen loss rate (N–N2O, nmol N/day/mL) due
to denitrification-derived N2O alone under 70MPa using 125mL of
Mariana Trench sediment as the inoculum. The corresponding calcu-
lation formula is as follows: net nitrous oxide production
rate*2*1000/125mL.

Nucleic acid extraction and metagenomic/metatranscriptomic
sequencing
Biomass sampling was performedwhen switching incubation pressure
(Fig. 1C). Total microbial genomic DNA was extracted and purified
using the modified SDS-based method described by Natarajan et al.43,
and stored at −20 °C before further assessment. The quantity and
quality of extracted DNA were measured using Qubit 4.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA) and agarose gel electrophoresis,
respectively. The extractedmicrobial DNA was processed to construct
metagenome shotgun sequencing libraries with insert sizes of 350 bp
following the standard Illumina TruSeq DNA Sample Preparation
Guide. Each librarywas sequencedby IlluminaNovaSeq6000platform
(Illumina, USA) with PE150 strategy at Shanghai Personal Biotechnol-
ogy (Shanghai, China). The extraction of RNA from sediment samples
was carried out using the RNeasy® PowerSoil® Total RNA Kit (Cat. No.
12866-25, Qiagen, Germany) according to the manufacturer’s instruc-
tions, then quantified using a Qubit 4.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). To ensure DNA removal, the RNA extracts were
treated with TURBO DNase (Cat. No. AM2238, Invitrogen, Waltham,
MA, USA) as directed by the manufacturer. The purified RNA was
converted to cDNA, then the metatranscriptomic library was con-
structed by using Illumina TruSeq StrandedmRNA LT Sample Prep Kit,
and subsequent sequencing as described above.

16 S rRNA gene sequencing and quantitative PCR (qPCR)
analysis
The V4–V5 region and V4 region of archaeal and bacterial 16 S rRNA
genes were amplified by polymerase chain reaction (PCR) with the
primer pair Arch516F (5’-TGYCAGCCGCCGCGGTAAHACCVGC-3’)/

Arch855R (5’-TCCCCCGCCAATTCCTTTAA-3’), and the primer pair
Bac533F (5’-TGCCAGCAGCCGCGGTAA-3’)/Bac806R (5’-GGACTAC-
CAGGGTATCTAATCCTGTT-3’), respectively. The PCR amplification
procedure was previously described44. Subsequently, the PCR pro-
ducts were purified using an EZNA Gel Extraction Kit (Cat. No. D2500-
01, Omega Bio-Tek, Norcross, GA, USA). The purified DNA was
sequenced on the Illumina NovaSeq platform by Shanghai Personal
Biotechnology (Shanghai, China). Microbiome analysis was performed
with QIIME2 (v.2020.8)45. The paired-end raw sequence data contain-
ing the forward or reverse reads for each sample were demultiplexed
and quality-filtered using the q2‐demux plugin. The paired-end
demultiplexed sequences were denoised by DADA246 (via q2‐dada2).
In DADA2, the sequence bases with quality score greater than 20 (i.-
e., < 1% error rate) were kept based on the resulting interactive quality
plot of the previous step, and these command parameters (i.e., --p-
trunc-len-f, --p-trunc-len-r, --p-trim-left-f, --p-trim-left-r, --p-chimera-
method) were applied to truncate and trim the read sequences and
remove chimeras. The taxonomy classification and taxonomic analysis
were assigned to the ASVs by comparing the query sequences to a
reference SILVA 138 database using the q2-feature-classifier47 classify-
sklearn Naive Bayes taxonomy classifier.

The quantification of archaeal and bacterial 16 S rRNA genes was
respectively conducted using the primer pair Bac341F (5’-
CCTACGGGWGGCWGCA-3’)/Bac519R (5’-TTACCGCGGCKGCTG-3’),
and the primer pair Uni519F (5’-GCMGCCGCGGTAA-3’)/Arch908R (5’-
CCCGCCAATTCCTTTAAGTT-3’). The 7500 Real-Time PCR System and
Power-UpTM SYBRTM Green Master Mix (2X) (Cat. No. A25741, Applied
Biosystems, Foster City, CA, USA) were used for all qPCR analysis
according to the manufacturer’s instructions. The archaeal and bac-
terial cell counts were calculated using archaeal and bacterial 16 S
rRNA gene copy numbers divided by 1.7 and 5.2 (mean 16 S rRNA
operon copy number)48, respectively.

Metagenomic and metatranscriptomic analysis
The omics analysis was performed on both gene-centric strategy and
genome-centric strategy. Briefly, the 150 bp paired-end raw reads were
first trimmed by BBDuk tool (v.38.96) (https://sourceforge.net/
projects/bbmap/) with a sequence quality score of > 20 and a final
minimum length of > 90 bp. Obtained clean reads were assembled by
SPAdes (v.3.12.0)49 with “--meta --only assembler -k 65,75,96,115,127”.
The assembly was filtered for a minimum length of 500bp using a
customPython script50. Allmetatranscriptomic readswerefirstfiltered
by BBDuk tool (v.38.96) and then aligned to a combined rRNA data-
base from SILVA and Rfam51 using Bowtie2 (v.2.4.1)52. The unaligned
mRNA reads were collected for quantification of gene expression.

For the assembled contigs, genes were predicted by Prodigal
(v.2.6.3)53 for the filtered assembly and thosewith lengths smaller than
100bp were discarded. The modified gene set was functionally anno-
tated with an integrated result, with the following priorities: Ghost-
KOALA (v.2.2)54 > emapper (v.2.0.1) against the EggNOG database
(v.5.0)55,56 > KofamKOALA (v.1.0.3)57. Clean metagenomic and meta-
transcriptomic reads from each incubation pressure were mapped to
the assembly by BBMap (v.38.24) with “k = 13 minid = 0.95 pairlen =
350 rescccuedist = 650”. The mapped file in SAM format was con-
verted to BAM format and sorted by SAMtools (v.1.15.1)58. For meta-
genomic datasets, the depth of each scaffold in every incubation was
determined by the script “jgi_summarize_bam_contig_depths” from
MetaBAT2 (v.2.15)59 with the default parameters. FeatureCounts
(v.1.5.3)60 was used to count the read number of each gene, and the
transcripts per million (TPM) value was calculated with a custom
Python script50.

Three binning software programswereused to obtain the primary
MAGs, as described in the previous study61. For MetaBAT2 (v.2.15),
different sensitivities (--maxP 60, 75, and 90) and specificities (--minS
60, 75, and 90)were combined. The twomarker gene sets (40 and 107)
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were analyzed by MaxBin (v.2.2.6)62. CONCOCT (v.1.0.0) analysis63 was
also carried out. Then DAStools (v.1.2.2)64 was used to integrate the
results to calculate an optimized, nonredundant set of MAGs for each
incubation. Quality and taxonomy were determined by CheckM
(v.1.1.5)65 and GTDB-Tk tools (v.2.3.2)66 with the GTDB r20267 respec-
tively. MAGs with completeness >50% and contamination <10% were
dereplicated by dRep (v.3.4.2)68 with 95% average nucleotide identity
(ANI) to obtain a non-redundant MAG set for the whole incubations.
Clean metagenomic and metatranscriptomic reads from each incu-
bation pressure were mapped to the MAG set for gene quantification
with the methods described above. The normalized abundance of
recovered MAGs was evaluated by the RPKG (reads recruited per
kilobase of genome per gigabase of metagenome) values for the
comparison among different genomes and metagenomes, as descri-
bed by Liu et al.69.

Heterologous expression and activity assay of N2O
reductase genes
The phylogenetic tree of NosZ amino-acid sequences was constructed
together with the reference sequences from a previous study70 by IQ-
TREE tool (v.2.1.2)71 with LG + F + R9 model using 1000 ultrafast boot-
strap replicates and 1000 bootstrap replicates for SH-aLRT. The nosZ
gene clusters, including Tat-dependent (clade I) and Sec-dependent
(clade II) clades belonging to Halomonadaceae and Flavobacteriaceae
families respectively, were synthesized by Shanghai Saiheng Bio-
technology Co., Ltd (Shanghai, China). The two gene clusters were
subsequently cloned into the pSW2 expression vector between the
sites BamHI and SalI72. These three plasmids (pSW2-Tat, pSW2-Sec and
pSW2) were heterologously expressed in deep-sea model bacterium
Shewanella piezotolerans WP3NR (a piezotolerant strain with the
pressure range of 0.1–50MPa)73 by conjugal transfer using E. coli
WM3064 strain (Fig. 1D). Three transconjugants (WP3NR-pSW2-Tat,
WP3NR-pSW2-Sec and WP3NR-pSW2) were selected by chlor-
amphenicol resistance and were verified via colony PCR for sub-
sequent experiments. The obtained strains were cultured in modified
marine 2216E medium (5 g/L tryptone (Cat. No. LP0042, Thermo Sci-
entific™ OxoidTM, USA), 1 g/L yeast extract (Cat. No. LP0021, Thermo
Scientific™ OxoidTM, USA), 34 g/L NaCl (Cat. No. 10019318, Sinopharm
Chemical Reagent, China)) to activate cells. At the early stationary
phase (OD600 = 1), cells were washed with culture salt solutions to
remove the residual organic matter and then transferred into the
defined LMO-812 minimal medium74. The inoculum was then purged
with argon gas to ensure anoxic conditions. To determine N2O
reduction activity, 15mL inoculum was amended with 500μmol acet-
ate and 2mL (~83μmol) of N2O gas (99.999%), then was incubated
under 0.1, 20, and 40MPa for 24 h at 15 °C. The N2O concentrations
were determined by an Aligent 6890 N gas chromatograph (Agilent
Technologies, USA). After the incubation, total RNAwas extractedwith
the common TRIzol method27, and RNA samples in triplicate were
subjected to quality control and sequencing on the Illumina platform
at Shanghai Personal Biotechnology (Shanghai, China). The sub-
sequent transcriptomic analysis was performed as described
previously22.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw 16 S rRNA gene amplicon reads metagenomic and metatran-
scriptomic data offlowing incubation samples, the transcriptomic data
of recombinant WP3NR strains, and the metatranscriptomic data of in
situfixed sediments in theMariana Trench generated in this study have
been deposited to the National Omics Data Encyclopedia (NODE,
https://www.biosino.org/node/index) database under the accession

numbers OEP004015, OEP004042, OEP004045, OEP004102,
OEP004512, as well as the NCBI SRA database under the BioProject IDs
of PRJNA1083314, PRJNA1083644, PRJNA1083643, PRJNA1083642. The
databases used in this study include SILVA 138 database (https://www.
arb-silva.de/documentation/release-138/), GTDB database Release
202, and KEGG database (https://www.genome.ad.jp/kegg/). All other
data are available in this paper or the Supplementary Informa-
tion. Source data are provided in this paper.

Code availability
The custom Python scripts used in this study are available in the Fig-
share database (https://doi.org/10.6084/m9.figshare.25331617). Soft-
ware versions andnon-default parametersused in thispaper have been
appropriately specified where required.
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