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Firing feature-driven neural circuits with
scalable memristive neurons for robotic
obstacle avoidance

Yue Yang1,2,5, Fangduo Zhu1,5, Xumeng Zhang 1 , Pei Chen1, YongzhouWang2,
Jiaxue Zhu2, Yanting Ding1, Lingli Cheng1,2, Chao Li1,2, Hao Jiang1,
Zhongrui Wang 3, Peng Lin 4, Tuo Shi2, Ming Wang 1, Qi Liu 1,2 ,
Ningsheng Xu1 & Ming Liu1,2

Neural circuits with specific structures and diverse neuronal firing features
are the foundation for supporting intelligent tasks in biology and are regarded
as the driver for catalyzing next-generation artificial intelligence. Emulating
neural circuits in hardware underpins engineering highly efficient neuro-
morphic chips, however, implementing a firing features-driven functional
neural circuit is still an open question. In this work, inspired by avoidance
neural circuits of crickets, we construct a spiking feature-driven sensorimotor
control neural circuit consisting of threememristiveHodgkin-Huxley neurons.
The ascending neurons exhibit mixed tonic spiking and bursting features,
which are used for encoding sensing input. Additionally, we innovatively
introduce a selective communication scheme in biology to decode mixed fir-
ing features using two descending neurons. We proceed to integrate such a
neural circuit with a robot for avoidance control and achieve lower latency
than conventional platforms. These results provide a foundation for imple-
menting real brain-like systems driven by firing features with memristive
neurons and put constructing high-order intelligent machines on the agenda.

Endowing robots flexibly interact with changing and unpredictable
environments toward the completion of specific tasks is one of the
goals in embodied intelligence1,2. The progress of deep learning algo-
rithms and computing units promotes the field towards such an
aspiration3–7. However, current intelligent robots remain incapable of
performing as well as humans or animals, even in some reflex-like
behaviors, such as object grasping or emergency escape. This occurs
because these capabilities of biology are embedded in some functional
neural circuits that have evolved over hundreds of millions of years.
These neural circuits usually comprise neurons with disparate prop-
erties and functions connected in a variety of forms in the brain and

perform specific tasks in an extremely efficient manner8–11. Inspired by
such operations, several innovative strategies have been proposed to
solve intelligent tasks in a more efficient and explicable way than
conventional methods. For example, Lechner et al. proposed a novel
algorithm with 19 control neurons, inspired by the topological struc-
ture of neural circuits of Caenorhabditis elegans, for autonomous
vehicles12. By mapping the high-dimensional information from the
camera into steering commands, the system achieves superior gen-
eralizability, interpretability and robustness with less source than
conventional algorithms; Moro et al. demonstrated an object location
neuromorphic circuit referring to the auditory localization neural
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circuits in owl hunting, achieving the target location with extremely
low power consumption13. These works illustrate the merits of emu-
lating some neural principles in neural circuits but ignore the com-
putational functional variety of neurons’ firing features.

The cricket AN2 neuron, a type of auditory interneuron, candetect
ultrasonic signals and activate motor neurons to drive crickets to
reflexively escape from predators (i.e., bats) by high-frequency firing
feature (i.e., tonic bursting)14. Benefiting from the computational
function of neurons’ firing behaviors, crickets can complete the escape
instantly, which provides a new idea for robots to accomplish tasks
such as obstacle avoidance or even higher-order intelligent behaviors.
Nevertheless, it is expensive to implement such a computation prin-
ciple in conventional hardware platforms by simulating high-fidelity
neurons, especially those with diverse firing behaviors that need rich
dynamics15–18. Locally active memristors (LAMs), with rich
dynamics19–21, low power consumption22 and good scalability23–25, show
intriguing potential to build Hodgkin-Huxley (H-H) neurons with
excellent bio-plausibility26–29. However, current works typically focus
on the emulation of neurons’ firing behaviors, and the exhibition of
firing features’ computational capability remains an open question
(see Supplementary Table 1). Thus, it is urgent to incorporate the firing
features’ computation policies into neural circuit architectures to
leverage revolutionary strategies in embodied robot applications.

Here, inspired by the tonic bursting feature-driven (for con-
venience, spiking and bursting are used to refer to tonic spiking and
tonic bursting, respectively, in the following) neural circuits involved
in cricket avoidance behavior, we present a sensorimotor control
neural circuit (SCNC) model including a biological selective commu-
nication scheme for robot obstacle avoidance. The SCNC comprises
three types of neurons with a feedforward divergent connection
structure: an ascending neuron that fires inmixed bursting and spiking
features, a bursting-detection neuron (BDN) detecting bursting fea-
tures, and a spiking-detection neuron (SDN) reacting to spiking fea-
tures. To demonstrate such a model, we first construct an H-H neuron
circuit underlying NbO2 LAMs to serve as the ascending neuron. By

specifically designing the circuit parameters, we implement an input
intensity-controlled transition between spiking and bursting features,
in addition to the reported 23 natural firing behaviors. Moreover,
attributed to the inherent stochastic switching in NbO2 LAMs, the
neuron features a probabilistic transition fromspiking to burstingwith
increasing input intensity, exhibiting a mixed pattern. This character-
istic affords the neuron a firing pattern-related encoding capability.
Then, we introduce another two NbO2 H-H neurons with specific
parameters to build a complete SCNC and adopt the selective com-
munication scheme that decodes the mixed firing patterns from the
ascending neuron. To illustrate the feasibility of the SCNC for practical
applications, we integrate it into a robot and test the resulting obstacle
avoidance capabilities. Compared to conventional platforms, our
SCNC achieves a reduction of more than one order of magnitude in
latency. These results reveal the high efficiency of conducting tasks by
emulating neural circuits and pave the way for building next-
generation intelligent machines through biocomputing principles.

Results
Biological background
Invertebrates often rely on a simple neural circuit consisting of several
neurons to control their activities14. In these circuits, sensory inter-
neurons are considered to be detectors of predator signals,
with functions that activate the descending neuron and dominate
the avoidance behavior of organisms to the approaching danger30–33.
Figure 1A shows the neural circuits of crickets that conduct such
avoidance behavior, which consists of auditory receptors, auditory
interneurons, and descending motor neurons. The auditory receptors
receive ultrasonic information at cricket ears located on the tibiae of
the forelegs and generate action potentials34,35. Then, the generated
action potentials are transmitted to the auditory interneurons (named
AN2) located at the prothoracic ganglion and are encoded as spiking
features to transmit to the descending neurons36,37. Next, two des-
cending neurons decode the received signals and generate specific
spiking features to control the avoidance behavior of the crickets38,39.

Fig. 1 | Neuroinspired SCNC for robot obstacle avoidance. A Schematic of the
biological neural circuit associated with escape behavior in crickets. Ultrasonic
signals are received by the receptors, transmitted to AN2 neurons for encoding and
then decoded by the descending neurons to control the behavior of crickets. The
high-frequency “bursting” feature of AN2 neurons causes crickets to escape.
B Schematic of the neuro-inspired SCNC. The distance information from the
obstacle is transmitted to the ascending memristive H-H neuron (mixed-coded

neuron, MCN) through LiDAR, encoded as spiking features, and then decoded by
two descending memristive H-H neurons (bursting detection neuron, BDN and
spiking detection neuron, SDN) to control the steering and actuating of the robot,
respectively. C Obstacle avoidance scheme related to the robot-obstacle distance.
The steering angle and moving speed are controlled by the firing frequencies of
BDN and SDN, respectively.
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Biologists have found that, except for the spiking feature, AN2 neurons
also prompt the high frequency bursting feature that dominates the
avoidance behavior of crickets under the ultrasonic stimulus, exhibit-
ing a mixed firing behavior40. The descending neurons decode the
“bursting” and “spiking” features in the mixed pattern via a selective
communication scheme, which includes an asynchronous decoding
function and ensures a timely response. In addition, the properties of
bursting—high frequency41, high reliability42, and strong stimulation to
postsynaptic neurons43—are advantageous when signals are required
to trigger responses very quickly. This behavior allows the sensory
system to make early decisions to take evasive actions, facilitating
reliable and rapid responses. These principles demonstrate the intel-
ligence of insects, which inspires our avoidance system design.

Inspired by the cricket’s avoidance neural circuits, we develop an
SCNC comprising a LiDAR sensor and three H-H neurons based on
NbO2 memristors to support the robot in performing obstacle avoid-
ance (Fig. 1B). The LiDAR sensor emulates the auditory receptor and
encodes the robot-obstacle distance into voltage signals. One H-H
neuron serves as the AN2 interneuron to receive the input from the
sensor and encode the distance-related voltage into mixed firing pat-
terns, namedmixed-coded neurons (MCN). A key point is that the H-H
interneuron features a probabilistic transition from spiking to burst-
ing, and the bursting ratio increases as the input intensity increases,
which is attributed to the intrinsic stochasticity of memristors. The
other two NbO2 H-H neurons emulate the descending neurons that
extract the bursting and spiking features from the encoded mixed
pattern in the interneuron. This operation reliably emulates the
selective communication scheme observed in biology. According to
the functions, we denoted these two neurons bursting-detection
neuron (BDN) and spiking-detection neuron (SDN). Then, we utilize

the firing frequency of BDN and SDN to control the steering motors
and actuating motors, respectively. The firing frequency of the BDN
increases as the distance-related voltages increase, while the SDN is
vice versa. Thus, the closer the obstacle is to the robot, the larger the
steering angle and the slower the speed, as shown in Fig. 1C. Then, the
obstacle avoidance response of the robot is achieved by equipping it
with such an SCNC and computing with firing features.

H-H neurons based on NbO2 memristors
We build our SCNC inspired by the circuit structure in ref. 26. We first
construct an H-H neuron using NbO2 memristors, as shown in Fig. 2A.
The H-H neuron circuit comprises two resistors (R1, R2), two capacitors
(C1, C2), and twoNbO2-based threshold switching (TS)memristorswith
d.c.-biased provided by two voltage sources (E1, E2). These two TS
devices represent the sodiumandpotassium ion channels in biological
neurons, respectively. The device is configured with a Pt/NbO2/Ti
structure (see more fabrication details in Supplementary Fig. 1 and
Methods). To demonstrate H-H neuron circuits, we connect the TS
devices fabricated in the laboratory with off-the-shelf resistors and
capacitors via a printed circuit board (PCB) in this work. Figure 2B
shows the typical I-V curve of the two NbO2 TS memristors and the
built model (see Methods for device models). The two devices show
nearly identical electrical performance, reducing the difficulty of set-
ting the H-H circuit parameters. Initially, the device is in a high resis-
tance state (HRS). When the voltage applied to the top titanium
electrode surpasses the threshold voltage (VTH), the device switches
from HRS to a low resistance state (LRS) under a 400μA compliance
current. Once the applied voltage is less than the hold voltage (VHold),
the device spontaneously switches back to the HRS. Due to the
electron-related switching mechanism, the device exhibits a fast
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Fig. 2 | H-H neuron circuit based onNbO2memristors and the firing behaviors.
A The H-H neuron consists of two resistors (R1, R2), two capacitors (C1, C2), and two
TS devices (TS1, TS2) with opposite bias voltages provided by two voltage sources
(E1, E2).BTypical volatile threshold switchingbehavior of twoTSdevices used in the
H-H neurons. Both TS devices exhibit similar VTH and VHold. C Top panel: Schematic
of TS devices’ switching sequence and dynamic output action potentials when the
circuit behaves in a spiking feature, in which TS2’s switching-on time is behind TS1’s
switching-off. Bottom panel: Schematic of TS devices’ switching sequence and the
dynamic output action potentials when the circuit behaves in a bursting feature, in
which TS2’s switching-on time is before TS1’s switching-off and TS2 switches twice.
(Simulation) D The neuron output presents two different firing features under

different input voltages. When the input is 0.7 V, the neuron fires in the spiking
feature, showing regular single-spike output, and when the input is 1.2 V, the neu-
ron fires in the bursting feature with two spikes per burst. (Experiment) E Under
triangle wave scanning with an amplitude of 1.3 V, the output of the neuron shows
a transition between the two firing features. When the input is ~1.0 V, the output
of the neuron transitions from spiking to bursting. (Experiment) FNeuronal output
frequency as a function of input voltage. The firing cluster frequency of the neuron
increases linearly with increasing voltage. When the voltage input is 1.0 V, bursting
starts to appear in the neuron output, corresponding to a large bursting spike
frequency. (Experiment).
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switching speed (~1 ns)22 and high endurance (>1010 cycles)23, which is
decent for neuronal applications. According to the spike numbers
within one cluster, the spiking and bursting features are two basic
features that enable the neurons’ various firing behaviors. Thus, we
illustrate the mechanisms of the generation of spiking and bursting
action potentials through simulation, as shown in Fig. 2C. The top
panel illustrates both TS devices’ switching sequence and the dynamic
output action potentials when the circuit behaves in a spiking feature.
In this case, TS2’s switching-on time is behind TS1’s switching-off (see
more detailed description of the switching procedures in Supple-
mentary Fig. 2). When the circuit parameters change, TS2 may switch
on before TS1 switches off. Under these circumstances, the voltage of
the positive constant voltage sourceE2 chargesC1 through the coupled
R2, resulting in a delay in the switching off of TS1 normally, which
results in twice switching on/off of TS2 and then completing a bursting
fire (see more details in Supplementary Fig. 3). Thus, the output pat-
tern of the neuron circuit can be controlled by adjusting the circuit
parameters to regulate the relative switching time between two TS
devices. Changing the two capacitors’ capacitances to control the fir-
ing features of the output in other literature29 follows this principle. In
addition, neuron circuits used for neuromorphic computing usually
receive both positive and negative inputs. The H-H neuron circuit we
construct is also capable of accepting negative inputs and the inte-
gration of both positive and negative inputs (see more details in
Supplementary Fig. 4). Based on such anH-H neuron circuit with NbO2

memristors, we successfully demonstrated 23 natural firing behaviors
(see Supplementary Fig. 5 and Supplementary Table 2), as reported in
other literatures26,44.

For emulating AN2 neurons, the spiking and bursting features
should emanate from a fixed neuron. Thus, according to the studied
mechanisms, we carefully set the circuit parameters such that the
switching-off time of TS1 and the switching-on time of TS2 is close at a
lower input. Under such parameters, when the input increases, the
switching-off time of TS1 and the switching-on time of TS2 gradually
approach each other, that is, the time difference Δt between them
gradually decreases until TS2 switches on before the switching off of
TS1, which in turn prevents the switching off of TS1, completing the
transition from spiking to bursting. Thus, we achieve both “spiking”
and “bursting” features in a fixed circuit through simulation (Supple-
mentary Fig. 6, parameters are shown in Supplementary Table 3).
Then, based on the simulation parameters, we conduct an experiment
on the NbO2-based H-H neuron, as shown in Fig. 2D. Under a low
constant input voltage (0.7 V), the neuron fires in the spiking feature
(fires in a single peak), while the neuron fires in the bursting feature
(fires in two peaks per cluster) when the applied voltage increases to
1.2 V. The results show that through carefully modulating the para-
meters, our neuron circuit successfully emulates the behavior of AN2

neurons. To further illustrate that the transition between spiking and
bursting features is continuous and reversible (Fig. 2E), we applied a
triangular pulse with an amplitude of 1.3 V as the input of the neuron
circuit. At very low voltages (<~0.3 V), the neuron fires no spike. When
the input gradually increases, the neuron begins to fire in spiking
feature, and the interspike intervals gradually decreasewith increasing
the input voltage, signifying that the neuron’s output frequency gra-
dually increases. As the voltage continues to increase (up to ~1.0 V), the
neuron transitions to fire in bursting feature, and the intervals between
bursts gradually decrease. When the amplitude of the triangular input
is 0.9V and 2.2 V (Supplementary Fig. 7), the output continues to
satisfy the above requirements, which indicates a reversible firing
feature transition behavior. To more clearly present the firing feature
transition under different input voltages, we analyze the firing fre-
quency evolution, as shown in Fig. 2F. We define every firing event
between two adjacent refractory periods as a cluster, regardless of
whether there are single or two peaks (spikes or bursts) in one cluster.
The cluster frequency increases almost linearly with increasing the

input voltage, consisting of the effect of the input intensity on fre-
quency in the spiking feature only (blue line). In addition, the firing
frequency within a burst is particularly high when the bursting feature
starts to appear in the firing pattern of the output, even up to 320 kHz,
which also increases with increasing input voltage (yellow line). The
characteristic of the high frequency of bursts makes it easy to distin-
guish them from the spikes in the spiking feature. The results show that
our H-H neuron with intensity-driven feature transition behavior has
the potential to be used for encoding emergencies, similar to the AN2

neuron.

Probabilistic feature transition in NbO2-based H-H neurons
In biological AN2 neurons, the transition between spiking and bursting
features is not a binary event14. Rather, the firing patterns mix both
features, in which the ratio of the bursting feature is related to the
stimuli intensity and the stochasticity of ions moving through the
channels. These characteristics provide the AN2 neuron with powerful
encoding capability. To emulate the mixed firing pattern with both
features of the AN2 neurons, we further studied to endow the intrinsic
stochastic switching of TS devices into the feature transition pro-
cesses. This occurs because the randomness of VTH, VHold and the
resistance of the two devices affects the relative switching on or off
timing of these two TS devices and hence may result in a probability
transition behavior with mixed spiking and bursting rather than an
abrupt transition. First, we explore the effect of the randomness of the
VTH and VHold on the output. Figure 3A shows 50DC switching cycles of
the two TS devices used under a 400 µA current. Clearly, the VTH and
VHold values of both devices fluctuate, which is helpful for enabling
mixed firing features because the firing feature is affected by the
relative switching on or off timing of these two TS devices. To further
demonstrate that the switching cycle is stochastic, we extracted the
VTH and VHold values of both devices in 5000 cycles from an oscillator
circuit in Supplementary Fig. 8. The results confirm that the distribu-
tion of VTH and VHoldof the twodevices is highly uniform and satisfies a
Gaussian distribution (Fig. 3B and Supplementary Fig. 9), proving the
randomness of the devices and thus has great potential to enable the
probabilistic transition of H-H neurons. According to the previous
analysis, the voltage values of the two sources are redesigned to reside
between VTH +VHold

2 and VTH, enabling the H-H neuron to work in a
probabilistic transition state. We first study how the devices’ stochas-
ticity affects the output firing features through simulation. Figure 3C
shows the output phase diagram of the neuron circuit when the var-
iation is within a range satisfying the Gaussian distribution in Fig. 3B.
When both TS1’s VHold and TS2’s VTH are at themean value, the neuron’s
output is in the critical state of the transition from spiking to bursting
feature.When bothTS1’sVHold and TS2’sVTHdecrease, the switching-off
time of TS1 is delayed and the switching-on time of TS2 is advanced,
which results in a pure bursting feature. Conversely, when both TS1’s
VHold and TS2’s VTH increase, the switching-off time of TS1 is advanced,
and the switching-on time of TS2 is delayed. The output of the neuron
circuit fires in a pure spiking feature. When the VHold of TS1 and the VTH

of TS2 change in opposite trends, the feature of the circuit’s output is
uncertain. Therefore, when the VTH and VHold of the devices vary within
a certain range, the circuit generates mixed firing features under a
constant input. We note that instead of TS1’s VHold and TS2’s VTH, TS1’s
VTH and TS2’s VHold also affect the firing features, which we do not
discuss here one by one individually. Similarly, we also explore the
effect of the high and low resistance randomness of the device on the
circuit output, as shown in Supplementary Fig. 10. It is shown that the
combination of the randomness of VTH, VHold, the high and low resis-
tance value of the two devices results in the probabilistic transition
behavior of the circuit output. Figure 3D shows the neuron’s firing
output under three different input intensities in the experiment. Under
a low input voltage (0.9V), the neuron fires with a pure spiking feature
(top panel). When increasing the input voltage to 1.2 V, the neuron’s
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output contains both spiking and bursting features, showing prob-
abilistic transition behavior (middle panel). When the input voltage is
sufficiently high, the neuron fires with a pure bursting feature (bottom
panel). The results show that after careful design, our neuron suc-
cessfully emulates the mixed transition behavior in AN2 neurons.

Figure 3E shows the calculation of the bursting probability of the
neuron circuit under input voltage pulses (0.3 V–1.5 V, 500 µs) with a
step of 0.1 V according to the data from Fig. 3D and Supplementary
Fig. 11. To explore how the input intensity affects the feature transition
processes, we define bursting probability as the ratio of bursting
numbers to all cluster numbers during pulse application. When the
voltage is low (<1.0V), there is no burst in the output, which entirely
comprises spiking, such the bursting probability is zero. When the
input voltage increases to 1.0 V, some spikes transition to the bursts.
With further increasing input, the bursting probability increases.When
the input intensity is high enough, the influence of the input voltage
increase exceeds the stochasticity induced by the TS devices, and the
neuron fires continually in the bursting feature. To observe the prop-
erties of the firing pattern of the output under different inputs, we plot
the interspike interval-time curve (see Supplementary Fig. 12). The
results show that the interspike interval time exhibits irregular oscil-
lations when the neuron fires in a mixed pattern, while it shows a
constant or regular oscillation curve under a pure spiking or bursting
case. To clearly illustrate the characteristics of the two firing features,
the Joint Interspike Interval (JISI) scatter plots, which are also named
interval returnmaps, of the spike trains are presented. The JISI plot is a
classical stochastic spike train analysis method used to explore the
relationship between adjacent ISIs45–47. We defined ISIi = tn − tn-1, where
tn is the time of the nth spike (see Supplementary Fig. 13). By plotting

the statistical distribution of adjacent ISIs, we could obtain the JISI plot
and establish the serial correlation of adjacent points in the time series,
which is helpful to judge andpredict thefiringpattern. Figure 3F shows
the plotted JISI scatter plot of the neuron circuits under different input
intensities. When the input is <1.0 V, the neuron fires in a pure spiking
feature (yellow points), and the ISI points are gathered in the diagonal
position, indicating that the interval between spikes is basically
unchanged.When the input is no less than 1.5 V, the neuron fires with a
pure bursting feature and the ISI points are distributed along the
coordinate axis (pink points). The ISIs of the first spikes in the bursts
are closer to the X axis, while the ISIs of the second spikes are closer to
the Y axis. When 1.0V < input < 1.5 V, the neuron fires in a mixed pat-
tern, and ISIs are located partly on the diagonal and partly in the region
close to the coordinate axis (blue points). Thus, through the distribu-
tion of ISIs, we effectively distinguish whether bursting features are
included in the output for different input intensities. These results
demonstrate that the intrinsic stochasticity of the device enhances the
encoding capability of H-H neurons and is a powerful source to enable
feature-driven computing.

Selective communication scheme in H-H neurons
To result in the execution of functional responses, the mixed firing
features generated by the AN2 neurons need to be further decoded by
the descending neurons that control relatedmotor neurons. Biologists
have found that there is a selective communication mechanism
between biological neurons, attributed to the subthreshold oscillation
characteristics of biological neurons48,49. The descending neurons
generate action potentials only when the input frequency matches
their subthresholdoscillation frequency (see SupplementaryFig. 14 for
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more details). That is, descending neurons respond to those inputs
with specific resonant frequencies. Specifically, neuron A sends spike
trains with mixed firing features to neurons B and C, which have dif-
ferent subthreshold resonant frequencies, as shown in Fig. 4A. Neuron
B, with a higher subthreshold oscillation frequency, resonates with the
bursting feature at the higher frequency generated by neuron A and
then generates action potentials but does not respond to the spiking
feature. Neuron C, with a lower subthreshold oscillation frequency,
responds with the opposite behavior. Consequently, descending
neurons B and C can selectively respond to specific information in a
mixed pattern from ascending neurons, which demonstrates intri-
guing inherent cognitive capabilities.

Inspired by the selective communication scheme between biolo-
gical neurons,we configure another twoNbO2-basedH-Hneuronswith
different circuit parameters (see Supplementary Table 3) to process
themixed pattern sent by the AN2-like H-H neuron. These two neurons
are denoted BDN and SDN according to their functions. The neural
circuits built upon these three neurons are intended to emulate the
crickets escape neural circuit, as shown in Fig. 4B. The MCN encodes
the input stimuli intensity, generating a mixed pattern that contains
both spiking and bursting features, as discussed. The BDN fires action
potentials after bursts from the MCN are detected, while the SDN
neuron detects the spikes in the spiking feature. To improve the fan-
out ability of the MCN, we adopted a comparator as the interface to
transmit signals to the following descending neurons. Here, it should
be noted thatwedesign these three neurons under the same structure,
which lowers the complexity of system design and enables us to build
flexible systems when the neuron’s components are configurable.
Figure 4C shows the firing behaviors of the BDN and SDN under
identical inputs with a mixed pattern. The BDN generates an action
potentialwhen the input is at a high frequency but does not respond to

the low-frequency input (top panel of Fig. 4C), serving as an
integrator26,44.While the SDNonly responds to the low-frequency input
(bottom panel of Fig. 4C), serving as a resonator44,48. These results
show that the designed BDN and SDN could successfully detect
bursting and spiking features, respectively.

To further demonstrate the selective communication function of
the constructed neural circuit, we applied a 1.3 V voltage with a 500 µs
duration on the AN2-like H-H neuron and tested the output of the two
descending neurons. The firing behaviors of these three neurons are
shown in Fig. 4D.When the stimuli input is applied, theMCN fires with a
mixed pattern due to the probabilistic transition (top panel). Under this
condition, such a mixed spike train is transmitted to both the BDN and
SDN. The BDN fires only when a bursting event occurs (bottom panel),
while the SDN only responds to the spiking event (bottom panel). We
also tested the output of the neural circuits under different input vol-
tages, emulating the response of the neural circuit under different sti-
mulus intensities, as shown in Supplementary Fig. 15. The higher the
input voltage is, the higher the probability of bursting features, result-
ing in a higher fire frequency of the BDN and a lower frequency of the
SDN. To more clearly present the computing process of the neural
circuit, we plotted the average frequency output of BDN and SDNunder
different input voltages (the solid lines in Fig. 4E). To further illustrate
the validity of the relationship between the input voltage and bursting/
spiking firing frequency, we construct a mathematical device model
with stochasticity of switching voltages and introduce it in the H-H
neuron circuit. The simulated data is well matched with the experi-
mental data, as shown in Fig. 4E (see more details in Supplementary
Text 1 and Supplementary Fig. 16). Under an input voltage <1.0 V, the
BDN neuron fires no spikes, indicating that there are no accidental
triggers.When the input voltage increases to 1.0 V, the BDN starts to fire
and the firing frequency increases as the input intensity increases,
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corresponding to the increased bursting probability. The SDN’s output
behaves vice versa. When the input voltage is high enough, the BDN
exhibits the highest frequency, while the SDN fires no spikes. These
results show that the constructed neural circuit could successfully
encode stimuli withmixed firing features and decode them through the
intrinsic selective communication properties of neurons, faithfully
emulating the functions of cricket escape neural circuits.

Robot obstacle avoidance system with constructed SCNC
Mobile robots need to complete tasks intelligently in complex and
changeable environments in a real-time and low-power manner50.
When encountering an abrupt danger, such as an incoming high-speed

obstacle, the robot needs to react as quickly as possible to ensure its
safety. Inspired by the reflex-like self-protection behavior of crickets
for dodging predators, we present a strategy by equipping the SCNC
on a robot to enable obstacle avoidance behavior in an emergency and
achieve a rapid response. Our workflow is shown in Fig. 5A. LiDAR
serves as the sensor, detecting obstacle distances. These distances are
translated to voltages that serve as the input of the SCNC. The voltage
is defined as inversely proportional to the distance. The MCN encodes
the input voltage intomixedpatterns. The SDNdetects the spikes from
the MCN, and the firing output is used to drive the actuating motors.
Meanwhile, the BDN detects the bursts from the MCN, and the output
is utilized to control the steering motors. The BDN and SDN output
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A Schematic diagram of the robot avoiding an obstacle that appears at different
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frequency and SDN frequency, respectively. A reasonablemaximum linear velocity
(0.9776m/s) is set here. C An illustration of the relationship between variable dis-
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between the obstacle avoidance scheme implemented by FPGA, our physical SCNC
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frequencies are positively proportional to the angular velocity and
linear velocity, respectively. The right part of Fig. 5A depicts three
typical cases during driving. When the obstacle is quite far away, the
MCN is driven by low voltage input to generate spike trains with pure
spiking features, and thus, the SDN has the highest frequency output.
In this case, the robot is actuated with the highest speed and moves
straight (top panel). When an obstacle is relatively close, the input
voltage enables theMCN tofirewithmixedfiring features, and theBDN
neuron starts to fire to drive the steering motors. The robot decele-
rates and turns at a small angle (middle panel). When a sudden
obstacle is very close, the robot executes an emergency response,
namely, braking and rapid turning at a large angle, to remove the
obstacle to a safe zone and prepare for the next straight move (bot-
tom panel).

The linear mapping relationship between the firing frequency of
BDN (SDN) and the angular velocity (linear velocity) during the
experiment is shown in Fig. 5B. Figure 5C shows the angular velocity
and linear velocity output of the robot at different distances. The
closer the robot is to the obstacle, the smaller the linear velocity and
the larger the angular velocity. Figure 5D shows the output results of
the SCNC under three different distances. The distance information
detected by the LiDAR is encoded as an input voltage and transmitted
to the SCNC. The MCN, BDN and SDN in the circuit generate corre-
sponding firing behaviors, which represent the “distance coded” sig-
nal, “steering” signal, and “actuating” signal, respectively, and are
transmitted back to control the robot. Themovement trajectory of the
robot in the physical environment is recorded during the experiment
to represent the linear velocity (length of the cyan trajectory) and
angular velocity (angle marked by the yellow line) of the robot while
driving. When the obstacle is quite far away (2.59m), the decoded
actuating signal has a high frequency response (toppanel of Fig. 5D). In
this case, the linear velocity reaches the maximum (0.9776m/s), while
the angular velocity is negligible because the steering signal contains
few spikes. Therefore, the robot is quite safe and thus moves straight
quickly (toppanel of Fig. 5E). Once the obstacle appearswithin a preset
dangerous distance range (2.16m), the MCN fires in a mixed pattern
(middle panel of Fig. 5D), representing certain danger is detected, and
the steering signal and the actuating signal are used to drive obstacle
dodging. The robot navigates around the obstacle with a moderate
speed and angular velocity (middle panel of Fig. 5E). In contrast, if the
robot notices that an abrupt incident occurs in close proximity (0.5m)
and does not have enough time and space for reaction, it rapidly
decelerates and makes a sharp turn to ensure safety. Under such a
circumstance, the distance coded signal exhibits almost all bursting
(bottom panel of Fig. 5D), which gives rise to maximum angular velo-
city and minimum speed (bottom panel of Fig. 5E). Actually, these
three responses in Fig. 5d, e are just discrete slices of continuous
motion. In a continuous emergency response process, these move-
ments are combined at different time durations to accomplish a
complete obstacle avoidance course. More experimental details are
presented in Methods and Supplementary Figs. 17–19. Supplementary
Movies 1–4 show the whole emergent obstacle avoidance process.

Moreover, we calculate the average latency executed by the tra-
ditional CMOS computing unit in the NVIDIA Jetson AGX Xavier and
compare it to that of our SCNC. After 500 trails of recording, the data
shows that our SCNC alleviates the delay burden of roboticmovement.
It should be noted that the latency considered here is between
receiving the distance signal and publishing the motion command.
During the measurement, we processed the distance information as a
voltage input with a pulse width of 200μs, in which case the latency of
the circuit is 200μs. Here, we define the minimum inference time
during which the statistical firing rate curve still obeys the relationship
in Fig. 4E, as the minimum delay. When the pulse width is reduced to
100μs, the statistical curve is still decent (see Supplementary Fig. 20).
Therefore, we consider the minimum delay of the circuit to be 100μs

under the current circuit parameters. Figure 5F illustrates the statistical
results, and the latency of leveraging physical SCNC to directly drive
the robot behavior is reduced by ~50 times. In fact, theminimumdelay
of the circuit is mainly determined by the two capacitors C1 and C2 in
the circuit. When the capacitance of the device is reduced to an ~fF
level (C1 = 500 fF, C2 = 100 fF of MCN)22, the minimum delay of the
circuit can be reduced to 30ns (see Supplementary Fig. 20). At the
same time, we conducted an evaluation of our obstacle avoidance
approach on a Xilinx XCZU2CG-1SFVC784E (operating at a frequency
of 25MHz with a 1.8 V I/O standard), comparing its power consump-
tion with our NbO2 SCNC hardware realization scheme. The results
show that the highest average power consumption of three H-H neu-
rons in the SCNC is 0.680mW,while the FPGA consumes an average of
14mW, indicating that the power consumption of our NbO2 SCNC is
<5% of FPGA. The power consumption of the SCNC could be as low as
~0.636mW when the capacitances are scaled, which achieves largely
lower total energy consumption attributed to the smaller latency. In
this case, each spike’s energy consumption of the circuit can also be
reduced to 1.06 pJ/Spike (see Supplementary Fig. 21 and Supplemen-
taryTable 4). These results indicate the great potential of our SCNC for
the application of mobile intelligent robot emergent obstacle
avoidance.

Discussion
Neural circuits and their computational mechanics provide novel
strategies for intelligent behavior control of robots. Inspired by the
strategyof crickets to avoidnatural enemies,webuilt anartificial SCNC
for robot obstacle avoidance control. The SCNC is constructed with
compact memristive H-H neurons and configured with a bionic selec-
tive communication scheme. Attributed to the memristor’s intrinsic
stochasticity, the H-H neurons exhibitmixed firing features in addition
to the 23 reported firing behaviors. To demonstrate the feasibility of
our SCNC for practical applications, we introduced it into a robot and
successfully controlled the robot to perform obstacle avoidance.
Compared with conventional robot obstacle avoidance algorithms
conducted on a GPU platform, our SCNC features a >50× reduction in
latency, which could be further improved by scaling the capacitances.
When triggered in the face of danger, the neural circuit can help the
robot to avoid at a faster speed.

The current H-H neuron circuits are constructed using a PCB
board, resulting in a relatively large area that cannot be easily scaled
down. A further study of on-chip integrated H-H neuron circuits is
needed to better evaluate the neuron area and performance. A pro-
mising scalability comparison of memristor-based neurons and CMOS
technology would be conducted, as illustrated in Supplementary
Fig. 22.Only in thiswaycan the advantages of neuronswithmemristors
be decent claimed. In addition, by deploying two SCNCs on the robot,
the left or right position of the obstacle relative to the robot can be
judged instead of the distance, thus further controlling the turning
direction. Similarly, increasing the number of SCNCs further improves
the resolution of the robot in judging the orientation of the obstacle,
which can help the robot achieve more accurate obstacle avoidance
behavior. Moreover, the parameters of the current H-H neuron circuit
are fixed, which makes the neurons lack plasticity. Further studies on
endowing the neurons with plasticity are required, such as replacing
the resistors in the circuitwith configurablememristorsor engineering
configurable NbOx devices. Then such a configurable neuron with
learning capability could adjust the memristor’s resistance value after
training. So that it could adapt to different dangerous distance ranges
with more generality and thus work in various environments, such as
indoor and outdoor, slow-motion obstacles, and high-speed obstacles.
Through adjusting the memristor’s resistance value after training, the
neural circuit could adapt to different dangerous distance ranges and
feature more generality. Furthermore, the LIDAR system we used
requires an additional process to convert the distance signal into a
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voltage signal through the CPU, which induces an additional delay and
hinders our scheme from giving full play to its advantages to some
extent. The direct connection between our neuronal circuit to resistive
sensors (pressure or photoelectric sensors) can solve the problem and
maximize the potential of the proposed solution, which deserves fur-
ther exploration in the future. On the other hand, the lifetime of H-H
neuron circuits is alsoworth addressing. To improve the lifetimeof the
neuron circuits, it is more important to improve the endurance of TS
devices, which is undoubtedly one of the directions we should con-
tinue to pay attention to and study at the device levels. In practical
applications, the impact of continuous input, pulse input and device
degradation on neurons’ firing behavior is also undoubtedly a topic
worthy of further exploration. Nevertheless, our work, as a first step,
brings spiking features into intelligent neural circuits, still has impor-
tant implications, paving the way for real implementation of next-
generation high-order brain-like intelligent systems in the future.

Methods
Fabrication of NbO2 device
The NbO2 threshold switching devices for the experimental demon-
stration were fabricated using e-beam evaporation, magnetron sput-
tering and lift-off. Ti (10 nm)/Pt (30 nm) bottom electrodes (BE) with a
width of 5μm were first grown by e-beam evaporation and patterned
on a Si/SiO2 substrate through a lift-off process. Then, a 50nm-thick-
ness of NbOx film is deposited on the BE at room temperature, by
reactive sputtering with NbO2 (Nb: Nb2O5 = 1:2) target in an atmo-
sphere of Ar and O2 (O2: Ar = 0.12, at 3mt). Finally, top electrodes of
5μm width and 40nm thickness (10 nm Ti/30 nm Pt) were patterned
with a lift-off process perpendicular to the bottom electrode and
deposited on the NbO2 films by magnetron sputtering to form the
5μm×5μm metal/NbO2/metal crossbar junction. Initially, the virgin
device is in a high resistance state (HRS).After forming, aNbO2 channel
forms in the NbO2 layer and enables the device to exhibit TS char-
acteristics. The SEM characterization of the device is shown in Sup-
plementary Fig. 1.

Device measurement
For electrical measurement, the DC test of the NbO2 device was per-
formed on an Agilent B1500A semiconductor parameter analyzer. In
pulse tests, a Keysight 81160A pulse generator served as the power
source, and a Keysight Infinii Vision MSO-X 3104 T oscilloscope was
chosen to monitor electrical pulse signals.

Neuron circuit implementation
The H-H neuron circuits were constructed by connecting two NbO2

devices with resistors and capacitors via a printed circuit board (PCB).
TheWGFMUmodule of theAgilent B1500Awasused to apply pulses to
neuron circuits. The inputs of the neuron circuit, VNa and VK were
monitored using the MSO-X 3104T oscilloscope, and the voltage bias
was applied to the two NbO2 devices using the Keithley 2230G con-
stant voltage source. The SCNC contained three H-H neuron circuits
based on three pairs of NbO2 devices and a comparator as shown in
Supplementary Fig. 23.

Device and circuit simulation
The LT SPICE model was used to simulate the NbO2 switching
dynamics and the mechanism of the spiking and bursting features
(Fig. 2C, Fig. 3C and Supplementary Fig. 5). Supplementary Table 5
illustrates the parameter values of the NbO2 device for simulation.
All the H-H neurons used the sameNbO2 devicemodel and only varied
the input values. The NbO2 device model used to simulate the
randomness of the threshold voltage and the H-H model used to
simulate the probabilistic transition feature are shown in Supplemen-
tary Information 1.

Robotic obstacle avoidance control
The nearest obstacle monitored within the detection degree range
from −90° – 90° (toward the front half of the robot) is viewed as the
emergency that the robot should escape. Point cloud data perceived
by Velodyne 16 LiDAR are qualified for both capturing distance infor-
mation of emergency and mapping of the environment in Fig. 5E. The
distance information detected by LiDAR is processed into voltage
pulses with a pulse width of 500μs and transmitted to the SCNC.
Toward the goal of biological plausibility, as the emergency occurs
closer, the neural circuit ought to be stimulated more intensely, and
thus, we set a larger voltage input under the condition of a smaller
obstacle distance. The output of the SCNC (Supplementary Fig. 13) is
then linearly decoded as the angular and linear velocity. In the motion
trace record experiment (Fig. 5E and Supplementary Movies 1–3), the
locationswhere the robot sets off and the adverseobstacle appears are
fixed, but the appearance times of obstacles are different under three
situations for the sake of monitoring the distance-motion response
relationship. NVIDIA Jetson AGX Xavier is used for computing tasks in
our mobile robot. We then measured the simulation latency of the
conventional hardware that completes sensorimotor control, which is
replaced by SCNC in our experiment, i.e., the module between the
LiDAR scan node and mobile robot base node, using the Python time
module to obtain the executionduration onNVIDIA JetsonAGXXavier.
The average delay is >5000μs in 100 measurements. In comparison,
our neural circuit’s response time is within 100μs in the physical test,
which is ~50 times faster.

Data availability
Source data are provided with this paper.

Code availability
Supplementary code is provided with this paper.
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