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Heliorhodopsin-mediated light-modulation
of ABC transporter

Shin-Gyu Cho 1,2,3, Ji-Hyun Kim 1,3, Ji-eun Lee1, In-Jung Choi1,
Myungchul Song1, Kimleng Chuon 1, Jin-gon Shim1, Kun-Wook Kang1 &
Kwang-Hwan Jung 1

Heliorhodopsins (HeRs) have been hypothesized to have widespread func-
tions. Recently, the functions for few HeRs have been revealed; however, the
hypothetical functions remain largely unknown. Herein, we investigate light-
modulation of heterodimeric multidrug resistance ATP-binding cassette
transporters (OmrDE) mediated by Omithinimicrobium cerasi HeR. In this
study, we classifiy genes flanking the HeR-encoding genes and identify highly
conservative residues for protein–protein interactions. Our results reveal that
the interaction between OcHeR and OmrDE shows positive cooperatively
sequential binding through thermodynamic parameters. Moreover, light-
induced OcHeR upregulates OmrDE drug transportation. Hence, the binding
may be crucial to drug resistance inO. cerasi as it survives in a drug-containing
habitat. Overall, we unveil a function of HeR as regulatory rhodopsin for
multidrug resistance. Our findings suggest potential applications in optoge-
netic technology.

Rhodopsins are a light-driven seven-transmembrane protein with a
retinal chromophore that binds to a specific Lys residue, and are found
in prokaryotes, eukaryotes, and viruses1,2. Rhodopsins are classified
into two types; type-II animal rhodopsins function as a G protein-
coupled receptor in visual and non-visual phototransduction, whereas
type-II microbial rhodopsins serve as ion pumps, ion channels, and
light sensors3. In the marine and terrestrial microbial metagenomes,
48% of microorganisms harbored the microbial rhodopsin genes4. A
recent report suggested that microbial rhodopsins are a dominant
photoheterotrophic pigment to harvest solar energy in the ocean5.

Heliorhodopsins (HeRs) are a rhodopsin discovered 5 years ago,
forming a distinct clade separate from type-I rhodopsins. The topology
of HeRs is inverted, as compared to that of type-I and -II rhodopsins,
with the N- and C-termini located on the cytoplasmic and extracellular
sides, respectively6,7. BacterialHeRs lack ionpumping activity andhave
a long-lived photoactivated state, as do sensory rhodopsins (SRs) that
belong to type-I6–8. In the sameoperon encoding SR, a single promoter
can transcribe transducer protein and SR-encoding genes, and SR
interacts with the transducer protein9. Researchers have hypothesized
various functions of HeRs, such as influencing signal transduction in

the organism, interacting with adjacent genes in an operon, and
enzyme activity via an enzyme domain fused to HeRs6–8,10,11. Although
numerous hypotheses have been proposed, they have not yet been
tested experimentally.

Recently, Cho et al. and Shim et al. described the functional roles
of HeRs in modulating with enzymes adjacent to helR (HeR-encoding
gene) in the same operon12,13. In addition, Hososhima et al. described
that viral HeR proton-transport activity could be observed using a
whole-cell patch-clamp14. Despite these findings, the functions of HeRs
remain largely unknown. Thus, we hypothesized that other proteins
might also interactwith HeRs and analyzedmicroorganisms harboring
helR. In this study, helR and genes adjacent to helR in the same operon
were predicted to be continuously transcribed by a single promoter.
After analysis, HeRs were classified into ten groups based on their
adjacent genes. Among these ten groups, we focused on HeRs
belonging to the group of ATP-binding cassette transporter (ABCT)-
containing operons.

ABCTs are a membrane protein belonging to a large superfamily
found in all kingdoms of life; they transport compounds such as
nutrients, lipids, sterols, and drugs across the phospholipid bilayer.
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ABCTs comprise four domains: two transmembrane domains (TMDs),
which form a translocation pathway, and two nucleotide-binding
domains (NBDs), which hydrolyze ATP and drive conformational
changes in the TMDs to facilitate transmembrane transport15.
Depending on whether the compound is being transported inward or
outward, ABCTs are classified as an importer or exporter. ATP-binding
cassette (ABC) importers, which are unique to bacteria, are involved in
nutrient uptake. Their TMD and NBD subunits form individual chains.
On the contrary, ABC exporters, which exist in both eukaryotes and
prokaryotes, play diverse roles in transporting lipids, sterols, and
drugs. Their TMB and NBD subunits are fused15. Protein sequence
similarities and oligomeric forms in ABCTs were considered to classify
ABCT16–22.

In this work, we investigate HeR-mediated light-modulation in the
relationship between Omithinimicrobium cerasi strain USBA17B2 HeR
(OcHeR) and heterodimeric multidrug resistance ABCTs (OmrDE).
Interaction positions between OcHeR and OmrDE are investigated
using protein–protein docking simulation and isothermal titration
calorimetry (ITC) analysis. Afterward, we determine how the interac-
tion affects OmrDE activity in vitro and in vivo in the absence and
presence of light.

Results
HeR-encoding genes analysis
Weanalyzed the operons containinghelR and the neighboring genes in
various organisms to investigate their relationship. helRwas identified
in many organisms and was noted to be distributed across Actino-
bacteria, Archaea, Chloroflexota, Baciliota, viruses, and unsorted
group classes. Among these organisms, 38.6% of both helR and the
neighboring genes in the same operon were predicted to be tran-
scribed by a single promoter (Fig. 1a). This pattern was not pre-
dominantly identified in any specific class but in several classes.
Particularly, the pattern within the phylum Actinobacteria class was
18.8%; however, no virus pattern was identified, suggesting that these
patterns occur only in prokaryotes (Fig. 1a). Frequently, the neigh-
boring genes flanking helR were identified in the same operons. Thus,
we classified HeRs into ten groups with each of frequent neighboring
genes: glutamine synthetase, NAD+ synthetase, photolyase, MerR
family transcriptional regulator, TerC family protein, ABCT, SDR family
NAD(P)-dependent oxidoreductase, alpha/beta hydrolase, domain
unknown function (DUF) 2177, and DUF2238 (Fig. 1b, Supplementary
Data 1‒10), suggesting that the HeRs in each group of the frequent
neighboring gene-containing operons potentially modulate proteins.

Moreover, we identified the residues responsible for interaction
with proteins encoded by the neighboring genes. We analyzed the
differences of amino acid frequencyperHeR at eachposition inOcHeR
by studying the amino acids of each HeR in a co-transcription group
(helR and the neighboring gene in operon) and the classified ten
groups to a non-co-transcription group (helR alone in operon)
(detailed analyzing procedures are in Supplementary Fig. 1). In the co-
transcription group, when compared with the non-co-transcription
group, specific residues were not observed (Supplementary Fig. 2),
while in classified ten groups, when compared with the non-co-
transcription group, significant differences were observed (Fig. 1c,
Supplementary Fig. 3). Particularly, the number of amino acids in
hydroxylic, aliphatic, aromatic, acidic, and basic groups increased.
Notably, aromatic residues participate in protein structure and protein
hydrophobic interaction, whereas acidic and basic residues are
crucial in polar interaction. Therefore, we suggest that the classified
ten groups with increased specific residues are more likely to
exhibit protein–protein interactions (PPIs) than the non-co-
transcription group.

PPIs involve the proximity of two proteins via translational and
rotational diffusions. An association rate constant enhanced by a long-
range force (5‒10Å, electrostatic interaction) is stronger than that

enhanced by short-range forces (hydrophobic and Van der Waals),
accelerating diffusion due to electrostatic attraction between
proteins23. Charges can affect an electrostatic interaction and be spe-
cific to each protein24. The “positive-inside” rule for membrane pro-
teins is that positively charged residues are more frequently found on
the cytoplasmic side of membrane proteins than on the extracellular
side7,25. The charged residues of HeRs are important for binding to
enzymes12,13. Considering the characteristic of electrostatic interaction,
we suggest that charged residues in OcHeR may affect PPIs. The
positive charges in OcHeR were distributed on the cytoplasmic side,
consistent with the “positive-inside” rule (Fig. 1d). Twenty-two charged
and aromatic residues were located on the cytoplasmic side in OcHeR
homodimer (Supplementary Fig. 4).

Furthermore, we analyzed positively and negatively charged
residues on the cytoplasmic side in HeRs from data in Fig. 1a, revealing
dominant positively charged residues in ICL1 and ICL3. Particularly, the
charged residues in R229, R233, R235, and D236 positions of OcHeR
exhibited highly conservative charged residues (Fig. 1e). When com-
paring the distribution of charged residues between the non-co-
transcription and the co-transcription groups, no significant differ-
ences were observed (Supplementary Fig. 5a, b). In the co-
transcription group, all classes showed highly conserved positively
charged residues (Supplementary Fig. 5c‒g). Overall, HeRs showed a
greater conservation of positively charged residues than that of
negatively charged residues, suggesting the importance of positive
residues in facilitating PPI.

Characterization of OcHeR and OmrDE
We focused on a group of ABCT-containing operons because HeRs
may interact with ABCTs as membrane proteins similar to SR inter-
acting with membrane proteins. OcHeR, one of the HeRs in the group
of ABCT-containing operons, was determined to belong to a distinct
HeR clade through the phylogenetic tree and alignment of rhodopsins
(Fig. 2a, Supplementary Fig. 6a, b). In the group of ABCT-containing
operons, adjacent genes were encoded upstream of helR, suggesting
that the proteins of these adjacent genes interact with HeRs. A pro-
moter in the operon of theO. cerasi strains USBA17B2was predicted to
be upstream of hp, which may transcribe four genes (Fig. 2b).

Todetermine the typeofABCTs involved,we analyzed the protein
structures and sequences of omrD and omrE. These genes encode two
half-site ABCTs that are clustered and are predicted to be regulated by
a single promoter, suggesting that they form heterodimeric ABC
complexes (OmrDE; Fig. 2b). A protein structure of OmrDE based on
TmrAB as a template was predicted using Swiss-Model (details are
provided in the Supplementary Discussion)15,26–28. We compared the
protein structures of OmrDE and ABC importers and exporters,
observing that OmrDE was similar to type-I ABC exporters, which
mediate the transport of highly hydrophobic substrates such as drugs
and phospholipids (Supplementary Fig. 7a, b). In terms of structural
basis, the protein structures between OmrDE and TmrAB had similar
structures of TMDs andNBDs, except for the extracellular loop in TMD
of OmrE (Fig. 3a). Furthermore, functionally important motifs—which
participate in the catalytic cycle of ATP binding/hydrolysis and driving
conformational changes of TMDs—were structurally similar between
OmrDE and TmrAB, also NBD-defined motifs including Walker A,
Walker B, ABC signature, A-loop, Q-loop, D-loop, and H-loop were
highly conserved in OmrD and OmrE (Fig. 3b, Supplementary
Fig. 6c and 7c)29. Particularly, the canonical catalytic glutamate next to
the Walker B motif in OmrE, the ATP-binding site in the NBD, is con-
served. The degrees of protein similarity and identity between OmrD
as well as OmrE and the multidrug ABCTs were 62‒73% and 25‒40%,
respectively (Supplementary Fig. 8a). In contrast, catalytic glutamate
was replaced by aspartate in OmrD, leading to a non-canonical ATP-
binding site (Supplementary Fig. 6c). In the phylogenetic tree of mul-
tidrug ABC exporters, OmrD and OmrE formed heterodimer clades
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with canonical and non-canonical residues (Supplementary Fig. 8b).
Overall, OmrDE was identified as a multidrug ABC half-exporter that
forms heterodimers.

Next, we investigated the photochemical, biophysical, and bio-
chemical properties of OcHeR and OmrDE. The wavelength of max-
imum absorbance (λmax) of OcHeR was 554nm at neutral pH. From pH
titration, the pKa value through the spectral red-shift of the λmax of
OcHeR at acidic pH values was estimated to be 2.9, reflecting that the
protonation of counterion (presumably E118) (Supplementary

Fig. 9a, b). The pKa value through the deprotonation of the retinal
Schiff base linked to K252 of OcHeR at alkaline pH values was esti-
mated to be 11.4 based on the difference in absorbance of the depro-
tonated form of the retinal Schiff base (Supplementary Fig. 9c, d).
Right-side-out (RSO) membrane vesicles containing OcHeR did not
exhibit ion-pumping activities (Supplementary Fig. 9e). SDS‒PAGE
revealed high purity of the corresponding proteins upon co-
expression of OmrD and OmrE (Fig. 3c). To investigate the hetero-
dimeric form of OmrDE, we constructed different tagged proteins
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Candidatus Izim
aplasm
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hypothetica

l protein
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acte
ria

115361GBR
muiretcab

KXS18535.1 hypothetica
l protein M

427DRAFT 53907 Gonapodya prolife
ra JE

L478

OHE44474.1 hypothetica
l p

rotein A2102 01470 Tenericu
tes bacte

riu
m GWF2 38 8

WP 014452301.1 hypothetica
l p

rotein Fervid
obacte

riu
m pennivo

rans

WP 010479682.1
hypothetica

l protein Therm
ococcu

s zill
igii

WP 088882562.1
hypothetica

l protein Therm
ococcu

s sp. P
6

WP 011011843.1 hypothetica
l protein Pyro

coccu
s fu

riosus

PKH45313.1 hypothetical protein CVH13 01561 partial Dehalococcoides mccartyi
PKH46305.1 hypothetical protein KKB3 00570 Dehalococcoides mccartyi
PKH47377.1 hypothetical protein CVH13 00560 Dehalococcoides mccartyi

WP 010936495.1 hypothetical protein Dehalococcoides mccartyi
WP 014731276.1 hypothetical protein Mesotoga prima

WP 099773074.1 hypothetical protein Mesotoga sp. H07.pep.5.3

CCU84695.1 conserved membrane hypothetical protein Mesotoga infera

KUK82139.1 Uncharacterized protein XD94 0147 Mesotoga prima

WP 103134501.1 hypothetical protein Mesotoga sp. B105.6.4

KKQ10765.1 Conserved hypothetical membrane protein candidate division WS6 bacterium GW2011 GWE1 36 69

KKQ10766.1 hypothetical protein US23 C0025G0008 candidate division WS6 bacterium GW2011 GWE1 36 69

KKP92562.1 hypothetical protein UR96 C0010G0030 candidate division WS6 bacterium GW2011 GWC1 36 11

KKQ04322.1 hypothetical protein US14 C0015G0007 candidate division WS6 bacterium GW2011 WS6 36 26

KKQ15331.1 Conserved hypothetical membrane protein partial candidate division WS6 bacterium GW2011 GWF1 36 8

KKP43006.1 hypothetical protein UR32 C0006G0026 candidate division WS6 bacterium GW2011 GWE2 33 157

PKN02863.1 hypothetical protein CVU76 02455 Candidatus Dojkabacteria bacterium HGW-Dojkabacteria-1

KKP65948.1 hypothetical protein UR61 C0008G0011 candidate division WS6 bacterium GW2011 GWE1 34 7

OGC43907.1 hypothetical protein A2400 02440 candidate division WS6 bacterium RIFOXYB1 FULL 33 14

OGC46269.1 hypothetical protein A3J98 00125 partial candidate division WS6 bacterium RIFOXYC1 FULL 33 10
413402041028dnal80GCmuiretcabairetcabdlefreKsutadidnaC0933062TOCnietorplacitehtopyh1.72404SIP

PIS42893.1 hypothetical protein COT24 01275 Candidatus Kerfeldbacteria bacterium CG08 land 8 20 14 0 20 40 16

PIY95430.1 hypothetical protein COY66 06870 Candidatus Kerfeldbacteria bacterium CG 4 10 14 0 8 um filter 42 10

PIS41810.1 hypothetical protein COT25 01090 Candidatus Kerfeldbacteria bacterium CG08 land

72402041028

OGY84021.1 hypothetical

000208982Anietorp

Candidatus Kerfeldbacteria bacterium RIFCSPLOWO2 01 FULL 48 11

0134LLUF2AYXOFIRmuiretcabairetcablekreBsutadidnaC086305122Anietorplacitehtopyh1.70326DGOAKM82384.1 hypothetical protein UT28 C0001G0580 Berkelbacteria bacterium GW2011 GWE1 39 12

KQM10058.1 hypothetical protein AOA81 05355 Methanomassiliicoccales archaeon RumEn M2

OGS42889.1 hypothetical protein A3K76 01075 Euryarchaeota archaeon RBG 13 57 23

KXK09919.1 hypothetical protein UZ20 WS6002000228 candidate division WS6 bacterium OLB21

KKP69087.1 hypothetical protein UR67 C0009G0014 candidate division CPR3 bacterium
GW2011 GWF2 35 18

KXA95624.1 hypothetical protein AKJ65 01410 candidate divison MSBL1 archaeon SCGC-AAA259E19

KXA92520.1 hypothetical protein AKJ64 02920 candidate divison MSBL1 archaeon SCGC-AAA259E17

KXA94607.1 hypothetical protein AKJ37 07455 candidate divison MSBL1 archaeon SCGC-AAA259I09

KYK29909.1 hypothetical protein AYK19 19015 Theionarchaea archaeon DG-70-1

KYK38367.1 hypothetical protein AYK18 07525 Theionarchaea archaeon DG-70

KYK22266.1 hypothetical protein AYK21 03915 Thermoplasmatales archaeon SG8-52-2

KYK26602.1 hypothetical protein AYK20 03510 Thermoplasmatales archaeon SG8-52-1

KYK24010.1 hypothetical protein AYK25 00765 Thermoplasmatales archaeon SM1-50

PNX47601.1 hypothetical protein BV457 05375 Thermoplasmata archaeon M9B1D

EMR74719.1 hypothetical protein MBGDF03 00871 Thermoplasmatales archaeon SCGC AB-540-F20

KYK29014.1 hypothetical protein AYK20 06320 Thermoplasmatales archaeon SG8-52-1

KYK23052.1 hypothetical protein AYK24 07915 Thermoplasmatales archaeon SG8-52-4

PJA39251.1 hypothetical protein CO180 01170 partial candidate division W
W

E3 bacterium CG 4 9 14 3 um filter 41 6

PIZ48347.1 hypothetical protein COY32 00020 partial candidate division W
W

E3 bacterium CG 4 10 14 0 2 um filter 41 14

PIZ46567.1 hypothetical protein COY32 03065 partial candidate division W
W

E3 bacterium CG 4 10 14 0 2 um filter 41 14

PIP56074.1 hypothetical protein COX05 05100 candidate division W
W

E3 bacterium CG22 combo CG10-13 8 21 14 all 39 12

KYC45092.1 hypothetical protein AMQ74 01915 Arc I group archaeon U1lsi0528 Bin089

EDK72530.1 conserved hypothetical membrane protein candidate division TM7 genomosp. GTL1

PKL30997.1
hypothetical protein
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Candidatus Saccharibacteria

bacterium
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W
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varia

bile

WP 102331609.1
hypothetica
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rotein Dehalogenimonas sp. G

P

OGO40443.1 hypothetica
l protein A2147 08725 Chloroflexi b

acte
rium RBG 16 57 8

AKG52714.1
hypothetica

l protein DGWBC 0021 Dehalogenimonas sp. W
BC-2

PKQ29574.1 hypothetica
l protein CVT60 04685 Actin

obacte
ria bacte

rium HGW-Actin
obacte

ria-10

PKQ36955.1 hypothetical protein CVT59 10280 Actinobacteria bacterium HGW-Actinobacteria-1

PKQ21213.1 hypothetical protein CVT66 01160 Actinobacteria bacterium HGW-Actinobacteria-6

WP 098502765.1 hypothetical protein Thermoflexus hugenholtzii

OFW53763.1 hypothetical protein A2V75 01555 Actinobacteria bacterium RBG 16 70 17

PKN82605.1 hypothetical protein CVU47 02490 Chloroflexi bacterium HGW-Chloroflexi-9

OFW66129.1 hypothetical protein A2Z12 02530 Actinobacteria bacterium RBG 16 68 21

12muiretcabairetcabonitcA0404096Z7Bnietorplacitehtopyh1.37406VYO

-73-9

WP 024286383.1 hypothetical protein Cellulomonas sp. KRMCY2

KGM15768.1 hypothetical protein N867 05810 Actinotalea fermentans ATCC 43279 = JCM 9966 = DSM 3133

WP 056138062.1 hypothetical protein Knoellia sp. Soil729

WP 076060062.1 hypothetical protein Tessaracoccus sp. ZS01

WP 077342575.1 hypothetical protein Tessaracoccus flavus

WP 091026622.1 hypothetical protein Nocardioides szechwanensis

SDO40454.1 hypothetical protein SAMN05192576 3960 Nocardioides szechwanensis

WP 056886724.1 hypothetical protein Nocardioides sp. Soil777

WP 068324853.1 hypothetical protein Janibacter terrae

WP 034216984.1 hypothetical protein Actinoplanes subtropicus

WP 022919890.1 hypothetical protein Ornithinimicrobium pekingense

OFE15313.1 hypothetical protein BA895 06130 Humibacillus sp. DSM 29435

EYR62506.1 hypothetical protein N866 07900 Actinotalea ferrariae CF5-4

WP 034227842.1 hypothetical protein Actinotalea ferrariae

AGL62162.1 conserved membrane protein of unknown function Candidatus Saccharimonas aalborgensis

KRO50035.1 hypothetical protein ABR71 03020 Actinobacteria bacterium BACL4 MAG-120820-bin23

KRO40454.1 hypothetical protein ABR74 03610 partial Actinobacteria bacterium BACL4 MAG-121022-bin9

KRO75291.1 hypothetical protein ABS07 05960 partial Actinobacteria bacterium BACL4 MAG-120920-bin74

EJX36269.1 hypothetical protein A27L6 003700000160 actinobacterium SCGC AAA027-L06

KRO32416.1 hypothetical protein ABR65 02480 Actinobacteria bacterium BACL2 MAG-121220-bin52KRO29727.1 hypothetical protein ABR60 04830 partial Actinobacteria bacterium BACL2 MAG-120802-bin41

KRO37394.1 hypothetical protein ABR55 02105 partial Actinobacteria bacterium BACL15 MAG-120823-bin78

KRO34440.1 hypothetical protein ABR54 02145 partial Actinobacteria bacterium BACL15 MAG-120619-bin91

WP 095531755.1 hypothetical protein Actinobacteria bacterium IMCC25003

WP 095693386.1 hypothetical protein Candidatus Planktophila versatilis

WP 095696812.1 hypothetical protein Candidatus Planktophila versatilis

OUV53053.1 hypothetical protein CBC75 02715 Actinomycetales bacterium TMED115

KRO45956.1 hypothetical protein ABR75 01420 partial Acidimicrobiia bacterium BACL6 MAG-120924-bin43

KRO52314.1 hypothetical protein ABR78 06985 Acidimicrobiia bacterium BACL6 MAG-120910-bin40
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(OmrD::his-tag and OmrE::HA-tag) and performed a His-tag pull-down
assay, showing that co-expressed OmrDE formed a hetero-
dimer (Fig. 3d).

The reported multidrug ABCTs transported DNA intercalators—
Hoechst 33342 (HO342) and 4′,6-diamidino-2-phenylindole
(DAPI)19,20,22,30. We performed drug-screening tests for OmrDE in the
Escherichia coli N43 strain (acrAmutation) as a minimized cell line for
affection drug susceptibilities31, further testing the minimum inhibi-
tory concentration (MIC) of drugs (chloramphenicol, kanamycin, tet-
racycline, DAPI, and HO342) in the N43 strain harboring each plasmid
[pET21b-empty, -OmrDE, and -OmrDEm (OmrDWT andOmrED577Q as
the canonical residuemutation associatedwith ATP binding in NBDs)],
termed cell-plasmid. The MIC values of the antibiotics (Cm, Km, and

Tet) for the cells were not strongly elevated by OmrDE and OmrDEm

(Fig. 3e, Supplementary Fig. 10a‒f, Supplementary Table 1). Especially,
the MIC values of DAPI and HO342 for cell-OmrDE were higher than
those for cell-empty. In addition, compared with cell-empty, cell-
OmrDEm was resistant to DAPI and HO342; however, compared with
cell-OmrDE, the MIC values were decreased by DAPI and HO342. This
suggests that the non-canonical aspartate is responsible, even in the
absence of catalytic glutamate (Fig. 3e). Particularly, by comparing the
MIC values of DAPI, the MIC values were found that cell-OmrDE was
not only 3.9-fold more resistant than cell-empty but also more resis-
tant than that under the same conditions upon HO342 treat-
ment (Fig. 3e).

To evaluate drug transportation capacity, we performed a DAPI
translocation assa(y in an inverted membrane vesicle (IMV). The fluor-
escence intensity for time-tracing by adding ATP can be attributed to
two reasons: 1) OmrDE transports DAPI into the IMV from the reaction
solution. (2) The fluorescence intensity of DAPI transported inside is
relatively reduced owing to interference with the membrane (Supple-
mentary Fig. 11a, b). OmrDE showed a higher transportation capacity
compared to the empty vector, OmrDEm, and OcHeR (Fig. 3f). As
endogenous multi-drug ABCTs of E. coli also transport DAPI, the fluor-
escence intensity of the empty vector may be decreased. Interestingly,
the capacity of OcHeR was lower than that of the empty vector, sug-
gesting that the embedding positions of the endogenous multi-drug
ABCTs in the lipid bilayer are limited by OcHeR overexpression.

Furthermore, we performed ATP hydrolysis of NBDs with
increasing concentrations of DAPI via the colorimetric determination
of inorganic phosphate (Pi), resulting in an inhibitory concentration 50
(IC50) value of 47.4 µM (Supplementary Fig. 11c, d). This result, wherein
increasing drug concentrations inhibited drug transport, is similar to
that reported for multidrug ABCTs20,30,32. Moreover, the Vmax and Km

values of OmrDE and OmrDEm were determined as enzyme kinetic
parameters; the Vmax and Km values of OmrDE were 17.6 µM/min and
19.2mM, respectively, while those of OmrDEm were 5.1 µM/min and
27.6mM, respectively (Fig. 3g, Table 1). The kcat/Km value of OmrDE
was 5.6-fold higher than that of OmrDEm (Table 1), indicating that
OmrDEm showed slight activity; this is consistent with the results of the
MIC and DAPI translocation assays. Hence, we suggest the importance
of investigating the potential effects of OcHeR for OmrDE (Fig. 3h).

OcHeR binds to OmrDE
PPIs play various biological roles, including mediating functions, such
as environmental sensing, metabolic and signaling enzyme activity,
and signal transduction33. ITC is an experimental method used to
measure thermal change during molecular bindings, resulting in pro-
viding binding affinity and various thermodynamic parameters (Sup-
plementary Fig. 12a). To reveal the interaction between OcHeR and
OmrDE, we performed ITC analysis and determined dissociation con-
stant (Kd), enthalpy (ΔH), entropy (−TΔS), and Gibbs free energy (ΔG)
as thermodynamic parameters for binding; we obtained values of
91.6 µM, 48.9 kcalmol−1, −54.3 kcalmol−1, and −5.4 kcalmol−1, respec-
tively (Fig. 4a, Table 2). Furthermore, we observed that OcHeR WT
interacted with NBD-truncated OmrDE (OmrDtcEtc), suggesting that
OcHeRbinds to the TMDs (Fig. 4a, Table 2). Specifically, the Kd value of
OcHeR WT for OmrDtcEtc was 2.4-fold lower than that of OmrDE, indi-
cating that NBDs influenced their binding.

Interestingly, the ΔH value of OcHeR for OmrDtcEtc indicated an
exothermic reaction, whereas that of OcHeR for OmrDE indicated an
endothermic reaction (Table 2). ABCTs undergo conformational
changes throughATPbinding andhydrolysis inNBDs15, suggesting that
OmrDtcEtc forms a different heterodimeric structure fromOmrDE. Due
to this difference, enthalpic factor contributed from unfavorable
(ΔH>0) to favorable (ΔH<0) non-covalent interactions, thereby
forming new bonds and facilitating the release of energy, as well as
influencing the entropy change.
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In addition, we probed the monomer of the OmrDE heterodimer
that binds toOcHeR, resulting inOcHeRWTbinding to eachmonomer
(OmrD and OmrE; Fig. 4a, Table 2). The Kd value of OcHeR WT for
OmrE was 2.6-fold lower than that for OmrDE, unlike that for OmrD,
which showed a similar binding affinity. In addition, the ΔG value of
OcHeRWT for OmrD indicated a non-spontaneous reaction compared
with that for OmrDE and OmrE, which were spontaneous reactions
(Table 2). The protein–protein docking simulation analysis revealed
that the number of residues in the interfaces between OcHeR and
OmrDE was higher for OmrD than those for OmrE (Fig. 4b); however,

OmrD does not spontaneously form a complex (OcHeR–OmrDE).
OmrD requires certain conditions to form a complex, suggesting that
OmrE may influence the complex formation.

Next, we identified polar interaction residues at the interface
between OcHeR and OmrDE on the cytoplasmic side using
protein–protein docking simulation (Fig. 4c). The polar interactions
were observed in ICL1 and 2: R102 in OcHeR with L136 and V137 in
OmrD, and R105 inOcHeRwith V18 inOmrD—in ICL1. In addition, G166
in OcHeR interactedwithW313 in OmrE—in ICL2. The polar interaction
was not observed with residues in ICL3 of OcHeR; however, charged
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and aromatic residues in OcHeR were adjacent to OmrD and OmrE.
Furthermore, a protein sequence alignment among HeRs in the group
of ABCT-containing operons revealed conserved charged or aromatic
residues in ICL1‒3 (Supplementary Fig. 6b). Specifically, the absence of
positively charged residues of reported HeRs in ICL3 has been shown
to result in an increased Kd value or no binding (Supplementary
Fig. 6b)12,13. Considering polar interactions and charged or aromatic
residues at the interface between OcHeR and OmrDE via the docking
simulation, we constructed the following OcHeR mutants in ICL1‒3:
R102Q, R104Q, R105Q, D167N, W170A, W225A, R229Q, R233Q, and
R235Q. All λmax of the mutants were not changed compared to that of
WT (Supplementary Fig. 9f).

We performed the ITC analysis of theOcHeRmutantswithOmrDE
(Fig. 4a, Table 2, Supplementary Fig. 13). The Kd values of mutants in
ICL1 and ICL2 were undetectable and non-binding (~704mM),
respectively. In contrast, the Kd values of W225A, R229Q, R233Q, and
R235Q in ICL3 were lower than those of the WT. Notably, even one
positively charged residue in ICL1 is crucial for binding; moreover,
alternation in the positively charged residues at R229 resulted in an 18-
fold decrease in the Kd value compared to that of WT (Fig. 4d). Inter-
estingly, the binding affinities according to ICLs showed different
results, possibly because HeR forms a symmetrical homodimer. Con-
sidering that OcHeR is a homodimer, ICL1 in subunit 1, as well as ICL2
and 3 in subunit 2, were oriented in the same direction, and the non-
binding residues of OcHeR for OmrDE were biased toward a specific
area (Fig. 4d). Moreover, the simulation showed that each OmrDE
monomer binds to each subunit of OcHeR; specifically, OmrD and
OmrEadjacent to ICL1 in subunits 1 aswell as ICL2 in subunit 2 and ICL3
in subunit 2 (Fig. 4c, d). Owing to the limitations posed by weak
binding in OcHeR–OmrDE interactions, perfect saturation was not
achieved; however, the Kd values obtained for OcHeR and OmrDE in
this study are comparable and relevant because the experimental
methods for WT and mutants were identical.

OcHeR upregulates OmrDE activity
The remaining question was whether the binding of OcHeR to OmrDE
affects its transport capacity in the presence of light. Thus, we per-
formed ATP hydrolysis and drug transport in vitro and cell viability
assays in vivo in OmrDE with OcHeR WT and OcHeR R102Q. First, the
enzyme kinetic parameters of OmrDE with OcHeR were quantified
using the ATP hydrolysis assay. In the absence of light, the Vmax andKm

values of OmrDE with OcHeR WT were similar to, and lower, respec-
tively, than those of OmrDE alone, indicating that the binding of
OcHeR to OmrDE increased the substrate-binding affinity. In the pre-
sence of light, the Vmax and Km values of OmrDE with OcHeRWT were
similar to and lower those obtained in the absence of light (Fig. 5a,
Table 1). The kcat/Km values of OmrDE with OcHeR WT in the absence
and presence of light were 1.8- and 2.8-fold higher than those of
OmrDE alone, respectively. In contrast, the kcat/Km values of OmrDE
bound to OcHeR R102Q in the absence and presence of light were

similar to those of OmrDE alone (Fig. 5b, Table 1), indicating no sig-
nificant influence unless binding occurred.

Second, wemeasured the drug transport capacity of OmrDE with
OcHeR in IMV. The co-expression of OmrDE with and without OcHeR
was observed; however, the expression level of OmrDE in the co-
expression system was lower than that in OmrDE expression alone
(Supplementary Fig. 14a). Thus, we did not compare the co-expression
of those in IMV to OmrDE in IMV. In the presence of light, the capacity
of OmrDE with OcHeRWT significantly increased over time compared
with that in the absence of light. In contrast, the capacity of OmrDE
with OcHeR R102Q did not significantly change, regardless of the
presence of light (Fig. 5c). Particularly, the capacity of OmrDE with
OcHeR WT in the presence of light significantly differed from that of
OmrDEwithOcHeRWTandR102Qunder other conditions at 15min. In
other words, the capacity of OmrDEwithOcHeRWT in the presence of
light was 3-fold higher than that in the absence of light. In contrast, the
capacity of OmrDE with OcHeR R102Q was not significant (Fig. 5d).

Third, the growth curve of the N43 strain treated with DAPI was
recorded. The co-expression of OmrDE and OcHeR in the N43 strain
was shown (Supplementary Fig. 14b), and the cell viability assay of cells
treated with DAPI harboring plasmids was performed (Supplementary
Fig. 10g‒m). In the absence of light, cell-DE +WT was resistant com-
pared with cell-DE + R102Q and other cells and was more resistant in
the presence of light (Fig. 5e).When the IC50 values of cell-WT and cell-
empty were compared, OcHeR did not affect cell viability (Fig. 5f). The
IC50 values of cell-DEm +WT and R102Q were slightly increased by ~1.4
times compared with those of cell-empty; this result was consistent
with the slightly lower OmrDEm activity than that of the empty cells
(Fig. 3e‒g). The IC50 value of cell-DE +WT in the absence of light was
2.6-fold higher than that of cell-empty, and that of cell-DE +WT in the
presence of light was 3.3-fold higher than that of cell-empty. In con-
trast, the IC50 values of cell-DE + R102Q were independent of light and
were lower than those of cell-DE +WT (Fig. 5f).

The photocycle is a series of photochemical reactions of the
chromophore and conformational changes in the apoprotein that
occur within rhodopsins upon light absorption. In a previous study,
the λmax and photocycle kinetics of HeR binding to photolyase chan-
ged compared with those of photolyase alone13. However, the λmax

values of OcHeR with and without OmrDE were not affected, implying
that the PPI between OcHeR and OmrDE does not affect the retinal
chromophore (Supplementary Fig. 9g). Additionally, the absorption
difference of OcHeR after illumination showed peaks at 554 and
618 nm as the λmax of the G and O states, respectively (Supplementary
Fig. 9h). The half-life (t1/2) values of the G and O states in OcHeR
binding to OmrDE were 1.6-fold and 2.2-fold higher than those in
OcHeR WT alone, respectively. In contrast, the t1/2 values of OcHeR
R102Q binding to OmrDE did not substantially differ from those of
OcHeR R102Q alone (Fig. 5g, Supplementary Fig. 9i, j).

In a non-essential activation model, similar to reversible mixed
inhibition, enzyme activity was activated, resulting in changes in Km

Table 1 | Steady-state enzyme kinetic parameters for NBDs in OmrDE with and without OcHeR

Omr OcHeR Light (532 nm) Vmax (µM/min) Km (mM, ATP) kcat (s−1) kcat/Km (M−1 S−1)

DE – – 17.6 ± 5 19.2 ± 12.3 0.293 ±0.082 20.6 ± 9.3

DEm – – 5.1 ± 0.7 27.6 ± 10.5 0.086 ± 0.011 3.7 ± 1.5

DE WT – 18.3 ± 6.9 10.4 ± 7 0.304 ±0.115 37.7 ± 13.7

DE WT + 20.7 ± 2.2 6.3 ± 2 0.344 ± 0.037 58.4 ± 11.3

DE R102Q – 18.2 ± 0.7 14.4 ± 1.8 0.303 ±0.012 21.4 ± 2.5

DE R102Q + 19.5 ± 1.7 18.1 ± 1.8 0.325 ±0.016 18.1 ± 1.7

Vmax and Km values were calculated using the Michaelis–Menten equation.
V0 values at each ATP concentration are provided in Source Data.
Each of enzyme kinetic parameters of measurements in an independent experimental group (n = 3) is provided in Source Data.
Values are presented as mean value ± SD. ATP hydrolysis was conducted at 25 °C.
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and Vmax. We observed that OmrDE alone could transport drugs and
that OcHeR could enhance OmrDE activity via PPI. Moreover, the
dynamic energy from the photocycle via PPI may be transferred to
OmrDE and affect its conformational changes, enhancing the drug
transport capacity (Fig. 5h). Therefore, we suggest that OcHeR func-
tions as a non-essential activator for OmrDE.

Discussion
Operons typically encode genes in the same functional pathway34.
Moreover, the intergenic distance frequency distributions of adjacent
genes in the same direction show characteristic peaks between −20
and 30 bp35. We observed that in the group of glutamine synthetase-
containing operons, three genes (glutamine synthetase, NAD+ syn-
thetase, and HeR) were encoded in the same direction under a single
promoter (Fig. 1b), suggesting that these three genes are associated
with nitrogenmetabolism in the same functional pathway. In addition,
the groups of PHR- and DUF2238-containing operons, as well as the

groups of alpha/beta hydrolase- and DUF2177-containing operons,
encoded both genes in the same operon, suggesting that DUFs are
involved in the same functional pathways involving these genes.
Conversely, the groups of SDR-, TerC-, and MerR family protein-
containing operons did not contain other grouped genes in the same
operon (Fig. 1b). Recently, a study reported that light-induced viral
HeR can transport protons using a whole-cell patch-clamp14. In our
study, we did not identify neighboring genes flanking helR in viruses
(Fig. 1a), suggesting that the primary function of viral HeR is its proton-
pumping activity rather than protein regulation.

We suggest a compensation between enthalpic (non-covalent)
and entropic (hydrophobic) factors in the binding affinity of OcHeR
WT and mutants with OmrDE (Fig. 6a; details are provided in the
Supplementary Discussion)36. OcHeR WT binding to OmrDE shows
unfavorable non-covalent and favorable hydrophobic interactions;
however, the absence of positively charged residues in ICL1 interferes
non-covalent interactions. OcHeR mutants, compared to WT, show
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more favorable non-covalent interactions, indicating the formation of
new non-covalent interactions and suggesting a compensatory effect.
The comparison between unfavorable non-covalent and favorable
hydrophobic interactions, aswell as the influenceof positively charged
residues in ICL1, reveals inconsistency, possibly because of the pre-
sence of both attractant and repellent residues in OcHeR. The com-
pensatory effects, mainly observed in R233Q, lead to sequential
binding sites, implying stronger attractant residues than repellent
ones. Overall, the results suggest the influence of charged or aromatic
residues in ICLs on binding affinities, and it can be proposed that the
structure of the homodimeric OcHeR may impact the binding affinity
of OmrDE. Furthermore, positively charged residues in ICL1 may
reduceenthalpy‒entropy compensation, facilitating a shift from anon-
spontaneous reaction to a spontaneous reaction by changing a posi-
tive ΔG value to a negative ΔG value.

Based on the thermodynamic parameters, we carefully suggest
the sequential binding mechanism (Fig. 6b): (1) The membrane pro-
teins undergo lateral diffusion in the lipid bilayer, leading to their
interaction within a range of polar forces (attractant residues) and
subsequent mutual influence. (2) The interaction is driven by four
forces: attractant 1 (A1), three positively charged residues in ICL1;
attractant 2 (A2), W170 and D167 in ICL2; repellent 1 (R1), W225, R229,
and R235 in ICL3; repellent 2 (R2), R233. The first binding is driven by
the A1 and A2, contributing to a large decrease in the ΔH value
(38.9–5.9 kcalmol‒1) and favorable ΔG value based on R233Q-1 result.
(3) The second binding initiates when A1 binds completely to OmrD,
but A2 does not completely bind to OmrD and OmrE because the Kd

values of W170A and D167N are very weak interactions. Afterward,
unfavorable non-covalent interaction through the R1 and R2 interferes
with the binding; however, the second binding overcomes the R1 and
R2 by driving the very weak interactions in the A2 and hydrophobic
interactions, which contribute to a large positive ‒TΔS value and a
favorable ΔG value. Moreover, the second binding accelerates the
conformational change in the first binding interface of proteins, con-
tributing to lower the Kd values of the second binding with respect to
that of the first binding and conformational entropy of residue side
chains via negative ‒TΔS value. (4) Finally, the two proteins bind and
stabilize.

The biological relevance of OcHeR and OmrDE in the O. cerasi
strain USBA17B2 is a topic of interest. The bacterium was isolated in a
habitat containing cytotoxic compounds (details are provided in the
Supplementary Methods)37. Multidrug ABCTs are polyspecific; they
can interact with many dissimilar molecules38. PPIs can create new
binding sites for substrates not originally present in the individual
proteins39,40. Hence, we suggest three significant biological implica-
tions: (1) OmrDE with OcHeR may interact with cytotoxic compounds
as biometabolites produced by microorganisms to inhibit the growth
of competing microorganisms. (2) OcHeR binding to OmrDE allows O.
cerasi strainUSBA17B2 to resist cytotoxic compounds in thehabitat. By
transporting new drugs through binding to OcHeR, it can overcome
the limitations of OmrDE, which might have been unable to transport
certain drugs previously. 3) Fine-tuning (1.8–2.8 folds increase in
OmrDE activity) is an advantage in terms of ATP consumption for ATP
hydrolysis and energy consumption for OmrDE expression (details are
provided in the Supplementary Discussion)41–44.

A remainingquestion iswhyOcHeR regulatesOmrDE activity. PPIs
can enhance catalytic activity and regulate enzyme activity45–47. Most
ABC exporters have three conformational changes: Inward-facing (IF)
conformation, open cavity on the intracellular side and substrate
binding; occluded conformation, close on the intracellular and extra-
cellular sides via ATP binding; Outward-facing (OF) conformation,
release of substrate to the extracellular side by ATP hydrolysis15,48. We
speculate that interaction between OcHeR and OmrDE can affect
OmrDE structure. Thus, OcHeR first binds to OmrDE, and subse-
quently, the substrate binds to theTMDs ofOmrDE at IF conformation,
enhancing protein stability and stabilizing the substrate binding site.
At occluded or OF conformations, dynamic energy via the conforma-
tional changes of light-induced OcHeR may accelerate the dynamic
structural change of OmrDE. Because the Kd value is in the ~µM range
rather than the ~nM range (i.e., antibody), OcHeR may dissociate after
substrate release for OmrDE.

Since the determination of the neuromodulatory ability of chan-
nelrhodopsin-2, swift advances in the application of optogenetic
technology in neurobiology have occurred49. The diverse functionality
of HeRs has considerable potential for applications in various fields,
including optogenetic technology. Daunomycin slows and stops
cancer-cell growth via DNA intercalation and is used to treat acute
lymphoblastic or myeloblastic leukemias50,51. LmrCD and TM278/288
of the multidrug resistance ABCT transport daunomycin, DAPI, and
HO342, suggesting that OmrDE transports daunomycin. Membrane
vesicles are promising candidates for applications in biomedical
technology and nanotechnology52. OmrDE may be applied to drug
delivery systems, photodynamic therapy, and tumor-targeting effects
in membrane vesicles and bioregulation by expression in various cells,
similar to optogenetic technology49,53–55.

In conclusion, our classified ten groups and increased specific
residues present a promising starting point for further research,
describing functionofHeR inmicrobial drug resistanceand identifying
a rhodopsin that binds and modulates ABCT. The interaction between
OcHeR and OmrDE may be necessary for drug resistance in the O.
cerasi strain USBA17B2, as it survives in a drug-containing habitat. Our
study provides biological insights into the potential for ABCTs and
their applications in anticancer therapy and optogenetic technology.
However, as many researchers have suggested, HeRs likely have
additional functions. Therefore, further research is necessary to elu-
cidate their underlying molecular mechanisms and to explore their
functions.

Methods
Plasmid preparation
The genome of the O. cerasi strain USBA17B2 was collected in the
National Center for Biotechnology Information (NCBI, accession
number: OBQK01000028) and the Joint Genome Institute (project ID:

Table 2 | Thermodynamic parameters of OcHeR for OmrD,
OmrE, and OmrDE

OcHeR Omr Kd (µM) ΔH
(kcal mol−1)

−TΔS
(kcal mol−1)

ΔG
(kcal mol−1)

WT DE 91.6 ± 12.3 48.9 ± 12.2 −54.3 ± 12.1 −5.4 ± 0.1

WT DtcEtc 38.9 ± 5.3 −35.5 ± 2.7 29.4 ± 2.5 −6.1 ± 0.1

WT D 122.8 ± 2.5 NC NC NC

WT E 35.3 ± 6.4 35.5 ± 5.2 −41.6 ± 5.1 −6.1 ± 0.1

R102Q DE ND ND ND ND

R104Q DE ND ND ND ND

R105Q DE ND ND ND ND

D167N DE NB NB NB NB

W170A DE NB NB NB NB

W225A DE 16.9 ± 0.6 11.8 ± 4.4 −18.3 ± 4.4 −6.5 ± 0.02

R229Q DE 5.1 ± 0.4 8.6 ± 0.7 −15.8 ± 0.7 −7.2 ± 0.05

R233Q-1a DE 42.9 ± 7.9 5.9 ± 1.1 −11.9 ± 1 −6 ± 0.2

R233Q-
2a

DE 25.3 ± 6.5 38.7 ± 10.9 −45.1 ± 10.8 −6.4 ± 0.2

R235Q DE 26 ± 1.8 2.4 ± 0.02 −8.7 ± 0.07 −6.3 ± 0.05

Measurements were conducted in an independent experimental group (n = 2 to 5) in Supple-
mentary Figs. 12 and 13.
Values are presented as mean value ± SEM. ITC analysis was performed at 25 °C.
Non-binding, not detected, and not calculated are presented by NB, ND, and NC, respectively.
aEach of binding affinities and thermodynamic parameters was calculated using the sequential
binding site model of OriginLab.
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Fig. 5 | OcHeR-mediated specific light-modulationofOmrDE. a,bATPhydrolysis
of purified OmrDE with OcHeR using the colorimetric determination of Pi. a Non-
linear fits were evaluated using the Michaelis–Menten equation, and the mea-
surements were conducted in an independent experimental group (n = 3).
b Specificity constants (kcat/Km) are represented as bars. c, d Drug translocation of
OmrDE andOcHeR co-expressed in IMVs based on the fluorescence intensity in the
absence and presence of light. c The drug translocation assay was recorded at
different time points; the relative fluorescence units (RFUs) were normalized to the
initial recording, performed in an independent experimental group (n = 5). The
significance between the two groups (WT in the absence and presence of light) was
analyzed using the two-tailed Student’s t-test. d The delta-normalized RFU means
that the data in (c) at 15min were subtracted from the initial recording, which was
analyzed using a one-way repeated-measures ANOVA with the post-hoc Dunnett
test. The box plots information: minima and maxima, dash marks; centre, cross

mark; whisker range, standard deviation; percentile range, 25% (Q1) and 75% (Q3).
e Non-liner fits were averaged from data in Supplementary Fig. 10h‒m, where the
x-axis modified logarithmic number to number. Dotted and solid lines indicate the
absence and presence of light, respectively. f The IC50 value for DAPI of data,
obtained data in Supplementary Fig. 7h‒m, is estimated using the Dose–Response
equation in an independent experimental group (n = 3). Gray and colored bars
indicate the absence and presence of light, respectively. g Photocycles of OcHeR
without and with OmrDE were recorded at 554 [G (ground) state] and 618 nm (O
state); half-life (t1/2) values through data analysis were estimated using exponential
decay equation as non-linear fitted lines of data in Supplementary Fig. 6i. h Sche-
matic model of a non-essential activator. Data information: In (a‒d, f, g), data are
presented as mean value ± SD. In (c, d), p values and no significance are indicated
with asterisks and labeled “ns”, respectively. Exact p values are indicated in the
asterisks.
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1094766). Genes encoding OcHeR (accession number: SOC58301),
OmrE (accession number: SOC58303), and OmrD (accession number:
SOC58305) were codon-optimized for protein expression in E. coli and
chemically synthesized (Integrated DNA Technologies, USA). The
synthesized genes were introduced into various vectors (details are
provided in Supplementary Methods). The oligomers used for pre-
paration and the plasmids constructed in this study are listed in Sup-
plementary Tables 2 and 3.

Phylogenetic tree and genome analysis
The phylogenetic tree was analyzed using microbial rhodopsins,
OcHeR, reported HeRs (AbHeR, Actinobacteria bacterium IMCC26103;
TfHeR, Trichococcus flocculiformis; HeR-48C12, Actinobacterium clone
fosmid 48C12; BcHeR, Bellilinea caldifistulae; TaHeR, Thermo-
plasmatales archaeon SG8-52-1), and predicted HeRs from data in
Supplementary Data 11‒18. The predicted HeRs were obtained from a
database deposited in the NCBI after analyzing the protein sequences
based on the HeR-48C12 protein sequence using protein‒protein the
Basic Local Alignment Search Tool (BLAST+, Version 2.15.0) with
default algorithm parameters56.

Each of protein sequences was aligned using MUltiple Sequence
Comparison by Log-Expectation (MUSCLE) with default algorithm
parameters in the European Molecular Biology Laboratory (EMBL)57.
The aligned sequences were subjected to evolutionary analysis using
MEGA 1158. Evolutionary analyses were performed using the maximum
likelihoodmethodwith the JTTmatrix-basedmodel59. The highest log-
likelihoods for theunrootedmaximum likelihoodwere estimated tobe
−68288.88 (among HeRs from data in Fig. 1a and Supplementary
Data 11‒18),−12132.14 (amongHeRs thatflank the neighboring genes in
the same operon fromdata in Fig. 1b and Supplementary Data 19), and
−36567.73 (between microbial rhodopsins and HeRs from data in
Fig. 3a and Supplementary Data 20). Initial trees were obtained using
the neighbor-joining method for a matrix of pairwise distances esti-
mated using the JTT model. The topology with a superior log-
likelihood value was subsequently selected. In the operon, the pro-
moters in the nucleotide gaps betweenhelR and the neighboring genes
were predicted using the phSITE, Softberry, BDGP, and SAPPHIRE
promoter tools60–63.

Protein expression and purification
Membrane protein expression and purification procedures were per-
formed as previously described64. Protein expression and purification
are briefly described and detailed in Supplementary Methods. Mem-
brane proteins were expressed in E. coli C43 (DE3) in LB medium by
isopropyl β-D-1-thiogalactopyranoside (IPTG) with and without 7μM
all-trans-retinal (ATR, Toronto Research Chemicals, Canada). Cells
containing membrane proteins were disrupted using sonication and
subsequently ultracentrifuged. Membrane fractions were solubilized
in buffer S (150mM NaCl and 50mM Tris–HCl, pH 7.0) containing 1%
(w/w) n-dodecyl-β-D-maltopyranoside (DDM, Goldbio, USA). Mem-
brane proteins were purified by an immobilized metal affinity chro-
matography usingNi2+-NTA agarose (Qiagen, USA). Afterward, purified
membrane proteins were concentrated by Amicon Ultra MWCO cen-
trifugal filter unit.

IMV preparation
IMV, an inside-out membrane vesicle, was prepared using E. coli
expressing OcHeR and Omr transporters by following a previously
reported IMV preparation method for HeR12. Membrane protein
expression in E. coli C43 (DE3) harboring an empty vector (pET21b+),
pET21b-DEH, and pET21b-DEHm was determined according to the
method of Omr transporter expression described above. After
induction, the cells were harvested with buffer P (5mM MgSO4 and
50mM potassium phosphate, pH 7.5), and the E. coli pellets were
homogenized with 20% (wet weight of pellet/buffer volume) buffer P
containing 1mM dithiothreitol and 1mM PMSF. The homogenized
cells were disrupted using the EmulsiFlex-C3 high-pressure homo-
genizer (Avestin, Canada) with three passes at 15,000psi at the
Advanced Bio-Interface Core Research Facility, Korea. Unbroken cells
and large debris were removed by ultracentrifugation, and IMVs were
washed and collected in buffer P by ultracentrifugation. The col-
lected IMVs were centrifuged, and the supernatants were stored in
liquid nitrogen. The IMVs were rapidly thawed at 37 °C for 2min
before use.

Analysis of the photochemical and biophysical properties
of OcHeR
The procedures for estimating the pKa value, preparing the RSO
membrane vesicles, and conducting light-induced H+ movement
assays have been previously described64. The OcHeR absorption
spectraweremeasured using a UV–VIS spectrophotometer (Shimadzu
UV-2550, Japan) at different pH values after adding HCl andNaOH. The
maximum absorbances of rhodopsin and retinal were used as the pKa
values of the counterion and retinal Schiff bases, respectively. The pKa
values were estimated using the Henderson–Hasselbalch equation in
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Fig. 6 | Positive cooperatively sequentialbindingmechanism. aThermodynamic
parameters of OcHeR for OmrDE from ITC analysis in Table 2 and Supplementary
Figs. 12 and 13. ITC analysis of OcHeR R233Q for OmrDE was performed using a
sequential binding site model: R233Q-1, first binding; R233Q-2, second binding.
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data are presented as mean value ± SEM. b This mechanism is assumed by OcHeR
with IFnarrow conformation of OmrDE in the absence of light, which is based on
thermodynamic parameters in ITC analysis. Protein structures of OcHeR, OmrD,
and OmrE are indicated in pink, cyan, and yellow, respectively. Attractants and
repellents are indicated by red and blue arrows, respectively.
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OriginPro 9.0 (OriginLab, USA). To measure the light-induced
H+ movement, RSO membrane vesicles were resuspended and
adjusted to an OD600 of 15 (1.5 × 1010 cells/mL) with an unbuffered
solution (100mM NaCl, 10 µM CaCl2, and 10mMMgSO4), followed by
illumination at an intensity of 460 µmol m‒2 s‒1 (approximately 100W/
m2) through a short-wave 500 nm cutoff filter (Sigma Koki SCF-50S-
44Y, Japan). The assay was performed using RSO membrane vesicles
with and without 10 µM protonophores [carbonyl cyanide
3-chlorophenylhydrazone (CCCP)], and the pH was recorded using a
pH meter (Horiba pH meter F-71. Japan) with a pH electrode bar.

His-tag pull-down assay
E. coli C43 (DE3) harboring the empty vector, pET21b-OmrD, and
pACHA-OmrE, and both pET21b-OmrD and pACHA-OmrE were sub-
jected to the Omr transporter expression and solubilization steps
described above. The solubilizedmembraneproteinswere centrifuged
at 20,000 × g and 4 °C for 5min, and supernatants were transferred
and quantified using the Bradford assay. The Ni2+ NTA agarose resin
was added to the supernatants at equal protein concentrations and
incubated at 25 °C for 2 h with rocking. The resins were washed five
times with buffer SD at 1000 × g for 2min and resuspended in the
Laemmli sample buffer. Samples were vigorously vortexed and incu-
bated at 25 °C for 30min. The resin in the incubated samples was
centrifuged at 15,000 × g for 30 s, followed by SDS‒PAGE and western
blotting with hexahistidine- and trihemagglutinin (HA)-tagged anti-
bodies. Procedures of SDS‒PAGE and western blotting are detailed in
the Supplementary Methods.

Drug resistance test of E. coli N43 harboring plasmids
Plasmids (pET21b+, pKA001-DEH, pKA001-DEHm, pKA001-DEmH, and
pKA001-DEmHm) were transformed into the E. coli N43 strain (acrA
mutation, National Bioresource Project E. coli strain, Japan)31. Trans-
formants were selected using 35 µg/mL ampicillin on LB agar plates
and further incubated in LBmedium containing 35 µg/mL ampicillin at
37 °C and 200 rpm. To induce membrane proteins in the E. coli
N43 strain harboring the plasmids, the method for Omr transporter
expression described above was followed.

Cells harboring the empty vector, OmrDE, and OmrDEm, were
incubated to screen for drug transportation. Cells harboring the
empty vector, OcHeR WT, OcHeR WT with OmrDE, OcHeR WT with
OmrDEm, OcHeR R102QwithOmrDE, and OcHeR R102Qwith OmrDEm

were incubated to investigate DAPI transportation. These cells were
harvested and washed three times with MOPS minimal medium
(40mM 3-morpholinopropane-1-sulphonic acid, 4mM tricine, 10μM
F2SO4, 9.52mM NH4Cl, 276μM K2SO4, 500 nM CaCl2, 528μM MgCl2,
50mM NaCl, 1.32mM K2HPO4, 3 nM (NH4)6Mo7O24, 400 nM H3BO3,
30 nMCoCl2, 10 nM CuSO4, 80 nMMnCl2, 10 nM ZnSO4 at pH 7.4, and
0.4% D-glucose)65. The cells were resuspended in MOPS minimal
medium and adjusted to anOD700 of 0.1 (1.0 × 107 cells/mL); 200 µL of
cells were transferred into a 96-well microplate, with each well con-
taining 5 µL of the different concentrations of the drugs (chlor-
amphenicol, tetracycline, kanamycin, Hoechst 33342, and DAPI). The
plates were subsequently incubated at 25 °C and 950 rpm (FinePcr,
Korea) in the absence and presence of light (specific green laser,
532 nm) at 25 μmol m−2 s−1. Further OD700 measurements of E. coli
were performed using the 2300 EnSpire Multimode Plate Reader
(PerkinElmer, USA). The MIC80 value, the lowest concentration of a
drug that inhibits cell growth by up to 80% compared with cells
without the drug, was determined. Dose–response analysis was per-
formed using the DoseResp function (OriginPro 9.0), which follows
Eq. 1a:

y=A1 +
A2� A1

1 + 10 Logx0�xð Þp ð1aÞ

Derived parameters: A1, bottom asymptote; A2, top asymptote;
Logx0, center; and p, hill slope. IC50 values were determined using
Eq. 1b:

IC50 = 10
Logx0 ð1bÞ

PPI using ITC analysis
ITC analysis of HeR and proteins was performed according to pre-
viously reported methods, with slight modifications12,13. Purified
OcHeR, as well as OmrD, E, DE, and DtcEtc, were completely exchanged
with buffer SD using the Amicon Ultra-4 10,000 and 50,000 MWCO
centrifugal filter units, respectively. Purified OmrDtcEtc was com-
pletely exchanged with buffer SD using the Amicon Ultra-4 30,000
MWCO centrifugal filter units. After the exchange, the concentrated
proteins were quantified using the Bradford assay. In the PPI, OcHeR
was continuously injected into OmrD, E, and DE at 25 °C for 500 rpm
using the MicroCal ITC200 injector (Malvern Panalytical, United
Kingdom) at the Advanced Bio-Interface Core Research Facility,
Korea. ITC data for the thermodynamic parameters were evaluated
using Origin 7.0 SR4 (Origin Lab, USA) with one and sequential
binding site models.

ATP hydrolysis assay
The ATPase activity of OmrDE or a complex protein (OmrDE binding
to OcHeR) was measured based on released Pi, which was measured
via the colorimetric determination of Pi through phosphomolybdate
in acetone66. First, the purified OcHeR and OmrDE, quantified by the
Bradford assay, were incubated at a protein-to-protein molar ratio of
1:1 at 25 °C for 30min with rocking in the dark. After binding, the
drug was added, and the mixture was gently mixed. An Mg-ATP
solution (the ratio of MgSO4 and ATP was 1.5:1) was added to activate
ATPase. The reaction was performed at 25 °C in the absence and
presence of light (specific green laser, 532 nm) at 35 μmol m−2 s−1

(approximately 7.61W/m−2). The final concentration of the reactants
was 150mMNaCl, 50mM Tris–HCl at pH 7.0, 0.02% (w/v) DDM, 1 μM
complex protein, and different concentrations of the drug and Mg-
ATP solution. The reaction was stopped by adding ice-cold Na2-EDTA
to a final concentration of 170mM. An eightfold stopped sample
volume of freshly prepared AAM solution (2 parts acetone, 1 part
10mM ammonium molybdate, and 1 part 5 N H2SO4) was added; the
sample was developed for 5min. Then, a 0.1-fold stopped sample
volume of 1M citric acid was added to terminate the development
process. Finally, Pi concentration was measured at a wavelength of
355 nmusing the 2300 EnSpireMultimode Plate Reader. With OmrDE
alone, the reaction was performed using the abovementioned pro-
cedure (colorimetric determination of Pi) without OcHeR binding.
The Pi concentrations were calculated using a Pi standard curve,
prepared using the procedure described above with different con-
centrations of potassium phosphate buffer at pH 7.5 without
proteins.

Drug translocation assay in IMVs
Previously reported methods of drug transport via ABCT were fol-
lowed with slight modifications19,20,22. IMVs containing the proteins
(OmrDE and OcHeR) were diluted with buffer P, and DAPI was subse-
quently added. After stabilization of DAPI translocation, OmrDE
activity was carried out by adding Mg-ATP solution at 25 °C in the
absence and presence of light (specific green laser, 532 nm) at 40μmol
m−2 s−1 (approximately 8.7W/m−2). The reactant compositions were as
follows: buffer P, IMVs (OD650 = 0.1), 1 µM DAPI, and Mg-ATP solution
(15mM MgSO4 and 10mM ATP). The fluorescence intensity via DAPI
translocation was measured using the 2300 EnSpire Multimode Plate
Reader at excitation and emission wavelengths of 360 and 490 nm,
respectively.
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Time-resolved UV–visible measurement
For protein binding or non-binding, the purified OcHeR with and
without OmrDE was incubated at 25 °C for 1 h, with a 1:1 molar ratio of
proteins. The samples were illuminated with white light at 460 μmol
m−2s−1 (approximately 100W/m−2). After illumination, differences in the
absorbance of OcHeR in the dark and under light were fitted and
peaked at two wavelengths. The two wavelengths of the samples were
monitored every 20ms using the Scinco UV–VIS spectrophotometer
(S-3100, Korea) after illumination to excite rhodopsin for 10 s. Thedata
were fitted using ExpDec1 function in OriginPro 9.0, which follows
Eq. 2a:

y= y0 +A1e
�x=t1 ð2aÞ

Derived parameters: A1, offset; A, amplitude; and t, time constant.
Half-life (t1/2) value was determined using Eq. 2b:

t1=2 = t1 × ln 2 ð2bÞ

Protein crystal structure analysis
The protein sequences of OcHeR, OmrD, and OmrE were analyzed
using the Swiss Model with the available protein crystal structure HeR-
48C12 (PDB code: 6SU4) for OcHeR and TmrAB inward-facing con-
formation (PDB code: 6RAF) for heterodimeric OmrDE26–28,67. The
predicted crystal structures were analyzed using the PyMOL program
(PyMOL Molecular Graphics System, Version 2.52, Schrödinger, LLC).
To analyze electrostatic potential distribution, the predicted crystal
structure of OcHeR was determined using CHARMM-GUI 3.868.

Protein–protein docking simulation between the OcHeR homo-
dimer and OmrDE heterodimer was conducted using the ClusPro
2.0 server69. Three computational steps were performed using the
ClusPro 2.0 server. Rigid body docking was used to sample billions of
conformations using PIPER,which calculates the docked conformation
energies in grids using a fast Fourier transform correlation approach.
Root-mean-square deviation was generated to determine the largest
clusters. Finally, the samples were refined using CHARMM minimiza-
tion. The docking server-generated various models of balanced, elec-
trostatic-favored, hydrophobic-favored, and van der Waals and
electronic sets for energy coefficients with weighted scores.

Statistical analysis
Statistical analyses were performed using the OriginPro 9.0. The
indicated values represent the mean ± SD (standard deviation) and
were analyzed using the independent two-tailed Student’s t-test and
one-way repeated-measures ANOVA using the post-hoc Dunnett test.
The following P-values indicate statistical significance: *p <0.05,
**p <0.01, and ***p <0.001. N-values are indicated within figure legend
and refer to biological replicates. The statistical analyses applied in
each experiment are described in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. The genome of the O. cerasi strain USBA17B2 is
collected in the NCBI under accession number OBQK01000028 and
the Joint Genome Institute under project ID 1094766. Genes encoding
protein used to recombinant protein in this study are available in NCBI
under accession numbers SOC58301 (OcHeR), SOC58303 (OmrE), and
SOC58305 (OmrD). The template protein crystal structures for pre-
dicting the protein crystal structureofOcHeR andOmrDE are available
in Protein Data Bank under PDB codes 6SU4 (HeR-48C12) and 6RAF

(TmrAB inward-facing conformation). All data used in this study are
available in “Methods”, Supplementary information, Supplementary
data, and Source data. Source data are provided with this paper.
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