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Heterogeneous associations of multiplexed
environmental factors andmultidimensional
aging metrics

Fan Pu1, Weiran Chen1, Chenxi Li1, Jingqiao Fu 2, Weijing Gao1, Chao Ma 3,
Xingqi Cao1, Lingzhi Zhang1, Meng Hao 4, Jin Zhou5, Rong Huang5,
Yanan Ma 5,7 , Kejia Hu 6,7 & Zuyun Liu 1,7

Complicated associations between multiplexed environmental factors and
aging are poorly understood. We manipulated aging using multidimensional
metrics such as phenotypic age, brain age, and brain volumes in the UK Bio-
bank. Weighted quantile sum regression was used to examine the relative
individual contributions of multiplexed environmental factors to aging, and
self-organizing maps (SOMs) were used to examine joint effects. Air pollution
presented a relatively large contribution in most cases. We also found fair
heterogeneities in which the same environmental factor contributed incon-
sistently to different aging metrics. Particulate matter contributed the most
to variance in aging, while noise and green space showed considerable
contribution to brain volumes. SOM identified five subpopulations with
distinct environmental exposure patterns and the air pollution subpopulation
had the worst aging status. This study reveals the heterogeneous associations
of multiplexed environmental factors with multidimensional aging
metrics and serves as a proof of concept when analyzing multifactors and
multiple outcomes.

Accelerated aging is a crucial risk factor for various chronic diseases
and mortality1. Given that aging is a complicated multisystemic
process, a single aging biomarker may not comprehensively
and accurately portray the whole landscape of the personal aging
process due to the individual heterogeneity of cells, tissues, and
organs2. Moreover, considering that persons may hold varying rates
of aging3, using chronological age to measure one’s aging process
may be arbitrary and opinionated. In fact, aging could be character-
ized by various physiological phenotypes. Many domain-specific

aging metrics have been developed and widely used, such as the
brain (e.g., brain age4) and physical functioning (e.g., frailty pheno-
type score5,6). Additionally, we have recently developed a composite
aging metric, phenotypic age (PhenoAge), derived from multi-
systemic chemistry biomarkers to reflect changes in multiple
dimensions, including body composition, homeostatic mechanisms,
and energetics over time. These agingmetrics can capture morbidity
and mortality risk beyond chronological age5,7–11, thus providing
unique opportunities to investigate risk factors for aging processes
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and subsequently inform preventive programs against aging8,12–14.
Considering the heterogeneous biological aging process across
individuals and organs15, it is necessary to examine whether certain
factors have varying effects on multidimensional aging, rather than
evenly and synchronously.

Given that numerous exposures throughout the life course
jointly depict the multifaceted picture of aging, understanding the
factors contributing to aging is critical to postponing aging and
decreasing multiple chronic disease risks. We have previously
demonstrated the contributions of various factors to aging, includ-
ing genetics12, unhealthy lifestyles12,13, life course adversities13,14, and
certain chemicals16, with limited focus on environmental factors,
which are considerably modifiable contributors17–19. Among the few
studies on environmental exposures and aging, the majority only
evaluated a single environmental factor20–23. However, individuals are
exposed to multiplexed environmental factors rather than a single
exposure in reality. Focusing on one of the multiplexed correlated
factors may result in an erroneous estimation of the potential asso-
ciation of environmental factors with aging. Hence, considering
environmental factors holistically and even subdividing potential
specific environmental exposure patterns among populations is cri-
tical to deepening the understanding of the extent and how multi-
plexed environmental factors jointly contribute to aging, as well as
revealing the potential variance in aging caused by environmental
inequality.

In this work, we conducted a proof-of-concept study (Fig. 1) using
data from the UK Biobank (UKB), a large population-based cohort
study with ~500,000 participants aged 40–69 years24. We show
heterogeneous associations of multiplexed environmental factors
available in the UKB (i.e., air pollution, green and blue spaces,
and noise) with multidimensional aging metrics while air pollution
presents a relatively large contribution in most cases. Then, five

subpopulations with distinct environmental exposure patterns are
identified, exhibiting the aging inequality, and the air pollution sub-
population has the worst aging status.

Results
Population characteristics
As shown in Supplementary Table 1, the number of participants was
344,088 and 416,998, respectively, in the analysis of PhenoAge and
frailty phenotype score. A total of 34,588 participants, with a mean
age of 55.46 (standard deviations = 7.37) years, were included in the
analysis of brain age. Air pollution (except PM2.5–10) was strongly
positively correlated with each other (r > 0.60) (Fig. 2A). Green space
and blue space in different buffers were strongly correlated with one
another, while the correlation between green space (1000m buffer)
and blue space (1000m buffer) was relatively weak (r = 0.18).
However, not all aging metrics were highly correlated (Fig. 2B).
Particularly, age showed a strong correlation with PhenoAge
(r = 0.85), as well as the volume of gray matter (GM) (r = −0.61) and
brain (r = −0.56) (Fig. 2B).

Relative individual contributions of multiplexed environmental
factors to aging
As shown in Figs. 3–5, multiplexed environmental factors were sig-
nificantly associatedwith all agingmetrics, andPM10was almost always
dominant. However, fair heterogeneities in the relative contributions
of the same environmental factors to multidimensional aging metrics
were observed.

Specifically, PhenoAge had a significant positive association with
multiplexed environmental factors (β =0.043; 95% CI: 0.014, 0.072,
Fig. 3), and PM10 was predominant, with a relative contribution of
40.8%, as a major contributor among the multiplexed environmental
factors to the variance in PhenoAge. Meanwhile, PM2.5–10 (40.4%)

Fig. 1 | Overview of the study design. A The complex associations with multi-
plexed environmental factors and multidimensional aging metrics. B Weighted
quantile sum regression (WQS) and self-organizingmaps (SOM)were performed to
deal with the high dimensionality and collinearity of multiplexed environmental
factors and figured out the individual and joint effects of multiplexed

environmental factors on aging, respectively. Five subpopulations with specific
environmental exposure patterns were distinguished and were reflected in exact
locationson theUKmap. Cartoonfigures canbe freelydownloaded at https://www.
iconfont.cn/.
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indicated its second-largest contribution to the variance in PhenoAge.
The relative contributions were similar to that for brain age (PM10

contributed 37.2% and PM2.5 contributed 32.5%).
Regarding frailty phenotype score, PM2.5 (32.3%) and NOx (30.9%)

surpassed PM10 (9.8%), taking the dominant place. Although 24-h
average noise did not showmuch contribution to other agingmetrics,
it presented a considerable contribution to the variance in GM (27.1%)
and brain volume (19.3%).

As shown in Fig. 4, air pollution (particularly PM10) still accounted
for the major contributions of variance in these brain indicators and
cognitive performance. Compared with other regions, the precuneus
and postcentral gyrus were more influenced by multiplexed environ-
mental factors. Green space showed considerable contributions to

variance in cognitive performance (e.g., fluid intelligence test, digit
span task, and trail making).

Specific environmental exposure patterns among populations
across the UK
Based on multiplexed environmental factors, self-organizing maps
(SOMs) identified five subpopulations (Fig. 5A–C) illustrates the spa-
tially explicit distribution of the five subpopulations in the UK. Parti-
cipants were not evenly distributed across subpopulations, and we
named subpopulations mainly based on each environmental exposure
pattern and location characteristics. Most participants experienced
moderate air pollution and heldmoderate green space and blue space,
roughly circled themajor cities as the transition from cities to suburbs

Fig. 2 | Heatmaps of Spearman’s correlations among multiplexed environ-
mental factors. (A) and multidimensional aging metrics (B). PM10, particulate
matter with aerodynamic diameter ≤10 µm; PM2.5, particulate matter with aero-
dynamic diameter ≤2.5 µm; PM2.5–10, particulatematter with aerodynamic diameter

between 2.5 and 10 µm; NO2, nitrogen dioxide; NOx, nitrogen oxides. We used
Spearman’s correlations to assess the correlations among multiplexed environ-
mental factors (A) and multidimensional aging metrics (B). Source data are pro-
vided as a Source Data file.

Fig. 3 | Relative individual contributions ofmultiplexed environmental factors
to aging metrics. PM10, particulate matter with aerodynamic diameter ≤10 µm;
PM2.5, particulate matter with aerodynamic diameter ≤2.5 µm; PM2.5–10, particulate
matter with aerodynamic diameter between 2.5 and 10 µm; NO2, nitrogen dioxide;

NOx, nitrogen oxides.WeusedWQS to evaluate the relative individual contribution
ofmultiplexed environmental factors to agingmetrics. Source data are provided as
a Source Data file.
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and mountain areas, probably representing the population living in
rural‒urban fringe areas (the rural‒urban fringe subpopulation). The
air pollution subpopulation experienced themost serious air pollution
and held the least green space, distributed more densely in the
southeast UK and mostly located in major cities, such as London,
Manchester, Liverpool, and Birmingham (dotted in Fig. 5B, C with
circles), probably representing the population living in the center of
major cities. The green space subpopulation experienced the lowest
air pollution and held the greenest space, likely adjacent to mountain
areas (e.g., the Peak District National Park, Mendip Hills, NorthWessex
Downs AONB, etc.), wrapping around the outside of the rural‒urban
fringe subpopulation. The noise subpopulation and the blue space
subpopulation were distributed in a relatively scattered manner with
likely linear tendencies. The noise subpopulation experienced the
most severe road traffic noise and seemed to be adjacent to the cross
ofmajor roads in relatively open suburbs (Supplementary Fig. 2)25. The
blue space subpopulation had the most blue space and was probably
distributed along rivers (Otter, Rother, Blyth) (Supplementary Fig. 3)26.
In the multiple linear regression model, compared to the green space
subpopulation, the blue space subpopulation showed a nonsignificant
difference, except for frailty phenotype score (β =0.025; 95% CI:
0.005, 0.045) (Fig. 5D). Specifically, the air pollution subpopulation
mostly located inmajor cities consistently had aworse aging status; for
example, they had the highest frailty phenotype score (β = 0.045; 95%
CI: 0.037, 0.053), and the worst brain age (β = 0.133; 95% CI: 0.053,
0.213). Although the rural‒urban fringe subpopulation experienced
lower air pollution and road traffic noise than the noise subpopulation,
less green space among them may result in their worse frailty pheno-
type score as high as air pollution subpopulation (β =0.045; 95% CI:
0.039, 0.051) and accelerated PhenoAge (β =0.081; 95% CI: 0.036,
0.126). The noise subpopulation represented the second worst aging
status in GM volume (β = −0.045; 95% CI: −0.069, −0.021) and the
whole-brain volume (β = −0.052; 95% CI: −0.085, −0.019), whichmight
imply possible interactive negative effect between air pollution and
noise on brain aging. These results provided contribution estimates
based on observed contrasts in themultiplexed environmental factors

and suggested synergistic contributions of air pollution, road traffic
noise, green space, and blue space.

Additional analyses
The results of the linear regressionmodelswere largely consistentwith
those of WQS (Supplementary Table 2). For example, an interquartile
range (IQR) increase in PM10 contributed the most to variance in
PhenoAge (β = 0.032; 95% CI: 0.085, 0.056), while an IQR increase in
PM2.5 contributed the most to variance in frailty phenotype score
(β =0.023; 95% CI: 0.019, 0.027). The findings mainly remained the
same while adjusting for iSES, instead of nSES. Particular matters and
nitrogen oxides continued to show the dominant contribution to
multidimensional aging metrics in WQS models. The air pollution
subpopulation had the worst aging status, e.g., they had the highest
PhenoAge (β =0.189; 95% CI: 0.134, 0.244). Detailed results were
reported in Supplementary Results and Supplementary Tables 3‒6.
After eliminatingparticipants living in the current location for <5 years,
the results still largely remained the same (Supplementary Tables 7‒8).

According to the stratified analyses (Supplementary Tables 9‒16),
overall, air pollution remained the most important contributor to
multidimensional aging metrics. Males seemed to be a vulnerable
subpopulation in which each aging metric was significantly associated
with multiplexed environmental factors. In males, PM10 made the
dominant contribution to PhenoAge (45.5%), white matter (WM)
volume (54.5%), and brain volume (52.7%). Meanwhile, heavy drinkers
(drinking daily or almost daily) were more likely to be influenced
by multiplexed environmental factors, especially for their brain
volumes. For example, multiplexed environmental factors were
significantly associated with the whole-brain volume among heavy
drinkers (β = −3505.70; 95% CI: −5730.89, −1280.51) and moderate
drinkers (drinking one to four times per week) (β = −2010.94; 95% CI:
−3342.82, −678.98).

Compared to the green space subpopulation, the air pollution
subpopulation remained to have the worst aging status in most aging
metrics, especially for frailty phenotype score and the rural‒urban
subpopulation also showed a worse aging status in stratified analyses.

Fig. 4 | Associations of each environmental factor with volumes of aging-
related regions and subcortical areas, and cognitive performances. We used
linear regression to evaluate the association of each environmental factor with
aging-related regions, subcortical areas, and cognitive performances.
Benjamini–Hochberg procedure was used to control the family-wise error rate in

the main analyses (n = 285). Only associations with an FDR<0.05 were displayed.
The height, color, and size of each data point indicate the coefficient (β) between
each environmental factor and one aging metric. The horizontal dashed line
denotes the positive and negative correlation boundary. Source data are provided
as a Source Data file.
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For example, among participants with age ≥60 years, both the air
pollution subpopulation (β =0.047; 95% CI: 0.035, 0.059) and the
rural‒urban subpopulation (β = 0.042; 95% CI: 0.032, 0.052) had a
higher frailty phenotype score.

Discussion
Based on unique data from the UK, we disentangled the complex
individual and joint contributions of the multiplexed environmental
factors to aging, indicative of multidimensional aging metrics. The
results suggested synergistic contributions of multiplexed environ-
mental factors to aging, and the largest contributor was air pollution.
Moreover, we also found heterogeneities in the relative contributions
of environmental factors tomultidimensional aging. Particulatematter
(i.e., PM2.5, PM2.5‒10, and PM10) showed the predominant contribution

to variance in multidimensional aging metrics, while noise and green
space showed considerable contribution to brain volumes. SOM
reduced the dimensionality of the data and identified subpopulations
exhibiting multiple environmental exposure patterns. Interestingly,
the associations between identified subpopulations and multi-
dimensional aging metrics were largely consistent. Compared to the
green space subpopulation, the air pollution subpopulation had the
worst aging status, indicative of almost all aging metrics (e.g., highest
frailty phenotype score and brain age). The findings provide strong
evidence of the joint contribution of multiplexed environmental fac-
tors to aging and heterogeneity in the contributions of the same
environmental factors tomultidimensional aging and serve as a proof-
of-concept study for disentangling multifactor and multioutcome
issues.

Fig. 5 | The characteristics (A) and distributions of identified subpopulations
(B, C), and the associations of subpopulations with various aging metrics (D).
SOM, self-organizing map. We used SOM analyses to recognize group structure.
Populationsweredifferentiated into air subpopulation (red, specificnamewasused
only to refer to the main environmental exposure feature, not all features), green
space subpopulation (green), rural–urban fringe subpopulation (yellow), noise
subpopulation (black), blue space subpopulation (blue), and others (gray).
A Characteristics of subpopulations. A larger sector size represents the larger
amount of a specific environmental factor. B Distributions of subpopulations and
C Distributions separately. We used multiple linear regression models to evaluate
the associations of subpopulations with various aging metrics (D). Linear

regression models were performed to examine the associations of subpopulations
with various aging metrics. All models were adjusted for age, sex, ethnicity,
neighborhood socioeconomic status (nSES), smoking status, BMI (category vari-
able), alcohol intake frequency, regular exercise, healthy diet, history of cardio-
vascular disease (CVD), and cancer at baseline. Benjamini–Hochberg procedure
was used to control the family-wise error rate in the main analyses (n = 285). Two-
sided P value of <0.05 was considered statistically significant (values are repre-
sented as a coefficient ± standard error of the mean. *P <0.05, **P <0.01,
***P <0.005; different subpopulations vs. green space subpopulation). The blank
map of the UK can be freely downloaded from GADM version 4.1 (https://www.
gadm.org/). Source data are provided as a Source Data file.
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Despite many studies examining the associations of some indivi-
dual environmental factors (e.g., PM2.5

21,27,28, NO2
21, and green

space29–32) with aging, few have examined the relative contributions of
multiple environmental factors to aging. Evaluating single individual
factors’ contributions without considering other environmental fac-
tors may ignore potential confounding and interaction contributions,
partially due to the strong correlations among the multiplexed envir-
onmental factors, asweobserved inFig. 2. For instance, higher levelsof
green space tend to be related to lower levels of air pollution and
traffic noise33. The geographical relations between air pollution and
road traffic noise may be universal because road traffic noise is con-
nected to traffic intensity, which impacts traffic-associated air
pollutants33,34. Consequently, conclusions solely evaluating individual
factors may be limited and biased, which makes them difficult to be
interpreted and validated. This study holistically considered multi-
plexed environmental factors and disentangled their complex asso-
ciations with aging to some extent, which may serve as a window for
predicting various health outcomes earlier and more accurately, as
well as another angle when interpreting results from previous studies
that only considered a single environmental factor.

Given the global disparity in environmental pollution35,36, indivi-
dualsmay have heterogeneous environmental exposure patterns37 and
thus face differentiated health risks. In this study, SOM reduced the
dimensionality of the data and identified five subpopulations across
the UK. These subpopulations with distinct environmental exposure
patterns showed significant aging disparities. Compared to the green
space subpopulation, the air pollutant subpopulation mostly located
inmajor cities in the UK had the worst aging status throughout various
agingmetrics, indicating the important contribution of air pollution to
aging, which was consistent with the results from WQS. Interestingly,
although the rural‒urban fringe subpopulation had lower air pollution
and road traffic noise than the noise subpopulation, it still suffered
from a poor aging status (e.g., the second highest frailty phenotype
score and the highest PhenoAge), which may be due to less green
space. Because the rural‒urban fringe subpopulation was mainly
located between the air pollutant subpopulation and the green space
subpopulation, it may imply that the poor environmental qualities in
major cities could have a radiative effect on persons in surrounding
areas, whose accelerated aging has probably been ignored previously.
This study may serve as a conceptual framework for more accurately
identifying subpopulations with the same environmental exposure
pattern and locations, helping develop targeted policies to improve
persons’ surrounding environmental qualities and further relieve the
aging burden.

In addition to the oversimplified choice of multiplexed environ-
mental factors, the metrics of aging were also not comprehensive in
previous studies. As a multifaceted process with variation among
individuals and organs15, aging is unlikely to be interpreted by a single-
dimensional agingmetric. Using various agingmetrics, which focus on
multisystemic and domain-specific dimensions, our study revealed
heterogeneity in the relative contributions of the same environmental
factors tomultidimensional aging. Suchheterogeneity further stressed
the complexity of the aging process and the different biological
mechanisms of how environmental factors may affect the aging pro-
cess. First, recent studies have reported differentiated aging clocks
and biomarkers involving various organs (e.g., liver and kidney) and
systems (e.g., immune systems and metabolic system)15,38,39, which
imply that there might be systemic aging drivers/clocks overlaid with
organ/tissue-specific counterparts38, exhibiting complicated interac-
tions. Second, taking road traffic noise as an example, we found that
it showed more considerable contributions to the brain aging
process (e.g., brain age acceleration and gray volumes decrease).
When noise travels through the auditory pathway to the brain, it trig-
gers the paraventricular nucleus of the hypothalamus to release
corticotrophin-releasing hormone. This process leads to the activation

of proinflammatory cytokines and oxidative stress, which in turn sti-
mulate the synthesis, secretion, and neurotoxicity of neuro-
transmitters. Additionally, many studies have demonstrated that the
brain’s susceptibility to noise can be attributed to the impact of stress
on the higher cortical and limbic structures40,41. Besides, several genes
(e.g., SOX242,43, iNOS44, and NXN45,46) were significantly associated with
exposure to specific air pollutants (e.g., PM2.5 and PM10), which may
further influence various biological pathways (e.g., insulin resistance
and TNF signaling pathway)47. Further, asynchronous inter- and intra-
organ gene expression during aging process39,48 could be differentially
affected by specific pathways. Future studies are poised to more sys-
tematically unravel the heterogeneous contributions of specific
exposures to different aging pathways and molecules.

Overall, as a multisystemic process, aging is typically a multi-
dimensional outcome that provides a window into disease prediction
and tracing. Quantifying the contribution of environmental factors to
multidimensional aging holds substantial promise for precision heal-
thy aging and related environmental management. It should be noted
that although this study used several classic aging metrics, as the
development of new aging metrics of various organs and systems
(recent advanced aging measurements), the present results may be
biased to some extent.

To our knowledge, this was the first study to link multiplexed
environmental factors to multidimensional aging, providing a proof-
of-concept study for dealing with multifactor and multioutcome
issues. The heterogeneity that we observed is actually a common
dilemma when including multidimensional factors and outcomes
simultaneously. The intriguing finding is that the results turn to con-
sistency in the associations of subpopulations with multidimensional
aging. The air pollution group remained at the worst aging status,
indicative of multidimensional aging metrics, while the green space
group remained the best. This implies that the heterogeneity dimin-
ished or, to some extent, was concealed when reducing the dimen-
sionality of data onmultiplexed environmental factors. In this way, we
were able to focus on the latent inequality in the macro dimension,
whichmademore sense in public health. We present efforts in dealing
with multifactor and multioutcome issues, but more challenges
remain. First, the concept of exposomes and phenomics is attractive.
UKBprovides a unique opportunity to analyze complex associations of
multiple factors and outcomes, but we face the problem of having
varying sample sizes for various outcomes. Moreover, few databases
have suchcomprehensivedata. Although several large cohorts, suchas
CHIMGEN49, ABCD50, cVEDA51, and Generation R52, provide relatively
complete exposures or outcomes, it is still difficult to standardize and
harmonize the data. This is one of the key reasons that the findings
such as ours could not be verified externally. Some organizations, such
as Gateway toGlobal AgingData53, aremaking efforts, but it remains to
be a long way. Second, although we used cutting-edge statistical
methods and found some interesting results in this study, the
increasing data dimensions and sample size will bring great statistical
challenges. Whether other new methods, including network analysis54

and artificial intelligence, could address these challenges is unclear.
Finally, many studies assume that exposure affects outcomes linearly,
but this is not necessarily true. Whether multiple factors affect out-
comes in a nonlinear or even systematic way requires further investi-
gation. For example, Cohen et al. proposed understanding aging from
the perspective of complex systems, and many aging processes are
characterized by the interaction of multiple systems15,54–56.

This study has several strengths. First, the large sample size of the
middle-aged and older adults from UKB and its spatial distribution
across the UK allowed for higher precision and power than smaller
studies, especially in multifactor and multioutcome analyses. The
diversity of the UK also allowed the SOM to identify a complete col-
lection of environmental exposure patterns. Second, cutting-edged
statistical methods provide a more comprehensive interpretation of

Article https://doi.org/10.1038/s41467-024-49283-0

Nature Communications |         (2024) 15:4921 6



the individual and joint contributions of the multiplexed environ-
mental factors to aging. Third, the actual distributions of subpopula-
tions on the UK map further validated the reasonability and accuracy
of the SOM clustering results. Fourth, using multidimensional aging
metrics, we comprehensively depicted the whole landscape of aging
and indicated the heterogeneity of the contribution of the same
environmental factors tomultidimensional aging, which highlights the
necessity and challenges when dealing with multifactor and multi-
outcome issues.

However, there are still some limitations. First, as a cross-
sectional study, the causal inference of this study was not as strong.
To further verify our findings, effective methods to analyze the
longitudinal contribution of baseline multiplexed environmental
factors to subsequent health outcomes are urgently needed. Second,
the data on more environmental exposures such as night light,
indoor air pollution, and temperature, which may be also critical to
aging, were not available in the UKB. Future studies are needed to
depict more comprehensive individual environmental factors. Third,
due to the assumed national traffic flow baseline value and UKB’s
noise algorithm only considering major road noise and not con-
sideringother noise types (e.g., the impact of secondary roads), noise
exposures for those at low exposure levels may be overestimated,
and exposure for those living in areas with heavily trafficked minor
roads may be underestimated. This may also partially explain the
scattered distribution of the noise subpopulation in this study.
Fourth, our study’s participants were mostly White, healthier, and
had higher socioeconomic status (SES) than the general population
in the UK. Finally, although the data possessed were consistent with
recent research, the time duration between different data collection,
especially between baseline data collection and imaging assessment,
may cause potential confounding effects.

In this large sample of a UK population, we captured the relative
contributions of multiplexed environmental factors to aging and
revealed the heterogeneity in the same environmental factors to
multidimensional aging.Moreover, we identified five subpopulations
with different environmental exposure patterns across the UK and
observed their differentiated distribution and associations with
multidimensional aging, with the air pollution group having the
worst aging status. This proof-of-concept study reveals how
imperative it is to holistically consider multiplexed environmental
factors in analyses of their associations with aging and further points
out the necessity and challenges when dealing with multifactor and
multioutcome issues.

Methods
Study population
UKB is a national cohort study conducted from 2006 to 2010 and
recruited ~500,000 participants aged 40–69 years in the UK. The
data on the baseline questionnaire and anthropometric measures
were collected at 22 assessment centers across England, Wales, and
Scotland. A detailed description of the sampling design and data
quality of UKB was published elsewhere24,57. In the analysis of each
aging metric, participants with missing data needed to calculate
the aging metric were excluded. Details were provided in Supple-
mentary Fig. 1. The North West Multi-Centre Research Ethics Com-
mittee as a Research Tissue Bank approved the UKB. Each participant
providedwritten informed consent before the study, and researchers
were allowed to use data from UKB without additional ethical
clearance.

Exposure assessment
Air pollution measurements. The land use regression model inte-
gratingmultisourcepredictors such as road, landuse, and topography,
developed as part of the European Study of Cohorts for Air Pollution
Effects project58,59, was adopted to estimate the annual average

concentration of particulate matter with a diameter of 10 µm or less
(PM10), particulate matter with a diameter of 2.5 and 10 µm (PM2.5–10),
and particulate matter with a diameter of 2.5 µm or less (PM2.5),
nitrogen dioxide (NO2), and nitrogen oxides (NOx) at a spatial resolu-
tion of 100m. We used annual average air pollutant concentrations at
participants’ residential locations collected at the baseline visit to
assess individual exposures to air pollution60,61. Annual air pollution
concentrations for NO2 and PM10 were available during 2005–2010
and 2007–2010, respectively, and the annual averages of NO2 and
PM10 were used as exposures in the analysis. While PM2.5, PM2.5–10, and
NOx were only available for 2010; and thus, we used the 2010 data of
these pollutants to assess individual exposures62.

Residential green andblue spaces. The percentages of green spaces
and blue spaces in the participants’ home neighborhood (300m and
1 km radius around residential location) were estimated based on a
land use map from the 2005 Generalized Land Use Database (GLUD),
provided by the UK Department for Communities and Local Gov-
ernment (https://www.gov.uk/government/statistics). The GLUD
records the dominant land use types based on a ten-class typology
(e.g., domestic buildings, nondomestic buildings, roads, green space,
blue, etc.) at a spatial resolution of 1 km63. Each participant’s expo-
sure to green spaces or blue spaces was computed by overlaying the
mapped green and blue spaces with the circle buffers surrounding
residential locations in the geographic information system software
to calculate the percentage of each buffer that contained these land
cover types. Considering that the residential green (and blue) spaces
in the buffers with radii from 300 to 1000m were highly correlated
(Spearman’s correlation coefficient (ρs) = 0.813 for green spaces
and 0.629 for blue spaces), we only reported the associations
with the green (andblue) space exposures using a bufferwith a radius
of 1000m.

Road traffic noise. The 2009 annual mean road traffic noise of
all roads in the participant’s home neighborhood (500m radius
around residential location) was modeled using the Common Noise
Assessment Methods, developed from the European Union noise
modeling framework64,65. Themodel considereddetailed information
on absorption from buildings, noise propagation and the distance
between receptor and source, land use and angle of view, building
heights, meteorology, road network geography, and land cover when
calculating hourly vehicle flows using a daily average traffic profile19

and was widely used in previous studies19,66. We used the 24 h aver-
aged noise (weighted average 24 h noise sound level, with a penalty
of 5 and 10 dB added to the evening hours and night hours, respec-
tively) and night-time noise (average sound pressure level during
night-time hours 23:00–07:00) to be comparable to previous
studies19.

Multidimensional aging metrics
A multisystemic aging metric—PhenoAge. Derived from multi-
systemic chemistry biomarkers, PhenoAge serves as a relatively
comprehensive aging metric. The biomarkers obtained from blood
samples at the time of participant enrollment were used to calculate
PhenoAge67. Within 24 h of the blood draw, the samples were nor-
mally analyzed at the UKB central laboratory using Beckman Coulter
LH750 instruments. The laboratory results were then recorded in the
participant’s data files. The UKB website provides more details about
biomarker data processing68,69. PhenoAge was developed by regres-
sing mortality hazard on 42 clinical biomarkers and chronological
age7,8, and has been widely used and demonstrated to capture mor-
bidity andmortality risks across diverse subpopulations fromvarious
countries48,70.

Based on the Gompertz distribution, chronological age and nine
clinical biomarkers were selected into a parametric proportional
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hazards model, and 10-year mortality risk was converted into units of
years. The equation to calculate PhenoAge is presented as follows

Phenotypic Age= 141:50225+
ln ð�0:00553 × lnð1�MortalityRiskÞÞ

0:090165

where

Mortality Risk = 1� e
�exb ðexpð120 × γÞ�1Þ

γ

γ =0:0076927

xb= � 19:907� 0:0336 × albumin+0:0095× creatinine

+0:1953× glucose+0:0954× lnðC� reactiveproteinÞ
� 0:012 × lymphocyte percent +0:0268×mean corpuscular volume

+0:3306× red cell distributionwidth +0:00188× alkalinephosphatase

+0:0554×whitebloodcell count+0:0804×chronological age

Domain-specific aging metrics—physical functioning. Being widely
used as a valid metric of the aging process in geriatrics and
gerontology71,72, frailty is characterized by an increased vulnerability to
stressor events caused by cumulative diminished reserve and dysregu-
lation in multiple physiological systems6. We used frailty phenotype
score, a widely used physical frailty measurement proposed by Fried
et al.6 Frailty phenotype score was evaluated using five criteria (unin-
tentional weight loss, exhaustion, weakness, slow gait speed, and low
physical activity) andwasusedpreviously in theUKB5.Of thefive criteria,
weakness was assessed using objectively measured handgrip strength;
the other four criteria were assessed using a self-report questionnaire
(see details in the Supplementary Method). Frailty phenotype score
ranged from 0 to 5, with a higher score indicating more severe frailty5,6.

Domain-specific aging metrics—brain
Brain volumes. Full details on the UKB neuroimaging data are provided
here: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. In
brief, T1-weighted MRI used an MPRAGE sequence with 1-mm isotropic
resolution. Brain volumes inmm3were extracted fromT1-structural brain
MRI images, which were provided by ongoing research that started in
2014, to acquire high-quality imaging data from 100,000 predominantly
healthy participants in the UKB Study4. In this study, we used imaging-
derived phenotypes (IDPs) according to a previous study, in which the
brain MRI processing pipelines were described in detail73. In total, 19
aging-related IDPs were involved, including GM volume, WM volume,
brain volume (GM+WM), regional GM volumes (that is, volumes of GM
in the superior frontal gyrus, inferior frontal gyrus, middle frontal gyrus,
supplementary motor cortex, precentral gyrus, postcentral gyrus, pre-
cuneus, superior parietal lobe, parahippocampal gyrus,middle temporal
gyrus, and inferior temporal gyrus), and volumes of several subcortical
areas (including the hippocampus, putamen, thalamus, caudate, and
amygdala)74. In particular, GM, WM, and total brain volumes were nor-
malized by head size75. For the other IDPs, the sum of the volumes in the
left and right hemispheres was calculated.

Brain age. Brain age is a widely used index for quantifying individuals’
brain health as deviation from a normative brain aging trajectory.
Higher-than-expected brain age is thought to partially reflect the
above-average rate of brain aging10,76. In general, based on a set of
regional and global features extracted from T1w sequences (including
365 structural magnetic resonance imaging features partitioned into
68 features of cortical thickness, area, and gray‒whitematter contrast,
66 features of cortical volume, 41 features of subcortical intensity, and
54 features of subcortical volume), the individuals’ brain age was
estimated using machine learning method, gradient tree boosting as

implemented in XGBoost (https://xgboost.readthedocs.io) and opti-
mized using tenfold cross-validation and a randomized hyperpara-
meter search76. The volumes were converted to Z scores.

Cognitive performance
Cognition, as an important function of the human brain, was proven
to be associated with the brain aging process15. In this study, we
considered cognitive factors as an objective measurement of the
whole-brain aging process. Thus, we obtained performance mea-
sures on seven cognitive tasks from the UKB and processed them
as previously described77,78. Details of seven measures and calcula-
tions for analysis have been provided elsewhere78. The scores were
first normalized, if not normally distributed, and then converted to
Z scores.

The measurement time and number of participants for each
exposure variable included in this study were provided in Supple-
mentary Table 17.

Covariates
Covariates were selected based on previous related studies79,80, includ-
ing age, sex, ethnicity, neighborhood SES (nSES), smoking status, body
mass index (BMI), alcohol intake frequency, regular exercise, healthy
diet, history of cancer and cardiovascular disease (CVD) at baseline. The
definition of covariates was reported in the Supporting Methods.

Statistical analyses
Baseline characteristics of each group included in multidimensional
aging metrics were described. Means (standard deviations) and num-
bers (percentages) were used to describe the continuous and catego-
rical variables. Mann‒Whitney U and chi-squared tests were used to
examine the differences in continuous and categorical variables. A
two-sided P value of <0.05 was considered statistically significant in
this study, unless otherwise stated.

Individual contributions
We used WQS to estimate the relative individual contributions of the
multiplexed environmental factors to aging81. All analyses were
adjusted for age, sex, ethnicity, nSES, smoking status, BMI, alcohol
intake frequency, regular exercise, healthy diet, and history of cancer
and CVD at baseline. WQS is a widely used exposure-index method in
epidemiological studies to address high dimensionality and
collinearity82. Compared to other shrinkage models, WQS has better
specificity and sensitivity83. Using a weighted average of factors in
quantiles, WQS derives an index and then estimates the overall index
effect and the weights of the deriving index by fitting a linear model
between the outcome and index84. Because WQS assumes that all
components are constrained to have the same direction of association
(positive or inverse) with the outcome, positive and negative models
were used for probable miscarriage outcomes81. All weights are
required to add up to 1, and the empirical weight of each anion, which
ranges from 0 to 1, indicates the individual contribution to the WQS
index81. For the volume of specific brain regions and cognitive per-
formance, we used linear regression to preliminarily examine their
association with multiplexed environmental factors. The false dis-
covery rate was controlled at 5% across all linear regression models in
the main analyses (n = 285) using the Benjamini–Hochberg procedure
(R package “Stats”, version 4.4.0).

Considering that the overall contribution of multiplexed envir-
onmental factors may not be instructive if factors act in different
directions85 (i.e., one exposure has a protective contribution to the
outcome, while another exposure has a harmful contribution), we
reversed the green space and blue space exposure in the WQS
regression model, with larger values representing less green space.
During the model fitting process, the dataset was automatically divi-
ded into a 40% training set and a 60% validation set (R package
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“gWQS”, version 4.4.0). The training set was utilized for weight esti-
mation, while the validation set was used to test the significance of the
WQS index. The final WQS index of this study was averaged from the
weights in the 500 bootstrap samples86.

Joint contributions
SOMs are unsupervised methods that group observations with com-
parable exposure profiles to derive low-dimensional projections of
class profiles (i.e., subpopulations). In this study, SOM was used to
identify subpopulations with the same environmental exposure
characteristics87,88, representing the homogenous and heterogeneous
environmental exposure patterns among the population. SOM identi-
fied the best number of subpopulations by recognizing group struc-
ture using the within-subpopulation sum of squares and between-
subpopulation sum of squares statistics87. In this study, aiming to
capture general environmental exposure patterns in a large dimen-
sion, we performed SOM in participants with complete data on
environmental factors.

Each subpopulation was then matched to the geographic map of
the UK based on data from the participants’ addresses. Subpopula-
tion’s multidimensional aging metrics were compared (vs. the green
space subpopulation) using multiple linear regression models,
adjusting for all covariates.

Additional analysis
General linear regression models were performed as a robust test for
the associations of multiplexed environmental factors with multi-
dimensional aging metrics in WQS. We presented the linear effect
estimates per an IQR increase in exposure to air pollution, green space,
blue space, and road traffic noise by separately including one factor in
themodels. Given the participant’s mobility, whichmay bias the home
location-based measurement of environmental exposure to some
extent, we repeated the main analysis after eliminating participants
living in the current location for <5 years. Moreover, considering the
vital effect of SES on environmental inequality and the complexity of
SES indicators (individual SES and nSES), we repeated the main ana-
lyses by replacing nSES with iSES to further examine the results. An
overall SES variable was created by latent class analysis based on the
abovementioned three individual socioeconomic factors (household
income, education level, and employment status). According to the
item-response probabilities, three latent classes were identified,
representing high, medium, and low SES79 (details are reported in the
“Methods”). Considering the potential heterogeneity among different
subpopulations, we performed stratified analyses by sex, age, smoking
status, and alcohol drink frequency.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in the present study are available from UKB with
restrictions applied. Data were used under license and are thus not
publicly available. Access to the UKB data can be requested through a
standard protocol (https://www.ukbiobank.ac.uk/register-apply/). The
use of UK Biobank data was performed under application
61856. Source data are provided with this paper.

Code availability
All analyses were performed in R version 4.2.1 (http://www.R-project.
org). The codeused forWQSandSOManalyses is an adaptationof theR
package “gWQS” and “kohonen” (version 3.0.12, https://github.com/
blewy/Self_Organizing_maps_R), respectively, and has been made
available through the GitHub repository: https://github.com/SiriusPu/
Heterogeneous-associations-of-multiplexed-environmental-factors-

and-multidimensional-aging-metrics. The code to calculate the brain
age is available at https://github.com/LCBC-UiO/VidalPineiro_BrainAge.
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