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AI hybrid survival assessment for advanced
heart failure patients with renal dysfunction

Ge Zhang 1,2,3, Zeyu Wang1,2,3, Zhuang Tong4, Zhen Qin1,2,3, Chang Su1,2,3,
Demin Li1,2,3, Shuai Xu1,2,3, Kaixiang Li 4, Zhaokai Zhou1,5, Yudi Xu1,
Shiqian Zhang1, Ruhao Wu1, Teng Li 1, Youyang Zheng1, Jinying Zhang 1,2,3 ,
Ke Cheng 6 & Junnan Tang 1,2,3

Renal dysfunction (RD) often characterizes the worse course of patients with
advanced heart failure (AHF). Many prognosis assessments are hindered by
researcher biases, redundant predictors, and lack of clinical applicability. In
this study, we enroll 1736 AHF/RD patients, including data from Henan Pro-
vince Clinical Research Center for Cardiovascular Diseases (which encom-
passes 11 hospital subcenters), and Beth Israel Deaconess Medical Center. We
developed an AI hybrid modeling framework, assembling 12 learners with
different feature selection paradigms to expand modeling schemes. The
optimized strategy is identified from 132 potential schemes to establish an
explainable survival assessment system: AIHFLevel. The conditional inference
survival tree determines a probability threshold for prognostic stratification.
The evaluation confirmed the system’s robustness in discrimination, calibra-
tion, generalization, and clinical implications. AIHFLevel outperforms existing
models, clinical features, and biomarkers. We also launch an open and user-
friendly website www.hf-ai-survival.com, empowering healthcare profes-
sionals with enhanced tools for continuous risk monitoring and precise risk
profiling.

Heart failure (HF) is a life-threatening condition marking the final
common pathway for many cardiac diseases1. Most HF cases progress
into an advanced stage ultimately, characterized by persistent symp-
tomsdespitemaximal therapy2,3. Theprevalenceof advancedHF (AHF)
is increasing typically following a pattern of gradual deterioration
interspersed with episodes of acute worsening, leading to sudden
death4. Prognostic stratification is important for timely referral to an
appropriate center, to properly convey expectations to patients and
families, and to plan treatment and follow-up strategies1. Despitemany
prognostic parameters and tools, accurately assessing outcomes for
AHF remains complex5.

Chronic kidney disease (CKD) has consistently been recognized as
a prevalent comorbidity inHF5,6, andwhen present, carried the highest
population attributable risk for all-cause mortality (ACM) and AHF
hospitalization among all comorbidities7–11. The complex interaction
between HF and renal dysfunction (RD) accelerated disease progres-
sion, driven by neurohormonal and inflammatory activation, elevated
venous pressure, and hypoperfusion8,10,12. Clinically, AHF patients with
RD may encounter additional harm because such patients often
receive lower dosesofdrugs, anddiagnostic tests using contrastmedia
are avoided13,14. Recent studies have highlighted that patients
with comorbid AHF and RD are often not optimally treated with
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evidence-based medical therapies, even when their eGFR levels would
not contraindicate such treatments due to kidney dysfunction. There
is a pressing need for further efforts to mitigate such risk15. While
emerging biomarkers like natriuretic peptides provided some post-
discharge prognostic value, they are not specific enough for AHFor RD
cases, constraining their clinical utility16–18. The efficacy of manage-
ment and prognostication guidance using serial natriuretic peptide
measurements remained unestablished19. Additionally, heterogeneity
within HF and RD populations reduced the efficacy of a single
biomarker5,6,20. Therefore, comprehensive survival predictions should
beprioritized in this high-riskpopulation for clear prognostication and
targeted interventions15,21–23.

The high dimensionality and interactivity of clinical data rendered
hypothesis-driven traditional statistical methods less effective. Cur-
rently, the predictive capability of conventional prognosticmodels for
HF is generally limited24,25. Artificial intelligence (AI) is increasingly
employed to establish prognostic tools for predicting death, read-
mission, or composite endpoints; however, no algorithm can perfectly
assess HF outcomes26. Despite many options available, researchers’
preferences and knowledge limitations can lead to suboptimal use of
modeling algorithms, resulting in reduced predictive power27. Algo-
rithm selection should be based on various objectives, and conditions,
aligned with known rules28. Additionally, current risk models, often
burdened with redundant or costly predictors, prove impractical for
daily clinical practice and inaccessible in primary care29. The real-world
application of predictive models requires balancing accuracy, inter-
pretability, and complexity. Despite the potency, AI’s ‘black-box’ nat-
ure posed challenges in providing clear interpretations and
transparency to clinicians, a key factor limiting the clinical imple-
mentation of many HF prognostic models24,30,31. Moreover, the lack of
extensive external validation and calibration in many HF prognostic
models restricted their generalizability across diverse clinical settings
and populations32.

In this study, we aimed to develop and validate an explainable
predictive system for survival assessment of patients with AHF and RD
in multicenter retrospective longitudinal cohorts. Our AI hybrid
modeling framework maximized the use of various algorithms, redu-
cing the impact of researcher bias. We also integrated the system with
clinical interpretability and prognostic stratification, optimizing
patient management strategies. This system (AIHFLevel) has been
translated into a convenient web application to facilitate its utility for
clinicians, available at ‘www.hf-ai-survival.com’.

Results
Population characteristics overview
The graphic abstract of the study is summarized in (Fig. 1a). At the
CRCCD center, we retrospectively enrolled 712 patients with AHF and
RD between September 2018 and December 2020 as our in-house
cohort. An independent external cohort of 1024 patients from
June 2001 to October 2012 was sourced from the BIDMC center. The
demographic and clinical characteristics of the CRCCD cohort were
depicted in (Fig. 1b). In-depth baseline data for both cohorts, including
comorbidity status, blood routine, coagulation, renal and liver func-
tions, cardiac assessments, echocardiography results, medication
history, were detailed in (Supplementary Tables 1 and 2).

Within the CRCCD cohort, the average age was 59 years (SD = 16),
with a distribution of 39.0% females (n = 277) and 61.0% males
(n = 435). 49.0% of these patients (n = 346) had comorbid CAD, and
32.0% (n = 228) presented with arrhythmia. A majority exhibited
compromised cardiac function,with 52.0% (n = 368) classified asNYHA
IV and 33.0% (n = 235) as NYHA III. Through the trajectory analysis, we
explored the dynamicbaseline profiles, revealing significant non-linear
shifts in disease progression across NYHA classes I-IV, CKD stages I-V,
and HF subtypes (HFpEF, HFmrEF, HFrEF), underscoring the complex
nature of AHF&RD evolution (Fig. 1c). The dynamic soft clustering

approach distinguished eight distinct progression patterns for each
trajectory (Fig. 1c, Supplementary Tables 3-5). Our findings indicated
that the trajectory of AHF&RD development does not follow a
straightforward, linear journey; rather, it is marked by significant,
nonlinear shifts that underscored the intricate and dynamic nature of
disease evolution. Moreover, the occurrence rates for ACM andMACE
were 21% (n = 151) and 33% (n = 233), respectively, with mean times to
ACM and MACE at 19 months (SD = 8) and 17 months (SD = 8). The
survival probability increased per half year already survived relative to
the total survival time. The Kaplan–Meier estimates for conditional
survival indicated that the probability of 30-month survival directly
after diagnosis of AHF with RD increased from 76% to 85%, 92%, and
95%per additional half year survived (Fig. 1d). In the BIDMCcohort, the
average age was significantly higher at 71 years (SD = 14), with a near-
balanced gender ratio (46.2% female (n = 473)). Incidences of CAD and
arrhythmias comorbidities were reported in 49.2% (n = 504) and 60.6%
(n = 621) of patients. 55.2% (n = 565) of patients experienced ACM
during the follow-up period, with an average time to event of
19 months (SD = 20). Notably, heart failure subtypes were distributed
as 58.2% (n = 414) HFpEF, 23.5% (n = 167) HFmrEF, and 18.3% (n = 131)
HFrEF in the CRCCD cohort, compared to 66.9% (n = 685) HFpEF, 11.5%
(n = 118) HFmrEF, and 21.6% (n = 221) HFrEF in BIDMC cohort. This
distribution pattern corroborated previous reports that CKD and
worsening renal function both appear more common in HFpEF as
compared to in HFmrEF and HFrEF perhaps due to shared pathophy-
siological mechanisms6,8,15,33,34.

Survival assessment system AIHFLevel
The workflow of our AI hybrid framework was succinctly illustrated in
(Fig. 2a), with detailed elaboration provided in (Supplementary Fig. 9).
We commenced with 93 candidate predictors derived from electronic
health records (EHR), narrowing them down through univariate Cox
proportional hazards regression and Log-rank tests to 50 and 63 sig-
nificant predictors, respectively (Supplementary Tables 6 and 7,
Fig. 1d, Supplementary Figs. 1 and 2). A core set of 46 predictors,
showing consistent significance in both tests, were defined as candi-
date survival features for inclusion in the modeling framework. 12 AI
algorithms were performed on 46 candidate survival features to fit
models, yielding 132 distinct modeling schemes (Fig. 2b). Each
scheme’s performance was rigorously evaluated using a tripartite
strategy: 10 repeated 10-fold cross-validation, Monte-Carlo cross-vali-
dation (MCCV, 100 iterations with a 0.7 sampling ratio), and bootstrap
analysis (1000 iterations with a 0.7 sampling ratio) (Supplementary
Table 8). This evaluation process identified the integration of
Surv.gbm and Surv.Xgboost, enhanced by the Filter &Wrapper Hybrid
Method, as the optimal modeling scheme for populations with AHF
and RD. This scheme achieved the highest average C-index of 0.821,
demonstrating superior discriminative power over alternative mod-
els (Fig. 2b).

Consequently, the AIHFLevel system was developed using the
Discovery cohort, guided by this optimal scheme. AIHFLevel utilized a
set of 12 readily accessible predictors: age (year), arrhythmia comor-
bidity (Yes or No), CAD comorbidity (Yes or No), CKD stage (I, II, III, IV,
V), lymphocyte percentage (%), mean corpuscular hemoglobin con-
centration (MCHC, g/L), eGFR (ml/(min/1.73 m3)), serum creatinine
(Cr, μmol/L), serum total bilirubin (TBIL, μmol/L), serum cardiac tro-
ponin I (CTnI, ng/ml), left ventricular ejection fraction (EF, %), stroke
volume (SV, %) (Supplementary Table 9).

Uniformly prognostic implication and predictive performance
of AIHFLevel
To explore potential non-linear relationships between AIHFLevel
scores and hazard ratio (HR) for ACM, we initially estimated the
associations with restricted cubic spline analysis. In the Replication
and Discovery cohorts, we consistently observed a pattern of

Article https://doi.org/10.1038/s41467-024-50415-9

Nature Communications |         (2024) 15:6756 2

http://www.hf-ai-survival.com


non-linear associations along with the increase of AIHFLevel: ‘fast-to-
low increase’ of risk for ACM (Poverall <0.0001, and Pnon-linear < 0.0001)
(Fig. 2c, Supplementary Fig. 3a). Univariate Cox regression analysis
underscored AIHFLevel’s significance as a clinical predictor for ACM
(Replication cohort: HR = 1.615, P <0.0001, 95%CI = 1.417–1.863; Dis-
covery cohort: HR = 2.245, P <0.0001, 95%CI = 2.039–2.472) (Fig. 2c,
Supplementary Fig. 3a). To assess AIHFLevel’s prognostic efficacy,

subjects were stratified into high and low AIHFLevel groups based on
the median score. Kaplan–Meier curve for ACM indicated significantly
shorter survival for the high AIHFLevel group in both Replication and
Discovery cohorts (Log-rank test, P <0.0001) (Fig. 2d, Supplementary
Fig. 3b). Discriminatory power of AIHFLevel was quantified through
ROC analysis, with AUCs at 6-, 12-, 24-, and 30-months demonstrating
strong predictive accuracy: 0.902, 0.932, 0.932, 0.903 in the
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Replication cohort and 0.931, 0.952, 0.973, 0.976 in the Discovery
cohort, respectively (Fig. 2e, Supplementary Fig. 3c). Calibration ana-
lyses for 6-, 12-, and 24-month survival predictions showed high con-
cordance with observed outcomes in Replication and Discovery
cohorts (Fig. 2f, Supplementary Fig. 3d). Additionally, Decision Curve
Analysis (DCA) affirmed AIHFLevel’s significant clinical utility and net
benefit at 6-, 12-, and 24-month survival intervals, validating its value in
clinical decision-making (Fig. 2f, Supplementary Fig. 3e). Comparable
excellence was observed in Meta cohort, where a robust positive cor-
relation between AIHFLevel scores and ACM risk was evident (Poverall
< 0.0001, and Pnon-linear < 0.0001) (HR = 1.878, P <0.0001, 95%
CI = 1.770–1.992)) (Fig. 2h). The high AIHFLevel group exhibited a
significantly greater incidence of long-term ACM (P < 0.0001) (Fig. 2i),
with AUCs at 6-, 12-, 24-, and 30-months confirming predictive excel-
lence: 0.925, 0.947, 0.965, and 0.960, respectively (Fig. 2j). Calibration
and DCA plots further corroborated AIHFLevel’s predictive accuracy
and clinical benefit, reinforcing its applicability across varying prog-
nostic thresholds (Fig. 2j, l).

Robustness and superior performance of AIHFLevel
In clinical practice, prognostication and stratification for management
traditionally relied on a range of clinicopathological characteristics,
such as serum cardiac troponin levels, natriuretic peptides, pharma-
cotherapy, renal function, age, and comorbidity status1. To assess their
predictive efficacy, we evaluated these readily accessible conventional
clinical traits derived from the EHR system. Our findings revealed that
AIHFLevel consistently outperformed in predictive accuracy. This
superiority was quantitatively confirmed through C-index and Inte-
grated Brier Score (IBS) across Discovery, Replication, and Meta
cohorts, suggesting AIHFLevel’s potential for integration into clinical
workflows (Fig. 3a, b, Supplementary Fig. 4a, and Supplementary
Table 10).

Given the development of numerous objective risk markers and
composite prognostic scores for heart failure, we expanded our ana-
lysis to include a variety of published risk markers and models,
including systemic immune-inflammation index (SII), neutrophil-
lymphocyte ratio (NLR), neutrophils to leukocyte‐neutrophil count
(dNLR), lymphocyte-monocyte ratio (LMR), platelet-lymphocyte ratio
(PLR), albumin-to-fibrinogen ratio (AFR), triglyceride‐glucose (TyG)‐
index, MAGGIC-HF, PREDICT-HF, BCN Bio-HF, REMATCH-HF, and 3C-
HF score35–39.

Initially, we computed the risk scores for each model based on
their predefined features and coefficients as outlined in their original
publications, testing their predictive performance using C-index and
IBS.We also added a comparativemodel by refitting the variables used
in AIHFLevel using the cox regression method to create a prognostic
model for comparison with AIHFLevel. AIHFLevel exhibited superior
accuracy compared to other models (Fig. 3c, Supplementary Fig. 4b,
Supplementary Table 11).While somemodelmight performwellwithin

their original dataset, they faltered across other cohorts, likely due to a
lack of generalizability and potential overfitting. Building upon this
preliminary analysis, we conducted a secondary, in-depth evaluation
to underscore the AIHFLevel’s robustness and superior predictive
capacity. This involved a refitting process, where AIHFLevel and other
models were retrained using only their respective predictors—without
incorporating their original coefficients—in a unified proportional
hazards regression framework applied to the Discovery cohort. This
methodological refinement aimed at facilitating an equitable, stan-
dardized comparison, thus validating the robustness of AIHFLevel
under a stringent evaluative setting. The outcomesof this recalibration
underscored AIHFLevel’s optimal performance, surpassing that of
comparator models across the Discovery, Replication, and Meta
cohorts (Supplementary Fig. 5). This iterative validation reaffirmed
AIHFLevel’s superiority over conventionalmodels, and illuminated the
resilience of its predictive capacity, demonstrating a potent tool in
prognostic assessment. In addition, we performed the Surv.Xgboost
algorithm to refit each model again with their respective predictors
based on the Discovery cohort, revealing that AIHFLevel still main-
tained superior accuracy across all cohorts (SupplementaryFig. 6). The
consistent outperformance under equivalent algorithmic conditions
also indicated the inherent robustness and predictive reliability of
AIHFLevel’s predicters. Such findings demonstrated the efficacy of our
AI hybridmodeling framework in identifying a set of potent predictors.
12-predictor AIHFLevel not only forecasted the prognosis of AHF&RD
patients with remarkable accuracy but also achieved this with a
streamlined feature set, significantly boosting its clinical utility and
readiness for broader implementation.

Clinical interpretability underlying AIHFLevel
After adjustment for available clinical traits with significant prognostic
value,multivariate Cox regression analysis confirmed the independent
prognostic significance of AIHFLevel for ACM across the Replication,
Meta, and Discovery cohorts (Fig. 3d, Supplementary Fig. 4c). Strati-
fication analysis further revealed the consistent prognostic value of
AIHFLevel across different pre-specified subgroups, delineated by
dataset (Discovery cohort, Replication cohort, Meta cohort), age (>65
or ≤65 years), cardiac function grade (NYHA I/II versus NYHA III/IV),
heart failure (HF) subtype (HFpEF, HFmrEF, HFrEF), chronic kidney
disease (CKD) stage (I/II versus III, IV/V), and history of percutaneous
coronary intervention (PCI) (Yes versus No) (Fig. 3e).

In the real-world deployment of AI predictive models, balancing
accuracy, interpretability, and complexity is significant40. Suchmodels
often act as ‘black boxes’ to clinicians, masking the reasoning behind
their predictions. Beyond prognostic outcomes, the significant risks
associated with various predictors demand attention. Understanding
these risks is essential for guiding clinical decision-making and mana-
ging reversible risk factors. Therefore, Shapley Additive exPlanation
(SHAP) approach was leveraged to interpret the AIHFLevel system’s

Fig. 1 | Baseline characteristics overview. a Overview of the study methodology.
Image was createdwith a licensed version of bioRender.com.bHeatmap providing
a snapshot of the general baseline demographic and clinical profile in the Henan
Province Clinical Research Center for Cardiovascular Diseases (CRCCD) in-house
cohort. This visual representation includes data on all-cause mortality (ACM),
gender distribution, age, smoking habits (current smokers and previous smokers),
drinking status (any consumption of alcohol in the previous six months), chronic
kidney disease (CKD) staging, NYHA classification for cardiac function, comor-
bidities such as arrhythmia and coronary artery disease (CAD), history of percu-
taneous coronary intervention (PCI), and medication usage (including digoxin,
aspirin, diuretics, valsartan, clopidogrel, and nifedipine). c Kinetics plots revealed
evolving baseline profiles amongAHF andRDpatients, tracing the intricate paths of
disease progression. This analysis, covering NYHA cardiac function grades I to IV,
CKD stages I to V, and HF subtypes (HFpEF, HFmrEF, HFrEF), distinguished eight
unique patterns of progression for each path. The clustering visualized these

patterns through a gradient ofmembership values, represented in a spectrum from
warm colors (dark red for high membership) to cool colors (sky blue for low
membership). d Kaplan–Meier estimates provide a nuanced view of conditional
survival up to 30months post-diagnosis for patients with AHF and RD, stratified by
initial survival increments of 0–18 months. The matrix format, where each column
signifies the elapsed months since the initial diagnosis and each row delineates the
cumulative survival probability from that juncture, offers an insightful prognosis
tool. For instance, a patient who has already achieved a 6-month survival post-
diagnosis has an 89% chance of reaching the 20-monthmark and an 85% likelihood
of attaining a 30-month survival threshold. e Univariate Cox proportional hazards
analysis, leveraging 93 variables derived frommedical health record data from the
CRCCD cohort (n = 712), discerned 50 variables significantly associated with ACM
survival. Statistic test: two-sided Wald test. Data were presented as hazard ratio
(HR)with 95% confidence interval (CI).
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outputs, the influence of each predictor on the system’s predictions.
Our explainable analysis provided two types of explanations: global
explanation of the system at the feature level and local explanation at
the individual level. Global explanation described the overall func-
tionality of themodel. The global explanation, as depicted in the SHAP
summary plot (Fig. 3f), analyzed the 12 predictors by their contribution
to AIHFLevel’s decision-making process, arranging them in a des-
cending order based on average SHAP values. GFR, age, cTNI, creati-
nine, and EF emerged as the most significant features, suggesting that
AIHFLevel’s adeptness at pinpointing key physiological indicators—
specifically, renal and cardiac function statuses—for refinedprognostic
assessments. Moreover, the web-based AIHFLevel system

incorporated local explanation, analyzing how a certain predictionwas
made for a new specific individual by incorporating the individualized
input data. The elaboration of these functionalities will be described in
the following sections.

Prognostic stratification underlying AIHFLevel
We further performed a conditional inference survival tree to explore
heterogeneity in trends for prognosis among AHF&RD patients, stra-
tifying individuals based on the AIHFLevel values (Fig. 4a). This
approach delineated three distinct prognostic states: (Low-Risk:
Defined by AIHFLevel ≤ 0.435; Intermediate-Risk: AIHFLevel between
0.435 and 1.548; High-Risk: AIHFLevel > 1.548) (Fig. 4b). Kaplan–Meier
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analysis revealed significant differences in ACM incidence across three
prognostic states (P <0.0001), indicating the stratification’s efficacy
(Fig. 4c). Further validation with unsupervised t-SNE on AIHFLevel 12-
predictor profiles visualized the risk heterogeneity among AHF&RD
patients. This dimensional reduction technique effectively segregated
samples into discernible clusters within a two-dimensional space,
suggesting robust discrimination capabilities (Fig. 4d). TrinROC ana-
lysis confirmed AIHFLevel’s discriminatory power for the prognostic
states. In the Replication cohort, the trinormal ROC test statistic
reached 1063.675 (P <0.0001), with a Volume Under the ROC Surface
(VUS) statistical test statistic of 14.759 (P <0.0001) and a trinormalVUS
of 0.876. Similarly, in the Meta cohort, the trinormal ROC test statistic
achieved 8682.598 (P < 0.0001), with a VUS statistical test statistic of
29.331 (P < 0.0001) and a trinormal VUS of 0.867 (Fig. 4e). The baseline
characteristics also varied in accordance with the prognostic stratifi-
cation (Fig. 4f). The high-risk state was predominantly associated with
female or elderly patients. CAD comorbidity wasmore prevalent in the
high-risk state. Additionally, lower LVEF and HFrEF were highly asso-
ciated with high-risk, where patients were more likely to present with
deteriorated cardiac and renal function (Fig. 4g).

Based on nonlinear dynamic theory, complex diseases typically
traverse through distinct phases: ‘Before-deterioration’ (a relatively
stable phase with gradual change), ‘Pre-disease’ (a critical state or
tipping point which is the limit of the stable state just before the
transition to the deteriorated state), and ‘Deterioratedphase’ (typically
irreversible to the Before-deterioration phase)41. Our trajectory analy-
sis has revealed that AHF&RD progression indeed does not follow a
gradual path, instead undergoing nonlinear and drastic transitions at
certain points (Fig. 1c). Identifying the tipping point just at such critical
transition (CT) is crucial for timely intervention. Thus, we employed a
tipping-point theory-based model, the enhanced dynamic network
biomarker (DNB), to convert static snapshots of three AIHFLevel-
derived prognostic states into a dynamic movie, exploring malignant
phase transition in disease progression (Fig. 4h, Critical transition
signal analysis in Methods). Following quantifying each module per
cross-section through the DNBmodel, we captured a potent CT signal
preceding disease deterioration at the intermediate-risk phase, where
targeted interventions should be implemented to potentially alter the
progression trajectory (Fig. 4h, Supplementary Tables 12 and 13).
We then calculated Euclidean distance to investigate the global variance
between andwithin prognostic states. The divergence between high-risk
individuals and the other individuals or within the high-risk individuals
was significantly larger than the distance within intermediate-risk & low-
risk samples (Fig. 4i). These findings further validated the clinical rele-
vance and the rationality of our prognostic stratification, suggesting its
potential in guiding early preventive strategies.

Sensitivity analysis
To enhance the robustness assessment of AIHFLevel, we expanded the
evaluation to include major adverse cardiovascular events (MACE) as
an alternative outcome based on the Meta cohort. Initially, stratifying
patients into high and low AIHFLevel groups based on median values,
the Kaplan–Meier curves revealed a significantly higher rate of MACE
in the high AIHFLevel group (P < 0.0001) (Fig. 5a). Significant risk dif-
ferences for MACE were also observed across the three prognostic
states (P <0.0001) (Fig. 5b) Calibration curves indicated similar pre-
dicted and actual probabilities forMACE (Fig. 5c). DCA analysis further
demonstrated the predictive potential for MACE (Fig. 5d). Stratifica-
tion analysis demonstrated the AIHFLevel’s consistent prognostic
value for MACE across different subgroups (Fig. 5e). ROC analysis
confirmed AIHFLevel’s discriminative ability forMACE, and AUCs at 6-,
12-, 24-, and 30-month were respectively 0.825, 0.848, 0.861, 0.846
(Fig. 5f). Notably, AIHFLevel demonstrated enhanced accuracy in
predicting ACM over MACE (MACE: C-index = 0.798, IBS = 0.115; ACM:
C-index =0.913, IBS =0.0595) (Fig. 5g). Designed to estimate individual
survival distributions, AIHFLevel was initially trained with ACM as its
primary endpoint. However, when evaluated against MACE as an
alternative endpoint, it still demonstrated reliable predictive perfor-
mance. The ability to accurately assess outcomes across different
clinical endpoints indicated AIHFLevel’s comprehensive predictive
capabilities and robustness in clinical prognostication.

Extrapolation of AIHFLevel to the heterogeneous populations
AIHFLevel has been rigorously evaluatedwithin our designated testing
datasets (Replication and Meta cohorts); however, external validation
remains imperative.Models can correspond erroneouslyor befitted to
peculiarities in training datasets so well that it losed generalizability to
heterogeneous data unseen by the training process. Recent studies
suggested that these limitations can potentially be addressed by vali-
dation on different data modalities (i.e. dataset from diverse hospital
systems technology platforms, even regions and ethnic backgrounds)
for predictive analytics42. Therefore, we have incorporated an inde-
pendent external cohort of 1024 patients, spanning June 2001 to
October 2012, from the BIDMC center. The imperative for future AI
systems lies in their broad applicability across various healthcare set-
tings and geographic locales26. The significant population hetero-
geneity observed between CRCCD and BIDMC centers provided
a robust test bed for assessing the AIHFLevel’s generalizability
(Supplementary Table 14).

Scaled Schoenfeld residual analysis showed AIHFLevel’s propor-
tional hazard assumption was met over time (P =0.7647), confirming
its time-invariance (Fig. 6a). We also noted a nonlinear relationship
between AIHFLevel and the risk for ACM, characterized by a

Fig. 2 | Consistent predictive performance and prognostic value of AIHFLevel.
a AI modeling hybrid framework overview. The image was created with a licensed
version of bioRender.com. b Schematic illustration of optimal scheme identifica-
tion. The diagram delineates the comprehensive evaluation process of 132 distinct
modeling schemes through an array of lollipop plots, including 10 repeated 10-fold
cross-validation, 100 iterations of Monte-Carlo cross-validation (MCCV) with a 70%
sampling ratio, and a thorough bootstrap analysis comprising 1000 iterations.
c Analysis of non-linear relationship between AIHFLevel and ACM risk using
restricted cubic spline regressionbasedonReplication cohort (Poverall <0.0001, and
Pnon-linear < 0.0001). Non-linear patterns indicating a ‘fast-to-low’ increase in ACM
risk associated with rising AIHFLevel. Univariate Cox regression analysis high-
lighted the AIHFLevel as a significant clinical predictor for ACM, with a hazard ratio
(HR) of 1.615 (95% CI = 1.417–1.863). Statistic test: two-sided Wald test: P <0.0001.
Line chart displaying the estimated logarithm HRs represented by blue lines, along
with 95% CIs indicated by shading. d Cumulative Kaplan-Meier estimates the deli-
neating time to the survival difference for ACM stratified by AIHFLevel within the
Replication cohort. e Time-dependent ROC analysis for predicting ACM within the
Replication cohort. AUCs at 6-, 12-, 24-, and 30-months demonstrating strong

predictive accuracy: 0.902, 0.932, 0.932, 0.903. f Calibration curves depicting the
predicted versus observed probabilities of ACM as evaluated by AIHFLevel within
the Replication cohort. g Decision Curve Analysis (DCA) illustrating net benefit
curves of AIHFLevel for predicting ACMwithin the Replication cohort.hAnalysis of
non-linear relationship between AIHFLevel and ACM risk using restricted cubic
spline regression within Meta cohort (Poverall <0.0001, and Pnon-linear < 0.0001).
Univariate Cox regression analysis highlighted theAIHFLevel as a significant clinical
predictor for ACM, with an HR of 1.878 (95% CI = 1.770–1.992). Statistic test: two-
sided Wald test: P <0.0001. Line chart displaying the estimated logarithm HRs
represented by blue lines, along with 95% CIs indicated by shading. i Cumulative
Kaplan-Meier estimates delineating time to thefirst adjudicatedoccurrenceofACM
stratified by AIHFLevel within Meta cohort. j Time-dependent ROC analysis for
predicting ACMwithinMeta cohort. AUCs at 6-, 12-, 24-, and 30-months confirming
predictive excellence: 0.925, 0.947, 0.965, and 0.960. k Calibration curves
depicting the predicted versus observed probabilities of ACM within the Meta
cohort. lDCA illustrating net benefit curves of AIHFLevel for predicting ACMwithin
Meta cohort.
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‘fast-to-low’ increase in risk (Poverall <0.0001, Pnon-linear < 0.0001)
(Fig. 6b). Univariate Cox regression analysis further solidified AIH-
FLevel’s role as a significant prognostic factor (HR = 1.956, P < 0.0001,
95% CI = 1.838-2.082) (Fig. 6b). Kaplan–Meier survival curves illu-
strated that higher AIHFLevel correlated with significantly lower sur-
vival rates (P <0.0001) (Fig. 6c). ROC analysis also indicated an
enhanced accuracyof AIHFLevel: AUCs for assessingACMat 1-, 2-, 3-, 4-

year were 0.788, 0.816, 0.824, 0.846, respectively (Fig. 6d). Calibration
and decision curve analyses further confirmed AIHFLevel’s robust
clinical utility across diverse patient populations (Fig. 6e, f). Based on
established stratification criteria, patients were categorized into three
prognostic states (Fig. 6g), and three states also presented significant
risk differences (Fig. 6h). The AIHFLevel’s stratification efficacy was
validated using both t-SNE and trinROCmethods, indicating significant
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discriminatory power (trinormal ROC test statistic = 6938.615,
P <0.0001; VUS =0.894, P <0.0001) (Fig. 6i, j). Multivariate Cox
regression, adjusting for potential confounders, demonstrated AIH-
FLevel’s independent prognostic value (Fig. 6k). Comparatively, AIH-
FLevel outperformed traditional clinical indicators and other models
according to C-index and IBS, showcasing its superior predictive per-
formance (Fig. 6l, m, Supplementary Tables 15 and 16). These valida-
tions underscore the robust extrapolation and generalizability of
AIHFLevel, indicating the potential as a clinical translation tool.

Convenient web application for clinical utility
Based on the Django web framework, the AIHFLevel system has been
deployed in a user-friendly application (https://www.hf-ai-survival.
com), designed to enhance the utility in clinical scenarios (Fig. 7a). The
system incorporated a range of functionalities for the analysis of
individual patients, including prognostic stratification, calculation of
long-term survival probabilities, all-cause mortality predictions at
indicated time points, local interpretation, and the predictor
contribution.

To intuitivelydemonstrate thepractical application, wepresented
an exemplary case. Users simply input data through 13 queries: age (72
years), arrhythmia comorbidity (No), CAD comorbidity (Yes), CKD
stage (IV), Cr (101.3 μmol/L), LVEF (51%), eGFR (23.490ml/(min/1.73
m3)), Lymphocyte (23.8%), MCHC (328.00 g/L), SV (42%), CTnI
(0.35 ng/ml), TBIL (2.79 ng/ml), and the time point of interest (600-
day) (Fig. 7b). Upon entry, the system automatically performed con-
ditional inference survival tree, categorizing this individual as high-risk
state. Subsequently, it generated a long-term survival curve, calculat-
ing a 45.5% probability of all-cause mortality at 600-day (Fig. 7c). The
bar graph offered an intuitive view of the survival profile over time,
with predicted survival probabilities at 180-, 365-, 730-, 900-, 600-day
being 78.6%, 61.5%, 48.3%, 45.5%, and 54.5%, respectively (Fig. 7d).
Furthermore, the radar graph indicated the predictor contribution to
the survival assessment (Fig. 7e). As observed, the values of eGFR, SV,
CTnI, age, and Cr were pushing the decision towards the worse prog-
nosis, while Cr, LVEF, and MCHC were pushing the decision towards
the favorable prognosis (Fig. 7f). This suggested that aligning most
predictors values closer to their normal ranges, such as eGFR and SV,
through targeted interventions or management strategies could miti-
gate the risk of ACM for this individual, despite the overall prediction
pushed this case into the high-risk prognosis. Overall, this system
could help physicians select the optimal treatments and offer perso-
nalized recommendations to improve outcomes based on the output
risk stratification and interpretability of personal information.

Discussion
Accurate prognostication is significantly important in AHF to identify
the ideal time for referral to an appropriate center and to plan therapy
and follow-up strategies43,44. Predicting the outcome of HF is complex
and difficult. Despite the development ofmany risk scores reported in
recent decades25,45, some prognostic tools were not specifically
designed for AHF populations where a majority of patients also suffer
from RD. A small number of researchers have translated their mode
into a practical prognostic tool rather than just for algorithm devel-
opment. In addition, some tools were developed and validated in
selected clinical trial populations or at a single center with geographic
and ethnic limitations1. To bridge this gap, we identified predictors
among profiles comprising almost 100 variables, including biological
data, biomarkers, histories, and imaging data using our original
workflow, to discover novel predictors that were not hypothesis-
driven without presumptions. we adopted an original approach to
identify and validate a robust AI-powered survival assessment system
AIHFLevel based on cohorts from multicenter to predict ACM for
patients with AHF and RD. This system was further deployed into a
web-based application for clinicians and patients to have a better
understanding, forming an improved management plan.

AI techniques have been investigated by many groups as tools to
improve survival predictions in HF; however, obstacles still remain
before AI progresses to clinical practice46–48. For instance, appropriate
initiatives are required to maximize accuracy while avoiding over-
fitting and deciding how many and which clinical parameters need to
be included in the prediction so that gathering this information on a
new patient is not overly expensive or burdensome49. Moreover,
despite the importance of selecting an optimal modeling algorithm,
researchers might mostly choose the algorithms based on their pre-
ferences and knowledge limitations, leading to limited predictive
power31. Some studies don’t elaborate on the rationale and reasons for
selecting such algorithms, which makes it difficult to find the best
modeling approach to fit one dataset. However, some researchers
advocate for hybrid learning models, such as ensemble-based
approaches, which combine multiple models to enhance predictive
performance50. Mienye and colleagues demonstrated that ensemble-
based learning can outperform single models in predicting heart fail-
ure events51. Therefore, Our study innovates beyond existing risk
prediction frameworks by developing an ensemble hybrid model fra-
mework—AI hybrid modeling framework. Through this process, we
minimized redundant information and established a system based on
12 predictors, named AIHFLevel. Our modeling framework functions
by utilizing a collection of diverse and independent models, which

Fig. 3 | Robustness and superior performance of AIHFLevel. a Comparative
predictive efficacyof AIHFLevel against collected 93 readily accessible clinical traits
in the Replication cohort (n = 214). AIHFLevel exhibits notably higher predictive
accuracy, demonstrated by superior C-index values and IBS. The statistical sig-
nificance of differenceswas determined using the compareCRpackage, employing
a one-shot, nonparametric approach. C-index was presented with 95% confidence
interval (CI). Statistic tests: two-sided z-score test. b Comparative predictive effi-
cacy of AIHFLevel against collected 93 readily accessible clinical traits in the Meta
cohort (n = 712). C-index was presented with 95% CI. Statistic tests: two-sided z-
score test. c Comparative predictive efficacy of AIHFLevel against established risk
andprognosticmodelswithin theReplication cohort (top,n = 214) andMeta cohort
(bottom, n = 712). The risk scores for each model were computed based on their
predefined features and coefficients as outlined in their original publications. The
analysis, visualized through bar graphs for the C-index and line graphs for the IBS.
C-index was presented with 95% CI. We employed a one-shot, nonparametric sta-
tistical comparison, using two-sided z-tests to ascertain significance. dMultivariate
Cox regression analysis of AIHFLevel for ACM within Replication cohort (left,
n = 214) and Meta cohort (right, n = 712). Upon adjusting for significant clinical

traits, AIHFLevel consistently demonstrated independent prognostic value. Statis-
tic test: two-sided Wald test. Dot plots illustrated the adjusted hazard ratios with
the horizontal line indicating the 95% CI for each variable. Bar graphs highlighted
the -log10(adjusted P-values) to denote statistical significance levels. e Subgroup
analysis estimating the clinical prognostic value of AIHFLevel across different pre-
specified subgroups. The length of the horizontal line represented the 95% con-
fidence interval for each subgroup, with a vertical dotted line indicating the hazard
ratio of all patients. Statistic test: two-sided Wald test. The vertical solid line
denoted HR= 1. f SHAP summary dot plot, stacked vertically to show density. On
the X-axis, the contribution of each predictor to the system’s output was quantified
by the SHAP value. The probability of survival decreased with increasing the SHAP
value of a predictor. A positive SHAP value indicated an increased risk of ACM,
while a negative value suggests a protective effect. Each dot represents an indivi-
dual patient’s SHAP value for a specific predictor. The color coding of dots reflected
the actual predictor values for patients, with red indicating higher values and blue
indicating lower values. This color gradient demonstrates the relationship between
predictor values and their effect on ACM risk. *P <0.05, **P <0.01, ***P <0.001,
****P <0.0001.
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allowed AIHFLevel to reduce generalization error and enhance pre-
dictive reliability.

Our study not only applied existing risk prediction learning
algorithms but innovatively developed an ensemble hybrid model
framework, potentially marking a significant advancement in the field
of risk prediction for AHF with RD comorbidity. We draw upon
established concepts in AI modeling, notably hybrid paradigms that

incorporate ensemble-based approaches52,53. Herein, instead of
choosing the best individual learning algorithm, our methodology
focuses on constructing ensemble modeling schemes to improve
survival assessment accuracy, especially for the comorbidity of AHF
with RD. We employed 12 different AI learning algorithms and broa-
dened potential model schemes by integrating three distinctive
feature engineering approaches: Embedded, Filter, and Wrapper.
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This integration reduces generalization errors and ensures robust
generalizability across various clinical scenarios. The novel of our
frameworkmethodology included: (1) Integration of multiple learning
algorithms: We incorporate a diverse array of advanced algorithms,
each contributing uniquely to the ensemble. This integration enhances
robustness and reduces the likelihood of model overfitting. Included
are various forms of regularization and sophisticatedmachine learning
techniques such as Support Vector Machines, Random Forests, and
Gradient Boosting Machines. (2) Advanced feature engineering tech-
niques: Our model employs a combinational family of regularization,
sequential forward floating selection (SFFS), and Correlation-Adjusted
Survival Score (CARS). This allowed for a comprehensive exploration
of potential predictive variables and enhances the model’s ability to
handle high-dimensional data effectively. (3) Ensemble-based model-
ing: Leveraging the strengths of ensemble learning, our framework
boosts predictive accuracy by strategically combining models to
mitigate individual weaknesses and capitalize on their collective
strengths, thus ensuring more reliable and consistent predictions. (4)
Comprehensive assessment strategy: A systematic and unbiased
assessment strategy included 10 repeated 10-fold cross-validation,
Monte-Carlo cross-validation, and bootstrap analysis, which enhanced
the model’s generalizability and reliability in diverse clinical settings
and populations.

In general, incorporating an AI model into clinical practice
requires satisfying multiple criteria, particularly the need for algo-
rithms to be tested across multiple cohorts and to demonstrate uni-
versal applicability across various healthcare settings, systems, and
geographic locations. Diverse databases may contain poorly classified
or reported variables and employ different technologies and plat-
forms, highlighting the importance of validation using independent
cohorts54. Moreover, the timing of endpoint event observation largely
depends on the surveillance schedule, and the follow-up protocol can
influence patient survival, thereby affecting the model’s performance
in different settings55. Hence, validation across different data mod-
alities (i.e. datasets from diverse hospital systems technology plat-
forms, even regions, and ethnic backgrounds) for predictive analytics
is essential42. In this study, the disparity in follow-up, attrition, detec-
tion, and selection schedules between CRCCD Center and Beth Israel
Deaconess Medical BIDMC Center provided a robust test bed for
assessing the AIHFLevel’s generalizability56. Despite the challenges,
AIHFLevel has been confirmed as a robust tool for risk stratification
and estimation, as evidenced by rigorous assessments of various cri-
teria, including discrimination, calibration, performance, general-
ization, and clinical utility in the Discovery, Replication, Meta, and
External heterogeneous cohorts.

In the clinical setting, clinicopathological and baseline char-
acteristics such as age, cardiac troponin, medical history, echo-
cardiographic left ventricular parameters, and comorbidity status,
determine clinical management and prognosis57,58. Here, we compared
the AIHFLevel with almost 100 clinical variables and molecular char-
acteristics collected from AHF patients. According to the index of
concordance and IBS, AIHFLevel outperformed other features in all
cohorts, suggesting a potential alternative to assess prognosis and
drive personalized management of patients in the clinic. It has been
reported that chronic low-grade inflammation inAHFwithRDactivates
a harmful immune response and leads to further cardiac and renal
impairment59. The inflammation degree in CKD and AHF has been
proven to be able to predict ACM60. More importantly, the AIHFLevel
demonstrated higher accuracy than classic biomarkers, especially
inflammatory indicators. Moreover, the conventional Cox propor-
tional hazards regressionmodel and someother published riskmodels
such as 3C-HF of Senni M, REMATCH-HF of Lietz K, etc are often
overestimated single cohorts, resulting in the reduced accuracy in
another cohort35–39, due to thepoor generalizability fromoverfitting. In
contrast, AIHFLevel has undergone optimization through a compre-
hensive algorithm network with a superior extrapolation possibility
and significant advantages over other models. Following the initial
comparison, we advanced to a secondary, in-depth analysis to fur-
ther validate AIHFLevel’s robustness. This phase involved a strategic
refitting process where AIHFLevel and the comparative models were
retrained using only their respective predictors, without incorpor-
ating their original coefficients, through the Cox proportional
hazards regression. This recalibration ensured a fair and uniform
comparison, thus rigorously testing AIHFLevel’s robustness in amore
stringent evaluative setting. The results demonstrated that both
AIHFLevel and its refitted version outperformed the comparator
models across cohorts, reaffirming AIHFLevel’s superiority and
showcasing its resilience and inherent predictive strength. Building
upon these analyses, we employed the Surv.Xgboost algorithm—a
key component in AIHFLevel’s development—to refit each compara-
tive model using only their respective predictors. This approach
established a uniform framework for assessing the inherent strength
of each model’s selected features in a consistent algorithmic envir-
onment. The consistent superiority of AIHFLevel across various
algorithmic frameworks underscores the inherent robustness and
predictive reliability of its selected predictors. This performance
highlights the effectiveness of our AI hybrid modeling framework in
identifying a set of robust predictors. The 12-predictor AIHFLevel not
only accurately forecasts the prognosis of AHF&RD patients but also
does so with a streamlined feature set, greatly enhancing its clinical

Fig. 4 | Prognostic stratification underlying AIHFLevel. a Conditional Inference
Survival Tree Analysis: Identifies prognostic heterogeneity within AHF&RD
patients, categorizing them into three prognostic states based onAIHFLevel values:
Low-Risk (AIHFLevel ≤ 0.435), Intermediate-Risk (AIHFLevel between 0.435 and
1.548), and High-Risk (AIHFLevel > 1.548). Image was created with licensed version
of bioRender.com.bDistributionofAIHFLevel values among low-risk, intermediate-
risk, and high-risk groups in the Replication cohort (Top, P <0.0001, n = 214) and
Meta cohort (Bottom, P <0.0001, n = 712). Statistic tests: two-sided wilcoxon test.
c Kaplan-Meier curves showing the survival difference for ACM across three
prognostic states, with log-rank test results indicating statistical significance.
d Unsupervised t-SNE analysis spatially segregates samples by prognostic states
into two dimensions, showcasing effective discrimination. e Trinormal snapshot of
ROC surface showing AIHFLevel’s discriminatory efficacy among the three prog-
nostic states. f Heatmap depicting the baseline characteristics distribution within
Meta cohort, including gender, alcohol status, smoking status, age, occurrence of
ACM, coronary artery disease (CAD), hypertension (HTN), arrhythmia comorbid-
ities, NYHA cardiac function, chronic kidney disease (CKD) stage, HF subtype,
nifedipine/diltiazem (CCB) medication history. g Pie chart showing the two-sided
Chi-squared test of general baseline factors for prognostic stratification within
Meta cohort. hCritical transition signal analysis in the CRCCD cohort (n = 712). Top

left: Schematic diagram illustrating a phase transition during disease progression.
Top right: Bar plot showing DNB-Composite Index (CI) per module across three
prognostic states. The Biomodule (module with the highest CI) of each state indi-
cated the CT levels per state. Intermediate-risk exhibited the most significant CT
signal. Bottom left: Distribution of DNB-scores in each state. SDi, the average
standard deviation of all variables inside the biomodule; PCCi, the average Pear-
son’s correlation coefficient (PCC) of absolute value for variable-pairs inside the
biomodule; PCCo, the average PCC absolute value for feature-pairs between the
biomodule and others (absolute value). The CI is expected to increase abruptly and
significantly before the CT to the deteriorated phase and can serve as an early
warning signal. Bottom right: Comparison between observed (red dot) and simu-
lated (box plot) CI validated the robustness of CT and tipping-point captured by
DNB model. i Global shift of our prognostic stratification based on the CRCCD
cohort (n = 712; low-risk: n = 427, intermediate-risk: n = 177, high-risk: n = 427).
Euclidean expression distances were calculated between high-risk samples and
remaining samples (blue),within samples ofhigh-risk (green), andwithin remaining
samples (grey). Inset summarized the average distances between pairs of samples
as a percentage of the average distance between high-risk and remaining samples.
In the boxplots, centre line indicatesmedian, bounds of box indicate 25th and 75th
percentiles, and whiskers indicate minimum and maximum.
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utility and potential for broader application. While the AIHFLevel
system has demonstrated robust predictive accuracy across various
validation scenarios, a notable limitation of our study is the inability
to conduct direct comparisons of the underlying modeling methods
with every model evaluated. Due to the diverse nature of existing
models, each employing potentially unique feature engineering
techniques and specific modeling parameters, it is challenging to
replicate the exact conditions under which these models were ori-
ginally developed. As a result, our comparisons are primarily based
on performance metrics rather than methodological nuances, which
might lead to variations in how these models would perform under
identical conditions. This limitation underscores the need for a
standardized framework for model comparison in future studies, to
ensure that the performance metrics are directly comparable and
reflective of methodological rigor.

Some burdens are specific to the application of predictivemodels
in clinical translation. In particular, the majority of current risk esti-
mations using dozens of redundant features from various types of
dimensions are inconvenient and almost impossible to implement in

daily clinical practice35–39,61–64. By a hybrid feature selection paradigm
containing Filter & Wrapper & Embedded techniques, our framework
ultimately locked to 12 features for risk prediction Objective data for
these variables are accessible, making it readily available in the current
clinical setting. Sometimes, an accurate yet complex model did not
necessarily translate into a practical clinical tool. The adoption of ML
systems in medical decision support could be hindered by a nebulous
associated with intrinsic mechanisms difficult to understand65. This
study presents a significant advantage in utilizing the SHAP approach
to demystify the “black-box” nature of AI models. AIHFLevel system
could explain the AI model via a global explanation that described the
overall functionality of a model and a local explanation that detailed
how a certain prediction is made for an individual patient by inputting
the individualized data. Furthermore, our prediction model is con-
veniently accessible through a web-based tool developed using the
Django framework, enabling broader dissemination among clinicians.
AIHFLevel’s direct integration of interpretability highlights the critical
role of factors such as age, GFR, cTNI, and serum creatinine in influ-
encing long-term survival outcomes for patients with AHF and RD.

Fig. 5 | Sensitivity analysis for AIHFLevel. a Cumulative Kaplan–Meier estimates
of the time to the first adjudicated occurrence of MACE within the Meta cohort,
with log-rank test results indicating statistical significance. b Kaplan-Meier curve
showing the incidencedifference forMACEacross threeprognostic states, with log-
rank test results indicating statistical significance. c Calibration curve depicting the
predicted versus observed probabilities of MACE at 6, 12, and 24 months, as eval-
uated by AIHFLevel within Meta cohort (n = 712). d DCA illustrating net benefit
curves ofAIHFLevel for predictingMACEat 6, 12, and 24monthswithinMeta cohort
(n = 712). The X-axis represented the threshold probability for critical care out-
comes, while the Y-axis quantified the net benefit. e Subgroup analysis estimating

AIHFLevel’s prognostic value for MACE across different subgroups. Statistic test:
two-sided Wald test. The length of the horizontal line represented the 95% con-
fidence interval for each subgroup, with a vertical dotted line indicating the hazard
ratio of all patients. The vertical solid line denoted HR= 1. HR> 1 indicated AIH-
FLevel as a risk prognostic factor. f Time-dependent ROC analysis for predicting
MACE within Meta cohort (n = 712). AUCs at 6-, 12-, 24-, and 30-months demon-
strating strong predictive accuracy: 0.825, 0.848, 0.861, 0.846. g Comparative
AIHFLevel’s efficacy in assessing ACM and MACE within the Meta cohort (n = 712)
using C-index and IBS. C-index was presented with 95% confidence interval (CI).
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In contrast to previous studies that primarily focused on the impor-
tance of variables at a group or historical level without offering
actionable insights for individual patients, our system provides a per-
sonalized visualization of predictors35–39,61–64. This feature allows users
to see how each factor impacts the survival outcome at an individual
level, suggesting that aligningmost risk predictor values closer to their
normal ranges through targeted interventions or management

strategies could reduce the risk of ACM for the patient, even if the
overall prediction categorizes the case as high-risk.

Several limitations should be noted. Although the use of a large
and heterogeneous patient population, was an observational study,
future validation should be conducted in a prospective multicenter
cohort. Moreover, further randomized and controlled studies were
required to figure out whether individualized and prompt therapeutic
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measures according to the AIHFLevel system could improve patient
outcomes. Even though the system can inform the contribution of 12
clinical indexes to survival for each case, echocardiography might not
be available for all AHF patients with RD, especially in primary care
clinics. Additionally, regarding therapeutic use, a prognostic factor
fails to substitute for the need for predictive elements. Put differently,
if the system shows an overall poor prognosis score for a patient, the
physician should conduct additional booster sessions for her or him.
This is the reason we integrated interpretability. If age, for example, is
the first feature that explains the worst survival probability, then the
decision to intensify therapy can be very different from a case when
comorbidity status, or pathology results as the main factors. The sys-
tem gives back the final word and determination to the physician.

In conclusion, we employed an AI hybrid modeling framework to
develop and validate AIHFLevel, a web-based system designed for
evaluating the long-term survival profiles of patients with AHF and RD.
The system integrated outcome prediction, clinical interpretability
and prognostic stratification, and outperformed other clinical traits
and composite risk models. Through 13 straightforward queries, the
system empowered users to understand the influence of each pre-
dictor on every single individual survival outcome, thereby enabling
the optimization ofmanagement strategies and targeted interventions
in clinical practice.

Methods
Data source
This study was conducted to the ethical guidelines of the Declaration
of Helsinki. The research was based on two medical centers. The in-
house cohort data was accessed from the electronic health records
(EHR) system of the Henan Province Clinical Research Center for
Cardiovascular Diseases (CRCCD, Zhengzhou, Henan, China) from
September 2018 to December 2020. Situated in the North China Plain,
CRCCD’s organizational structure extends across the most densely
populated areas of Central China. A total of 13 institutions, all of which
are CRCCD members, participated in the study. The participating
institutions comprised 11 independent tertiary hospitals (The First
Affiliated Hospital of Zhengzhou University center hub, The First
Affiliated Hospital of Henan University of Science and Technology
Subcenter, Henan Provincial Chest Hospital Subcenter, Nanyang
Central Hospital Subcenter, The First Affiliated Hospital of Xinxiang
Medical University Subcenter, Xinyang Central Hospital Subcenter,
Xuchang Central Hospital Subcenter, The Second Affiliated Hospital of
Zhengzhou University Subcenter, Zhengzhou Central Hospital Sub-
center, The Seventh People’s Hospital of Zhengzhou Subcenter,
Zhoukou Central Hospital Central), one Professional Council, and one

Academic SteeringCommittee responsible for supervisionof the study
design and operations. CRCCD used an online electronic data capture
system (DCS) designed to ensure accurate data collection. Patient
hospitalization records were registered in the DCS by the doctors in
charge at each institution. Patient-identifiable information was dis-
sociated and anonymized. Data were automatically checked for miss-
ing or contradictory entries and values out of the normal range.
Additional editing and checks for duplicated records were performed
by clinical research coordinators at the general office of the registry.
This study was conducted to the ethical guidelines of the Declaration
of Helsinki and approved by the Institutional Ethics Committee of
Henan Province Clinical Research Center for Cardiovascular Diseases
(No.2021-KY-0720). Informed consent was obtained from each patient
for their data to be used for research purposes.

The external cohort data was accessed from a single-center
available database called the Medical Information Mart for Intensive
Care III using the pgAdmin PostgreSQL (version 9.6) Structured Query
Language. This database was approved by the Institutional Review
Boards of Beth Israel Deaconess Medical Center (BIDMC, Boston,
Massachusetts, USA) and the Massachusetts Institute of Technology,
included information on 46,520 patients who were admitted to the
hospital of BIDMC in Boston, Massachusetts from June 2001 to Octo-
ber 201256. The use of de-identified patient health information is not
considered human subjects research, thus eliminating the need for
individual patient consent due to the anonymity of the data. We
completed the National Institutes of Health Course in the United
States, passing the exam of human protection research participants
(No.9971167). Moreover, access to the data was approved after com-
pleting the Collaborative Institutional Training Initiative (CITI) pro-
gram “Data or Specimens Only Research” by author Ge Zhang
(certification number: 41407001).

We reported our study in line with the TRIPOD (Transparent
Reporting of amultivariable predictionmodel for Individual Prognosis
Or Diagnosis) recommendations (Supplementary Table 17)66.

Study population
The inclusion criteria were as follows:
(1) Over 18 years old.
(2) Diagnosis with AHF using the International Classification of Dis-

ease 9th revision (ICD9) after the first admission, referring to the
2021 ESC advanced HF diagnostic criteria8.
At least two of the following three criteria must be met despite
the treatment:

(a) Severe and persistent HF symptoms [New York Heart Asso-
ciation (NYHA) class III or IV].

Fig. 6 | Extrapolation of AIHFLevel to the heterogeneous populations from
BIDM center. a Proportional hazard assumption of Cox regression for AIHFLevel
demonstrated no significant correlation between Schoenfeld residuals and time.
Statistical tests: two-sided Schoenfeld residuals test. b Analysis of the non-linear
relationship between AIHFLevel and ACM risk using restricted cubic spline
regression within the external BIDMC cohort (Poverall <0.0001, and Pnon-
linear < 0.0001). Non-linear patterns indicating a ‘fast-to-low’ increase in ACM risk
associatedwith risingAIHFLevel. Univariate Cox regression analysis highlighted the
AIHFLevel as a significant clinical predictor for ACM, with a HR of 1.956 (95%
CI = 1.838-2.082). Statistic test: two-sided Wald test. Line chart displaying the esti-
mated logarithm HRs represented by blue lines, along with 95% CIs indicated by
shading. c Cumulative Kaplan-Meier estimates delineating time to the survival
difference for ACM stratified by AIHFLevel. d Time-dependent ROC analysis for
predicting ACM. AUCs at 1-, 2-, 3-, 4-year demonstrating strong predictive accuracy:
0.788, 0.816, 0.824, 0.846. e Calibration curves depicting the predicted versus
observed probabilities of ACM as evaluated by AIHFLevel. f DCA illustrating net
benefit curves of AIHFLevel for predicting ACM. g Distribution of AIHFLevel across
three prognostic states in the BIDMC cohort (P <0.0001, n = 1024). Statistic tests:
two-sided wilcoxon test, as determined by established stratification criteria. Centre

line indicates median, bounds of box indicate 25th and 75th percentiles, and
whiskers indicate minimum and maximum. h Kaplan-Meier curves showing the
survival difference for ACM across three prognostic states. i Trinormal snapshot of
ROC surface demonstrating the discriminatory power of AIHFLevel on three
prognostic states. j t-SNE dimension reduction analysis spatially segregated sam-
ples by prognostic states into two dimensions, showcasing effective and stable
discrimination. k Multivariate Cox regression of AIHFLevel for ACM risk in the
BIDMC (n = 1024). Upon adjusting for potential confounders, AIHFLevel demon-
strated independent prognostic value. Dot plots illustrated the adjusted hazard
ratios with the horizontal line indicating the 95% confidence interval for each
variable. Bar graphs highlighted the -log10(adjusted P-values) to denote statistical
significance levels. Statistic test: two-sided Wald test. l Comparative predictive
efficacy of AIHFLevel against clinical traits in the BIDMC (n = 1024). C-index was
presented with 95% CI. Statistic tests: two-sided z-score test. m Comparative pre-
dictive efficacy of AIHFLevel against established risk and prognostic models in the
BIDMC (n = 1024). The analysis, visualized through bar graphs for the C-index and
line graphs for the IBS, using two-sided z-score test to ascertain significance:
*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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(b) Severe cardiac dysfunction was defined by at least one of the
following:
(i)
ejection fraction less than or equal to 30%;
(ii)
isolated right ventricular (RV) failure (e.g., arrhythmogenic
right ventricular cardiomyopathy (ARVC));
(iii)
inoperable severe valvular anomalies;
(iv)
inoperable severe congenital anomalies;

(v)
the persistence of elevated BNP or NT-proBNP values, or
severe left ventricular (LV) diastolic dysfunction or structural
abnormalities defined by HFpEF (according to the definitions
of HFpEF: objective evidence of cardiac structural, functional
and serological abnormalities consistent with the presence of
left ventricular diastolic dysfunction; NT-proBNP >125 (SR) or
>365 (AF) pg/mL; BNP > 35 (SR) or >105 (AF) pg/mL; AF= atrial
fibrillation, SR= sinus rhythm).

(c) Low output paroxysmal HF requiring positive inotropes and
vasoactive drugs; or pulmonary or systemic congestion
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episodes requiring high intravenous dose diuretics; or hospi-
talization in the past 12 months; or malignant arrhythmia
resulting in >1 unscheduled visit.

Episodes of pulmonary or systemic congestion requiring high-
dose i.v. diuretics (or diuretic combinations) or episodes of low output
requiring inotropes or vasoactive drugs or malignant arrhythmias
causing >1 unplanned visit or hospitalization in the last 12 months.

(d) Severe impairment of exercise capacity with inability to exer-
cise or low 6-minute walk test (6MWT) distance (<300m) or
pVO2< 12mL/kg/min or <50% predicted value, estimated to be of
cardiac origin.

Detailed information on AHF operationalized identification in the
study was provided in (Supplementary Table 18).

(3) Diagnosis of renal insufficiency, characterized by an estimated
glomerular filtration rate (eGFR) of less than 90ml/(min·1.73m²) and
abnormalities in at least oneof the following: blood creatinineor blood
urea nitrogen levels.

Exclusion criteria:
(1) Initial onset of acute heart failure.
(2) Diagnosis of primary renal disease.
(3) Diagnosis of an infectious disease or malignant tumor.
(4) Receiving renal dialysis treatment.
(5) Incomplete clinical casedata:withmissing >20%of individual data

on relevant covariates necessary for research.
(6) Hospitalization time <2 days.

Given that this study was a hypothesis-driven exploratory study
based on multicenter retrospective longitudinal cohorts, no attempt
was made to estimate the necessary sample size for the study67.
Instead, all eligible patients from both centers were included to max-
imize statistical power.

At the CRCCD center, through theDCS system, we retrospectively
enrolled 1256 patients from September 2018 to December 2020 fol-
lowing the inclusion criteria. Of those, 457 patients were excluded due
to meeting the exclusion criteria or not signing the consent. Addi-
tionally, 87 patients were lost to follow-up during the follow-up period,
and 712 patients were finally included and formed an in-house cohort.
From the BIDMC center, using the PostgreSQL tool, we identified 1024
eligible patients between June 2001 and October 2012 as an indepen-
dent external cohort, applying the same inclusion and exclusion cri-
teria as the in-house cohort.

Data collection
We retrieved the patient data within the initial 24 hours following
admission. Additionally, variables with over 20% missing values were
excluded in the following analyses to minimize the bias resulting
from missing data. Finally, 93 easily accessible variables were listed
as candidates for constructing the survival assessment system
subsequently.

The variables included: (1) general information (gender, age,
NYHA class, smoking status, alcohol status, chronic kidney disease
(CKD) stage, HF subtype); (2) comorbidity state (coronary artery dis-
ease (CAD), hypertension (HTN), arrhythmia, diabetes (DM), hyperli-
pidemia (HL), cerebro-vascular disease (CeVD), peripheral vascular
disease (PVD), thyroid disorder (TD), chronic obstructive pulmonary
disease (COPD)); (3) blood routine result (white blood cell count
(WBC), red blood cell count (RBC), hemoglobin (Hb), platelet count
(Plt), neutrophils count (NE), lymphocytes count (LY), monocytes
count (MO), eosinophils count (EO), basophils count (BA), lympho-
cytes percentage (LY_Per), monocytes percentage (MO_Per), eosino-
phils percentage (EO_Per), basophils percentage (BA_Per), basophils
neutrophils (NE_Per), haematocrit (HCT), mean corpuscular volume
(MCV), mean corpuscular hemoglobin (MCH), mean corpuscular
hemoglobin concentration (MCHC), red cell distributionwidth (RDW),
mean platelet volume (MPV), plateletcrit (PCT), platelet distribution
width (PDW)); (4) coagulation function result (thrombin time (TT),
prothrombin time activity percentage (PTA), international Normalized
Ratio (INR), activated partial thromboplastin time (APTT), fibrinogen
(Fg), prothrombin time (PT)); (5) renal function result (blood urea
nitrogen (BUN), serum creatinine (Cr), serum uric acid (UA), BUN/Cr
ratio (BUN_Cr), glomerular filtration rate (GFR)); (6) liver function
(total protein (TP), albumin (ALB), globulins (GLO), total bilirubin
(TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), total cholesterol
(TCHO), triglycerides (TRIG), high density lipoprotein cholesterol
(HDL), low-density lipoprotein cholesterol (LDL)); (7) cardiac function
biomarker (NT-proBNP (BNP), cardiac troponin I (TN), creatine kinase
(CK), creatine kinase MB Isownzyme (CKMB), C-reactive protein
(CRP)); (8) (glucose (GLU), glycated haemoglobin (HbA1c)); (9) Echo-
cardiography result (right ventricle internal diameter (RVID), inter-
ventricular septal thickness (IVS), left ventricle internal diameter
(LVID), left ventricular posterior wall thickness (LVPWT), aortic valve
annulus diameter (AOAD), left atrium diameter (LAD), pulmonary
artery valve diameter (PAVD), right atrium supero-inferior diameter
(RALRD), right atrium supero-inferior diameter (RASID), early diastolic
mitral wave velocity (MVE), late diastolic mitral wave velocity ratio
(MVA), left ventricular ejection fraction (EF), stroke volume (SV), left
ventricular fraction shortening (FS)); (10) medication history
(aspirin, ticagrelor, clopidogrel, sacubatril/valsartan, ACEI_ARB,
beta.blocker,diuretics, statin, nitrates, digoxin, nifedipine/diltiazem
(CCB), pantoprazole/omeprazole/esomeprazole (PPI)); (11) percuta-
neous coronary intervention history (PCI history).

Missing data handling
The variables with over 20% missing values were discarded as descri-
bed previously. The TRIPOD guidelines suggested applying multiple
imputations when missing data were present, as complete case ana-
lyses can lead to reduced sample size, biased estimates, and loss of
Information66. After enrolling patients based on the inclusion and
exclusion criteria, no missing data were found in the BIDMC cohort,

Fig. 7 | Convenient web application for clinical utility. a The user interface of the
application website showcases a comprehensive suite of functionalities, including
prognostic stratification, calculation of long-term survival probabilities, all-cause
mortality predictions at indicated time points, local interpretation, and predictor
contribution. The left panel displayed the initial screenwhereusers input the actual
values for the 12 predictors and the desired time point for any new individual
patient. The right panel presented the interface for displaying the results of the
survival assessment, providing a clear and concise overview of the prognostic
outcomes. b Illustration of the practical application through an exemplary case.
Users input data through 13 queries: age (72 years), arrhythmia comorbidity (No),
CAD comorbidity (Yes), CKD stage (IV), Cr (101.3 μmol/L), LVEF (51%), eGFR
(23.490ml/(min/1.73 m3)), Lymphocyte (23.8%), MCHC (328.00g/L), SV (42%),
CTnI (0.35 ng/ml), TBIL (2.79 ng/ml), and the time point of interest (600-day). The
image was created with a licensed version of bioRender.com. c Long-term survival

curve. The y-axis represents the percentage value of survival probability, while the
x-axis represents any future time point. The arrow and dotted line indicate the
calculation of all-causemortality at the specified timepoint of interest.dHistogram
depicting the predicted survival probability values for this patient at several
important future timepoints (180, 365, 730, 900days, and the specified timepoint)
from the current moment. Data were presented with 95% CI. e Radar graph indi-
cating contributions of each predictor to the survival assessment. f The X-axis
quantifies each predictor’s contribution to the system’s output using SHAP values,
with the probability of survival decreasing as the SHAP value increases. A positive
SHAP value indicates an increased risk of ACM, while a negative value suggests a
protective effect. For this case, the values of eGFR, SV, CTnI, age, and Cr were
pushing the decision towards a worse prognosis, while Cr, LVEF, and MCHC were
influencing the decision toward a favorable prognosis.
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while the extent of missingness in the CRCCD cohort is detailed in
(Supplementary Table 19). Initially, our data was presumed to be
Missing At Random (MAR), aligning with the assumptions of prior
studies68. Little’s test was subsequently applied to affirm that the data
was not Missing Completely At Random (MCAR) (Chi-square =
1483.688, Degrees of Freedom = 1104, P = 1.26e−13) as noted in (Sup-
plementary Table 19)69. Therefore,multiple imputationwasperformed
through the method of chained equations procedure70, ensuring a
statistically robust approach to addressing missing data in our study.

Multiple imputation with chained equations (MICE) specified a
multivariate model through conditional distributions, where each
variable with missing data is imputed conditionally on all other vari-
ables. In our dataset with p (p = 93) variables and k (k = 20) variables
missing data (with p-k complete cases), the procedure was as follows:
(1) For each of the k variableswithmissing data, an imputationmodel

was specified.
(a) numeric data: bayesian linear regression imputation.
(b) factor data with 2 levels: logistic regression imputation.
(c) factor data with >2 unordered levels: polytomous regression
imputation.
(d) factor data with >2 ordered levels: proportional odds model.

(2) Imputation values are drawn from the overall distribution of
observed values for each variable with missing data. These initial
imputed values are refined in subsequent steps.

(3) For the first variable with missing data:
(a) Regression is performed based on other variables (including the

complete data of thefirst variable; andother observedor imputed
variables).

(b) Regression parameters: extract estimated regression coefficients
and the variance-covariance matrix of the regression model from
the previous regression (and for linear regression models fitted
for continuous variables, the estimated variance of the residuals).

(c) Parameters are randomly perturbed to reflect the uncertainty in
data generation.
The conditional distribution for each sample with missing data
in the first variable is determined using the perturbed regression
coefficients.

(d) Imputation values are then selected for eachmissing datumbased
on the conditional distribution.

(4) Steps 3 and 4 are repeated in a cycle, imputing each variable with
missing data.

(5) The process of steps 3 and 4 is repeated 20 iterations. The final
imputed values form the first completed imputed dataset.

(6) Steps 3 to 5 are repeated 5 times to generate 5 imputed datasets.
(7) Construction of the multiple imputed datasets is completed and

nowMdatasets are obtained (assumingM = 5). These datasets are
then treated as complete for statistical analysis. The results were
pooled into one dataset by applying Rubin’s rules71.

In addressing missing data for continuous and categorical vari-
ables, our analysis revealed a uniform pattern in the data distribution
before and after interpolation, as detailed in (Supplementary Fig. 7)
and (Supplementary Fig. 8). This consistency was validated using the
Wilcoxon rank-sum test for continuous variables and the chi-squared
test for categorical variables, ensuring the integrity and reliability of
our data analysis.

Study outcome
For the CRCCD cohort, collection of the follow-up information was
conducted by extracting case system records, contacting patients, and
relatives, and referring physicians through telephone or mail. For the
BIDMC cohort, we gathered information from the publicly available
single-center database,Medical InformationMart for Intensive Care III,
utilizing the pgAdmin PostgreSQL (version 9.6) Structured Query
Language. The primary endpoint event was ACM during in-hospital

and out-hospital deaths. The secondary endpoint was a major adverse
cardiovascular event (MACE). MACE included one or several of the
following conditions: readmitted for symptomatic HF, nonfatal acute
coronary syndrome, nonfatal ischemic stroke, new-onset cardiac
arrhythmia, the use of mechanical circulatory support and imple-
mentation of heart transplantation, and cardiac death. Each chart was
reviewed separately to determine the presence of MACE, and the
American College of Cardiology/American Heart Association defini-
tions provided for clinical trials were used to identify MACE72.

AI hybrid modeling framework generated survival assessment
system (AIHFLevel)
There are many modeling algorithms to analyze data and assess out-
comes currently. Predictions provided by different algorithms may
vary depending on the characteristics of the dataset. It remained
challenging to identify the appropriate learner tailored to the appli-
cation’s requirements. However, some researchers have suggested
that the use of hybrid learning models, e.g. ensemble-based approa-
ches that is, a combination of two models, and enhancing existing
learning models can be helpful. Mienye and colleagues provided evi-
dence that ensemble-based learning may perform better than the
single model in the prediction of HF events51. Ensemble modeling
operates by employing a collectionof diverseand independentmodels
to make predictions, thereby reducing the generalization error and
improving the reliability of the predictive outcomes53. Central to our
framework is the pursuit of the suitable learner. The graphic illustra-
tion was presented in (Fig. 2a, Supplementary Fig. 9)
(1) Data application: The CRCCD in-house cohort was used to

evaluate the viability of various algorithms and identify the
optimal modeling schemes, while the BIDMC external cohort
served to validate the system’s generalizability. ACM serves as an
outcome to train our system.

(2) 46 candidate survival features: We incorporated 93 readily
accessible variables, as detailed earlier. In the CRCCD cohort,
univariate Coxproportional hazards (PH) regression and Log-rank
test were conducted. 46 variables were identified as candidate
survival features, demonstrating statistical significance (P < 0.05)
in both tests.

(3) 12 modeling algorithms: L1-regularized PH regression (L1.regular-
ization), L2-regularized PH regression (L2.regularization), Elastic-
Net-regularized PH regression (ENet.regularization), Survival
random forest SRC learner (Surv.RFsrc), Survival support vector
machine (Surv.SVM), survival tree (Surv.rpart), Cox model with
likelihood-based boosting (Surv.Coxboost), Boosted generalized
linear survival learner (Surv.glmboost), Extreme gradient boost-
ing survival learner (Surv.Xgboost), Survival gradient boosting
machine learner (Surv.gbm), Survival fully parametric learner
(Surv.Fully-parametric), Accelerated oblique random survival
forest learner (Surv.aorsf). Details of their hyperparameters are
presented in (Supplementary Table 20).

(4) 132 modeling schemes:
(a) Single Algorithm Model Fitting:12 algorithms were performed on

46 candidate survival features to fit models, generating
15 schemes: L1.regularization (lambda.min), L1.regularization
(lambda.1se), L2.regularization (lambda.min), L2.regularization
(lambda.1se), ENet.regularization (lambda.min), ENet.regulariza-
tion (lambda.1se), Surv.RFsrc, Surv.SVM, Surv.rpart, Surv.Cox-
boost, Surv.glmboost, Surv.Xgboost, Surv.gbm, Surv.Fully-
parametric, Surv.aorsf. For regularization algorithms (L1, L2, and
ENet), we utilized ‘lambda.min’ and ‘lambda.1se’ as λ regulariza-
tion parameters to expand the range of possible schemes.

(b) Model Fittingusing aCombinatorial Family of Algorithms: Feature
selection on 46 candidate survival features was initially executed
with each algorithm, followed by fitting the selected features with
the remaining algorithms.
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(i) Embedded Method: For L1.regularization and ENet.regulariza-
tion, we directly leveraged their built-in selection mechanisms
based on L1 and elastic-net penalties. 5-fold cross-validation
served as the resampling strategy for evaluating feature subset
performance. The other 9 algorithms, excluding regularization
methods, were then applied to fit models on the selected
features, generating 18 schemes.

(ii) Filter & Wrapper Hybrid Method: This method combined the
rapid training capability of the external technique Filter (fea-
ture ranking) and the intensive computation of the Wrapper
(using the model as a black box to evaluate feature subset
according to their predictive power)73. Apart from the reg-
ularization methods, each of the remaining 9 algorithms exe-
cuted the following steps:

First, the filter method was adopted to rank the features in des-
cending order according to the Correlation-Adjusted Survival Score
(CARS)74. Next, sequential forward floating selection (SFFS) as a
wrapper method was used to select features75. Features were added in
feature sets in sequence, and feature retention was based on the per-
formance of each algorithm at every step. The 5-fold cross-validation
assisted the performance assessment. If the performance with a new
feature set did not increase, the new feature was removed from the
feature set. Supplementary Fig. 10 illustrated the main procedure of
the Filter & Wrapper Hybrid Method. Finally, the remaining 11 algo-
rithms were used to fit models on the selected features, generating
99 schemes.
(5) Comprehensive Assessment:

In the CRCCD in-house cohort, we implemented 132 modeling
schemes, each generating a separate model. The evaluation of these
models’ effectiveness and relevance was conducted via a rigorous
comprehensive assessment strategy. This included 10 repeated 10-fold
cross-validation, Monte-Carlo cross-validation (MCCV, 100 iterations
with a 0.7 sampling ratio), and bootstrap analysis (1000 iterations with
a 0.7 sampling ratio).

The concordance index (C-index), calculated across three strate-
gies, served as the pivotal performance metric. The modeling scheme
with the highest average C-index was recognized as the most effective
for AHF&RD patients.

This comprehensive assessment strategy offered significant
advantages:
(a) Comprehensive Coverage: Integrating varied validation techni-

ques ensured a more thorough and resilient evaluation. This
multifaceted approach countered the risks of overfitting, bias
inherent in single-method validation, and selection bias by
researchers.

(b) Diverse Scenario Analysis: Using MCCV and bootstrap analysis
allowed for an extensive examination of themodels’ performance
across diverse datasets and hypothetical clinical scenarios, thus
ensuring that the model is not overly tailored to a specific dataset
or condition. This enhances themodel’s generalizability,making it
more applicable and reliable in different clinical settings and
populations.

(c) Precision inModel Selection: Applying the average C-index across
diverse validation strategies refined the selection of the most
effective model for AHF&RD, ensuring a robust choice backed by
consensus performance metrics.

(6) Validation and Extrapolation:

In the CRCCD in-house cohort, we divided the participants into a
Discovery cohort (70%, n = 498) for model fitting using the optimal
scheme, which led to the modeling of our prediction system AIH-
FLevel. A Replication cohort (30%, n = 214) was then employed for the
initial validation of AIHFLevel. Further validation and generalization

processes were conducted on the complete CRCCD Meta cohort and
the external BIDMC cohort.

External validation across diverse data modalities, such as
patients from BIDMC with varying hospital systems, technological
platforms, regional, and ethnic backgrounds, is crucial for predictive
analytics. This approach can effectively address the issue of model
overfitting on internal data, ensuring broader applicability and gen-
eralizability of the predictive system.

Discrimination was quantified by AUC and C-index for specific
time points and global time assessment. Integrated Brier score (IBS)
was used as an overall summative measure of predictive performance,
and calibration was evaluated through calibration plots. The decision
curve analysis (DCA) served to determine whether the clinical value of
the AIHFLevel system increased the net benefit over a realistic range of
threshold probabilities.

Prognostic stratification
We employed an unbiased non-parametric conditional inference sur-
vival tree, integrating tree-structured regression models. This method
utilized a recursive partitioning algorithm to naturally categorize
samples based on survival time and covariates76.
(1) The inference tree was built based on AIHFLevel system,

demonstrating the potent capability to separate survivors and
non-survivors.

(2) We performed a binary split on the features used by AIHFLevel,
determining the optimal cut point based on log-rank statistics.
This approach allowed for precise stratification.

(3) Stopping rules were based on Bonferroni-adjusted p-values to
determine tree size. The minimum criterion for node split was
defined as p <0.001. The outcomes of this modeling are
represented in a single tree (High risk, Intermediate risk, Low
risk). Additionally, Kaplan-Meier (KM) curves were constructed
for each subgroup identified through the survival tree
methodology.

The features used by AIHFLevel were processed using the
t-distributed stochastic neighbor-embedding (t-SNE) technique for
dimensional reduction, visualization, and validation of prognostic
stratification. To assess the discriminatory power of the AIHFLevel
system across three risk states, we applied the trinormal-based ROC
test and Volume Under the ROC Surface (VUS) based statistical tests,
alongside the trinormal snapshot of the ROC surface77,78.

To further substantiate the robustness of our prognostic stratifi-
cation, we quantified the global difference between pairs of EHR pro-
files using the Euclidean distance approach79.

The Euclidean distance:

RMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Where xi and yi are the value of AIHFLevel system’s features i over
two profiles (High-risk subgroup and remaining samples) with p and q
samples respectively (x1, x2,…, xp), (y1, y2,…, yq). n is the number of
features present in the profile.

Critical transition signal analysis
In complex disease progression, transitions could occur abruptly and
nonlinearly, not always following a slow, linear trajectory41. A critical
transition signal (CTS) or tipping point represented a sharp shift from
one state to another. According to this concept, the disease progres-
sion can be segmented into three stages: ‘Before-deterioration state’, a
relatively stable state where the disease undergoes gradual and slow
change, ‘Pre-disease state’, which is the limit of the normal state just
before the transition to the disease state, and the ‘Deteriorated state’,
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which is another relatively stable state and is usually irreversible to the
‘Pre-disease state’. Identifying the critical state or tipping point just
before this transition is crucial for early prevention. We optimized a
mathematical model, dynamic network biomarker (DNB) method,
detecting early-warning signals or CTS of deterioration of the disease.

Let X denote the p × nmatrix of the value levels of P EHR variables
(g1, g2,… gp) in rows and n samples (s1, s2,… sn) in columns. When the
n = n1 +…+ nR samples are classified into R distinct states (based on
identified prognostic stratification: High risk, Intermediate risk, Low
risk), we can group the columns of X to have X = [X1|···|XR], where Xr

denotes the p × nr submatrix for samples in a state r∈ (1, 2,…, R) and nr
denotes the number of samples observed in the r-th state.

Let PCC refer to the Pearson correlation coefficient between any
two variables (gi and gj). Let |.| take the absolute value.
(1) Network partition: Repeat the following steps for each state r,
(a) Calculate all pairwise PCC_r(gi,gj).
(b) (b) Network partition by greedily optimizing ‘modularity’ in net-

work communities (FDR of PCC_r(gi,gj) <0.05).

Module refers to a cluster of network nodes (e.g. EHR variables)
highly linked (by correlation).
(2) Identify CTS: Repeat the following steps for each module m,
(a) PCCi(m) = Avg(|PCC(g,g)|), where (g.)∈ m.
(b) PCCo(m) = Avg(|PCC(gi,gj)|), where (gi.)∈ m, (gj.)∉ m
(c) SDi(m) = Avg(SD(g)), where (g.)∈ m, SD refers to the standard

deviation.
(d) CI(m) = PCCi(m)*SDi(m)/PCCo(m), CI refers to the

composite index.
(e) The biomodule (module with the highest CI(m) score) of each

state indicated the CTS levels in each state. TheDNB scores (PCCi,
PCCo, SDi, CI) of biomodules represented the DNB scores of
each state.

The CI is expected to increase abruptly and significantly before
the critical transition to the disease state and can serve as an early
warning signal.
(3) CTS validation: To ensure robustness and reliability, we finally

estimated the expected DNB scores from Xr by bootstrapping size
biomodule variables from the HER background 1000 times.

System interpretability
To reasonably explain the decision-making process and adapt treat-
ment strategies, the physicians require an understanding of how the
AIHFLevel system relies on the system’s features or any comorbidity of
the specific subject. The Shapley Additive exPlanation (SHAP) value
was imputed to tackle the transparency issue, estimating each feature’s
contribution based on cooperative game theory80. On an individual
scale, we further visualized the features of any new subject partici-
pating in the prediction and how they impacted the future survival
outcome.

Subgroup and sensitivity analyses
To validate the robustness of our result, sensitivity analyses were
performed:
(1) Dual-Outcome Evaluation: Our system was designed to estimate

the survival distribution for a given individual, with ACM serving
as an outcome to train our system. In addition to confirming the
system’s robustness in predicting ACM, we also conducted an
evaluation to assess its performance with MACE as an alternative
outcome. This approach allowed us to comprehensively gauge
the system’s predictive capabilities for different clinical
endpoints.

(2) Subgroup analysis: We conducted analyses among five pre-
specified subgroups [Age (>65 or ≤65 years), Cardiac function
grade (NYHA I/II or NYHA III/IV), HF subtype (HFpEF, HFmrEF,

HFrEF), CKD stage (stage I/II, III, IV/V), PCI history (Yes or No)] to
evaluate the prognostic value of AIHFLevel on long-termACMand
MACE among AHF patients with RD.

Statistical analysis
Data processing, statistical analysis, and plotting were conducted in R
software (version 4.3.2). Continuous variables were statistically com-
pared through Wilcoxon-rank-sum test or Student’s t-test, while cate-
gorical variableswere analyzedbyChi-square test orFisher’s exact test.
The assumption of proportional hazards was verified using Schoenfeld
residuals and log-log inspection. The restricted cubic spline regression
(3 knots) was applied to investigate the possibly nonlinear relation-
ships betweenAIHFLevel and prognosis. Non-linearitywas assessed via
a likelihood ratio test comparing models with linear terms against
those with both linear and cubic spline terms. The fuzzy c-means soft
clustering and dynamic baseline data pattern analysis were performed
using Mfuzz software, focusing on cardiac function grade, CKD stage,
and HF subtype subgroups. Comparative analysis of Integrated Brier
Score (IBS) andConcordance Index (C-index) was conducted using the
survcomp package, while the survminer package was utilized for
optimal cut-off point determination. Cox regression analysis, logrank
test, visualization of ROC and calibration curves, and trinormal snap-
shot of ROC surface were implemented by the survival, survminer,
pROC, timeROC, rms, and trinROC packages. Model fitting was con-
ducted using the mlr3, mlr3learners, mlr3verse, mlr3tuning,
mlr3proba, and mlr3extralearners packages. Statistical significance
was set at a two-sided P-value < 0.05. Error bars represent 95% con-
fidence intervals.

Online system deployment
To enhance the model’s practicality in clinical settings, the AIHFLevel
system has been further encapsulated into a user-friendly web appli-
cation (https://www.hf-ai-survival.com), that can work on any new
case, providing a more intuitive and understandable way to interpret
theworking principle. For any subjectwithAHF&RD, using the answers
to 13 easy questions, the application assesses the future survival from
diagnosis and the contribution of each index to the outcome. The web
server was powered by Django, a high-level Python Web framework
(version 4.1.3) (https://djangoproject.com).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The in-house data in this studywas accessed from the electronic health
records system of the Henan Province Clinical Research Center for
Cardiovascular Diseases. The in-house individual-level data is pro-
tected and cannot be shared openly due to data privacy laws, ethical
restrictions, and confidentiality agreements. For access to additional
information required to reanalyze the data supporting the findings,
please contact corresponding author (fcctangjn@zzu.edu.cn) with a
detailed request and may be required to sign a data use agreement to
ensure the protection of participant confidentiality. Requests will be
evaluated by the Institutional Ethics Committee of Henan Province
Clinical Research Center for Cardiovascular Diseases, and a response
will be provided within 30 business days. The external data was
accessed from the Beth Israel Deaconess Medical Center Resource,
which is available at Multi-parameter Intelligent Monitoring III data-
base. Source data are provided with this paper.

Code availability
Essential original scripts for implementing AIHFLevel system in this
paper is available through GitHub website (https://github.com/
DrZoggg/AIHFLevel).
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