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Holimap: an accurate and efficient method
for solving stochastic gene network
dynamics

Chen Jia 1 & Ramon Grima 2

Gene-gene interactions are crucial to the control of sub-cellular processes but
our understanding of their stochastic dynamics is hindered by the lack of
simulation methods that can accurately and efficiently predict how the dis-
tributions of gene product numbers vary across parameter space. To over-
come these difficulties, here we present Holimap (high-order linear-mapping
approximation), an approach that approximates the protein ormRNA number
distributions of a complex gene regulatory network by the distributions of a
much simpler reaction system. We demonstrate Holimap’s computational
advantages over conventionalmethods by applying it to predict the stochastic
time-dependent dynamics of various gene networks, including transcriptional
networks ranging from simple autoregulatory loops to complex randomly
connected networks, post-transcriptional networks, and post-translational
networks. Holimap is ideally suited to study how the intricate network of gene-
gene interactions results in precise coordination and control of gene
expression.

Genetic regulation occurs through intricate interactions between a
number of genes1–4. A gene “X” may express a protein which acts as a
transcription factor (TF), promoting or inhibiting the RNA polymerase
assembly on another target gene “Y” (or on itself) and thus regulating
the extent that the latter is expressed5. These gene-gene interactions
can be simply visualized as a directed graph with the genes being the
nodes (vertices) and the directed edges (links) representing the
interactions6,7. Networks inferred from gene expression data, com-
monly called gene regulatory networks8, have been reconstructed by
several methods9–13. The complex connectivity of these networks
makes intuitive understanding of their dynamics challenging. Conse-
quently, the construction, mathematical analysis, and simulation of
models of gene regulatory networks are indispensable tools in a
quantitative biologist’s arsenal.

Several formalisms have been employed to predict gene reg-
ulatory network dynamics, including Boolean networks, ordinary dif-
ferential equations (ODEs), and chemical master equations (CMEs)—
for reviews covering these approaches andmore, please see refs. 14,15.
These approaches have various advantages and disadvantages. In

Boolean networks, the expression of each gene is tracked by a binary
variable and hence large networks can be examined in a computa-
tionally efficientway. Amore refineddescription is providedby the use
of ODEs, where the time-dependent concentrations of RNAs, proteins,
and other molecules are predicted as a function of the rate constants
of the reactions in the network16,17. An even more realistic description
makes use of the CME approachwhere one predicts not only themean
expression levels of various genes but also the distributions of the
discrete numbers of mRNAs and/or proteins measured across a
population of cells18. This stochasticity has various sources (biological
intrinsic and extrinsic noise, and technical noise introduced by
experimental protocols), all of which lead to the large differences in
gene expression observed from one cell to another19–21.

Unfortunately, with an increasing level of sophistication and
predictive power, simulations also rapidly become computationally
expensive. Unraveling the stochastic dynamics of gene networks
requires solving a set of coupledCMEs for theprobability of the system
being in each possible state. Since the number of states of a gene
network is typically infinite, direct solution of these equations is
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impossible. The finite-state projection algorithm (FSP)22 truncates the
infinite state space to a finite one; this renders numerical solutions
possible because we only need to solve a finite-dimensional CME.
However, the immense number of states limits its applications to very
small networks with one or two interacting genes. For larger networks
withmultiple interacting genes, Monte Carlo simulations based on the
stochastic simulation algorithm (SSA)23 become more practical. Spe-
cifically, given the current state of the system, the SSA generates two
random numbers to predict the time when the next reaction event
occurs and which particular reaction event will occur. The output is a
number of statistically correct trajectories (molecule number versus
time data), one for each cell, from which the copy number distribu-
tions of all biochemical species can be calculated. However, the issue
remains that a large sampling size is typically required to obtain
smooth distributions and hence the computational time can still be
very considerable. For an introduction to simulation methods in sto-
chastic biology, we refer the reader to refs. 24–26.

In this paper, we overcome the difficulties of conventional
stochastic simulation methods for gene networks by devising an
efficient approach—the high-order linear-mapping approximation
(Holimap). The basic idea is to map the dynamics of a complex gene
network with second or higher-order interactions (a system with
nonlinear propensities and hence a nonlinear network) to the
dynamics of a much simpler system where all reactions are first-
order (a linear network). The reaction rates of this system are gen-
erally time-dependent and complex functions of the reaction rates
of the original gene network and they are found by conditional
moment-matching. The linear network has a much smaller state
space than the nonlinear network which means that now simulation
using FSP becomes feasible, leading to smooth distributions of
protein numbers in a fraction of the time taken by SSA simulations.
For an illustration of Holimap see Fig. 1.

The paper is structured as follows. The Holimap method is
introduced by means of a simple autoregulatory feedback loop
example where we show step-by-step how the approximation is con-
structed when second or higher-order interactions are only between a
protein and a gene. The method is then extended to show the appli-
cation to more complex networks with multiple protein-gene inter-
actions and also to networks with gene product interactions such as
those with RNA-RNA, RNA-protein, and protein-protein high-order
reactions. By comparison with the SSA or FSP, we show that inde-
pendent of the type of interactions in a gene network, Holimap pro-
vides highly accurate time-dependent distributions of protein or
mRNAnumbers over large swathes of parameter space including those
regions where the systemdisplays oscillatory ormultistable dynamics.
Finally, we show that the computation time of Holimap can be sig-
nificantly reduced while maintaining its accuracy by devising a hybrid
method which combines both Holimap and the SSA.

Results
Fundamental principles of Holimap illustrated by an auto-
regulation example
Consider a simple autoregulatory feedback loop27,28, whereby protein
expressed from a gene regulates its own transcription (Fig. 2a). Feed-
back is mediated by cooperative binding of h protein copies to the
gene29–32. In agreement with experiments33, protein synthesis is
assumed to occur in bursts of randomsize k sampled froma geometric
distribution with parameter p, i.e., Pðk =nÞ=pnð1� pÞ. Here σb is the
binding rate of protein to the gene; σu is the unbinding rate; ρb and ρu
are the burst frequencies of protein, i.e., the frequencies with which
bursts are produced, when the gene is in the bound and unbound
states, respectively; d is the rate of protein degradation and dilution
(due to cell division). The reaction system describes a positive feed-
back loopwhenρb > ρu (since in the case, binding of a protein increases
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Fig. 1 | Illustration of Holimap and its advantages over the SSA. Holimap
decouples gene-gene interactions in a nonlinear regulatory network and trans-
forms it into a linear network with multiple effective parameters, some of which
maybe time-dependent. The time evolution of protein numberdistributions (for all
genes) of the nonlinear network can be approximately predicted by solving the
dynamics of the effective linear network using, e.g., FSP (the lattices in the lower

row indicate that FSP truncates an infinite state space into a finite one and then
solves the finite-dimensional CME). Compared with the conventional Monte Carlo
approach (the SSA, whose two main stochastic steps are illustrated by dice), Holi-
map not only significantly reduces the CPU time, but it also yields an accurate,
noise-free prediction of the protein number distributions.
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its own expression) and describes a negative feedback loop when
ρb < ρu (binding of a protein decreases its own expression).

Let pi,n denote the probability of having n protein copies in an
individual cell when the gene is in state i with i =0, 1 corresponding to
the unbound and bound states, respectively. To proceed, let
gi =

P1
n=0pi,n be the probability of observing the gene in state i and let

μm,i =
P1

n=0 nðn� 1Þ � � � ðn�m+ 1Þpi,n be the mth factorial moment of
protein numbers when the gene is in this state. For simplicity, we first
focus on the case of non-cooperative binding (h = 1). From the CME, it
is straightforward to obtain the following time evolution equations for

the moments:

_g0 = σug1 � σbμ1,0,
_μ1,0 = ρuBg0 � dμ1,0 + σuðμ1,1 + g1Þ � σbðμ2,0 +μ1,0Þ,
_μ1,1 = ρbBg1 � dμ1,1 � σuμ1,1 + σbμ2,0,
_μ2,0 = 2ρuBðμ1,0 +Bg0Þ � 2dμ2,0

+ σuðμ2,1 + 2μ1,1Þ � σbðμ3,0 + 2μ2,0Þ,
_μ2,1 = 2ρbBðμ1,1 +Bg1Þ � 2dμ2,1 � σuμ2,1 + σbμ3,0,

ð1Þ
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Fig. 2 | Holimaps for autoregulatory gene networks in steady-state conditions.
a Stochastic model of an autoregulatory feedback loop, which includes bursty
protein synthesis, protein decay, cooperative binding of protein to the gene, and
unbinding of protein. b The LMA maps the nonlinear network to a linear one with
effective parameter σ̂b. The high-order reactions G + hP⇌G* in the former are
replaced by the first-order reactions G⇌G* in the latter. c The 2-HM maps the
nonlinear network to a linear one with effective parameters ~σu and ~σb. d The 4-HM
maps the nonlinear network to a linear onewith effective parameters �σu,�σb,�ρu, and
�ρb. eHeat plot of the HD for the LMA as a function of the protein burst frequencies
ρu and ρb. Here the HD for the LMA represents the Hellinger distance between the
real steady-state protein distribution computed using FSP applied to the nonlinear
system and the approximate protein distribution computed using the LMA. f Heat
plotsof theHDs for the LMAandHolimapsas functionsof theunbinding rate σu and

binding rate σb (normalized by the decay rate d) when ρb≫ ρu. The red curves
enclose the true bimodal region, i.e., the parameter region in which the protein
number has a bimodal distribution, as predicted by FSP; the orange curves enclose
the bimodal region predicted by the approximation method. The vertical white
dashed line demarcates the region of σu ≥ d, where the linear network given by the
LMA can never exhibit bimodality, from the region of σu < d where it can.
g Comparison of the steady-state protein distributions computed using FSP, LMA,
2-HM, and4-HM indifferent regimesofgene state switching.hThemaximumHDas
a function of the cooperativity h for the LMA andHolimaps. Here themaximumHD
is computed when σu and σb vary over large ranges, while other parameters remain
fixed. See Supplementary Note 1 for the technical details of this figure. Source data
are provided as a Source Data file.
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where g1 = 1 − g0 and B = 〈k〉 = p/(1 − p) is the mean protein burst size,
i.e., themean number of proteinmolecules produced in a single burst.
For clarity, we have suppressed the explicit time dependence of all
moments. Note that this system of equations is not closed, i.e., the
equation for a moment of a certain order depends on moments of
higher orders, andhence anexact solution is generally impossible. This
difficulty stems from the nonlinear dependence onmolecule numbers
of the bimolecular propensity modeling protein-gene interactions34.

In contrast, a linear gene network (one composed of only first-
order reactions, i.e., the propensity of each reaction has a linear
dependence on molecule numbers) is much easier to solve both ana-
lytically and numerically than a gene network with nonlinear propen-
sities; for example, the moment equations are closed and thus can be
solved exactly in this case. A basic idea of the linear-mapping
approximation (LMA) developed in ref. 35 is to transform a complex
nonlinear network into a linear one by replacing all second or higher-
order reactions between proteins and genes by effective first-order
reactions. Specifically, for the network in Fig. 2a, we replace the reac-
tionsG + hP⇌G* byG⇌G*. The LMAmaps the nonlinear network to the
linear one shown in Fig. 2b, where the binding rate σb for the former is
replaced by the effective gene switching rate σ̂b for the latter, while the
other parameters remain unchanged. In the LMA, σ̂b is chosen to be σb
multipliedby the conditionalmeanof proteinnumbers in theunbound
gene state, i.e.,

σ̂b = σbhnji=0i=
σbμ1,0

g0
, ð2Þ

where g0 and μ1,0 can be calculated by a natural moment-closure
method (“Methods”)35. There are two approximations involved in the
LMA: (i) in reality, the effective parameter σ̂b should be stochastic
rather than deterministic since it is proportional to the instantaneous
protein number in the unbound state; (ii) anymoment-closuremethod
inevitably leads to some errors36.

Next we propose an efficient method—Holimap, which we will
show to perform much better than the LMA. There are two types of
Holimaps. The first type is the 2-parameter Holimap (2-HM) which
transforms thenonlineargenenetwork into the linearone illustrated in
Fig. 2c, where both the binding and unbinding rates σb and σu for the
former are replaced by the effective gene switching rates eσb and eσu for
the latter. The remaining question is how to determine eσb and eσu so
that the solution of the linear network accurately approximates that of
the nonlinear one. For the linear network, the evolution ofmoments is
governed by

_g0 = eσug1 � eσbg0,
_μ1,0 =ρuBg0 � dμ1,0 + eσuμ1,1 � eσbμ1,0,
_μ1,1 =ρbBg1 � dμ1,1 � eσuμ1,1 + eσbμ1,0,
_μ2,0 = 2ρuBðμ1,0 +Bg0Þ � 2dμ2,0 + eσuμ2,1 � eσbμ2,0,
_μ2,1 = 2ρbBðμ1,1 +Bg1Þ � 2dμ2,1 � eσuμ2,1 + eσbμ2,0:

ð3Þ

The effective rates eσb and eσu are chosen so that the two systems have
the same zeroth and first-order moment equations (for the latter, we
mean the first-order moment when the gene is in the bound state).
Matching the first and third identities in Eqs. (1) and (3), we find that eσb

and eσu should satisfy

eσug1 � eσbg0 = σug1 � σbμ1,0,
eσuμ1,1 � eσbμ1,0 = σuμ1,1 � σbμ2,0:

ð4Þ

The remaining question is how to use these equations to obtain for-
mulae for the effective rates. This can be done as follows: we first solve
for eσb and eσu using Eq. (4) and then substitute these into Eq. (3) to
obtain a set of closed moment equations. These equations can be

solved for the values of all zeroth, first, and second-order moments,
i.e., gi, μ1,i, and μ2,i. Finally substituting these into Eq. (4) gives the
values of the effective parameters eσb and eσu for the linear network. See
Supplementary Note 2 for a more detailed explanation of the Holimap
algorithm.

In steady-state, the values of eσb and eσu are constants independent
of time, and hence we can use the steady-state protein distribution of
the linear network to approximate that of the nonlinear one—this can
be computed analytically37 or using FSP. When the system has not
reached steady-state, the values of eσb and eσu depend on time t. In this
case, we can use the time evolution of the linear network with time-
dependent rates to predict that of the nonlinear one—while analytical
solutions are not generally available in this case, the distributions can
be efficiently computed using FSP.

In some regions of parameter space, the 2-HM may still not be
accurate enough. To solve this problem, we devise a second type of
Holimap—the 4-parameter Holimap (4-HM), which transforms the
nonlinear network into the linear one illustrated in Fig. 2d. Here the
binding rate σb, unbinding rate σu, and the protein burst frequencies ρb
and ρu for the former are replaced by four effective parameters
�σb,�σu,�ρb, and �ρu for the latter, which can be determined by matching
the moment equations for the two networks (“Methods”). Note that
while for the 2-HM, we matched only the zeroth and first-order
moments, for the 4-HM, we matched these and also the second-order
moments. The 2-HM and 4-HM will be collectively referred to as Hol-
imaps in what follows.

Thus far, we have only considered the case of h = 1. For the case of
cooperative binding (h ≥ 2), the Holimap approximation procedure
can be similarly performed, except that higher-order moment equa-
tions need to be solved (Supplementary Note 2)—the algorithm for
finding the effective parameters requires the solution of (h + 1)-order
moment equations. For example, when h = 2, third-order moment
equations need to be solved and the effective parameters depend on
the values of zeroth, first, second, and third-order moments. We
emphasize that the computational cost of Holimap is mainly deter-
mined by the number of moment equations, L, to be solved. For
autoregulatory loops, L = 1 + 2h for the LMAand L = 3 + 2h for Holimap.
Note that the 2-HM and 4-HM have the same L.

The principles used to construct Holimaps for autoregulated
networks can be used to obtain Holimaps for an arbitrarily complex
network consisting of a system of interacting genes that regulate each
other via positive or negative feedback. A flow chart of the Holimap
algorithm for a general regulatory network can be found in Supple-
mentary Fig. 1. The computational time of Holimap depends on the
complexity of the network—an increased number of nodes (genes) or
edges (regulatory reactions) results in an increased number of
moment equations L to be solved. In Supplementary Note 3, we prove
that for a general network, L scales polynomiallywith the cooperativity
h and scales exponentially with respect to the network sizeM (number
of genes).

Applications to one-node (autoregulatory) networks
We now assess the performance of Holimap based on the Hellinger
distance (HD) between the steady-state protein distribution obtained
by applying FSP to the nonlinear network and the approximate dis-
tribution computed using the LMA and the two types of Holimaps.
Note that while the direct application of FSP also leads to an approx-
imate distribution, in effect, it can be considered exact since the error
is very small provided the state space is truncated to a large enough
value22. Herewe choose theHDbecause it is bounded between 0 and 1;
a visually accurate approximation is obtained when the HD≪0.1.

Figure 2e illustrates the HD for the LMA as a function of ρu and ρb.
Clearly, the LMA performs well when ρu and ρb are not very different
fromeachother. However, it results in larger deviations fromFSPwhen
the protein burst frequency in one gene state is significantly larger
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than that in the other.We alsofind that the LMA ismuchmore accurate
for negative feedback loops (ρu > ρb) than for positive feedback loops
(ρb > ρu). In the LMA, the effective stochastic parameter σ̂b is
approximated by σb multiplied by the conditional mean of protein
numbers in the unbound state. Hence it must give rise to inaccurate
approximations when protein noise in the unbound gene state is large.
This is exactly what happens in the positive feedback case where the
low synthesis rate in the unbound state results in a small conditional
mean and thus large protein noise.

We next examine whether Holimap outperforms the LMA when it
is applied to positive feedback loops. Figure 2f shows the HD against
σu/d and σb/d for the LMA, 2-HM, and 4-HMwhen ρb≫ ρu. It is clear that
the LMA (Fig. 2f, left) performswell when σu and σb are both small, but
it becomes highly inaccurate when σu and σb are larger. The protein
distribution can be unimodal or bimodal. The bimodal one is of par-
ticular interest because it indicates the separation of isogenic cells into
two different phenotypes. In particular, we find that the LMA results in
poor approximations when σu≥ d and when the distribution is bimo-
dal. This can be explained as follows. Recall that the LMA transforms a
nonlinear network into a linear one with unchanged σu, which is
commonly known as the telegraph model of stochastic gene
expression38. In ref. 39, it has beenproved that the telegraphmodel can
produce a bimodal steady-state distribution only when both gene
switching rates are smaller than the protein decay rate (σu,σ̂b <d).
When σu≥ d, the linear network can never exhibit bimodality, while the
bimodality in the nonlinear network can be apparent.

We emphasize that σu≥ d is biologically relevant since in naturally
occurring systems, protein is usually very stable40 and hence its decay
rate is often smaller than the rates of gene state switching. For exam-
ple, in mouse fibroblasts, it has been measured41 that the median
protein half-life is 46 h and themean cell cycle duration is 27.5 h; hence
the mean decay rate of protein is estimated to be
d = ðlog 2Þ=46+ ðlog 2Þ=27:5 h�1 = 6:7 × 10�4 min�1. In the same cell
type, themeanactivation and inactivation rates for thousands of genes
are estimated to be 0.002min−1 and 0.24min−1 42. In another study, the
mean activation and inactivation rates are estimated to be 0.014min−1

and 0.17min−143. Hence σu≥ d is indeed satisfied for most genes.
In contrast to the LMA, both the 2-HM and 4-HMmarkedly reduce

the HD values (Fig. 2f, center and right). The LMA has a maximum HD
of 0.7, while for the two types of Holimaps, themaximumHDs are only
0.2 and 0.16. The 4-HM performs marginally better than the 2-HM in
capturing steady-state protein distributions. We also compare the
region of parameter space where bimodality is predicted to exist
(region enclosed by the orange curves) with the actual region where
bimodality manifests according to FSP (region enclosed by the red
curves).Wenote thatwhile the LMA fails to capture the bimodal region
of the protein distribution, especially when σu≥ d, both the 2-HM and
4-HM capture the vastmajority of the bimodal region. In summary, the
deficiencies of the LMA for positive feedback loops are remedied by
the use of Holimaps (Fig. 2g).

Finally, we examine how the cooperativity in protein binding
affects the accuracy of various approximation methods. Figure 2h
shows the maximum HD as a function of h for the LMA, 2-HM, and 4-
HM, where the maximum HD is computed when σu and σb vary over
large ranges and other parameters remain fixed. Clearly, for the LMA,
the maximum HD increases approximately linearly with respect to h
when h ≤ 4; for Holimaps, themaximumHD is insensitive to h. SinceTF
cooperativity is the norm rather than the exception5, our results sug-
gest Holimap’s accuracy remains high over the physiologically mean-
ingful range of parameter values.

The results that we have presented assume steady-state condi-
tions. However, the 2-HM can also accurately reproduce the time
evolution of the protein distribution for nonlinear gene networks
(Supplementary Fig. 2). The 4-HM is also accurate; however depending
onparameter values, itmay lead to numerical instability at short times,

which usually occurs when σu and σb are large for negative feedback
loops (Supplementary Fig. 3). We did not observe numerical instability
for the 2-HM. As a result, the 2-HM might be the preferable choice
when dynamics is of major interest. In steady-state, while the
improvement in accuracy of the 4-HM may be marginal, nevertheless
since the two types of Holimaps require the solution of the same
number of moment equations, the 4-HM is more advantageous when
dynamics is not of interest.

Applications to two-node networks with deterministic mono-
and bistability
We next evaluate the performance of Holimaps when applied to study
the steady-state behavior of two-node gene networks, where twogenes
regulate each other (Fig. 3a, left). Feedback ismediated by cooperative
binding ofh1 copies of protein P1 to geneG2 and cooperative binding of
h2 copies of protein P2 to gene G1. Here σbi and σui are the binding and
unbinding rates for gene Gi, respectively; ρbi and ρui are the synthesis
rates of protein Pi when the gene is in the bound and unbound states,
respectively; di is the degradation rate of protein Pi. For simplicity, we
do not take protein bursting into account, although it can be included
easily. Depending on whether ρui < ρbi or ρui > ρbi for i = 1, 2, there are
four different types of effective system dynamics that constitute either
a positive feedback or a negative feedback loop (Fig. 3b). For example,
a toggle switch (two negative regulations)44 corresponds to the case of
ρu1 > ρb1 and ρu2 > ρb2. For two-node networks, Holimaps can be per-
formed in a similarway aswehavepreviously shown for autoregulatory
loops, i.e., by replacing all protein-gene binding reactions by effective
first-order reactions with new parameters and also allowing some of
the other reactions to have different rate constants than those in the
original network (Fig. 3a, center and right).

We first focus on a negative feedback loop without cooperative
binding (Fig. 3c). Since the LMA performs well when the unbinding
rate σui is much smaller than the degradation rate di, here we consider
the case of σui≫ di.Weuse theHDbetween the actual and approximate
steady-state distributions of protein P1 to test the accuracyof Holimap.
Figure 3d illustrates the HDs for the LMA and 4-HM as functions of σb1
and σb2. We find that the network displays bimodality when σb1 is large
and σb2 is small. This is surprising because in the literature there are
two well-accepted origins for bimodality: (i) a positive feedback loop
with ultra-sensitivity (type-I)44 and (ii) slow switching between gene
states (type-II), independent of the type of feedback loop37. Here the
network is a negative feedback loop without cooperative binding, and
thus there is neither a positive feedback loop nor ultra-sensitivity.
Moreover, since both σu1 and σb1 are large, gene G1 switches rapidly
between the two states.Hence the bimodality observed is neither type-
I nor type-II, and in the following, we refer to it as type-III bimodality.

From Fig. 3d, it is clear that the LMA performs poorly in this
bimodal region. Again, the LMA cannot capture type-III bimodality
since it transforms the nonlinear network into a linear one with
unchanged σui, which is unable to produce a bimodal distribution
when σui≥ di39. On the other hand, the 4-HM significantly reduces the
HD values and performs exceptionally well in capturing the bimodal
region (Fig. 3e). Here we do not show the 2-HM because it leads to
similar results as the 4-HM except for a slightly larger HD value.

We next consider a toggle switch with cooperative binding, where
two genes repress each other (Fig. 3f). Note that this is a positive
feedback loop with ultra-sensitivity and hence it can produce deter-
ministic bistability (type-I bimodality), which means that the corre-
sponding system of deterministic rate equations (Supplementary
Note 4) is capable of having two stable fixed points and one unstable
point. Again, we only focus on the situation of σui≫ di. Figure 3g
illustrates the HDs for the LMA and 4-HM against σb1 and σb2. The
yellow curve encloses the region of deterministic bistability, which is
markedly smaller than the true bimodal region enclosed by the red
curve. According to simulations, bimodality can be observed when
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both σb1 and σb2 are large. The LMA fails to reproduce the bimodal
distribution since σui≥ di, as expected. The 4-HM not only successfully
captures the bimodal region (enclosed by the orange curve), but also
yields small HD values. ThemaximumHD for the LMA is as large as 0.7,
while it is only 0.13 for the 4-HM. In particular, in the deterministically
bistable region, both the 2-HM and 4-HM accurately predict the pro-
tein distribution while the LMA completely fails (Fig. 3h).

Applications to three-node networks with deterministic
oscillations
We now focus on three-node networks, where three genes regulate
each other in a cyclic manner (Fig. 4a, left). Feedback is mediated by
cooperative binding of hi copies of protein Pi to gene Gi+1 for i = 1, 2, 3,
where G4 =G1. Again, depending on whether ρui < ρbi or ρui > ρbi for
i = 1, 2, 3, the network can be a repressilator (three negative
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regulations)45, a Goodwin model (one negative regulation and two
positive regulations)46, or a positive feedback loop47.

As for previous examples, Holimap transforms the nonlinear
network into a linear one (Fig. 4a, right). We now focus on the
repressilator illustrated inFig. 4b,where the cooperativities are chosen
as h1 = h2 = h3 = 3. Here high cooperativities are chosen since we
require the corresponding deterministic system of rate equations

(Supplementary Note 4) to produce sustained oscillations. According
to simulations, deterministic oscillations are not observed when hi≤ 2.
Figure 4c illustrates the oscillatory time evolution of the mean and
Fano factor (the variance divided by the mean) of fluctuations in the
number of protein P1 computed using the SSA, LMA, and 2-HM. Note
that here we do not consider the 4-HM because, as previously men-
tioned, it may cause numerical instability when computing time-

d1

G1
ρu1

ρb1

σb1 σu1

P1
...

h3 copies

a

b

G1*

d2

G2
ρu2

ρb2

σb2 σu2

P2

...
h1 copies G2*

3-node network

G2

G1 repressilator
ρb1 <  

ρu1

ρb2  <  
ρu2

ρb3  <  
ρu3

h1 = h2 = h3 = 3

d3

G3
ρu3

ρb3

σb3 σu3

P3

...
h2 copies G3*

4-parameter Holimap

d1

G1

P1

G1*

σb1 σu1

ρu1

ρb1

2-parameter Holimap

d1

G1
ρu1

ρb1

P1

G1*

σb1 σu1

G3

c

time

Fa
no

 fa
ct

or

m
ea

n

d

protein number

pr
ob

ab
iit

y

t = 0.4 t = 0.8 t = 1.2 t = 1.6 t = 2

t = 3 t = 5 t = 7 t = 9 t = 11

t = 14 t = 18 t = 22 t = 26 t = 30

LMA

2-HM

SSA

LMA

SSA+2-HM
2-HM

SSA

0210 60
0

0.22

0

0.12

0210 60
0

0.07

0210 60
0

0.04

0210 60
0

0.04

0210 60

0

0.04

0210 60

time

0

8

16

24

40030 2010
0

25

50

75

40030 2010

0

0.04

0210 60
0

0.04

0210 60
0

0.05

0210 60
0

0.04

0210 60

0

0.04

0210 60
0

0.04

0210 60
0

0.04

0210 60
0

0.04

0210 60
0

0.04

0210 60

Fig. 4 | Holimaps for three-node gene networks. a Illustration of the 2-HM and
4-HM for a three-node gene network, where three genes regulate each other along
the counterclockwise direction. Feedback is mediated by cooperative binding of hi
copies of protein Pi to gene Gi+1, where G4 is understood to be G1. b A repressilator
with cooperative binding. Here the cooperativities are chosen as hi = 3 for
i = 1, 2, 3 such that the deterministic system of rate equations produces sustained

oscillations. c Time evolution of the mean and Fano factor of fluctuations in the
number of molecules of protein P1 computed using the SSA (with 105 trajectories),
LMA, and 2-HM. d Comparison of the time-dependent distributions of protein P1 at
15time points computed using the SSA (with 105 trajectories), LMA, 2-HM, and
hybrid SSA+2-HM (with 2000 trajectories). See Supplementary Note 1 for the
technical details of this figure. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-50716-z

Nature Communications |         (2024) 15:6557 7



dependent distributions. The LMA fails to reproduce damped oscilla-
tions in the time evolution of themean and Fano factor, while Holimap
excellently captures these oscillations. Note also that the LMA sig-
nificantly underestimates the variance of fluctuations and hence leads
to a much smaller Fano factor in the limit of long times.

Figure 4d compares the time-dependent protein distributions
computed using the SSA, LMA, and 2-HM. Interestingly, both the LMA
and 2-HM accurately reproduce the protein distribution at small times
(t ≤ 3). However, the LMA fails to reproduce bimodality at intermediate
and large times since it underestimates noise. In contrast, Holimap
performs remarkablywell in predicting the complete time evolution of
the protein distribution.

Thus far, we have considered regulatory networks where each
gene is regulated by one TF; however, many genes are regulated by a
multitude of TFs which are often shared between multiple genes48. In
Supplementary Note 5, we investigate gene networks with two TF
binding sites. We show that Holimap performs excellently in capturing
the protein distributions aswell as the bimodal region, independent of
the type of network topology and the type of TFbinding (independent,
positive cooperative, and negative cooperative binding49).

A hybrid combination of SSA and Holimap provides highly effi-
cient computation of complex gene network dynamics
The FSP and SSA are two widely used methods for solving the
dynamics of stochastic chemical reaction systems. While FSP yields an
accurate distribution, from a practical point of view, it is only applic-
able to small networks where protein numbers are not very large; for
large networks, the size of the state space leads to an enormous
computational cost22. The SSA can also be computationally expensive,
particularly when the network has multiple reaction time scales23.
When fluctuations are large, it can yield a non-smooth distribution,
from which it is sometimes even difficult to determine the number of
modes. To overcome this, a huge number of stochastic trajectories
may be needed to obtain statistically accurate results. Holimap pro-
vides an accurate and smooth approximation of the protein distribu-
tions; however, it becomes computationally slow when the network is
complex or the cooperativity is large since in these cases we have to
solve a large number of moment equations. This raises an important
question: is it possible to develop a highly efficient and accurate
computation method of stochastic gene network dynamics that yields
a smooth distribution?

To address this question, we propose a hybrid method that com-
bines the SSA andHolimap. Thismethod consists of three steps (Fig. 5a).
First we use the SSA to generate a small number of trajectories (usually a
few thousand trajectories are enough) from which we compute the
steady-state or time-dependent sample moments of protein numbers.
We thenuse the latter to compute the approximate effective parameters
of the linear network. Finally, we use FSP to compute the protein dis-
tribution of the linear networkwith effective parameters to approximate
that of the nonlinear one. For example, for the autoregulatory circuit
illustrated in Fig. 2a, we substitute the sample moments obtained from
theSSA intoEq. (4) to compute theapproximatevaluesof eσu and eσb, and
then use the marginal protein distribution of the linear network to
construct the 2-HM of the nonlinear network. In other words, for Holi-
map, the determination of the effective parameters can be done inde-
pendently of other computational methods while the hybrid method
requires the running of the SSA.

This hybrid SSA +Holimap method is computationally much fas-
ter than the SSA because the number of trajectories needed to obtain
good approximations to low-order moments is much less than that
needed to obtain smooth protein distributions. It is also computa-
tionally less expensive than Holimap since there is no need to solve a
large number of moment equations. To test this hybrid method, we
compare the time-dependent distributions for the repressilator cal-
culated using the SSA, LMA, 2-HM, and SSA + 2-HM (Fig. 4d). In Fig. 5b,

we also compare the CPU times and accuracy of these methods. The
number of SSA trajectories N needed for SSA + 2-HM is chosen such
that the distributions obtained from N trajectories and those obtained
from 3N trajectories have an HD (averaged over all time points) less
than0.02, i.e., increasing the sample sizewill not substantially improve
the approximation accuracy—a sample size of N = 2000 is sufficient to
satisfy this criterion. Notably with almost the same CPU time, SSA + 2-
HM yields distributions that are significantlymore accurate than those
obtained from only the SSA with the same number of trajectories—the
HD for the former is only 0.04–0.06, while for the latter it is 0.11–0.13;
here the distributions obtained from the SSA with 105 trajectories are
used as a proxy of ground truth when computing the HDs. We also
note that SSA + 2-HM yields distributions that are practically as accu-
rate as the 2-HM but are over 16 times faster (28 s vs 7min 39 s).

To further test the accuracy of SSA +Holimap, we apply it to a
randomM-node gene network (Fig. 5c), where any pair of nodes has a
probability of 2/M to be connected. This guarantees that each gene
on average regulates twogenes.When connected, eachdirect edge has
an equal probability to be positive or negative regulation; auto-
regulation is also allowed. The details of the stochastic model are
described in Methods. We then apply the 2-HM to transform the
nonlinear random network into a linear one and then use 2000 SSA
trajectories to estimate the effective parameters of the linear network.
Figure 5d illustrates the CPU times and HDs against the number of
nodes M for SSA + 2-HM and the SSA with the same number of tra-
jectories. Again an SSAwith 105 trajectories is used to generate a proxy
of the ground truth distributionwhen computing the HDs. Clearly, the
two methods yield almost the same CPU times that approximately
linearly scale withM. This is because for SSA + 2-HM, almost all time is
spent on simulating the SSA trajectories, while solving the linear net-
work consumes very little time. However, compared with an SSA with
2000 trajectories, SSA + 2-HM gives rise to markedly lower HD values,
which are insensitive to M.

Generalization to networks with post-translational or post-
transcriptional regulation
Thus far, we have showcased Holimap in transcriptional networks with
protein-gene interactions. A crucial question is whether Holimap can
also be applied to solve the dynamics of post-translational and post-
transcriptional networks with complex protein-protein, protein-RNA,
and RNA-RNA interactions. To see this, we first focus on two post-
translational networks (Fig. 6a, b).

Figure 6a shows a two-node synthetic network with autoregula-
tion and protein sequestration50. Here protein Pi produced from gene
Gi regulates its own expression; the two proteins P1 and P2 can bind to
each other and form an inactive complex C. We then devise a three-
parameter Holimap (3-HM) which transforms the nonlinear gene net-
work into the linear one shown in Fig. 6c. In principle, Holimap
replaces all high-order interactions between genes, proteins, andRNAs
by effective first-order reactions. We first replace the protein-gene
binding reactions Gi +hiPi "G*

i by Gi "G*
i with effective parameters

eσui and eσbi, and then we replace the protein-protein binding reaction
P1 + P2→C by Pi ! + with effective parameter edi. Again, using
moment-matching, the three effective parameters eσui,eσbi, and

edi can
be represented by low-order moments of the nonlinear network
(Supplementary Note 7) and hence can be computed approximately
using the SSA with a small number of trajectories. In this way, the
hybrid SSA +Holimap can be applied to predict the dynamics of the
nonlinear network.

Note that since Holimap replaces the binding reaction P1 + P2→C
by P1 ! + with a new parameter ed, intuitively, one may deduce that
this approximation is only valid when protein P2 is very abundant
compared to protein P1 so that noise in protein P2 number can be
ignored. However, unexpectedly, wefind thatHolimapmakes accurate
predictions not only in this special case but also in scenarios where the
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two proteins interact at comparable concentrations and where P2
is very scarce compared to P1 (Supplementary Fig. 5). This again con-
firms the high accuracy of Holimap over large regions of para-
meter space.

As another example of post-translational regulation, we consider a
gene network with autoregulation and protein phosphorylation
(Fig. 6b), which has been used to account for circadian oscillations in
Drosophila and Neurospora51. Here the free protein P can be reversibly
phosphorylated into the forms P1 and P2, successively. The latter form P2
can bind to the gene and regulate its expression. Both phosphorylation
and dephosphorylation are enzyme-catalyzed and are described using
Michaelis-Menten kinetics. Holimap can also be applied to this network,
where protein-gene interactions are replaced by the switching reactions
G"G* with effective parameters eσu and eσb, and the complex post-
translational regulation is replaced by the degradation reaction P ! +
with effective parameter ed (Fig. 6c and Supplementary Note 7).

Furthermore, we apply Holimap to two post-transcriptional net-
works (Fig. 6d, e). Figure 6d illustrates a gene network with auto-
regulation and mRNA degradation control52. Here the enzyme can
convert between an inactive form E and an active form E*. The degra-
dation of the mRNA of interest can occur spontaneously with rate d
and can be catalyzed by the active form of the enzyme with rate α.
Holimap transforms the nonlinear network into the linear one shown
in Fig. 6f by removing all high-order interactions betweenmolecules. In
particular, the enzyme-catalyzed degradation reaction M + E*→ E* is

replaced by the effective degradation reaction M ! + with new
parameter ed (Supplementary Note 7).

Figure 6e illustrates another network with microRNA-mRNA inter-
actions, which has been shown to be capable of producing complex
emergent behaviors such as bistability and sustained oscillations53. Here
the mRNA of interest, expressed from gene G1, has two microRNA
binding sites. The microRNA, produced from gene G2, can bind to its
mRNA target and form two inactive complexes C1 (only one binding site
is occupied) and C2 (both binding sites are occupied). The free mRNA
andmicroRNA are degraded with rates d1 and d2, respectively. Once the
complex C1 (C2) is formed, the mRNA and microRNA are degraded with
rates a1 (b1) and a2 (b2), respectively. The mRNA dynamics for this net-
work can also be predicted by Holimap, which replaces the complex
post-transcriptional regulation by the effective reaction M ! + with
new parameter ed (Fig. 6f and Supplementary Note 7).

Note that for transcriptional networks, Holimap does not change
the degradation rate; however, for post-transcriptional and post-
translational networks, both the binding/unbinding rate and degra-
dation rate need to be modified. To test the accuracy of the three-
parameter Holimap, we compare the time-dependent distributions for
the above four gene networks computed using the SSA with 105 tra-
jectories, SSA with 2000 trajectories, and hybrid SSA +Holimap with
2000 trajectories (Fig. 6g). Clearly, SSA+Holimap is accurate for all
networks. In particular, the distributions predicted by SSA +Holimap
with a small number of trajectories have almost the same accuracy as
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those predicted by the SSA with a huge number of trajectories (HD <
0.03) while the CPU time is reduced by over 60 fold (Fig. 6h).

Discussion
In this paper, we have constructed a computational method, Holimap,
for the accurate and efficient prediction of the protein/mRNA number
distributions of a general gene regulatory network. We have show-
cased the method by applying it to a variety of networks including
transcriptional networks with protein-gene interactions, post-
translational networks with protein-protein interactions, and post-
transcriptional networks with protein-RNA or RNA-RNA interactions.
For transcriptional networks, we have tested Holimap in simple auto-
regulatory loopswhere a gene influences its own expression, two-gene
systems such as the toggle switch, three-gene systems such as the

repressilator, and complex randomly connected networks with
numerous interacting genes. Notably, we have demonstrated that a
hybrid method that uses both Holimap and the SSA leads to much
more accurate distributions than solely using the SSA, with practically
no increase in the CPU time and high accuracy that is independent of
the number of interacting genes in the network.

We devised three types of Holimaps—the 2-HM, 3-HM, and 4-HM—

all of them decoupling gene-gene interactions in a nonlinear reg-
ulatory network and transforming it into a linear one with multiple
effective parameters. The 2-HM and 4-HM apply to transcriptional
networks, while the 3-HM is only applicable to post-translational and
post-transcriptional networks. The 4-HM is more accurate than the 2-
HM, although the improvement in accuracy ismarginal. Depending on
parameters, the 4-HMmay lead to numerical instability at short times.
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Fig. 6 | Holimap for post-translational and post-transcriptional networks.
a, b Post-translational networks. a Network with autoregulation and protein
sequestration50. b Network with autoregulation and protein phosphorylation51.
c Three-parameter Holimap for post-translational networks. d, e Post-
transcriptional networks. d Network with autoregulation and mRNA degradation
control52. eNetworkwithmicroRNA-mRNA interactions53. Hereα is the binding rate
of microRNA to its mRNA target and β is the unbinding rate. f Three-parameter
Holimap for post-transcriptional networks. All high-order interactions between
genes, proteins, and RNAs are replaced by effective first-order switching and

degradation reactions. g Comparison of the protein distributions for the four
networks at two timepoints computedusing the SSAwith 105 trajectories, SSAwith
2000 trajectories, and SSA +Holimap (with 2000 trajectories). h Comparison of
the CPU times and the accuracy (measured by HDs averaged over ten-time points)
of the SSA and SSA +Holimap for the four networks. The distributions obtained
from the SSA with 105 trajectories are used as a proxy of ground truth when com-
puting the HDs. See Supplementary Note 1 for the technical details of this figure.
Source data are provided as a Source Data file.
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Hence the 4-HM is preferred if our aim is to compute the steady-state
distribution, and the 2-HM is a preferable choice if our aim is to
compute the time-dependent distribution. The two types of Holimaps
require the solution of the same number of moment equations and
hence give rise to similar CPU times. Since the number of equations to
be solved increases exponentially with the network size, the standard
Holimap is only recommendedwhen the scaleof thenetwork is not too
large. For medium and large-scale networks, the hybrid SSA+Holimap
approach is more advantageous since it significantly reduces the CPU
time while maintaining high accuracy.

Some of the advantages of our method over other common
approximations in the literature are as follows: (i) Holimap does not
sacrifice the discrete nature of molecular reactions since the approx-
imate distributions are solutions of the CME of the effective linear
network. This is unlike many common methods that achieve a speed
increasebymakinguseof a continuumapproximationof theCMEsuch
as the Fokker-Planck / Langevin equations54,55 or partial integrodiffer-
ential equations56,57; (ii) Holimap does not assume the protein number
distribution to be of a simple type such as the Gaussian, Poisson,
Lognormal or Gamma distributions, as commonly assumed by con-
ventional moment-closure methods58,59—the solution of the linear
network that Holimap utilizes is very flexible and spans a very large
number of possible distribution shapes including those with multiple
modes and significant skewness. For example, if each gene in a com-
plex regulatory network switches between a number of states for
which only one is active, then Holimap approximates the protein dis-
tribution for each gene by that of a multi-state gene expressionmodel
with no regulatory interactions (Supplementary Note 5) for which the
analytical steady-state solution is known to be a generalized hyper-
geometric function60,61, which includes a large number of special
functions as special cases.

Our hybrid SSA+Holimap method shares some similarities with
neural network-based approaches62, which can also be used to predict
complex gene network dynamics. The former uses the SSA to generate
the sample moments which are then used to compute the values of
effective parameters,while the latter uses theSSA to train the surrogate
neural networkmodel. While bothmethods can accurately capture the
protein/mRNA distribution, our method outperforms the neural
network-based ones in three aspects: (i) while neural network models
perform well in the parameter ranges which are used to train the sur-
rogatemodel, their extrapolation ability is usually weak. Ourmethod is
mechanism-based and provides accurate results over wide parameter
ranges; (ii) neural network-based methods require a very long time to
train the surrogate model. When the network is complex, the training
time may take tens of hours to several days and may also require
multiple rounds of hyperparameter tuning. In contrast, Holimap avoids
the long training time; (iii) neural networkmodels have goodpredictive
ability but their learned approximation does not typically have a clear
biophysical interpretation. Holimap transforms the complex nonlinear
network into a linear one which not only has a clear physical meaning
but also allows an approximative analytical solution. In addition,
SSA +Holimap can be combined with neural network-based methods
to increase the speed and accuracy of the latter. Since SSA +Holimap
can be used to generate distributions comparable in accuracy to those
from the SSA with a much larger number of trajectories, it follows that
SSA +Holimap can reduce the time to generate an accurate training
dataset as input to the neural network.

The main limitation of the present method is that there are no
analytical guarantees that the effective parameters of the linear network
are positively definite for all times. Nevertheless, for all examples using
the 2-HM and 3-HM in this paper, we have numerically found this to be
the case and hencewe are confident that the linear network obtained by
the 2-HM or 3-HM procedure is generally physically interpretable. In
contrast, we observed that the 4-HM procedure can occasionally give
rise to negative parameter values (typically when the binding and

unbinding rates are large) and hence should be used more cautiously.
Ongoing work aims to extend the method to predict both mRNA and
protein dynamics, including their joint distribution for pairs of genes.

Concluding, we have devised a method that overcomes many of
the known difficulties encountered when simulating complex sto-
chastic gene network dynamics. We anticipate that Holimap will be
useful for investigating noisy dynamical phenomena in complex reg-
ulatory networkswhere intuitive understanding is challenging to attain
and simulations using the SSA become computationally prohibitive.

Methods
Determining the effective parameter for the LMA
For the linearnetwork inFig. 2b, theevolutionofmoments isgovernedby

_g0 = σug1 � σ̂bg0,
_μ1,0 =ρuBg0 � dμ1,0 + σuμ1,1 � σ̂bμ1,0,
_μ1,1 =ρbBg1 � dμ1,1 � σuμ1,1 + σ̂bμ1,0:

ð5Þ

Inserting Eq. (2) into Eq. (5) gives a closed set of moment equations,
from which the values of g0, μ1,1, and μ1,0 can be computed approxi-
mately. Finally, using these values, the effective parameter σ̂b can be
obtained from Eq. (2). The remaining steps for the LMAare the same as
for the 2-HM.

Determining the effective parameters for the 4-HM
For the autoregulatory circuit, it follows from Eq. (1) that

_μ1,0 + _μ1,1 = ρuBg0 + ρbBg1 � dðμ1,0 +μ1,1Þ
+ σug1 � σbμ1,0,

_μ2,0 + _μ2,1 = 2ρuBðμ1,0 +Bg0Þ+ 2ρbBðμ1,1 +Bg1Þ
� 2dðμ2,0 +μ2,1Þ+ 2σuμ1,1 � 2σbμ2,0:

ð6Þ

For the linearnetwork inFig. 2d, theevolutionofmoments isgovernedby

_g0 = �σug1 � �σbg0,
_μ1,0 = �ρuBg0 � dμ1,0 + �σuμ1,1 � �σbμ1,0,
_μ1,1 = �ρbBg1 � dμ1,1 � �σuμ1,1 + �σbμ1,0,
_μ2,0 = 2�ρuBðμ1,0 +Bg0Þ � 2dμ2,0 + �σuμ2,1 � �σbμ2,0,
_μ2,1 = 2�ρbBðμ1,1 +Bg1Þ � 2dμ2,1 � �σuμ2,1 + �σbμ2,0:

ð7Þ

From these equations, it is easy to show that

_μ1,0 + _μ1,1 = �ρuBg0 + �ρbBg1 � dðμ1,0 +μ1,1Þ,
_μ2,0 + _μ2,1 = 2�ρuBðμ1,0 +Bg0Þ+ 2�ρbBðμ1,1 +Bg1Þ

� 2dðμ2,0 +μ2,1Þ:
ð8Þ

Matching Eqs. (6) and (8), we find that �ρb and �ρu should satisfy the
following system of linear equations:

�ρuBg0 + �ρbBg1 =ρuBg0 +ρbBg1 + σug1 � σbμ1,0,
�ρuBðμ1,0 +Bg0Þ+ �ρbBðμ1,1 +Bg1Þ

=ρuBðμ1,0 +Bg0Þ+ ρbBðμ1,1 +Bg1Þ+ σuμ1,1 � σbμ2,0:

ð9Þ

Matching the first and third identities in Eqs. (1) and (7), it is clear that
�σb and �σu should satisfy the following system of linear equations:

�σug1 � �σbg0 = σug1 � σbμ1,0,
�σuμ1,1 � �σbμ1,0 = σuμ1,1 � σbμ2,0 + ð�ρb � ρbÞBg1,

ð10Þ

where �ρb has been determined by solving Eq. (9). Compared with
Eq. (4), Eq. (10) has an additional term ð�ρb � ρbÞBg1. This is because ρb
remains unchanged for the 2-HM but is changed for the 4-HM.

Finally, inserting Eqs. (9) and (10) into Eq. (7) gives a system of
closed moment equations and hence the values of all zeroth, first, and
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second-order moments can be approximately calculated. Substituting
thesemoments into Eqs. (9) and (10), one can finally solve for the four
effective parameters �ρu,�ρb,�σu, and �σb of the linear network. The 4-HM
predicts the protein distribution of the nonlinear network by solving
the CME of the linear one in Fig. 2d with the values of the effective
parameters found above.

Stochastic model for complex gene networks
Here we consider the stochastic model of an arbitrary gene regulatory
network involving protein synthesis, protein degradation, gene state
switching, and complex gene regulationmechanisms63. Specifically, we
assume that the network involvesM distinct genes, each of which can
be in two states: an inactive state Gj and an active state G*

j . The protein
associatedwith geneGj is denoted by Pj. The network can be described
by the following reactions:

Gj �!
α0
j
G*
j , G*

j �!
α1
j
Gj,

Gj +hjiPi �!
σ0
ji
G*
j , G*

j +hjiPi �!
σ1
ji
Gj,

Gj �!
ρ0
j
Gj + Pj , G*

j �!
ρ1
j
G*
j +Pj ,

Pj �!
dj

+, i, j = 1,2,:::,M,

ð11Þ

where the reactions in the first row describe spontaneous gene state
switching, the reactions in the second row describe gene regulation, the
reactions in the third row describe protein synthesis in the two-gene
states, and the last reaction describes protein degradation or dilution.
Since Gj is the inactive state and G*

j is the active state, we have ρ1
j > ρ

0
j .

Due to complex gene regulation, each gene Gj may be regulated by all
genes. If gene Gi activates gene Gj, then σ0

ji >0 and σ1
ji =0 since the

bindingofproteinPi induces the switching fromGj toG*
j ; on thecontrary,

if gene Gi inhibits gene Gj, then σ0
ji =0 and σ1

ji >0 since the binding of
protein Pi induces the switching from G*

j to Gj. When performing
simulations (SSA and SSA+Holimap), the parameters are chosen as
di = 1,hji = 1,ρ

1
j =81,ρ

0
j = 5:4,α

0
j =α

1
j =0:5, σ

0
ji =0:01, σ

1
ji =0whenGi acti-

vates Gj, and σ0
ji =0,σ

1
ji =0:01 when Gi inhibits Gj. The presence or

absence of a gene-gene interaction and its type are determined
randomly. Here we assume that protein-gene interactions are non-
cooperative (hij= 1). The spontaneous switching rates betweenGj andG*

j
are chosen tobeσ0

j = σ
1
j =0:5. Sinceeachgene isonaverage regulatedby

two genes (one positive regulation and one negative regulation), the
switching rates due to gene regulation are roughly equal to
σ0
ji = σ

1
ji =0:01 multiplied by the number of regulator Pi, which is ~50.

Hence the total switching rates due to spontaneous contributions and
gene regulation are roughly 0.5 +0.01 × 50= 1, i.e., they are comparable
with the degradation rate di= 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MATLAB R2019a was used to analyze the data. Source data are pro-
vided with this paper.

Code availability
The MATLAB codes for Holimap and SSA +Holimap can be found in
the Github repository64.
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