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Single cell dual-omic atlas of the human
developing retina

Zhen Zuo 1,2,8, Xuesen Cheng 1,8, Salma Ferdous1,8, Jianming Shao1, Jin Li1,
Yourong Bao1, Jean Li1, Jiaxiong Lu1, Antonio Jacobo Lopez3,
Juliette Wohlschlegel 4, Aric Prieve4, Mervyn G. Thomas5, Thomas A. Reh4,
Yumei Li 1, Ala Moshiri3 & Rui Chen 1,2,6,7

The development of the retina is under tight temporal and spatial control. To
gain insights into the molecular basis of this process, we generate a single-
nuclei dual-omic atlas of the human developing retina with approximately
220,000 nuclei from 14 human embryos and fetuses aged between 8 and 23-
weeks post-conception with matched macular and peripheral tissues. This
atlas captures all major cell classes in the retina, along with a large proportion
of progenitors and cell-type-specific precursors. Cell trajectory analysis reveals
a transition from continuous progression in early progenitors to a hierarchical
development during the later stages of cell type specification. Both knownand
unrecorded candidate transcription factors, along with gene regulatory net-
works that drive the transitions of various cell fates, are identified. Compar-
isons between the macular and peripheral retinae indicate a largely consistent
yet distinct developmental pattern. This atlas offers unparalleled resolution
into the transcriptional and chromatin accessibility landscapes during devel-
opment, providing an invaluable resource for deeper insights into retinal
development and associated diseases.

As part of the central nervous system, the human retina is a well-
organized, multilayered neuronal structure containing seven major
cell classes: photoreceptors (cones and rods), amacrine cells (ACs),
bipolar cells (BCs), horizontal cells (HCs), retinal ganglion cells (RGCs),
and Müller glial cells (MGs)1. Furthermore, these cell classes can be
divided into approximately 110 distinct cell types2.

Guided by amultitude of cell fate determinants, these diverse sets
of retinal neurons are derived from a common pool of retinal pro-
genitor cells (RPCs)3 in both sequential and overlapping patterns4–8.
First, RPCs divide symmetrically to increase the cell population. They
then either divide asymmetrically to produce two daughter cells—one

that differentiates and the other that remains a progenitor—or they
divide symmetrically into two differentiated daughter cells in later
stages7,9,10. RPCs can be divided into twomajor subtypes: primary RPCs
(PRPCs) and neurogenic RPCs (NRPCs). PRPCs are typically enriched in
cell-cycle associated transcripts, whereas NRPCs are characterized by
proneural transcription factors (TFs) that will allow at least one
daughter cell to exit the cell cycle and differentiate into a mature
retinal neuron11,12.

RPCs have heterogeneous transcriptomes and competencies
before they are specified and differentiated into a particular cell
fate13,14. This dynamic yet organized differentiation process generally
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happens in two phases: in the first phase, RGCs, ACs, HCs, and cones
are produced; and in the second, BCs, rods, and MGs are
produced9,15,16. Also, by RLBP1 immunolabeling, the most recent pub-
lication showed thatMGs develop in the presumptive fovea as early as
fetal day 5917, earlier than previously known.

In addition to temporal control, the development of the retina is
also under strong spatial control. Themacula lutea, a central, cone-rich
region unique to simian primates among mammals, allows for higher
visual acuity18–20. Themacula contains a convexiclivate (funnel-shaped)
fovea to minimize light scattering and direct light to the surrounding
photoreceptors and interneurons21. During retinal development, his-
tological and immunohistochemical investigations demonstrated that
the central regions are developmentally accelerated9. As early as post-
conceptionweek (PCW) 20, the presumptive fovea can be identified as
a single layer of cones and the foveal pit begins to appear at roughly
PCW2522,23. The locationof the presumptive fovea is characterized by a
rod-free region that is likely formed through the inhibition of rod
photoreceptor development in that region24,25. Although the exact
molecular developmental mechanisms underlying foveal formation
need further elucidation, a recent study in chick retina suggests the
involvement of the retinoic acid (RA) and FGF8 pathway in the for-
mation of the high-acuity area26.

In this study, we generated a detailed developmental atlas at
single-cell resolution by profiling approximately 220K single nuclei in
both the developing macular and peripheral retinae from fourteen
human embryos and fetuses spanning PCW 8 to 23 using dual-omic
RNA-seq and ATAC-seq. Integrative analysis of this dataset allows us to
identify and map the developmental trajectory of over 60 cell classes,
alongwith candidate TFs and gene regulatory networks (GRNs) driving
the development of each major cell class. Additionally, genes and
pathways that differ between the macular and peripheral retinae are
evaluated in order to provide additional insights into macular forma-
tion in humans.

Results
Overview of the sn-dual-omic human developing retina atlas
To characterize the dynamics of gene expression and regulation dur-
ing human retinal development, 10X Chromium single-nuclei dual-
omic ATAC-seq and RNA-seq were performed on 28 human tissues at
six different time intervals (Fig. 1A and Supplementary Data 1). In total,
315,177 nuclei were profiled, with 226,506 nuclei remaining after
quality control (Supplementary Data 2). After annotation, nuclei were
classified into nine major classes according to their transcriptomes.
The UniformManifold Approximation and Projections (UMAPs) of the
single-nucleus transcriptome (Fig. 1B) and chromatin accessibility
(Fig. 1C) demonstrate distinct clusters amongst differentmajor classes.
Cell annotations were subsequently visualized and validated with
developmental markers obtained from previous studies27 (Supple-
mentary Fig. 1H and Supplementary Fig. 3). To assess the consistency
between the RNA-seq and ATAC-seq data, gene expression (Fig. 1D)
and gene score (Fig. 1E) heatmaps were generated for the top 50 dif-
ferentially expressed genes of each major class (Supplementary
Data 3). Gene scores serve as a quantitative measure of the extent of
gene-level chromatin accessibility. As expected, the gene scores
aligned well with gene expression, which indicates consistency. By
overlaying our data with the adult retina reference atlas, a total of 61
cell types, including 5 precursor groups, were identified, while 7 out of
the 60 identified in adults could not be annotated in the develop-
mental data (Supplementary Fig. 2H and Supplementary Data 4). Cell
types were then further grouped into subclasses (Fig. 1F).

Based on the annotations, the cell proportion was calculated, and
the cell birth rate was estimated (Supplementary Fig. 4). As expected,
at the initial time point (PCW 8), the sample exhibits the highest pro-
portion of RPCs, approximately 60% (Supplementary Fig. 4A). It is
worth noting that a few MGs and BCs have can be detected at as early

as PCW 8 (Fig. 1G and Supplementary Fig. 1I), which is consistent with
previous immunolabeling results17. Interestingly, Fig. 1G shows that a
variation in the sequence of major class birth is observed between the
macula and periphery. Specifically, a significant number of BCs
developed before rods in the macula, whereas in the periphery, a sig-
nificant number of rods appeared before the BCs. As expected, com-
pared with the periphery, a significant number of differentiated
neurons emerge earlier in the macula (Fig. 1G). To further quantify the
time delay, a maturation score for each major class in the macular and
peripheral retinae across time points was calculated (Fig. 1H). Con-
sistently, the maturation scores in both locations increase over time,
and for the same time point, the maturation scores are consistently
larger in themacula. This maturation score is further supported by the
temporal expression pattern of known marker genes28. For example,
photoreceptor marker expression consistently increases during pho-
toreceptor maturation (Fig. 1I). However, distinct time delays are
observed between the peripheral and macular retinae across various
cell types. When comparing the major-class-specific abundance, a
larger delay between the macula and periphery is observed for late-
born major classes, such as BCs and MGs, compared to early-born cell
types (Fig. 1J). For instance, the average timing of MGs in the macula is
PCW 17, while in the periphery, it is PCW 22. Conversely, the average
timing for RGCs is approximately PCW 13 in both the macula and
periphery.

PRPC gene expression revealed unique modules
RPCs serve as the origin for all the various cell types found in theneural
retina. Within the progenitor cluster, cells can be divided into PRPCs,
NRPCs, and MGs (Supplementary Fig. 1G). RPCs exhibited gene
expression patterns that were temporally and spatially regulated. Both
PRPCs and NRPCs consistently displayed gene expression and chro-
matin accessibility heterogeneity from early to late time points in both
themacular and peripheral regions (Fig. 2A and Supplementary Fig. 1J).
Utilizing velocity estimates derived from gene expression and chro-
matin accessibility, it was observed that PRPCs exhibit bidirectional
flows,with onedirection leading towardsNRPCs and theother towards
MGs (Fig. 2B). Furthermore, to enable the ordering of nuclei from early
to late stages, latent time was calculated based on PRPC velocities
(Fig. 2C). As anticipated, latent time was significantly positively cor-
relatedwith age (Pearson correlation0.759,with an adjustedp-valueof
0.000, see source data) (Fig. 2D). Additionally, as expected, using two-
sample t-tests (see source data), nuclei in the macula consistently
demonstrated a significantly larger average latent time compared to
their peripheral counterparts for all the timepoints, except for PCW23,
which had too few nuclei in the macula.

After ordering PRPCs from early to late based on latent time, the
heterogeneity of genes underlying PRPC development was quantified.
Subsequently, 2860 latent-time-correlated genes were identified and
among them 2055 can be further grouped into three distinct modules
(Fig. 2E and Supplementary Data 5). Genes in Module 1 were pre-
dominantly expressed during the early PRPC stage, while genes in
Module 2 became prominent during the transition from early to late
PRPCs, and genes in Module 3 were notably expressed at later PRPC
stages (Fig. 2E). Consequently, genes inModule 1 exhibited decreasing
expression, genes fromModule 3 steadily increased in expression over
time, and genes in Module 2 exhibited a peak in the middle (Fig. 2F).
Gene ontology (GO) analysis (Fig. 2G and Supplementary Data 5)
revealed that Module 1 genes are enriched in early development-
related terms such as cell adhesion, system development, morpho-
genesis, and axon guidance; Module 2 genes are associated with
cytoplasmic translation and peptide biosynthetic processes; and
Module 3 genes are linked to neurogenesis and the generation of
neurons.

Next, an attempt was made to link the heterogeneity of genes
underlying PRPC development with biased fate. During development,
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PRPCs can transition into either NRPCs or MGs. Those transitioning
cells can be identified based on cell trajectory and fate probabilities.
Using velocity analysis, a subset of PRPCs was identified as transi-
tioning to NRPCs (Fig. 2H). These proneural PRPCs overlapped with
PRPCs exhibiting a high Module 1 score. More specifically, NRPCs fate
probabilities and Module 1 module score show a Pearson Correlation
Coefficient of 0.589 and a p-value of 0.000 (see source data). This

signifies there is an elevated expression level of genes associated with
Module 1 in cells transitioning into NRPCs. As expected, higher
expression of retinal neurogenesis genes is observed in this transient
cell population. One example is FOXN4 (Fig. 2H), which plays a crucial
role in the formationofHCs andACs in the vertebrate retina29. Notably,
among cells destined for NRPC transition, a list of genes associated
with progenitor maintenance and proliferation were identified. For
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example, ASPM has been documented for its specific role in preserving
symmetric proliferative divisions of neuroepithelial cells30. Moreover,
in those NRPC transitional cells, both consistent and inconsistent gene
expression patterns were found between humans and mice. For
example, ECT2, a gene linked to tumor progression, has been shown to
be expressed in a subset of mouse PRPCs and used as an example to
show mouse RPC heterogeneity31. Consistently, ECT2 also showed
heterogeneity in human RPCs and is expressed exclusively in PRPCs
likely fated to become NRPCs (Fig. 2H). On the other hand, human-
specific genes suchasARHGAP11B exhibitedhigher expression levels in
the transitioning PRPCs. ARHGAP11B has been reported as a driver for
human basal progenitor proliferation32; this gene has no homologous
gene in mice and is unstudied in human retina development.

Finally, to identify candidate TFs driving PRPC development, GRN
analysis based on the transcriptome, open chromatin, and TF-target
gene interactions was performed using the Pando33 software tool
(Fig. 2I, Supplementary Data 6). Among them, MXD3 and NPAS3, two
genes encoding basic helix-loop-helix proteins, were identified. Both
MXD334 and NPAS335, have been shown to play a critical role in brain
development, but are not well studied in retinal development. Several
other TFs identified in our samples, such as ZNF36736, MECOM37, and
PROX138 have been associated with the differentiation of RPCs.

Distinct gene expressions in varied NRPC fates
After assessing heterogeneity within PRPCs, heterogeneity within
NRPCs was examined. As the transition cell state, NRPCs give rise to all
retinal neurons. Interestingly, unlike the continuous distribution
observed for PRPCs, distinct clusters are observed for NRPCs, sug-
gesting distinct subgroups might exist.

To test if clusters of NRPCs correspond to distinct neuronal fates,
velocity analysis (Supplementary Fig. 5A) was used to infer cell fate by
estimating cell fate probabilities to various neuron types (Fig. 3A). Cells
with a high probability of developing into a neuronal type were
assigned as the progenitors of the corresponding type (Fig. 3B). To
evaluate the fate inference performance, the identified birth timings
were compared to previous knowledge. Indeed, progenitors for RGCs,
HCs, ACs, and cones emerged earlier than PCW 13 (Fig. 3C). Later, rod
and BC progenitors occurred from PCW 15 to 23. As expected,macular
NRPC specification precedes the peripheral ones. For instance, cone
progenitors areprevalent in theperiphery fromPCW10 to 15; however,
in themacula, cone progenitors are barely observed at or after PCW 13.
By calculatingNRPCbirth rate, we found thatmajor classes suchas BCs
and ACs showed greater developmental delay in the periphery com-
pared with their macular counterparts than other major classes
(Fig. 3D). The inference is further supported by examining the
expression pattern of TFs known to drive specific cell fate determi-
nation (Fig. 3E). For example, upon OTX2 activation, NRPCs pre-
dominantly differentiate into photoreceptors and BCs39,40, which is

consistent with our results showing OTX2 expression exclusively in
NRPCs that adopt a BC, rod, or cone fate (Fig. 3E). The identification of
NRPC clusters specific for each retinal neuron type allows identifica-
tion of potential genes (Fig. 3F) and pathways driving neuron type
specifications (Fig. 3G and Supplementary Data 7). With the GO ana-
lysis, in addition to identifying shared biological process terms such as
“neuron differentiation” and “neuron development,” specific class-
related terms were found. Notably, terms like “postsynapse organiza-
tion” were associated with NRPCs destined for RGCs, while terms
related to “visual perception” were prominent in NRPCs committed
to rods.

To gain insights of gene regulation during initial cell fate specifi-
cation, GRNs were constructed based on the NRPC dual-omic profile.
In total, 95TFswere identifiedwhich regulate 532 target genes through
9620 unique regions (Supplementary Data 6). TFs were grouped into 2
distinct modules based on their regulatory effects on target genes
(Fig. 3H). Among them, module 1 is predominantly enriched with TFs
related to the BC/cone/rod fate, of which 11 have been reported. In
contrast, TFs in module 2 mainly promote the RGC/AC/HC fate,
including 5 RGC/AC/HC related TFs. Based on the TF expression pat-
tern in NRPCs, the predicted specification function of each TF was
assigned to a specific major class (Table 1, Supplementary Data 8). In
addition, among them, 38 out of 95 have already been demonstrated
to play a role in retinal neuron development while the rest (57 TFs) are
undocumented TFs (Supplementary Data 8). After removing TFs pro-
motingMGgenesis, 22 out of 32 (68.75%) functional predictionsmatch
with previous knowledge from loss of function experiments, while 10
TFs were shown to have specification functions in major classes other
than the predicted ones. Most of the cell fate incorrect predictions
happened for the rod progenitors and TFs enriched in the rod pro-
genitors actually promote cone, BC, and RGC specification.

Formation of AC subclasses from NRPCs at various times
Asdescribed above, progenitors for eachdistinct retinal neuronal class
share a common cluster of NRPCs before committing to a differ-
entiated cell fate.With over 60cell types identified inour study,we can
investigate the developmental trajectory at the subclass level to
identify regulation that happens in the later part of differentiation. For
example, ACs can be classified into multiple distinct subclasses,
including Starburst ACs (SACs), GABAergic ACs, Glycinergic ACs, and
dual ACs. By performing clustering and trajectory analysis of the AC
branch, a consistent flow from AC progenitors to AC precursors to
committed AC subclasses was observed (Fig. 4A). Consistent with
previous research41, a chronological development of SACs, GABAergic
ACs, dual ACs, and Glycinergic ACs was observed (Figs. 4B and C).

To identify gene regulation drivingACdevelopment, GRNanalysis
was performed on AC progenitors, AC precursors and mature ACs,
resulting in two distinct gene modules (Fig. 4D and Supplementary

Fig. 1 | Overview of the single-nuclei dual-omic atlas of the human developing
retina. A The study design of this work. Samples were collected from either (1)
whole retina at PCW8, or (2)macula and periphery of the same retina from PCW 10
to PCW 23. Subsequently, with a total of 28 samples from 14 human embryos and
fetuses, gene expression and open chromatin profiling from the same nuclei was
performed using the 10X Chromium sn-dual-omic ATAC + Gene Expression tech-
nology (Supplementary Data 1). The bottom panel shows analysis workflow dia-
grams. B UMAP of RNA-Seq data colored by annotated major classes. C UMAP of
ATAC-Seq data colored by annotated major classes. D Heatmap of the top 50
differentially expressed genes across each annotated major class (Supplementary
Data 3). Each row is a nucleus and each column is a marker gene. E Heatmap of
ATAC gene scores for the differentially expressed genes (same genes and nuclei
with the same order as Fig. 1D) grouped by annotatedmajor class. FUMAP of RNA-
Seq data colored by annotated subclasses. G UMAP is separated by location and
clock time. Dots were colored by annotated major class, and gray dots are back-
ground nuclei that are not from the corresponding time and location pair. H Line

graphs of cell maturation scores against sample age (PCW) for each major class,
colored by the macula and periphery. The cell maturation score represents the
degree of a cell’s similarity to cells in the corresponding adult data. I Violin plots of
previously published photoreceptor-maturation gene expression28 between
macula and periphery. To compare gene expression values temporally, two-sided
overestimates variance t-test59 was applied to different PCW groups among 47,446
photoreceptors. The Benjamini-Hochberg procedure was applied. J Line graphs of
average cell age for each major class, colored by macula and periphery. Cells were
down-sampling equally by PCW groups, and cell age was defined as sample’s age.
To calculatemeans and error bars, 41,984RGCs, 9532HCs, 9324 cones, 26,384ACs,
38,167 rods, 20,996 BCs, and 6553 MGs were used. Error bars represent the 95%
confidence intervals from two-tailed t-tests. The Benjamini-Hochberg procedure
was applied. Source data are provided as a Source Data file. Panel A was created
with BioRender.com and released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license (https://creativecommons.org/
licenses/by-nc-nd/4.0/deed.en).
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Data 6). TFs inModule 1 that are enriched in ACprogenitors, and TFs in
Module 2 that are enriched in mature ACs or AC precursors (Supple-
mentary Fig.7A). Consistently, Module 1 includes TFs responsible for
specifying AC fate, such as PTF1A42 and PRDM1343, and TFs involved in
early AC subclass specification, including ONECUT1 that determines
SACs fate44. Additionally, distinct regulatory effects by TFs on target
genes were discerned; for instance, ONECUT1 was predicted to exert a

positive regulation on PROX1, DACH1, ZFPM2, and HIF1A, while con-
currently displaying a negative regulation onMEIS2 (Fig. 4E). The same
analysis was repeated for all major classes to identify GRNs that drive
development (Supplementary Data 6 and Supplementary Fig. 6).

A striking observation is that distinct transcriptomic profiles
(Fig. 4F) and chromatin landscapes (Supplementary Fig. 7B) become
evident in AC progenitors. Therefore, distinct molecular biases are
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established, showing a biased fate probability to different mature AC
subclasses (Supplementary Fig. 7C, 7D, 7I, and 7J), which may lead to
distinct groups of mature AC subclasses. To further elucidate the dif-
ferences between early and late AC NRPCs, we analyzed molecular
variations (Supplementary Figs. 7 E-H). In total, 10,910 peaks, 2491
geneswith varying accessibility, 3643 geneswithdifferent expressions,
and 86motif patterns were identified (Supplementary Data 9). Among
those, 45 TFs with consistent gene expression changes and motif
enrichment across developmental time were identified (Fig. 4G).
Indeed, several TFs known to play an important role in AC develop-
ment were identified. For example, ONECUT1 has decreasing expres-
sion from early to late AC progenitors (Fig. 4H). Consistent with gene
expression, the accessibility of peaks containing the ONECUT1 motif
varied over time and ONECUT1 binding is most prevalent at PCW
8 (Fig. 4I).

Velocity models identify different epigenome transcriptome
interaction patterns
With the single nuclei dual-omic data, it is possible to systematically
assess chromatin accessibility and their association with gene
expression. In total, 400,355 open chromatin regions were identified
(Supplementary Fig. 8A and Supplementary Data 10). Among them,
70,033 are cell-type-specific differentially accessed regions (DARs)
(Fig. 5A and Supplementary Data 10). Interestingly, almost no NRPC-
specific DARs are observed, consistent with the rapid transitional
nature of NRPCs. In the meanwhile, less than half of DARs are
development-specific and not observed in the adult (Fig. 5B). These
developmental specific DARs are more closely and specifically asso-
ciated with developmental processes. For example, developmental-
specific RGC DARs are enriched in genes associated with “RGC Axon
Guidance” and “RGC cell differentiation” (Table 2).

The correlation between chromatin accessibility and gene
expression was calculated to link specific open chromatin regions
(OCRs) to their potential targeted genes (Supplementary Fig. 8B). In
total, 40,576 peak-gene pairs are identified involving 28,311 OCRs and
7586 genes (Supplementary Data 10). Consistent with the idea that
these linked OCRs were likely to be gene regulatory elements, a sig-
nificantly higher portion of linked OCRs overlap with active enhancer
elements based on histone modifications (Fig. 5C). Specifically, 8% of
the linked OCRs are positive for both H3K27ac and H3K4me2, com-
pared to 6% for all OCRs. About one-fourth of linked OCRs (6796/
28,311) aremajor-class-specific (Fig. 5D). Notably, we found that PRPCs
have the greatest number of linked OCRs (1672) among all major
classes, while NRPC have the least. As an example, OTX2 exhibits high
expression in photoreceptors and BCs (Fig. 5E). Consistently, upon
comparing the chromatin accessibility among different major classes,
we observed that the OTX2 cis OCRs are more accessible within those
major classes (Fig. 5F). Furthermore, five out of twelve orthologous
regions of previously reported OTX2 cis-regulatory modules in mice45

are identified as linked peaks in our analysis, along with additional
undocumented candidate OCRs.

Based on the relationship between chromatin state and gene
expression, multiple phases of gene regulation can be classified, such
as priming, coupled-on, coupled-off, and decoupled for each gene46.
For the priming phase, chromatin is open while the gene remains
silenced. During the “coupled-on” or “coupled-off” phase, chromatin
accessibility and gene expression increase or decrease together,
respectively. Finally, the decoupled phase refers to chromatin acces-
sibility decreasing while gene expression increases (or inverse, exam-
ples in Supplementary Figs. 8C and 8D). For example, priming and
coupled-on phases have been observed for CLU in PRPCs (Fig. 5G). For
PRPCs, primed, coupled-on, and coupled-off are more common than
decoupled (Fig. 5H). Next, the percentage of priming time among
genes identified in the PRPCmodule analysis was compared (modules
from Fig. 2E). Module 1 comprises genes expressed in early PRPCs,
whileModule 3 contains genes expressed in late PRPCs; A significantly
larger proportion of coupled-on time was observed among genes in
Module 3 compared to genes from Module 1, indicating that at later
stages, gene and chromatin accessibility undergo more concordant
changes. (Fig. 5I, Supplementary Fig. 8E and 8G). The distribution of
different phases was calculated for variable genes across different
major classes (Fig. 5J). Interestingly, on average,major classes with less
number of subclasses have shorter coupled-off time, such as rods
(20.98%), and cones (29.77%), while major classes with more cell types
have longer coupled-off time, such as ACs (49.07%), and BCs (35.15%).

Comparison of Macular and Peripheral Developing Retina
Among mammals, one of the unique features of the simian primate
retina is the development of the cone-rich fovea and macula, which
differs significantly from the peripheral retina in cell composition.
Previous studies in model organisms suggest RA is involved in foveal
formation47. To examine if RA inhibition in macula is conserved in
human foveal formation, the expression patterns of RA pathway rela-
ted genes, including retinaldehyde dehydrogenases enzyme coding
genes (ALDH1A1, ALDH1A2, and ALDH1A3), and RA-catabolizing
enzyme coding genes (CYP26A1, CYP26B1, and CYP26C1) were exam-
ined (Fig. 6A and Supplementary Fig. 9). In addition, T-Box transcrip-
tion factor 5 (TBX5) and ventral anterior homeobox 2 (VAX2), which are
dorsoventral patterning TFs that regulate RA related enzymes48, and
two fibroblast growth factors (FGF8, and FGF9) were examined (Sup-
plementary Fig. 9). Consistently, ALDH1A1 and ALDH1A3, which are
involved in RA synthesis, are enriched in peripheral PRPCs whereas
CYP26A1, which functions in RA degradation, is highly expressed in
macular PRPCs. Differently from ALDH1A1 and ALDH1A3, ALDH1A2 is
enriched in the macula. Moreover, CYP26B1, and CYP26C1 have little
expression in either location. Moreover, in PRPCs, although VAX2
expression is similar in the peripheral and macular PRPCs (Supple-
mentary Fig. 9), the periphery had a stronger binding signal for the

Fig. 2 | PRPC gene expression reveals unique modules with distinct biological
processes. A UMAP of RPCs andMGs separated by spatial location and clock time.
B UMAP of RPCs and MGs with a stream plot of estimated velocity vectors on top.
C UMAP of PRPCs colored with estimated latent time. Smaller latent time indicates
nuclei that are at an earlier developmental stage, while larger latent time indicates
nuclei that are at a later developmental state. D Box plot of estimated latent time
against PCW for PRPCs. The error bars represent the maximum and minimum
values. The box spans the 25th to 75th percentile, with the line inside the box
indicating the median. To test if PCW and latent time are correlated, two-sided
Pearson’s product-moment correlation test was applied (adjusted p-value 0.000).
For each PCW group, to test if macula and peripheral have the same average latent
time, a two-sided Welch two sample t-test was applied. In total, 52,479 cells were
used for the tests. TheBonferroni correctionwas applied for the tests.ECorrelation
heatmap of latent-time-correlated genes (2,860 genes in total and 2,055 can be
further grouped into three distinct modules). UMAPs on the right represent

module-specific cell module scores. F Gene expression trends of 20 genes within
each gene module, ordered by latent time. Within eachmodule, genes were sorted
by gene module score, which represents the likelihood of a gene belonging to a
module. For each module, the smoothed z-scores of gene expressions against
latent time were plotted on the left. The black lines in the middle are averaged
expression values. G Gene Ontology analysis of gene modules. To measure the
significance of a functional term, the one-sided hypergeometric test was used with
the input gene list (100 genes in each module). Top 10 significant biological pro-
cesses were plotted with adjusted p-values from Benjamini-Hochberg procedure.
H UMAP of PRPC estimated fate probability for NRPC fate. UMAPs for gene
expression ofModule 1 genes. I PRPCGRN showing key regulators. UMAPwas built
on similarities of regulation effects on target genes. TFs were labeled by gene
module information and colored by gene expression weighted time. The sizes
represent normalized gene expressions.

Article https://doi.org/10.1038/s41467-024-50853-5

Nature Communications |         (2024) 15:6792 6



VAX2 motif (Supplementary Fig. 10B). TBX5 has higher expression in
peripheral PRPCs, but TBX5 motif binding shows no differences
between macula and periphery (Supplementary Fig. 10A), which sug-
gests a different regulation of these two genes. Inconsistently, FGF8
has been shown to be highly expressed in the high-acuity area in chick
but is enriched in peripheral PRPCs in our data.

Subsequently, the temporal expression patterns of genes asso-
ciated with RA were compared with previous publications. In both the
macula and periphery, the expression of ALDH1A1 and ALDH1A3
demonstrates a decreasing trend over time49(Fig. 6B). Conversely, the
expression of ALDH1A2 exhibits an upward trend over time, consistent
with prior findings. Notably, the expression levels of ALDH1A2 are

consistently higher than those of ALDH1A1 and ALDH1A3 for most
observed time points, deviating from previous observations. In parti-
cular, TXB5 and ALDH1A1 show similar gene expression patterns
over time.

Next, the expressions of previously reported candidate genes
associated with macular development50 are examined. As expected,
these genes have consistently exhibited higher expression levels in the
macula throughout various developmental stages compared with
periphery. (Fig. 6C).

To further investigate the difference of macular and peripheral
retinal development, DEG analysis was performed after correcting for
development timing variables (Supplementary Data 11). As a result, 47
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genes are enriched in the macula and 177 genes are enriched in the
periphery in PRPCs and distinct expression patterns for the top DEGs
across the two locationswereobserved (Fig. 6D).WithGOanalysis, the
term “cell adhesion” was identified within both macula and periphery
enrichedDEGs, but the two groups of “cell adhesion” related genes are
totally different (Table 3 and Supplementary Data 12). For example,
CCN1, S100A10,MPZ are enriched in the macula while LRRN2, CYP1B1,
DAPL1 are enriched in the periphery.

DEGs are also observed in late major classes between themacular
and peripheral retina, with a total of 1163 genes enriched in themacula
and 988 genes enriched in the periphery (Supplementary Data 11).
Rods share most of the macular enriched DEGs and RGCs sharedmost
of the peripheral enriched DEGs (Fig. 6E).

Macular hypoplasia related gene expression
Foveal hypoplasia is a condition characterized by an incomplete
development or complete absence of the fovea centralis with sig-
nificant clinical and genetic heterogeneity. The underlying molecular
pathways range from defects in pigmentation, achromatopsia, to early
development51.

We examinedgene expression associatedwith typical and atypical
foveal hypoplasia related conditions (Fig. 7A). Genes associated with
ocular albinism (OA) and oculocutaneous albinism (OCA) show little
expression in the retina, which is expected since those genes are
characterized by pigmentation defects.

Furthermore, Hermansky–Pudlak syndrome (HPS) associated
gene AP3B1 is expressed in RPCs, and LYST, which is associated with
CHS (Chediak–Higashsyndrome), shows high expression in develop-
ing BCs and photoreceptors only. Finally, most of the achromatopsia
related genes showed high expression in cones, consistent with its

known characteristic of non-functioning cones. Hypoplasia related
DEGs betweenmacular andperipheral analysis reveals that onlyCNGB3
and PDE6H exhibit significantly higher expression levels in macular
cones compared to peripheral cones (Fig. 7B). Both CNGB3 and PDE6H
show a significant increase in gene expression levels after 90 days post
conception in the macula and 115 days in the periphery (Fig. 7C). Fur-
thermore, there is a consistent pattern of increased chromatin acces-
sibility for both CNGB3 and PDE6H inmacular cones compared to their
peripheral counterparts (Supplementary Fig. 11C). Peaks around
PDE6H showed greater accessibility in the macula than periph-
ery (Fig. 7E).

To test if complex eye diseases are related to specific major
classes during development, GWAS related loci were examined (Fig. 7F
and Supplementary Fig. 11E). Overall, 12 GWAS traits showed sig-
nificant enrichment in 23 subclasses. As expected, photoreceptor cell
measurement— including outer nuclear layer (ONL) thickness, inner
segment (IS) thickness and outer segment (OS) thickness—associated
loci were significantly enriched in cones, rods and their precursors.
Loci associated with primary open-angle glaucoma (POAG) showed
significant enrichment in NRPCs and MGs.

Discussion
In this study, we present a comprehensive, high-resolution, dual-omic
atlas of the developing human retina. We profiled over 220K nuclei
from 14 human embryos and fetuses, ranging from PCW 8 to 23,
enabling the identification of more than 60 distinct cell classes and
states throughout development. This atlas is comprehensive in three
significant aspects. First, by employing dual-omic technology, this
atlas concurrently captures gene expression and chromatin structure
for each cell, avoiding potential errors arising from the computational

Fig. 3 | NRPCs with different fates show distinct gene expression patterns.
ADiagram of the NRPCs’ fate probability inferenceworkflow. Cell fate probabilities
for each type of neuron were estimated based on velocity, and cell fate was
assigned after performing cell clustering. B UMAP of NRPCs colored by inferred
fate. Cells for which cell fate cannot be determined are labeled in gray. The UMAP is
specifically for NRPCs, distinguishing it from the globalUMAPdesigned for all cells.
CUMAPof NRPCs colored by inferred fate separated by region and time.D The cell
birth rate was estimated for each NRPC group (grouped by inferred fate), within
both the peripheral and macular regions. E UMAP of NRPCs colored by fate prob-
ability for each major class (first column), with annotated NRPCs for each fate
(second column), and corresponding established TFs driving that fate (third to
sixth columns). F Dot plot of differentially expressed genes for each NRPC group,
with a different fate inferred. To identify differentially expressed genes, the two-
side overestimates variance t-test59 was applied to different fate groups among
21,087 cells. The Benjamini-Hochberg procedure was applied. G Gene ontology

analysis of differentially expressed genes for each NRPC group. To measure the
significance of a functional term, the one-side hypergeometric test was used with
the input gene list (100 genes in each module). Top 10 significant biological pro-
cesses were plotted with adjusted p-values from Benjamini-Hochberg procedure.
H GRN visualization of NRPC regulators. TFs were colored based on gene expres-
sion weighted time. The size of each dot represents the average normalized gene
expression. UMAP was constructed based on the similarities of regulation effects
on target genes. K-means clustering identified three clusters of TFs, and clustering
information is depicted as a dashed line. The rectangle surrounding each TF indi-
cates its confirmed impact on cell fate decisions, validated through loss-of-function
animal experiments (Supplementary Data 8). A blue rectangle signifies that the TF
promotes theBC/Rod/Cone fate, and a red rectangle indicates thepromotionof the
RGC/AC/HC fate. A black rectangle means the TF supports a mixture of two. A was
created with BioRender.com.

Table 1 | Summary of TFs in the NRPC GRN

MajorClass Matched Unmatched Unknown

AC PRDM13 HES6 (Rod), POU2F2 (Cone) ID2, ST18

BC NFIB, OTX2, PRDM8,
VSX1, VSX2

NEUROD1 (Cone, Rod) RORA, SKOR2

Cone FOXN4, PRDM1, THRB ID3, CUX2, FOS, FOSB, MEIS2, NPAS3, NR4A1, NR4A3, RUNX1, RXRG

HC ONECUT1, ONECUT2, PROX1,
TFAP2A, TFAP2B

EBF1, ESRRB, ESRRG, HIVEP3, MYT1L, ONECUT3, PRDM6, TSHZ2, TSHZ3,
ZFHX3, ZFPM2

RGC ATOH7, ISL1, PBX4, POU4F2 EGR1 (AC, HC), ZIC1 (Rod) E2F7, EBF2, EBF3, FOXM1, HES5, LEF1, MECOM, MXD3, MYBL1, PAX5, PBX3,
POU6F2, SOX5, SP8, TFAP2D, ZNF367, ZNF730

Rod CRX, HMGA2, NR2E3, NRL HES1 (Cone), MEF2C (Cone), NFIA
(BC), NFIX (BC), RARB (RGC)

ARID5B, ASCL1, BACH2, BHLHE41, CREB5, EPAS1, ETV1, ETV5, GLIS3, HIF3A,
JAZF1, MITF, NR3C2, PAX2, PAX8, PPARA, RAX2, RREB1, SOX6, TCF7L1,
ZBTB7C

First, TFs that promote MG differentiation were removed. The predicted functions of TFs are based on their normalized gene expression values in annotated NRPCs. TFs in the “Matched”
column represent thosewith correctly predicted functions, validated through lossof functionexperiments using animalmodels. TFs in the “Unmatched” column indicate functions aremis-assigned.
TFs in the “Unknown” column have unclear functions in the context of retina development.
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integration of these two modalities. Second, the human embryos and
fetuses evenly span PCW 8–23, encompassing most of the pivotal
developmental stages. Notably, a large portion of our data consists of
progenitors and precursors, facilitating the identification of genes and
pathways associated with cell fate determination. Moreover, given the
extensive number of nuclei profiled, this atlas captures all major cell
classes and the majority of subclasses and cell types in the retina.

Third, the dataset includes both the macula and periphery, enabling
the investigation of spatial differences.

The inclusion of bothmacular and peripheral locations from each
human embryos and fetuses eliminates any potential bias arising from
individual variation. This unbiased comparison reveals several inter-
esting observations about cell birth order and timing between the two
regions.
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Due to the central-to-periphery development of the retina,
macular samples consistently exhibit a higher percentage of differ-
entiated cells. Consistentwith previous immunolabeling results from17,
MGs and a few BCs can be identified as early as 59 days in whole eye
retina, as shown in Fig. 1G (Supplementary Fig. 1I). Although these cells
can be detected early, it takes much longer for them to reach their
maximum proportions. Based on abundance, the calculated cell birth
order in the macula closely corresponds to that in the periphery and
agreeswithprior publications51. Oneexception, shown in Fig. 1G, is that
a significant number of rods appear earlier than an equal amount of
BCs in the periphery, while the inverse is observed in the macula.
Further experiments are necessary to confirm this observation.
Although all major classes appear in the macula before the periphery,
the time delays vary depending on the major class. Early-born major
classes have similar timings when comparing the macula and periph-
ery. Conversely, late-born major classes like BC and MG in peripheral
areas exhibit older ages compared to those in the macula. When
comparing the cell percentage between themacula and periphery, the
percentage of rods is greater in the periphery compared to themacula
from PCW 15 (Supplementary Fig. 4A).

It has been demonstrated that RPCs undergo dynamic transitions
during development, altering their potential to differentiate into var-
ious major classes. However, it remains unclear whether cell state
transitions occur continuously or discretely. Given the extensive
number of RPCs profiled in the current dataset, we have the capability
to produce a high-resolution transcriptomic profile detailing changes
throughout development. Overall, the PRPCs formed a continuous
cluster without clear discrete transitions. After removing cell cycle
related genes, bothmacular andperipheral PRPCs gradually shift in the
same direction on the UMAP and this shift is mainly driven by devel-
opmental time (Fig. 2A). This suggests that, although early PRPCs and
late PRPCs have distinct gene expression profiles, they form in a gra-
dual and continuous manner.

The potency of PRPCs influences the birth order and proportion
of various retinal neuron types. This is likely driven by gradual changes
in gene expression and epigenetics. However, the precise molecular
pathways driving the transition remain unclear. Analysis of the 55,000
PRPCs profiled reveals multiple gene clusters with changing expres-
sion patterns during development. Interestingly, while PRPCs seem to
exhibit a smooth transition, the expression of certain gene modules
demonstrates more pronounced differences between early and
late PRPC stages (Fig. 2E). based on gene expression, we observed that
the transition occurs for some progenitors in the macula as early as
PCW 8, and continues to PCW 15, and in the periphery around PCW 19
(Fig. 2A). Coinciding with the transition time window, significant
increases in the expression of the ribosomal protein gene pathway
were observed, including 46 ribosomal protein L genes and 31
ribosomal protein S genes (in PRPC Gene Module 2), which are asso-
ciated with protein biogenesis. Consistent with these findings, pre-
vious publications have reported Rps7 disruption results in eye
malfunction in mouse52, and Rpl24 can alter cell cycle and cell fate
determination53.

We further looked into the chromatin regulation during the
transition. First, early expressed genes have a shorter coupled-on time
compared to late ones, indicating that after the transition, gene
expression and chromatin changes are more concordant. Second, we
found that ribosomal protein genes show delayed chromatin changes
compared to gene expression. For example, before transition, RPS14
expression and chromatin accessibility increased concordantly (Sup-
plementary Fig. 8F). However, after the transition, unspliced and
spliced RPS14 levels decrease, but the chromatin accessibility level still
increases for a period of time.

Unlike the gradual transition observed in the PRPC state, the dif-
ferentiation of individual major classes appears to follow a more dis-
tinct pattern. Through trajectory analysis, we can readily identify the
progenitor cells for each major class and subclass throughout devel-
opment. Intriguingly, even for subclasses within the samemajor class,
we identified distinct sets of progenitors. For instance, ACs can be
divided into three subclasses, with SACs differentiating first, followed
by GABAergic ACs, and lastly, Glycinergic ACs. Through trajectory and
velocity analysis, we observed that the progenitors of SACs, GABAer-
gic, and Glycinergic ACs appear in the corresponding order and form
distinct subclusters (Fig. 4B), indicating a hierarchical cell develop-
ment model (Supplementary Fig. 7K). Using ONECUT1 as an example,
we showed that differences in gene expression and chromatin acces-
sibility are alreadypresent at the progenitor stage, establishing distinct
clusters that predispose cells to specific subsequent fates.

By integrating transcriptomic and chromatin profiling data, we
systematically identified GRNs linked to specific cell states and their
transitions. Notably, our identified GRNs encompass numerous known
retinal development-related genes and gene modules. For example,
among TFs, 61 for ACs, 104 for BCs, 116 for Rods, 114 for cones, 174 for
RGCs, and 103 for HCs (Supplementary Data 6). Future studies that
incorporate complementary epigenetic signatures and Hi-C data can
provide more detailed insights into the GRNs.

In addition to the recognized genes and gene modules, our ana-
lysis has unveiled a plethora of candidate genes that may play pivotal
roles in retinal development. Notably, a substantial groupof zincfinger
protein-related TFs has been identified, yet their specific functions in
retinal development remain largely unexplored. Intriguingly, our
findings reveal that, evenwithin the same lineage during development,
significantly different regulatory mechanisms may exist for each line-
age. For instance, Supplementary Fig. 7A illustrates distinct TFs and
target genes identified for AC progenitors, AC precursors, and mature
ACs. This suggests that cell fate specification and differentiation are
achieved through diverse regulation involving different key players. A
similar pattern is observed for HCs and cones, as demonstrated in
Supplementary Fig. 6.

These discoveries emphasize the complexity of retinal develop-
ment, showing the different regulatory networks governing the dif-
ferentiation and specification of the same cell lineage. The identified
candidate genes, especially the zinc finger protein-related TFs, present
promising avenues for further research to unravel their specific roles in
the intricate landscape of retinal development.

Fig. 4 | AC Subclass formed from specific groups of NRPCs at different times.
A Stream plot of velocities on the AC branch UMAP. UMAP was calculated on AC
branch cells only, which is different from global UMAP. Cells were colored by
subclass representing AC progenitors, AC precursors, SACs, GABAergic ACs, Gly-
cinergic ACs, and dual ACs. B AC branch UMAP colored with subclasses separated
by spatial location and time. C Proportions of AC subclasses in the macula and
periphery at different time points. D GRN visualization of AC regulators. TFs were
colored by gene expressionweighted clock time. The size of eachdot is the average
gene expression value in log space. All TFs are labeled with text, while the target
genes that are not TFs are left unlabeled. The UMAP was built on similarities of
regulatory effects on target genes. Two modules were identified with K-Nearest
Neighbors (KNN) algorithm. E GRN subgraph for ONECUT1 in the AC branch,

displaying first- and second-order ONECUT1 target genes. All TFs are labeled with
text, while the target genes that are not TFs are left unlabeled. The edges are
colored based on the TF regulatory interaction, with orange indicating positive
regulation and gray indicating negative regulation. F UMAPs of AC progenitors
separated by spatial locations and colored by days post-conception.GHeatmap for
gene expression and motif deviations of AC progenitors. Cells were arranged
according to the pseudotime inferred from the ATAC-seq trajectory. 45 features
were selected basedon the Pearson correlation betweengene expression andmotif
deviation, with a threshold set greater than 0.3.HONECUT1 gene expression in AC
progenitors over time. I Tn5 bias-adjusted TF footprints for ONECUT1motifs. Lines
are colored by sample PCW groups.
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Our dataset reveals an elevated activation of the RA signaling
pathway in the peripheral retina compared to the macula. We iden-
tified several RA pathway genes that exhibit differences between
humans and chickens. For example, CYP26A1 nor CYP26C1 was
expressed in the human retina up to PCW 9. Our data shows high
expression of CYP26A1 in late macular PRPCs at around PCW 20, but

no expression of CYP26C1 at any time. In addition, the expression
pattern of FGF8 in PRPC diverges. Rather than being predominantly
expressed in the macula, FGF8 and FGF9 exhibit higher expression in
peripheral PRPCs. This suggests a potential variation in the function
of the FGF pathway between humans and chickens in retinal
patterning.
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Methods
Ethics and tissue acquisition
This research complies with tenets of the declaration of Helsinki. The
studywas reviewed and approved by the UCDavis Institutional Review
Board (IRB) (IRB ID: 903054-1). The use of discarded de-identified
human fetal retinal tissue was approved by the UC Davis Stem Cell
Research Oversight Committee (SCRO protocol#1171, initial approval
12/16/2019). Human ocular tissues were obtained from discarded de-
identified fetal waste fromelective abortions. The patients fromwhom
the tissues were derived were informed and freely agreed for them to
be used for research purposes. Only tissues from women agreeing to
donate it for scientific research were used in this study. Their agree-
ment for research was documented in themedical chart. Patients were
not compensated.

Human developmental sample collection
The human samples from PCW 10 to PCW 23 were collected from 12
individuals (with IDs 2 and IDs from 4 to 14 in Supplementary Data 1) in
this study from theUCDavis EyeCenter. All the sampleswere collected
within 6 h post-mortem, according to the protocol54. The macula and
peripheral retina samples were collected with a 2mm disposable
biopsy punch and flash-frozen by liquid nitrogen. Samples were then
stored at −80 °C. All tissues were de-identified under HIPAA Privacy
Rules. Gender was determined by the relative gene expressions of XIST
and DDX3Y. Only tissues from women agreeing to donate it for scien-
tific researchwere used in this study. Their agreement for researchwas
documented in the medical chart.

Nuclei isolation and sorting
Nuclei were isolated by WheatonTM Dounce Tissue Grinder in pre-
chilled freshmade RNase-free lysis buffer (made with 10mM Tris-HCl,

10mM NaCl, 3mM MgCl2, 0.02% NP40, 1% BSA, 1mM DTT, and 1U/ul
RNAse inhibitor). Being triturated by the loose and tight dounces,
tissue structure was broken and homogenized. Isolated nuclei were
washed twiceby fresh-madewashbuffer (10mMTris-HCl, 10mMNaCl,
3mMMgCl2, 1%BSA, 1mMDTT, 1U/ul RNAse inhibitor) for 5minutes at
4 °C, 500 g. The pellet was then re-suspended in a diluted 1X Nuclei
Buffer (10X Genomics, 2000153/200).

Single-nuclei dual-omic sequencing
All single-nuclei dual-omics-sequencing in this study was performed at
the Single Cell Genomics Core at Baylor College of Medicine following
the library construction protocol CG000338 from 10x Genomics.
Single-nuclei cDNA library preparation and sequencing were per-
formed following the manufacturer’s protocols (https://www.
10xgenomics.com). The single-nuclei suspension was introduced into
a Chromium controller in order to generate single-cell GEMS (Gel
Beads-In-Emulsions) for the subsequent reaction. The snRNA-seq and
snATAC-seq library were prepared with Chromium Next GEM Single
Cell Dualomic GEM kit (10x Genomics). The library was then
sequenced on Illumina Novaseq 6000 (https://www.illumina.com).

Obtain additional public datasets
Dual-omic sequencing data (in bam format) of three additional
developmental retina samples (with IDs 1 and 3) were retrieved from
the National Center for Biotechnology Information, specifically from
project GSE246169 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE246169]. The samples were processed following the experi-
mental procedures mentioned in ref. 17. In GSE246169, sample 1 cor-
responds toDay 59HumanFetal Retina, while sample 2 represents Day
76 Human Fetal Retina Center, and sample 3 corresponds to Day 76
Human Fetal Retina Peripheral in Supplementary Data 1.

Fig. 5 | Different epigenome-transcriptome interaction patterns regulate
development. A Heatmap showing DARs for each major class. Marker peaks were
identified using the one-side Wilcoxon rank-sum test using the Benjamini-
Hochberg correction, applying a threshold of false discovery rate <0.01 and a Log2
Fold Change >1. B Heatmap illustrating the count of identified developmental
retinalDARsoverlappingwith adult retinalDARs.DS, representing “developmental-
specific” DARs that do not match with any adult DARs. C The bar plot represents a
comparative analysis of two distinct categories of adult histone modification
regions. Two-sided two-sample tests for equality of proportions with continuity
correction were performed to compare each pair of proportions. The Benjamini-
Hochberg procedure was applied. Adjusted p-values are smaller than 2.2e-16.
D Upset plot comparing major-class marker peaks and linked peaks. The set size
represents the number of peaks within each category. The intersection size
represents the number of peaks for the corresponding combination. E OTX2 nor-
malized gene expression violin plot by major class. F Genome browser displaying
chromatin accessibility around cis-regulatory modules (identified in the mouse by

ChanC. S et al.45) locatednearOTX2. The cis-regulatorymodules aredenotedby red
vertical bars in the “cis-regulatory modules” panel. The “Linked ORCs” section
illustrates open chromatin regions linked to genes. The transparent black-box-
labeledpeak indicates theoverlapbetween identified linkedORCs and reported cis-
regulatory modules. G UMAPs colored by levels of chromatin openness, unspliced
mRNA and spliced mRNA for CLU in PRPCs. Those levels were plotted in density
plot and line chart against gene time.H Box plots summarizing the lengths of each
of the four cell states across all fitted genes for PRPCs. In total, 1790 genes were
fitted among 52,479 cells. The bars represent theminimum,median, andmaximum
and the box spans the 25th to 75th percentile. (same for (I)). I Box plot comparing
the percentage of coupled-on time within gene time between PRPC modules
(Fig. 2E). A two-side Welch two-sample t-test was applied to compare coupled-on
time percentages between 378 module 1 genes and 140 module 3 genes. The
adjusted p-value is 1.091e-07 with Benjamini-Hochberg applied. J Bar plot sum-
marizing the percentage of the four cell states of all major classes.

Table 2 | Functions of cis-regulatory regions of RGC differentially accessed regions (DARs)

RGC DAR Type Terms Binom FDR Q-Val

Development Specific RGC DARs Retinal ganglion cell axon guidance 1.46E-06

Development Specific RGC DARs Cell migration in hindbrain 6.23E-06

Development Specific RGC DARs Radial glia guided migration of Purkinje cell 5.83E-05

Development Specific RGC DARs Transmission of nerve impulse 1.10E-04

Development Specific RGC DARs Nerve development 1.16E-04

Shared RGC DARs with Adult Nerve development 1.20E-07

Shared RGC DARs with Adult Innervation 6.34E-07

Shared RGC DARs with Adult Negative regulation of neuron death 9.98E-07

Shared RGC DARs with Adult Trigeminal nerve development 1.37E-06

Shared RGC DARs with Adult Positive regulation of cyclase activity 3.41E-06

“DevelopmentSpecific RGCDARs” are theDARs found in developmental data but not overlapwith AdultDARs; “Shared RGCDARswith Adult” are DARs that can be found in developmental data that
can also be found in adult data.
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Quality Control Overview
In total, Quality Control comprises 4 filtering steps. For each step,
only cells that have passed all previous steps will be used. Here is an
overview of the quality controls: Filter 1: Filter cells by the number
of features per cell and the percentage of mitochondrial counts.
Filter 2: Doublet identification based on RNA-seq. Filter 3: Doublet
identification based on ATAC-seq. Filter 4: Filter by major class
annotation. Each filter is explained in detail in the following
sections.

RNA-seq Data Quality Control
Raw sequencing data in FASTQ format were processed using Cell
Ranger ARC software (either cellranger-arc-1.0.0 or cellranger-arc-
2.0.0). This software facilitated the identification of cells, alignment to
the GRCh38 (GENCODE v32/Ensembl 98) human reference genome,
and the generation of gene-barcode matrices (see Supplementary
Data 1). Seurat (v4.2.0)55 was employed for initial filtering. In each
sample, features expressed in ten or fewer cells were excluded from
downstream analysis. Subsequently, quality control procedures

Macula Enriched Genes Periphery Enriched Genes

(A)

(C)

(B)

(D)

(E)

Reported Macular Development Candidate Genes

Macula Peripheral
Retinoic Acid Pathway Gene Expression Spatiotemporal Gene Expression in PRPCs

Days Days

Fig. 6 | Gene expression comparison ofmacular andperipheral retina. AMarker
gene expression of the RA pathway, including ALDH1A1, ALDH1A2, CYP26A1,
CYP26C1, FGF8, and FGF9. For each gene, both UMAPs (Macula and Periphery
information labeled in the caption) andbar charts displaying the proportion of cells
with non-zero gene expressions were plotted.B Line chart showing the natural log-
transformed counts per million of TBX5, VAX2, ALDH1A1, ALDH1A2, ALDH1A3,
CYP26A1, CYP26B1, and CYP26C1 in macula and periphery over time. C Bar charts

displaying the proportion of cells with non-zero gene expressions for previously
reportedmacula development candidate genes50.DHeatmap of top 10 PRPC DEGs
identified in the macula and periphery. The first half of genes are enriched in the
macula and the second half of genes are enriched in the periphery. E Heatmap
showing the number of DEGs identified among all major classes. The ones on the
diagonal are genes identified as DEGs exclusively in one major class, while the rest
are overlapped DEGs identified in more than one major class.
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removed cells with fewer than 500 genes or more than 10,000 genes
identified, as well as cellswith greater than 10%mitochondrial content.
The number of cells remaining after this filtering is provided in Sup-
plementary Data 2, under the column “Pass.Filter.1”.

Subsequently, doublets were inferred among all filtered cells, and
DoubletFinder56 was utilized to identify and remove these doublets.
When employingDoubletFinder, the neighborhood size (Pk values) for
each sample was determined based on the mean-variance normalized
bimodality coefficient (BCmvn) score. Furthermore, during the para-
meter selection process, a maximum of 7.5% of doublets were allowed
to prevent excessive data loss. The count of cells remaining after this
filtering step is documented in Supplementary Data 2, under the col-
umn “Pass.Filter.2”. Only cells passed processing were used for ATAC-
seq analysis.

ATAC-seq data quality control
ATAC-seq data were processed with Analysis of Regulatory Chromatin
in R (ArchR)57. Cells with fewer than 1000 unique nuclear fragments or
a signal to background ratio of less than 4 were removed.

Doublets were identified and removed based on doublet scores
inferred from ArchR using the function “addDoubletScores()” with all
default parameters. The count of cells remaining after this filtering
step is documented in Supplementary Data 2, under the column
“Pass.Filter.3”.

Only cells passed both RNA-seq and ATAC-seq processing were
used for downstream analysis.

RNA-seq data integration and UMAP
For RNA-seq data integration, we first merged all filtered cells from all
samples. Following this, UMAP and data integration for all cells were
executed using scvi-tools (V1.0.3)58.

In details, for feature selection, we selected the top 10,000 highly
variable genes using Scanpy59 “highly_variable_genes()” function with
flavor set to “seurat_v3”. Using scvi.model.SCVI(), we constructed the
latent embedding, setting parameters to “n_layers=2”, “n_latent=30”,
and “gene_likelihood = nb” (negative binomial). Afterward, we estab-
lished a neighborhood graph and carried out Leiden clustering based
on these latent embeddings.

ATAC-seq UMAP
The UMAP for ATAC-seq data was calculated using the ArchR function
“addUMAP()”. Initially, iterative latent semantic indexing was com-
puted for dimension reduction. Subsequently, to reduce sample-wise
batch effect, “addHarmony()”was applied to eliminate any dimensions
that had a Pearson correlation greater than 0.3 with the
sequencing depth.

Group samples based on post conception weeks (PCWs)
Samples were categorized into six PCW groups: PCW 8, PCW 10, PCW
13, PCW 15, PCW 19, and PCW 23. The allocation of samples to these

groups was based on their sample post-conception weeks. Minor
adjustments were additionally made to ensure that each PCW group
contained approximately the same number of cells. The detailed
results of this grouping can be viewed in Supplementary Data 1.

Major class annotation
The overall major class annotation workflow diagram can be found at
Supplementary Fig. 1A. In summary, major cell classes were annotated
through reference mapping using scvi-tools (V1.0.3) and scArches60

with default parameters. This process relied on an internally annotated
adult dataset obtained from2 (shared in https://zenodo.org/uploads/
10866341). Specifically, the in-house human adult retina reference was
trained to build an annotation model using a standard pipeline. Sub-
sequently, the developmental datawereupdated to themodelwith the
same adult latent space. UMAPs of developmental and adult data are
provided in Supplementary Fig. 1B and 1C.

Cells annotated as retinal pigment epithelium (RPEs) or microglia
were excluded from the analysis. The count of cells remaining after this
filtering step is documented in Supplementary Data 2 under the col-
umn “Pass.Filter.4”.

With the initial adult referenceannotation set, bothRPCs andMGs
were identified as MGs (Supplementary Fig. 1D). To differentiate
betweenRPCs andMGs,we reliedon clustering and recognizedmarker
genes forMG, namely SLC1A3, RLBP1, SLN, SOX2,NFIA, CRYM, CLU, and
LINC00461, as outlined in a prior study27. UMAPs visualizing the
expression of these genes are provided in Supplementary Fig. 1E.
Within the RPC group, more detailed manual annotations were made
between NRPCs and PRPCs, based on the expressions of established
markers27 in each identified cluster (see Supplementary Fig. 1E). The
final annotation of RPCs can be found in Supplementary Fig. 1G.
Annotation was validated by inferred cell cycle with tricycle61 using all
default parameters. For more validation, gene expression for each
finalizedmajor class is shown as a heatmapusing establishedmarkers27

in Supplementary Fig. 1H, with a corresponding gene score heatmap
presented in the same panel.

Subclass and cell type annotation
Duringmajor class annotation, the adult referenceused only hasmajor
class information without subclass labels. So, within each major cell
class, subclasses were identified using another adult reference data
from62. The annotation was performed through a combination of
clustering andmanual annotation (Supplementary Fig. 2A). Adult data
was obtained from theHumanCell Atlas Data Portal atHCAData Portal
with access ID 9c20a245-f2c0-43ae-82c9-2232ec6b594f. Next, both
adult and developmental cells within each major cell class were inte-
grated and clustered. Subsequently, the adult cell labels weremanually
transferred to developmental data based on the clustering results.
Within each lineage, cells exhibiting distinct gene expression profiles
compared to any adult subtypes were assigned corresponding pre-
cursor labels. Cell subclass annotations were then validated by

Table 3 | PRPC Enriched Biological Processes

PRPC Enriched GO Region Adjusted P-Value Intersections

Postsynaptic Intermediate Filament Cytoskeleton Macula 5.494 × 10 − 3 NEFM, NEFL

Cell Adhesion Macula 1.180 × 10 − 2 ADAMTSL1, CDH12, UNC5C, PCDH8

Collagen Fibril Organization Macula 1.767 × 10 − 2 LUM, COL1A1, ANXA2, TLL1

Collagen-containing Extracellular Matrix Macula 4.428 × 10 − 2 LUM, COL1A1, CCN1, ANXA2, S100A10

Cell Morphogenesis Periphery 5.085 × 10 − 13 LRATD1, ANO1, ROBO2, PDLIM5, CDH6

Cell Adhesion Periphery 5.075 × 10 −6 DAPL1, ROBO2, PDLIM5, CDH6, DCC

Cell Motility Periphery 2.501 × 10 − 3 LRATD1, DCC, PRAG1, KIRREL3, TBX5

Axon Guidance Periphery 6.991 × 10 − 5 ROBO2, DCC, ANOS1, EFNA5, EPHA6, LHX9

Gene ontology analysis of DEGs enriched in PRPCs in themacula and periphery. The one-sided hypergeometric test was used to measure the significance of a functional term in the input gene list.
The adjusted p-values were calculated from Benjamini-Hochberg procedure.
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CNGB3 and PDE6H Expression in Cones

PDE6HCNGB3

(A) (B)

(C) (D)

(E) (F)

Expression in Macula Cones Expression  in Peripheral Cones

Days Days

Fig. 7 | Comparison of macular hypoplasia related gene expression in macula
and periphery. A Heatmap of genes associated with typical and atypical foveal
hypoplasia. OCA (oculocutaneous albinism); OA (ocular albinism); HPS
(Hermansky–Pudlak syndrome); CHS (Chediak–Higashi syndrome); FHONDA
(foveal hypoplasia, optic nerve decussation defects and anterior segment dys-
genesis).B Violin plot ofCNGB3 and PDE6H expression in cones, colored bymacula
and periphery. C Line chart of CNGB3 and PDE6H log-transformed counts per
million in the macular cones. D Line chart of CNGB3 and PDE6H log-transformed

counts permillion in the peripheral cones. E Peak accessibility around PDE6H in the
macular and peripheral cones. F The subclass enrichment of 23 eye-related GWAS
traits based on gene expression from snRNA-seq data. AMD (age-related macular
degeneration); IS (inner segment); ONL (outer nuclear layer); OS (outer segment).
To test GWAS traits enrichment, a two-sided F-test was applied to compute the p-
values. The Benjamini-Hochberg procedure was applied. Significant enrichment is
highlighted in red (FDR<0.05).
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established marker gene expression. The details of the whole annota-
tion process can be found at Supplementary Figs. 2A–G. The final
subclass annotationUMAP canbe found at Supplementary Fig. 2H. The
annotation was further validated using marker gene expressions, as
shown in Supplementary Fig. 3.

Gene scores computation
A gene score was calculated for each cell at the gene level to measure
the degree of chromatin accessibility. This was achieved by summar-
izing peaks near the gene’s transcription start site, gene body, as well
as at the promoter and distal regulatory elements, and applying
appropriate weighting. In this study, we calculated gene scores to
quantify the openness of each gene using ATAC-seq data with ArchR57.
To estimate gene scores, we utilized ArchRwith all default parameters,
employing the “addGeneScoreMatrix()” function. During this process,
gene scores were calculated through a weighted sum of accessibility
within the gene body, as well as at the promoter and distal regulatory
elements.

Gene scores imputation
After gene score was computed, to enhance the visualization of gene
scores, the “addImputeWeights()” function inArchR57wasemployed to
impute gene scores, utilizing default parameters.

Differential gene expression analysis
DifferentialGene ExpressionAnalysis can be categorized into twomain
types. The first type involves comparing gene expression amongmajor
classes, subclasses, or distinct cell types. The second type focuses on
examining gene expression differences between specific locations,
such as the macula and the periphery. For the second type, we first
accounted for and removed any confounding factors using regression
analysis.

Differential gene expression analysis was performed among
major classes, subclasses, or cell types using the Scanpy59 built-in
function “scanpy.tl.rank_genes_groups()”. The gene expression
count matrix was preprocessed with “scanpy.pp.normalize_-
per_cell()” and “scanpy.pp.log1p()” for normalization and natural
log transformation, respectively. The analysis was then tested
using the method = “t_test_overestim_var”, which stands for
overestimating the two-side variance in each group t-test. P-values
were corrected using the Benjamini-Hochberg method, specifying
corr_method = “benjaminihochberg”.

Differential Gene Expression Analysis Between theMacula and the
Peripheral Retina We applied the “Differential expression analysis”
pipeline in Monocle363–67 for differential gene expression analysis
between macula and periphery (Supplementary Fig. 9A). Monocle3
tests whether each coefficient differs significantly from zero under the
two-side Wald test. Initially, cells were categorized based on their
lineage into nine distinct groups: NRPCs, PRPCs,MGs, rods, cones, BCs,
ACs, RGCs, andHCs. The sample size for each test is the number of cells
in each major class. Subsequently, we began by fitting a regression
model using the function “fit_models()”, with “Location” (either
“Macula” or “Periphery”) as the sole explanatory variable. For deter-
mining differentially expressed genes (DEGs), we set our criteria to a
“q_value of less than 0.01 and an absolute normalized effect greater
than 1. Among these candidates, only genes present in over 2000 cells
were considered. Next, we then employed a negative binomial model
to account for gene expression variations. Our full model incorporated
both “Location (categorical characters)” and “Age (Days, which are
numeric integers)”, while the reducedmodelwas based solely on “Age”.
A likelihood ratio test was subsequently conducted to contrast the full
and reduced models. Genes that met the criteria of “q_value < 0.01”
were identified. Our final set of DEGs was discerned by finding the
overlap between DEGs from the regression model and those from the
likelihood ratio test.

Maturation score calculation
For each major class, the maturation score was defined as its gene
expression similarity to its corresponding type in adult cells. To
quantify this similarity, the Pearson correlation was calculated. In
detail, first, developmental cells and adult cells from the same
major class were extracted to calculate the top 50 principal com-
ponent vectors. Vectors were grouped by adults and different
developmental stages and then averaged among all cells within
each group. Subsequently, Pearson correlation was calculated
between the averaged vector from adults and the averaged vector
from different developmental stages to represent the
maturation score.

Cell birth rate estimation
To estimate the cell birth rate, which quantifies the percentage of
births for each major class at specific time points, the following
approach was applied. To counteract the effects of sample size varia-
tions, random sampling of 20,000 cells was performed for each sam-
ple. Following this, themean and standard deviation of the sample age
for cells were calculated. Using these values, a Gaussian kernel was
fitted to create a distribution plot. Finally, to determine the overall
proportion of each major class, their proportions were calculated.
Subsequently, this proportion (a constant) was multiplied by the
estimated Gaussian distribution. This ensured that the area under the
curve of each Gaussian distribution accurately represented the pro-
portion of the corresponding major class.

Dual-omic dynamical modeling
Other than latent time inference, dual-omic dynamicalmodeling fitted
by MultiVelo46 can identify epigenome-transcriptome interactions.
With MultiVelo, differential equations were used to model gene
expression from RNA-seq and epigenetic data from ATAC-seq. The
samemodel was trained and used before in “Latent Time Inference” in
Methods. The top 2000 highly variable genes were used to each cell
major class to train each model.

MultiVelo incorporates both RNA-seq and ATAC-seq data for
velocity analysis and latent time inference. To get started, both RNA-
seq and ATAC-seq data need to be prepared. For RNA-seq preparation:
The counts of introns and exonsweredeterminedusing veloctyo68. For
ATAC-seq preparation: Cells with counts less than 2000 or greater
than 50,000 were filtered out. MultiVelo then aggregated peaks,
drawing fromthe annotated enhancers andpromoters providedby the
10x CellRanger ARC output. These aggregated peaks underwent nor-
malization andwere smoothed by neighboring values to infer velocity.
Subsequently, cell lineage was predicted focusing on velocities of the
top 2000 highly variable genes. Then, for each branch, the dynamic
model was estimated with “recover_dynamics_chrom()” function. To
identify when the cell stage switch happened, scVelo69 time inversion
method was applied.

After fitting the dynamicmodel, MultiVelo can identify genes that
are temporarily out of sync.

Latent time inference
The latent time acts as a cell’s intrinsic timer, estimating the cell’s
degree of differentiation during development or how much time
has passed since differentiation began. It aggregates the time
assignments per gene (gene time), calculated within scVelo’s
dynamical model69, onto a global scale that accurately approx-
imates the internal clock of individual cells. During development,
within a lineage, we used latent time to sort cells from early to late.
In this study, latent time was inferred with MultiVelo46, a dual-omic
single-cell velocity inference model. The velocity stream and infer-
red latent time were determined using MultiVelo’s built-in func-
tions, specifically “recover_dynamics_chrom()” and “latent_time()”,
with default parameters applied.
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PRPCs latent time comparison among PCWs and location
To verify the accuracy of the inferred latent time in representing the
degree of development, we conducted a correlation analysis between
PCWs (in numeric integer format) and latent time for all cells. Pearson’s
product-moment correlation coefficient was employed, with the null
hypothesis positing that the correlation between PCWs and inferred
latent time equals 0.

Subsequently, for each PCW, we assessed whether macula cells
exhibited a higher latent time than peripheral cells for each week. To
enhance statistical rigor, all p-values underwent Benjamini-Hochberg
correction to obtain adjusted q-values.

Gene module analysis
To group genes with similar gene expression patterns, gene module
analysis was conducted using Hotspot70. Hotspot is designed to filter
genes that vary significantly and subsequently categorize them into
modules.

After latent time was estimated, “informative genes” were char-
acterized as those exhibiting variationwith changes in estimated latent
time. To achieve this, (1) a similarity map was constructed based on
latent time. Subsequently, (2) informative genes were identified by
detecting non-random expression patterns within the similarity map,
utilizing the “compute_autocorrelations()” function with default para-
meters. For testing non-randomexpression patterns, an FDR threshold
of 0.05 was employed.

Next, genes were grouped into modules by executing the “cre-
ate_modules()” function with parameters set to “min_gene_thres-
hold=160” and “core_only=True”. By specifying “core_only=True”, only
genes identified as core genes by Hotspot will be assigned tomodules.
Genes that not showing any similar patterns to anymodules will not be
assigned to any modules.

Gene module score calculation
Additionally, the gene module score was calculated. The gene module
score is a per-cell summary score that measures the general pattern of
expression for genes in a module. It is the cell-loadings of a single
component PCA using smoothed count matrix of all the genes within
each module.

Gene ontology analysis
GO analysis was conducted using g:Profiler71. g:Profiler carries out
functional enrichment analysis. The analysis was carried out using its
online portal (https://biit.cs.ut.ee/gprofiler/gost) with all the default
settings, where the input is a list of genes.

Gene regulatory networks inference
We inferred GRN based on single-cell dual-omic profiles. GRNs were
constructed using Pando (v1.0.3)33. The process was executed in line
with the protocol specified on the Pando website at https://
quadbiolab.github.io/Pando/. First, we merged the filtered cells from
both RNA-seq and ATAC-seq across all samples separately. For the
ATAC-seq integration, we employed Signac (v1.12.0)72 and adhered to
the tutorial provided at https://stuartlab.org/signac/articles/merging/.
Specifically, we generated a common peak set using the “reduce()”
function from R package GenomicRanges73 and subsequently merged
all cells based on a shared feature set. In addition, peaks that mapped
to X and Y chromatin were removed.

Next, the “infer_grn()” function in the Pando package was
employed to deduce the GRN. This function was run with its default
settings, namely “peak_to_gene_method” set to “Signac” and method
configured to “glm”, which is a generalized linear model. To refine the
GRN edges and find transcription factors (TFs) with high confidence,
the “find_modules()” function was employed to filter the network.
These parameters used are adjusted p-value cutoff set at 0.1, “nvar_-
tresh” at 2, “min_genes_per_module” at 1, and “rsq_thresh” at 0.05.

Gene regulatory networks clustering
After Gene Regulatory Networks were plotted with “plot_network_-
graph()” function in Pando33, the clustering of TFs and target geneswas
performed with K-means algorithm implemented in base R. For
K-means algorithm, the number of clusters was identified manually.

RNA velocity analysis and fate probability inference
To infer cell fate, CellRank V1.574 was applied, utilizing a probabilistic
approach to assign cell lineage. First, the number of introns and exons
was calculated using veloctyo68. Following this, cell-cell transition
probabilities were determined through a combined kernel of (1)
“VelocityKernel()” based on RNA velocity (0.8 weighting) and (2)
“ConnectivityKernel()” based on similarities among cells (0.2
weighting).

In the analysis of cell transitions among microstates, terminal
states were set manually. The “compute_absorption_probabilities()”
function with its default parameters was employed to estimate the
likelihood of a cell transitioning into various terminal stages. Each
lineage fate probability was expressed as a decimal value between 0
and 1, ensuring the cumulative lineage fate probabilities for any given
cell always sum to 1.

Finally, specific cell fate probabilities for each cluster were
manually determined, allowing the assignment of specific cell fates.

ATAC–seq trajectory analysis
During ATAC-seq analysis, in order to identify features such as peaks,
motif deviations, gene expression, andgene scores that vary from the
early to late parts of the trajectory, it is necessary to order the cells.
To construct an ATACseq-based trajectory, the “addTrajectory()”
function in ArchR57 was employed. This function involves specifying
cells from the earliest time points as the root, and those from the last
time points as the terminal.We set cells fromPCW 10 as root cells and
cells from PCW 23 as terminal cells. Subsequently, ArchR binned the
cells based on pseudotime estimated from ATAC-seq UMAP and
generated a heatmap displaying the varying features, ordered by
pseudotime.

ATAC motif enrichment and motif deviation analysis
Motif enrichment and deviation analyses were conducted on the
pseudobulk peak set. To annotate the peaks, we utilized the Catalog of
Inferred Sequence Binding Preferences (CIS-BP) motif from
ChromVAR75. Furthermore, we computed the chromVAR deviation
scores for these motifs using the implementation in ArchR57. Subse-
quently, the motifs were ranked based on the -log10(P-adjusted) Motif
Enrichment. To identify genes with highly correlated gene expression
and motif deviations, “correlateTrajectories()” in ArchR was used with
default parameters.

Normalization of footprints for Tn5 bias
To remove insertion sequence bias of the Tn5 transposase when esti-
mating TF footprints, the Tn5 bias was subtracts with “plotFoot-
prints()” function in ArchR57 by specifying “normMethod = “Subtract””.

Gene regulatory networks visualization
To visualize the inferred gene regulatory network, we used a UMAP
embedding to plot the TFs. All the TFs were plotted in a way that
reflects the differences in their regulatory effects on target genes. This
was achieved using the “get_network_graph()” function in Pando33.

In the GRN figures, each target gene is colored based on its
expression-weighted time, which is a weighted sum of gene expres-
sions relative to sample time. More specifically, for each TF, gene
expression was first normalized and scaled to ensure that the sum of
gene expressions equals to 1. These scaled values were thenmultiplied
by the corresponding sample age (in days) to calculate a gene
expression-weighted time.
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The size of each TF node represents the average of normalized
gene expression values before scaling.

NRPC TFs cell specification effect prediction and validation
To deduce the effects of TFs on major class specification, we
employed the subsequent method: (1) Selection of TF: We first
chose all the TFs inferred from the NRPC gene regulatory network
(GRN). (2) Average Gene Expression Calculation: Using all anno-
tated NRPC with identified cell fates, we computed the average
gene expression for each of these TFs across all cell fate groups. (3)
Assignment of TF Specification: A TF was determined to specify a
particular major class if it exhibited the highest gene expression
value in NRPC destined for that major class.

To corroborate our predictions, we turned to the established lit-
erature, specifically examining the documented roles of specific TFs in
retina development. (1) Accurate Prediction: If our forecasted major
class aligned with those confirmed through loss-of-function experi-
ments in animal models, our prediction was deemed accurate. (2)
IncorrectPrediction: If the loss-of-function studies indicatedno impact
on the major class specification of our predicted major class, our
prediction was classified as incorrect. (3) Unknown Prediction: In
instances where we could not locate any studies related to a particular
TF in the field of retina development, we marked the prediction status
as “unknown”.

ATAC–seq peak calling
Initially, peak sets were identified using ArchR57 through the function
“addReproduciblePeakSet()”with all default parameters. This function
serves as an R wrapper for executing the MACS2 peak calling
pipeline76. Throughout this procedure, peaks were called for each
major class initially. Subsequently, ArchR assessed the reproducibility
of each peak across pseudo-bulk replicates and retained only those
peaks surpassing a threshold specified by the reproducibility para-
meter. Finally, the ultimate set of peaks was identified by combining all
peaks from each major class.

ATAC–seq differential peaks analysis
To perform differential analysis between various major classes and
conditions, we utilized the peak set and the getMarkerFeatures()
function. Peak intensity was determined as the log2-transformed nor-
malized read counts. Statistical analysis was conducted using the Wil-
coxon test and Benjamini-Hochberg multiple test to calculate p-values
and false discovery rates (FDR) for each pairwise sample comparison.
Differentially accessible distal peaks were identified based on pre-
defined thresholds for FDR and log2-fold change for each major class.

Peak annotation
Peaks were inferred with GREAT77,78 to predict their biological func-
tions. GREAT was used by providing the peaks as a bed file and the
whole genome as a background region through https://great.stanford.
edu/great/public/html/.

Compare ATAC marker peaks with adult
Adult marker peaks were identified using the same differential peak
analysis pipeline as the one applied to the adult dataset2. Next, for each
major class, we checked if a marker identified in the developmental
data overlapped with the marker peaks identified in the adult data
using the “intersect()” command in bedtools79. For each develop-
mental marker peak, if at least 20 percent of the peak region over-
lapped with any adult marker peaks, it was defined as overlapping;
otherwise, it was considered unmapped to adult marker peaks.

Identification of peak-to-gene linkage
The identification of peak-to-gene linkages entails examining pairs of
peaks and genes that display a robust correlation between peak

accessibility and gene expression. In this analysis, we established a
maximum permissible distance of 250,000 base pairs for each gene
while searching for correlatedpeaks. Additionally, aminimumpeak-to-
gene Pearson correlation coefficient of 0.45 was set. These criteria
were implemented using the “addPeak2GeneLinks()” function in
ArchR57, and the results were subsequently extracted using the “get-
Peak2GeneLinks()” functions in the same tool.

Compare Linked Peak’s Histone Modification Signals Using
Adult Retina Histone Modification Data
H3K27ac and H3K4me2 histone modification regions were down-
loaded from the previous publication80. Next, we checked if a linked
peak identified in the developmental data peak-to-gene-linkage ana-
lysis overlapped with the peaks identified in the H3K27ac and
H3K4me2 region using the “intersect()” command in bedtools79. For
each developmental-linked peak, if at least 20 percent of the peak
region overlapped with any adult retina histone modification peaks, it
was defined as overlapping; otherwise, it was considered unmapped.

Mouse Otx2 cis-regulatory modules to the human genome
conversion
13 Mouse Otx2 cis-regulatory modules were extracted from45. Then,
those regions were converted from mouse genome mm10 to human
genome hg38 using Lift Genome Annotations81. All CRMs other than
FM2 were successfully mapped to the human genome.

Enrichment analysis
Weperformed enrichment analysis as described in ref. 80. 15 eye traits
or disorders were from82–88. Briefly, we formatted GWAS summary
statistics with the MungeSumstats89, SNPs were then linked to genes
using map_snps_to_genes function in MAGAMA90. We performed
“CellTyping” with default parameters. We formatted snRNA-seq
expression data with the EWCE91, and assessed the linear positive
correlation between gene expression major class specificity and gene-
level genetic association fromGWAS studies byMAGAMA. Celltyping92

enrichment with FDR <0.05 were considered as significant.

Statistics & reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analysis. The experiments were not ran-
domized. For all statistical tests used, the data distributions were for-
mally tested and met the assumptions of the statistical tests.
Differences were considered significant at ∗p ≤0.05, ∗∗p ≤0.01,
∗∗∗p ≤0.001. Exact p-values are indicated in the Source Data file. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq and ATAC-seq raw data generated in this study can be
accessed at National Center for Biotechnology Information (NCBI)
with Sequence Read Archive (SRA) accession ID SRP510712. A copy of
rawdata has been deposited in theHCAData Portal - HumanCell Atlas,
under accession code 581de139-461f-4875-b408-56453a9082c7
[https://explore.data.humancellatlas.org/projects/581de139-461f-
4875-b408-56453a9082c7]. The processed data are available at CZ
CELLxGENE Discover with accession code 5900dda8-2dc3-4770-
b604084eac1c2c82 [https://cellxgene.cziscience.com/collections/
5900dda8-2dc3-4770-b604-084eac1c2c82]. The count matrix for all
sequencing data is available at Gene Expression Omnibus, with
accession code GSE268630 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE268630]. The binned ATAC-seq peak signaling data
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used in this study are available in the UCSC Genome Browser Home
under session ID HumanDevelopingRetinaAtlas [https://genome.ucsc.
edu/s/zhenzuo2/HumanDevelopingRetinaAtlas]. Adult data used for
cell major class annotation and cell subclass annotation is provided in
Zenodo [https://doi.org/10.5281/zenodo.10806575]. Adult differen-
tially accessible regions, adult histone modification regions, inferred
gene regulatory networkmodel, recovered dynamicmodels, identified
differentially expressed genes model, and bigwig files for ATAC are
provided in Zenodo [https://doi.org/10.5281/zenodo.10866348].
Source data are provided with this paper as a Source Data file. Source
data are provided with this paper.

Code availability
Analysis scripts can be accessed with GitHub repository https://doi.
org/10.5281/zenodo.1125048293.
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