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While multiple factors impact disease, artificial intelligence (AI) studies in
medicine often use small, non-diverse patient cohorts due to data sharing and
privacy issues. Federated learning (FL) has emerged as a solution, enabling
training across hospitals without direct data sharing. Here, we present FL-
PedBrain, an FL platform for pediatric posterior fossa brain tumors, and
evaluate its performance on a diverse, realistic, multi-center cohort. Pediatric
brain tumors were targeted due to the scarcity of such datasets, even in ter-
tiary care hospitals. Our platform orchestrates federated training for joint
tumor classification and segmentation across 19 international sites. FL-
PedBrain exhibits less than a 1.5% decrease in classification and a 3% reduction
in segmentation performance compared to centralized data training. FL
boosts segmentation performance by 20 to 30% on three external, out-of-
network sites. Finally, we explore the sources of data heterogeneity and
examine FL robustness in real-world scenarios with data imbalances.

AI has created untapped opportunities for accelerating precision in
medicine, including transformations in medical imaging that offer
improved efficiency and enhanced disease diagnosis, therapy plan-
ning, and surveillance. To date, even with relatively small datasets,
studies have shown promise of AI across imaging modalities, clinical
subspecialties, and organ domains, such as disease delineation1–4,
diagnosis5–9, outcomes10,11, and underlying genomics12,13, someofwhich
surpass human performance.

Ultimately, “big data” is a key to the success of AI in medicine. For
this reason,manyAI investigations have focused on relatively common
adult diseases pooled from one or a few large centers, e.g., breast or
lung cancer, pneumonias, heart disease, intracranial hemorrhage, or
acute ischemic strokes. However, many rare or pediatric diseases with
data scattered across hospitals currently do not benefit from the
advancements in AI. Even CheXNet, a chest radiograph dataset with
>100,000 annotations5 and considered “large” among medical
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datasets dwarfs in comparison to non-medical ImageNet, which con-
tains >14 million annotated images14. Current AI models on cross-
sectional imaging, e.g., MRI or CT—often considered the clinical
workhorse—are trained on significantly fewer datasets, raising ques-
tions of AI reliability and generalization and thereby further exacer-
bating a general lag in AI adoption in healthcare.

Medical data is not scarce, however. Large tomes exist across the
world in the form of electronic health records and imaging archives
and are fertile grounds for large-scale AI developments. Unfortunately,
barriers to data sharing across institutions—while necessary for patient
privacy—have impeded progress in AI for healthcare. FL has emerged
as one potential solution that enables model training across multiple,
decentralized datasets, without direct patient data sharing15. It offers
better privacy and local data autonomywhile facilitating learning from
adistributed data source inwhich diverse factors contribute to disease
phenotypes and their outcomes. From such a network, AI can learn
complex relationships and potentially uncover new clinical
perspectives.

Recent FL works in medicine have shown feasibility16–19 but with
limited scope, e.g., few participating FL sites or small range of classes
or datasets that are limited in diversity and size. Prior FL
investigations20–22 have examined segmentation of adult gliomas that
typically arise in the supratentorial brain. Children, however, present
with more diverse brain tumor pathologies, the majority occurring in
the posterior fossa (PF) spaces that include the brainstem and the
cerebellum.

In this work, we present an end-to-end, MRI-based FL platform for
PF tumors, FL-PedBrain, on a large international pediatric dataset of 19
institutions from North America, Europe, West Asia, North Africa, and
Australia (Fig. 1). We targeted pediatric tumors, given both their
pathologic diversity and general scarcity even within subspecialty
pediatric hospitals. Hence, a successful FL platform could uniquely
benefit this data-sparse, yet vulnerable population.

We examine a heterogeneous group of pediatric PF tumors with
diverse clinical outcomes, dependent on tumor pathology or geno-
mics, surgical resection margins, or their candidacy for new drug
therapies. We conducted tumor classification and segmentation
jointly, as success of such tasks prior to surgery can directly impact
precision in surgicalmargins, radiation targets, and alter other therapy
strategies that aim cure with minimal risks. Specifically, we orche-
strated FL training with real data from 19 participating sites from five
continents and compared its efficacy against the traditional pooled
data approach, i.e., centralized data sharing (CDS). We investigated
real-life scenarios where some sites provide missing or imbalanced
data. Finally, we explored the underlying sources of data hetero-
geneity, such as variations in image quality, or site-specific tumor
features.

Results
Study cohort
A total of 1468 unique PF tumor subjects (mean age 7.6 years; 48%
females) were included, comprising 596 MB, 210 EP, 335 PA, and 327
DIPG. Table 1 summarizes the demographic information and the tumor
pathologies distributed across the 19 institutions.

Classification
Table 2 summarizes the model performances, comparing FL and CDS.
FL achieved classification performance on par with CDS, without a
statistically discernible difference. We present FL and CDS confusion
matrices summarizing the classification performance on the four
tumor pathologies (MB, EP, PA, DIPG) in Fig. 2a, b. Figure 2c also
illustrates per site, overall accuracies. Compared to either FL and CDS,
Siloed training significantly underperforms and shows large perfor-
mance variance across the sites (Fig. 2c).

Segmentation
As shown in Tables 3 and 4, FL achieves an overall segmentation per-
formance that approaches CDS on both, the 16 validation datasets and
the 3 hold-out test sites. Compared to either FL or CDS, Siloed training
underperforms by >20%, a performance drop that is greater for seg-
mentation than for classification (Fig. 2c). Both, FL and CDS, yielded
the best segmentation performance on DIPG tumors, whereas per-
formance onMBwas lower than the other tumors (Table 3). Within the
tumor subgroups, FLmatched that of CDS performance onMB and PA
tumor (no t-statistic difference), while FL slightly underperformed
compared to CDS on EP and DIPG. Such variations might suggest
heterogeneity in tumor voxel volume between the sites (see section on
Heterogeneity).While themeanDice Similarity Coefficient (DSC) on the
validation sets were congruent for both FL and CDS, FL exhibited
slightly higher variability, i.e., greater standard deviation, suggesting
underlying differences in the model behavior.

Supplementary Table 1 presents the classification and segmenta-
tion results for the 16 independently trained models, each using its
respective site-specific dataset. The outcomes suggest subpar perfor-
mance across the board, attributable to the limited size of individual
datasets. Notably, models from sites UT and CP showed the highest
segmentation DSCs, reaching 0.57. However, models from five sites
did not converge.

Visualizations and quality of FL training
Figure 3 illustrates sample segmentation outputs from FL-PedBrain
compared to the ground-truth segmentations. We also present a
t-SNE23 visualization of projected embedded features from FL-PedBrain
classification model from the validation set (Fig. 4a). Note unique
tumor features that are also distinct from normal pediatric brains. A
corresponding violin plot of all per-example Dice scores (DSC) in the
16-site population is also shown in Fig. 4b. Finally, Fig. 5 illustrates
convergence during training, comparing CDS to FL. As expected, and
consistent with expected observation15, CDS requires fewer learning
updates to converge.

Heterogeneity
Since data heterogeneity is a key consideration in AI studies, we
examined various sources of data heterogeneity. One notable factor
was the significant class imbalances across the participating sites, both
in the sample sizes and the pathologic subgroups, with some sites
completely missing certain tumor types, as shown in Table 1. Inter-
estingly, we observed differences in T2-MRI pixel variance in Fig. 6,
especially for DIPG and PA, possibly reflecting larger variances in solid,
hemorrhagic, necrotic, or cystic components, or other tumoral habi-
tats unique to astrocytomas. We also found significant variation in
relative tumor volumes across sites. Despite such sources of data
heterogeneity—including extreme class imbalances—we found no evi-
dence such factors impacted FL convergence.

Impact of FL Warm-up
FL across just two of the largest centers achieved >70% classification
accuracy and segmentation DSC, except for the EP cases. By adding in
the remaining sites, performancewas significantly enhanced, as shown
by Fig. 5c. We found that Federated Warm-up was important; without
warm-up, training times were up to 10 times longer and overall per-
formance lower, especially for EP classification and segmentation.

Better performance with more active FL sites
In our study, we assess the impact of site activity on FL performance by
conducting an ablation experiment. This experiment measures the FL
system’s performance relative to thequantity of active training sites, as
depicted in Fig. 5c. We rerun the full FL experiment by integrating
more sites into the training process (x axis), prioritizing those with
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larger datasets. The performance evaluation is based on the F1 score—
specifically, the classification accuracy of the label that performs the
poorest. Our findings indicate a positive correlation between
the number of active sites and the F1 score: asmore sites participate in
the FL network, the F1 score improves, eventually equaling the peak
score achieved when all available sites are active.

Future challenges and practical implementation
FL-PedBrain introduces logistical challenges, communication over-
head, model synchronization, and computational demands.

Communication and logistical challenges. In FL, every participating
hospital must regularly exchange model updates—specifically, the

Fig. 1 | Federated Learning Platform. Participating sites (a) and FL procedure (b).
a North America: Stanford Children’s Hospital (ST—Palo Alto, California), Seattle
Children’s Hospital (SE—Seattle, Washington), Phoenix Children’s Hospital (PH—
Phoenix, Arizona), Primary Children’s Hospital (UT—Salt Lake City, Utah), Chil-
dren’s Hospital Orange County (CH—OrangeCounty, California), Dayton Children’s
Hospital (DY—Dayton, Ohio), Indiana University Riley Children’s (IN—Indianapolis,
Indiana), Lurie Children’s Hospital of Chicago (CG—Chicago, Illinois), NYU Langone
Medical Center (NY—New York City, New York), Children’s Hospital of Philadel-
phia (CP—Philadelphia, Pennsylvania), Duke Children’s Hospital (DU—Durham,

North Carolina), Boston Children’s Hospital (BO—Boston, Massachusetts), Toronto
Sick Kids Hospital (TO—Toronto, Canada); Europe: Great Ormand Street Hospital
(GO—London, United Kingdom),Tepecik Health Sciences (TK—Izmir, Turkey), Koç
University (KC—Istanbul, Turkey); North Africa: Centre International Carthage
Médical (TU—Monastir, Tunisia); West Asia: Tehran University of Medical Sciences
(TM—Tehran, Iran); Australia: The Children’s Hospital at Westmead (AU—Sydney,
Australia). b Our FL framework incorporates FL warm-up on the largest sites and
proximal regularization to learn on heterogeneous sites, but we report the best
results with μ =0.
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model weights after each FL training round. For our classification-
segmentation model, this equates to transmitting ~125MB of model
weights per round. This culminates in a data transfer of ~74GB per
hospital for each training sessionwith 200 rounds. Training the largest
dataset for 1 epoch consumes ~3–4minutes on a V100 GPU, and the
time to then transfer all 16 models from each hospital to the central
parameter server (coordinating hospital) in Fig. 1a is roughly 7minutes
at 1 MB/s internet upload rate, assuming that the central server’s
download rate is much faster than 1 MB/s. This equates to about
10minutes per round (1 epoch per round) and 2000 minutes to ship
one trained model. Although CDS only requires a one-time collection
of 200–1000GB of DICOMs, FL offers benefits by removing the need
for data use agreements and the need for deidentification, which can
take a long time to establish and verify. Finally, FL provides advantages
such as continuous quality control and oversight from each of the
sites’ technical model builders. The provided figures are rough esti-
mates; actual performance will vary as hospitals differ in computing
power, communication standards, and data transfer speeds. Asyn-
chronous Federated Learning (FL) is particularly beneficial in envir-
onments where hospitals exhibit diversity not just in data but also in
computational and networking resources. Recent methods for het-
erogeneous FL24 canpotentially alleviate communication and compute
overheads.

Need for on-site technical expertise. Additionally, having both clin-
ical and AI experts per site would greatly enhance and streamline the
FL workflow, enabling them to (1) inspect the training and evaluation
data for any obvious imaging artifacts or integrity of diagnosis and (2)
monitor the training process as the model evolves. We intend our FL

framework not to be used just for static datasets like in the CDS case
but rather as a bedrock for active learning on growing datasets.
Therefore, human integration into the FL pipeline is a very promising
future direction.

Discussion
We present an FL system for pediatric cancer, FL-PedBrain, specifically
targeting PF tumors. While brain tumors represent the most common
solid neoplasm of childhood, they remain sparse compared to adult
tumors, dispersed across pediatric or subspecialty centers. Thus, a
successful collaborative platform that enables large-scale AI learning
across institutions could uniquely benefit this population. Here, we
capitalize on a large and diverse brain MRI dataset of pediatric PF
tumors to date from 19 global institutions and present and evaluate an
FL design that jointly conducts tumor pathology prediction and seg-
mentation, optimized for this relatively data-sparse population.

Overall, we found robust generalization of FL-PedBrain across all
sites, including the three external holdouts. Compared to CDS that
uses pooled data from all sites, FL deviates by less than 1.5% in the
classification and only 3% in the segmentation performances, with no
statistical difference between CDS and FL on classification and slightly
lower segmentation performance of FL on two of the four tumor
groups. On the other hand, Siloed training—or training confined to a
local site—performs ~20% worse compared to either FL or CDS, high-
lighting the risks of AI generalization and brittle models.

Prior FL studies on brain tumors have exclusively focused on
segmentation of adult gliomas20–22. In this work, we trained the clas-
sifier and segmentation jointly. Unlike prior FL studies that employed
extensive image manipulations, e.g., skull-stripping and rigid atlas-
based brain co-registration20–22, we used real-life, raw MRI data that
included brain tissue, skull, scalp, and head sizes of all ages, so that FL-
PedBrain could be used in an end-to-end clinical deployment. Despite
the heterogeneous dataset (infant to adult head sizes and diverse
tumor pathologies beyond gliomas, e.g., embryonal and glial tumor
cells of origin) and not requiring image manipulation prior to FL
training, FL-PedBrain, performed segmentation on par with prior adult

Table 2 | Classification accuracies for CDS and FL on all vali-
dation sets

Metric Centralized training (CDS) Federated learning (FL)

Accuracy 0.8922 0.8799

F1 Score 0.8766 0.8561

Table 1 | Demographic table

Site ID Total subjects EP* DIPG* MB* PA* EP** DIPG** MB** PA**

TM 13 0 (N/A) 0 (N/A) 7 (67%) 6 (71%) N/A N/A 70.6 106.2

PH 55 12 (42%) 14 (50%) 15 (60%) 14 (47%) 77.8 105.5 94 76.9

TO 92 26 (61%) 0 (N/A) 60 (64%) 6 (100%) 60.2 N/A 92.2 98.9

UT 129 17 (75%) 18 (60%) 42 (68%) 52 (42%) 30.1 91.5 85.7 104.7

DU 24 0 (N/A) 0 (N/A) 24 (64%) 0 (N/A) N/A N/A 66.5 N/A

CP 96 20 (N/A) 0 (N/A) 43 (N/A) 33 (N/A) N/A N/A N/A N/A

IN 118 5 (38%) 21 (52%) 63 (77%) 29 (50%) 58.4 75.8 93.7 102.2

ST 328 39 (57%) 84 (51%) 93 (66%) 112 (48%) 175.35 98.3 107.1 108.2

SE 241 42 (71%) 44 (39%) 113 (58%) 42 (51%) 49.6 83 84.2 96.7

CG 150 10 (50%) 75 (49%) 54 (66%) 11 (38%) 83.9 96.9 88.8 105.6

NY 26 7 (75%) 10 (64%) 9 (67%) 0 (N/A) 94 92.7 159.2 N/A

CH 14 0 (N/A) 4 (50%) 3 (50%) 7 (60%) N/A 120 85 42.8

GO 78 23 (48%) 14 (21%) 27 (48%) 14 (36%) 64.9 82.2 70.9 83.2

BO 19 0 (N/A) 0 (N/A) 19 (40%) 0 (N/A) N/A N/A 100.4 N/A

KC 3 1 (100%) 0 (N/A) 2 (71%) 0 (100%) 144 60 109.7 24

DY 28 4 (0%) 5 (60%) 13 (92%) 6 (50%) 58 104.1 99.1 50.6

TK 16 2 (100%) 4 (50%) 7 (45%) 3 (71%) 327.6 127.8 198.2 130.3

AU 32 0 (N/A) 32 (34%) 0 (N/A) 0 (N/A) N/A 83.3 N/A N/A

TU 6 2 (100%) 2 (50%) 2 (50%) 0 (N/A) 217 70 105.6 N/A

*Number and percentage of males.
**Mean ages for each tumor type per site (EP ependymoma, DIPG diffuse intrinsic pontine glioma, MB medulloblastoma, PA pilocytic astrocytoma).
N/A Information not available.
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studies. FL-PedBrain also outperformed (F1 scores of 0.877 and 0.856
for CDS and FL, respectively) a prior pilot study9 that used pooled data
for PF tumor prediction (F1 score of 0.800). Recent advances in FL
strategies19,25–28 tackle learning on heterogeneous data and environ-
ments. Federated Proximal learning (FedProx25) is an adjustment to
Federated Averaging that can accommodate for model drift. One
important ingredient is the proximal weight penalty to ensure that the
local updates do not stray too far from the global model, thereby
making the training processmore robust to data heterogeneity among
clients. We have found that Federated Averaging (µ =0) achieves
higher and more consistent segmentation performance across the

19 sites on average compared to other advanced strategies such as
weight transfer, exploiting syntheticdata, and knowledgedistillation26.

Moreover, we presented the Federated Warm-up method to
combat challenges of severe non-uniformdistributions of sample sizes
across the FL network. This allows the training process to learn from
the sites with the largest data samples for a few federated rounds.
Thereafter, the learning proceeds to all the sites, including the ones
with missing classes.

FL-PedBrain jointly classifies and segments brain tumors, which
addresses several clinical needs. First, a more precise, pre-surgical
knowledge of the PF tumor pathology could impact therapy. For
example, less aggressive, safer resection margins may be desirable for
more radio-sensitive MB compared to EP. Patient counseling and
therapeutic strategy may vastly differ for non-resectable DIPG versus
less aggressive but “infiltrative”-appearing PA tumors that can mimic
DIPG. Second, since PF tumors often plague critical brain regions such
as the brainstem, more precise tumor localization via segmentation
that ports into surgical navigation can also optimizemaximal resection
for cure (e.g., EP or PA tumors) while minimizing risks. It may also
enhance radiation targets and offer efficiency in radiomics or other
quantitative tumor analytics.

Table 4 | Segmentation DSC performance on the three inde-
pendent hold-out sites

Sites CDS-model on
Holdouts

FL-model Holdouts Siloed model on
Holdouts

TU 0.862 ±0.076 0.860±0.079 0.410 ±0.32

TK 0.920 ±0.023 0.818 ± 0.082 0.58 ±0.264

AU 0.914 ± 0.043 0.845 ±0.127 0.642 ±0.134

These are sites that did not participate in the training, validation, and model development.

Table 3 | Segmentation Statistics for CDS and FL on Validation Sets

Metric DSCs for CDS DSCs for FL IoU score for CDS IoU score for FL

EP 0.8378 ±0.0842 0.8044 ± 0.1051 0.7291 ± 0.1144 0.6848 ±0.1380

DIPG 0.8866 ±0.0544 0.8622 ±0.0861 0.8003 ±0.0826 0.7663 ±0.1129

MB 0.7782 ±0.2275 0.7800± 0.2151 0.6782 ±0.2261 0.6775 ±0.2207

PA 0.8233 ±0.2126 0.8194 ±0.2087 0.7386 ±0.2204 0.7312 ± 0.2139

The table compares the segmentation performance between CDS and FL on validation sets. A two-sided t-test for the DSC distributions with t-statistic (degrees of freedom), p value, effect size, and
the 95% confidence interval for each class: 1) EP: 4.874 (54), 9.998e-06, 0.5, [0.01, 0.04], 2) DIPG: 3.511 (115), 0.0006, 0.37, [0.01,0.04], MB: −0.284 (146), 0.7771, 0.06, [−0.01,0.02], PA: 0.513 (89),
0.6090, 0.22, [0.00, 0.02].

Fig. 2 | Performance of FL on the validation sites compared to CDS and siloed
training using the ST site model. Confusion matrices (a, b) for the classification
task and per site performance (c). The hospitals TK, AU, and TU are external and

independent hold-out sites. Source data are provided as a Source Data file. Source
data are provided as a Source Data file.
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Currently, manual maximal, linear measurements (x, y, z dimen-
sions) are used to calculate tumor growth or regression. While useful,
these are crude metrics for tumor tissues that are asymmetric or
irregular, and alsoprone to interobserver variability. Thus, FL-PedBrain
could be used to more reliably calculate tumor volumes across serial
imaging. Segmentationmasks generated from FL-PedBrain can also be

plugged into a radiomics pipeline for tumor genomics4 or enhanced
risk-stratification10 and potentially clarify patient candidacy for various
individualized therapies.

We recognize several limitations of this work. First, the MRI scans
originated from various MRI hardware across different sites, each
employing unique protocols, leading to disparities in image quality. For

Fig. 4 | Classification and Segmentation Results. Visualization of the FL-trained model features (a) and DSCs (Dice scores) (b). The violin plot displays the median,
quartiles, and minimum and maximum values of the distribution. Source data are provided as a Source Data file.

Fig. 3 | Sample FL segmentation predictions compared to ground-truth segmentations. Sample predictions of the FL-trained model compared to ground-truth
segmentations across various tumor types sampled at different depth regions of the brain. The Source model is provided in the GitHub link.
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example, we found site-to-site variations in T2-MRI image intensities.
Second, differences in clinical practices and culture or site-specific bar-
riers to MRI may impact tumor features at the time of diagnosis. For
example, sites that use MRI to screen children at high risk of brain
tumors, e.g., patientswith specific genetic syndromes,mightfind tumors
at an earlier phase versus under-resourced communities that catch
tumors at a later period, when the patient finally decompensates.
Alternatively, a particular subspecialty center may attract more complex
or advanced tumors due to referral patterns. For example, we found that
some sites tend to host larger size tumors, e.g., PA tumors, compared to
others. Class imbalance within TK and AU sites likely contribute to a
slightly lower classification performance. For segmentation task, where
the scores are calculated per pixel across the entire 256× 256×64 head
volume, we observe similar performance between FL and CDS.

Nevertheless, we incorporated such heterogeneous conditions to
properly investigate FL feasibility in a real-life setting. Real-world
datasets are generally non-IID (non-independent and identically dis-
tributed) and can thus impact the final FL performance compared to
baseline CDS. Here, we highlight multiple sources of heterogeneity
inherent in our data: (1) imbalancednumber of samples per site; (2) age
and sex differences across sites (Table 2); (3) imbalanced or missing
tumor classes on few sites of the federated network; (4) site-specific
variations in theMRI signal intensities; and (5) site-specific variations in
the tumor sizes. More sophisticated FL techniques such as Federated
Proximal techniques and variations25 might improve training con-
vergence with imbalanced classes. However, we have not found
improvement using such methods. Despite such sources of data het-
erogeneity, we show robustness of FL-PedBrain as shown by the
training convergence graph (Fig. 5b) with an FL performance that not
only closelymatches CDS, but also offers the advantages of AI training
without data sharing across the sites within the FL network. Lastly,
while the study does not account for human inter-reader variability,

our segmentation masks reflect a consensus-based ground truth vali-
dated by six experts in the field.

In conclusion, we presented and evaluated a federated platform
for pediatric brain tumors that is privacy-preserving and does not
require sharing of data and showed its feasibility on a heterogeneous
tumor pathology and diverseMRI dataset from 19 geographic centers.
We emphasize the potential of FL in accelerating large-scale, clinically
translatable AI for pediatric datasets and other heterogeneous,
privacy-preserving data.

Next steps will include a study on the prospective deployment of
real-time FL-PedBrain at local hospitals, requiring no additional data
processing to enhance clinical usability. The methodology and results
of this work lay the groundwork for future applications of FL in radi-
ology and beyond, towards collaborative, efficient, and ethical AI-
driven developments.

The key results are as follows:
1. FL-PedBrain, a platform for anMRI-based FL, performson-parwith

the traditional CDS AI method for the concurrent classification
and segmentation of pediatric posterior fossa brain tumors. Both,
FL and CDS, approaches yield 20 to 30% higher performance
improvements in segmentation compared to siloed learning from
localized, limited data sources.

2. Heterogeneity is inherent in real-world medical image data and
can be quantitatively described by class imbalances, MRI signal
intensities, and even tumor sizes across different centers.

3. Despite data heterogeneity, FL-PedBrain achieves high general-
ization performance across 19 sites across the world.

Methods
This multi-center, retrospective study underwent approval by the
Stanford University institutional review board (IRB) and execution of
data use agreements across the participating sites, with a waiver of

Fig. 5 | FL Training Runs. Training runs comparing CDS (a) to FL (b), and ablation
study showing impact of participating sites in the network (c). Runs using CDS (a)
and FL (b) show fast convergence for both the classification and segmentation
tasks. A federatedwarm-upwas performed on the two largest sites first. These runs

(c) show the influenceof adding sites into the FL training networkon theworst-case
class prediction (Ependymoma) measured at 100 FL rounds, 150, 200, 250, and
300. The error bars represent 1 std. deviation of variation among five independent
FL runs. Source data are provided as a Source Data file.
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consent/assent (IRB No. 51059: Deep Learning Analysis of Radiologic
imaging). Nineteen institutions from North America, Europe, West Asia,
North Africa, and Australia participated in the study (Fig. 1a). Waiver of
consent was granted by the IRB for the following reasons: (1) As a ret-
rospective study, the research involves nomore thanminimal risk to the
participants as the materials involved (data, documents, records) have
already been collected and precautions will be taken to ensure con-
fidentiality, (2) the waiver will not adversely affect the rights and welfare
of the participants as there are procedures in place that protect con-
fidentiality, and (3) the information learned during the study will not
affect the treatment or clinical outcome of the participants.

The inclusion criteria were: patients who presented with a new,
treatment-naive PF tumor; had pathologic confirmation for any of the
following benign or malignant tumors: medulloblastoma (MB); epen-
dymoma (EP); pilocytic astrocytoma (PA); and in the case of diffuse
intrinsic pontine glioma (DIPG), MRI and/or biopsy-based diagnosis;
obtained pre-treatment brain MRI that included axial T2-weighted
imaging (T2-MRI). Subjects were excluded if the imaging was non-
diagnostic due to severemotion degradation or other artifacts. Table 1
summarizes cohort demographics and site-specific tumor pathology.

Tumor segmentation was performed on axial T2-MRI by an expert
board-certified, pediatric neuroradiologist (KY, >15 years’ experience),
followed by a consensus agreement among three pediatric neuror-
adiologists (AJ, JW, MK) and two pediatric neurosurgeons (SC, RL).
Segmentation was performed over the whole tumor, inclusive of cys-
tic, hemorrhagic, or necrotic components within the tumor niche. T2-
MRI was selected as it is most frequently acquired on routine MRI
protocols; is embedded within pre-surgical navigation; and most reli-
ably identifies the tumor margins regardless of enhancement, hence,
recommended for pediatric glioma assessment29.

MRI acquisition
MRI of the brain was obtained using either 1.5 or 3 T MRI systems. The
following vendors were employed across sites: GE Healthcare, Wau-
kesha, WI; Siemens Healthineers, Erlangen, Germany; Philips Health-
care, Andover, MA; and Toshiba Canon Medical Systems USA Inc.,
Tustin, CA. The T2-weighted MRI (T2-MRI) sequence parameters
were: T2 TSE clear/sense, T2 FSE, T2 propeller, T2 blade, T2 drive sense
(TR/TE 2475.6-9622.24/80-146.048); slice thickness 1–5mmwith 0.5 or
1mm skip; matrix ranges of 224–1024 × 256–1024.

Fig. 6 | Visualization of heterogeneity. Differences in T2-MRI pixel variance, especially for DIPG and Pilocytic, possibly reflecting larger variances in solid, hemorrhagic,
necrotic, or cystic components. Significant variation in tumor volumes across sites were found. Source data are provided as a Source Data file.
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Study design
Dataset distribution. Of the 19 sites, 16 sites were selected to partici-
pate in the model training and validation; the remaining three sites
served as independent, external hold-out sites. A dataset from a data-
base of normal pediatric brainMRI (N = 1667 from ST site) was used for
pretraining. Within each of the 16 sites that participated in model
training and validation, 75% of theMRI datawas used in the training set;
the remaining 25% was used as hold-out validation sets. Sample col-
lection on sex and/or gender were not considered for sample selection.

Statistics and reproducibility. No statistical method was used to
predetermine sample sizes of the training, validation, and external,
independent validation sites. All data collected from the 19 sites were
used. The training runs showed minor variations in convergence for
different random seeds.

Data preprocessing. Each site must possess the small but important
knowledge to manage consistent data preprocessing, a task that, under
CDS, would typically be centralized by a trusted party. To streamline
preprocessing, we have minimized any complex preprocessing steps
(e.g., brain registration to a common atlas or skull-stripping). Pre-
processing only includes: (1) normalization of each 3D image to a simple
0–255 intensity range and (2) volume extraction of 64 congruent axial
slices of 256 × 256. These preprocessing steps are executed via an
automated script applied to the DICOM data across all 19 sites. The
number of 64 slices was chosen such that it can handle virtually all of
the variations of the individual sites’ T2 sequence parameters (e.g., TSE,
FSE, Propeller, etc.) with a large range of slice thicknesses (e.g.,1–5mm)
based on site-specific scanner technology and protocols. Therefore, our
FL system can accommodate a large range of sequence parameters and
axial slices. While normal pediatric MRI data of the pediatric brain were
not required in the FL experiments, we observed that it could help
retrain the model to identify the geometry and spatial locations of the
pediatric brain across all ages, i.e., infants to adult head sizes of teen-
agers. The normal dataset (N = 1667) was shared and distributed
amongst the participating sites for both CDS and FL approaches.
However, the normal cohort was not used in the validation or the hold-
out test sets.

Federated model development and evaluation. We developed a 3D
model that jointly performs tumor pathology prediction (MB, EP, PA,
DIPG, normal) and segmentation masks using FL (Fig. 1b). In the CDS
approach, we combined the datasets fromall 16 sites into a single pool,
on which we trained the model. We also examined a Siloed model
trained using the training and validation data from a single site only
(Site ST, which hosted the largest single institution dataset), whichwas
then evaluated on the 16 hold-out validation sets and 3 external
independent sites. In contrast, the FL strategy used amethod known as
Federated Averaging15. Within this framework, the 16 sites did not
share data. Instead, they only share information via model parameters
learned on each site-specific data.

Each FL round began with local model training at the individual
sites, after which each site transmitted the learned weights back to a
central server. Here, the model weights from each of the 16 sites were
averaged, creating a unified, global set of weights. These weights
were then distributed back to each site to initiate the next FL round,
where local training resumed. This iterative process, alternating
between local training and centralized averaging, continued through
many FL rounds. Eventually, the finalized global model underwent
evaluation across the 16 validation sets and three hold-out test sets, its
performance reflecting the collaborative—yet segregated—approach
that characterizes the FL paradigm.

Wemodified the conventional FL strategy by creating a “warm-up”
phase for the initial model, called Federated Warm-up, which enabled
an efficient FL training to hasten convergence, given the large disparity

in data distributions that underlie the 16 participating centers. The FL
training consists of two stages enabling efficient learning: an initial 50
rounds of Federated Averaging on the ST and SE sites followed by 150
additional rounds of Federated Averaging across all 16 sites. A con-
vergence plot that illustrates this Federated Averaging “warm-up” is
shown in Fig. 5.

We employed a 3D-UNet architecture, incorporating a Kinetics-
pretrained encoder that was initially trained on large-scale video
data30. The 3D architecture allowed for processing 64 slices of high-
resolution planes per datum, necessitating substantial GPUmemory to
manage large batch sizes. For the CDS training, 200 epochs were
conducted with a combined loss function of Cross-Entropy and Dice
Score Loss, utilizing AdamOptimizationwith a learning rate of 0.0001.
This combined loss function facilitated the learning of both classifi-
cation and segmentation predictions.

For classification performance, we calculated model raw accura-
cies and F1 scores. For segmentation, we utilized the samemodel as in
the classification task to calculate the DSCs. The DSC determines the
overlap between the predicted and ground-truth segmentations and
thus offers insights into the quality of segmentation. We also con-
ducted a two-sided t-test on the DSCs and compared the performance
between CDS and FL. The distribution of predictions is approximately
normally distributed due to the large test sample sizes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MRI data in this study have been deposited in the Stanford
Research Database at https://doi.org/10.25740/bf070wx6289. The
dataset used to develop the model consisting of approximately 1200
patients with pediatric brain tumors is included and organized by site.
The remaining patients used as the test sets will be included in the near
future as we have plans to organize federated learning challenges. The
test set data, along with pediatric brain normal, can be requested by
the reader by emailing the authors. Furthermore, clinical factors and
notes, including sex and age for eachdata sample, will alsobeprovided
in the near future. Please see the project link for any future
updates. Source data are provided with this paper.

Code availability
We share the FL codebase related to our pediatric brain tumor
machine-learning algorithm as part of this journal submission to foster
future validation and research in this domain, as well as for other
tumor types. The project link is https://github.com/edhlee/FL-
PedBrain, which contains a video and interactive web-based demo.
This link also contains data and any updates.
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