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Deep intravital brain tumor imaging enabled
by tailored three-photon microscopy and
analysis
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Intravital 2P-microscopy enables the longitudinal study of brain tumor biology
in superficial mouse cortex layers. Intravital microscopy of the white matter,
an important route of glioblastoma invasion and recurrence, has not been
feasible, due to low signal-to-noise ratios and insufficient spatiotemporal
resolution. Here,wepresent an intravitalmicroscopy and artificial intelligence-
based analysis workflow (Deep3P) that enables longitudinal deep imaging of
glioblastoma up to a depth of 1.2mm.We find that perivascular invasion is the
preferred invasion route into the corpus callosum and uncover two vascular
mechanisms of glioblastoma migration in the white matter. Furthermore, we
observe morphological changes after white matter infiltration, a potential
basis of an imaging biomarker during early glioblastoma colonization. Taken
together, Deep3P allows for a non-invasive intravital investigation of brain
tumor biology and its tumor microenvironment at subcortical depths
explored, opening up opportunities for studying the neuroscience of brain
tumors and other model systems.

Glioblastomas (GB) are the most common malignant, primary brain
tumors characterizedby their infiltrative growth and colonizationof the
entire normal brain1,2. Furthermore, these tumors are cellularly and
molecularly heterogeneous3–6 with a notorious therapeutic resistance
towards standard-of-care treatment with radio- and chemotherapy as
well as surgical resection7. It has long been known that GB are pre-
dominantly a disease of the white matter8. GB frequently occur in the
white matter and can invade into the contralateral hemisphere along
the corpus callosum9. Furthermore, a majority of glioblastoma recur-
rence is detected within the white matter9. Recently, a large autopsy

series further highlighted the importance of white matter tracts as an
invasion route to invade and colonize the brainstem1. However, intra-
vital studies of glioblastoma in thewhitematter have so far been lacking
as technologies for deep, microscopic intravital and longitudinal mon-
itoring were missing. So far, experimental results were entirely restric-
ted to ex vivo analyzes10–12. This highlights the need and importance of
studying this highly dynamic disease in vivo in themicroenvironmental
niche of the whitematter. Such an approach would allow dissecting the
underlying principles of glioblastoma biology including the yet elusive
mechanisms of invasion in and into the corpus callosum.
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Intravital imaging of brain tumors including gliomas as well as
brain metastases has so far been restricted to superficial cortex layers,
dictated by two-photon microscopy (2PM) which is fundamentally
limited to an effective penetration of ~300-700 μm due to scattering
and out-of-focus fluorescence background3,6,13–17. Deep in vivo brain
imaging with 2PM in the mouse brain is currently only possible using
highly invasive methods such as gradient index lens implantation or
cortical aspiration. These methods have not yet been used to investi-
gate intravital brain tumor biology because of the associated
invasiveness.

In this respect, three-photon microscopy (3PM) has shown
potential for deeper imaging beyond 1mm in the brain due to an
increased signal-to-background ratio and longerwavelength excitation
which reduces tissue scattering18,19. So far, 3PM has been used to
investigate the staticmorphologyof brain vasculature andneurons18,20,
and to perform calcium imaging of neurons21 and astrocytes22. Yet,
their application to investigate spatiotemporally dynamic brain tumor
biology poses additional technical challenges. In particular, tumor
masses are opaque and dense structures, leading to a significant
scattering of light23. Furthermore, the fluorescent membrane labeling
of tumor cells required to visualize fine processes3 leads to intrinsically
low fluorescence signals. This is exacerbated by the relatively high
density of the labeled cells within a given imaging volume, which
makes distinguishing and tracking of individual tumor cells and their
fine cellular processes difficult. With this comes the requirement of
long-term stability of the microscopy system retaining high spatial
resolution during extended volumetric time-lapse imaging and the
ability to track the same image regions over days and weeks, all while
retaining high spatial resolution. Lastly, photodamage- and toxicity
need to be prevented by diligent optimization of laser power while
keeping a reasonable signal-to-noise ratio (SNR), and an efficient
screening system needs to be established that allows to identify both
appropriate tumor regions and the white matter niche within a mini-
mal time, in order to utilize imaging time and laser power diligently.

As outlined above, a predominant challenge in deep tissue ima-
ging, including 3PM, is the low SNR of the raw image data. Here,
computational methods using deep learning-based image
restoration24,25 have the potential to substantially increase the low SNR
of images typically acquired in deep tissue conditions. While now
increasingly applied to images obtained with confocal, light-sheet, or
two-photon microscopy setups3,25, these methods have not yet been
adapted and customized to the peculiar detector noise and back-
ground sources typically encountered in 3PM. Another opportunity of
3PM lies in the label-free imaging of blood vessels and myelinated
axonal tracts in the brain using the third-harmonic generation signal.
As these are both important structures of the tumor and brain
microenvironment, it would be desirable to unequivocally demix and
classify the THG signal into both anatomically distinct structures.

To overcome all of the above-mentioned fundamental technical
limitations, we further adapted and advanced state-of-the-art 3PM and
image analysismethods to enable the study of glioblastoma biology in
the deep gray and white matter. In particular, we developed a mini-
mally invasive intravital imaging and analysis workflow for modified
patient-derived glioblastoma xenograftmodels stably transducedwith
a membrane-bound green fluorescent protein. Using bespoke 3PM,
adaptive optics, and AI-enhanced post-processing and analysis tools,
we demonstrate the capability to investigate glioblastoma biology and
its tumor microenvironment in the deep white and gray matter of the
living mouse, up to a depth of 1.2mm and at near diffraction-limited
spatial resolution. Deep3P time-lapse imaging allowed us to uncover
distinct behavioral differences of glioblastoma in white matter tracts
as compared to the gray matter of the cortex. Furthermore, we were
able to trackmyelinated axonalfibersoverweeks and characterize how
they change in the course of early white matter glioblastoma coloni-
zation. In particular, Deep3P allowed us to compare invasion patterns

in the whole cortex and subcortical white matter, which revealed an
enrichment of a vascular invasion route from the cortex into the cor-
pus callosum as compared to intracortical invasion. Within the corpus
callosum, we found that glioblastoma cells and their neurite-like pro-
cesses predominantly align with white matter tracts and follow the
anatomical structure of myelinated axons. Surprisingly, we uncovered
two additional vascular invasion mechanisms within the corpus callo-
sum allowing invasion orthogonal to the fiber tracts similar to patterns
from oligodendrocyte and astrocytic precursor cells during
neurodevelopment26,27. Lastly, the third harmonic generation (THG)
signal of our Deep3P methodology permitted to dynamically investi-
gate white matter disruptions during glioma infiltration of the corpus
callosum. Here, morphometric characterization of the THG signal
indicated a potential imaging biomarker of white matter disruption
during earlyglioblastomacolonization that extends the applicability of
our workflow to investigate axonal degeneration in other tumor and
disease models.

In this work, we introduce Deep3P, a specialized intravital
microscopy and artificial intelligence-based methodology that facil-
itates routine deep imaging of glioblastoma over extended periods.
This approach combines three-photon microscopy and adaptive
optics with deep learning-based denoising and machine-learning seg-
mentation, to allow detailed investigation of tumor biology up to
1.2mm depth. Through Deep3P, we reveal the predominance of peri-
vascular routes for glioblastoma invasion into the corpus callosumand
identify two distinct vascular mechanisms of tumor migration within
the white matter, enhancing our understanding of glioblastoma inva-
sion and potential diagnostic markers. Overall, Deep3P enables an
efficient and non-invasive exploration of brain tumor biology and its
microenvironment within the deep white and gray matter of a living
mouse, presenting further possibilities for advancing the neuroscience
of brain tumors and other related model systems.

Results
Infiltration of the corpus callosum as a hallmark of glioma
Previous research has suggested that infiltration into the white matter
tracts may be an important route for glioblastoma to invade the con-
tralateral cortex12,28. However, it was not clear how prevalent the infil-
tration of the corpus callosum is in a human patient glioma cohort.

To address this question, we analyzed a large brain tumor patient
autopsy cohort (n = 50 patients) and found that 84% of all glioma
patients showed at least microscopic infiltration into the corpus cal-
losum irrespective of the location of their primary clinical manifesta-
tion (Fig. 1a, Supplementary Fig. 1a–e, Supplementary Data 1). Further
analysis showed that 82% of patients with isocitrate dehydrogenase
(IDH)-wild-type (n = 42 patients) and 100% of patients with an IDH-
mutant glioma showed corpus callosum infiltration. In addition, we
studied 20 patient-derived xenograft as well as patient-derived orga-
noid xenograft glioma models and found that all of the analyzed
models demonstrated amicroscopically visible, infiltrative behavior of
the corpus callosum after 40–60 days of implantation, regardless of
whether the tumor was implanted into the cortex or striatum (Fig. 1a,
Supplementary Fig. 1f, Supplementary Data 2). These findings indicate
that white matter infiltration of the corpus callosum is a hallmark of
glioblastoma growth, highlighting the need for intravital imaging of
glioblastoma invasion and colonization inside the distinct micro-
environment of the corpus callosum (Supplementary Fig. 1g), which is
yet unattainable with current light microscopy technologies.

Deep3P as a workflow to investigate deep brain tumor biology
To investigate glioblastomabiology in the cortex and subcorticalwhite
matter tracts, we used state-of-the-art patient-derived xenograft
models that accurately reflect glioblastoma molecular characteristics
as analyzed with methylation array analyzes and the histological
growth patterns of glioma patients (Supplementary Fig. 1f,
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Supplementary Data 2). To visualize the fine processes of glioblastoma
cells (GBMCs) in vivo, we stably transduced them with lentivirally
packaged membrane-bound GFP (mGFP) and injected them into the
cortex of adult mice at a depth of approximately 500 µm (Fig. 1b). We
used two-photon microscopy (2PM) to longitudinally screen the
injected cells up to a depth of 600-700 µm in large diagonal field of
viewsof up to4.3mm, taking advantage of thehigher imaging speedof
2PM for mapping dynamic glioblastoma growth and its tumor micro-
environment in superficial layers to select appropriate regions for
deep imaging (Fig. 1b).

We then used our Deep3P methodology (Fig. 1b) to study the
previously identified glioblastoma infiltration zone and investigate
glioblastoma invasion, proliferation and colonization in the corpus

callosum up to a depth of 1200 µm, which is far outside the reach of
2PM (Fig. 2a). In particular, 3 PM results in significantly enhanced
signal-to-noise (SNR) ratios at all imaging depths (Fig. 2b). Deep3P
leverages recent technological advances in 3PM and the addition of
modal-based, indirect adaptive optics22 to optimize fluorescence sig-
nal and ensure near diffraction-limited performance at large imaging
depths. The system is based on a custom-built 3P laser scanning
microscope that was specifically optimized for 1,300nm excitation
and the use of short-pulsed (~70 fs), low repetition-rate (<1MHz) lasers
that are critical to obtain large imagingdepths20,22. To improve the 3PM
signal and imaging resolution, we employ a custom, modal-based
indirect adaptive optics (AO) approach to correct for wavefront
aberrations occurring due to the refractive index (RI) differences
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tumor imaging. a Left: Autopsy brain slice of a patient with IDH-WT glioblastoma.
The corpus callosum (CC) is labeled with a dashed line. Arrowhead indicates main
tumormass; arrow indicates tumor infiltration in theCCas seen in the inset.Middle:
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and injected intomice brain. Upper right: Combination of 2PM and 3PM to identify
target regions for deep brain imaging. Bottom: Deep brain imaging in the CC and
subsequent deep and machine learning based post-processing to allow simulta-
neous myelin, vessel and tumor analysis. Created with BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en).
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were adjusted for 3D visualization. b SNR of 2PM and 3PM along depths, normal-
ized to the SNR at the brain surface. The dashed red line in (a, b) indicates the
imaging depth at which biological structures cannot be clearly discerned anymore
in 2PM in contrast to 3PM (approximately 450 µm). c Scheme of 3PM and adaptive
optics setup. Modified from Fig. 1a in Ref. 22. d Exemplary GBMC imaged without
(top left) and with (bottom left) AOoptimization and the corresponding images on
the THG channel (top and bottom right). The line indicates the line segment
averaged over to produce the line profiles in (e), (n = 6 experiments with similar
results) showing the effect of uncorrected optical aberration on the visibility of fine

cellular structures. The inset on each panel shows the frequency domain power
spectrum of the image, with the ring indicating 1 µm length scale. e Line profile
comparisons for both mGFP and THG channels showing intensity enhancement.
f The averaged radial profile of the frequency maps is shown, allowing easier esti-
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is caused by themembrane-boundGFP labeling (middle), and a blood vessel (right)
on AO on and off images. TMs, the cell nucleus, and the blood vessel are not clearly
visible without AO (n = 6 experiments with similar results). Source data are pro-
vided as a Source Data file.
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between the water-immersion, cranial window and brain, as well as
brain tissue intrinsic RI inhomogeneities22. To successfully apply this
approach to the requirements of intravital and longitudinal monitor-
ing of cellular dynamics and white matter structural changes, the fol-
lowing challenges had to be met: (1) The entire imaging system and
workflow were optimized for non-invasiveness, so that deep-brain
time-lapse imaging over multiple hours did not induce photo-damage
in termsof bleaching and/or toxicity. This also included adaptations to
the cranial window surgery, mounting to minimize light loss due to
reflections and absorption, as well as the establishment of an opti-
mized imaging workflow (see Methods, Supplementary Methods and
Supplementary Note 1). (2) The fast AO correction measurement
speed, as well as robustness of the modal-based indirect AO
approach22, was paramount to enable time-lapse volumetric record-
ings with little time overhead, while minimizing the overall light-
exposure (Fig. 2c). Here, AO led to an average improvement in the
effective resolution of 1.9 ± 0.2-fold (n = 5 image volumes, see Meth-
ods) and a 3-5-fold enhancement of fluorescence signals, as evidenced
by intensity line plots and spectral power map analysis of lateral
resolution (Fig. 2d–f). As a result, fine biological structures such as
neurite-like processes of glioblastoma cells called tumor microtubes
(TMs), blood vessels and cell nuclei can be resolved (Fig. 2g).

AI-based image denoising and analysis of Deep3P data
To further improve the signal-to-noise ratio of the raw images during
time-lapse imaging of brain tumor cells while keeping 3PM excitation
power minimal, we implemented a customized deep learning-based
denoising workflow that can also account for the peculiar, structured
noise often encountered in 3PM images (Fig. 3a–c, Supplementary
Fig. 2a–d).

In particular, we developed a custom 3Dvariant of the Noise2Void
approach24 for the denoising of 3PM data, which utilizes a 3D U-Net
architecture (Supplementary Fig. 2a). Ourmethod, referred to as 3PM-
Noise2Void, effectively improves the image quality by taking into
account the 3D nature of the data. This workflow increased the SNR by
an additional ~10-15 dB across all imaging depths (Fig. 3a, b, Supple-
mentary Movie 1). Furthermore, to counteract periodic structured
noise patterns that cannot be addressed by Noise2Void, we imple-
mented an additional post-processing technique, called PerStruc-
Denoiser, to further reduce this structured noise effect by ~3 dB
(Fig. 3c, Supplementary Fig. 2). Lastly, we implemented a machine
learning-based segmentation using the denoised data as a prediction
mask for further biological analysis (Fig. 3d). Furthermore, we high-
light that denoisingon3PM imageswithoutAO resulted inqualitatively
and quantitatively worse image quality compared to 3PM images with
AO correction (Supplementary Fig. 3a–d). The effective increase in
image SNR due to our bespoke AO and AI-based denoising is key for
our Deep3P workflow. It allowed to keep excitation power and hence
photodamage low during the extended, up to 4 h long, time-lapse
image acquisitions. In effect, this maintained and ensured the non-
invasiveness of our imaging approach. Overall, the improvements in
resolution and SNR of Deep3P across all imaging depths were critical
to resolve the fine, neurite-like, cellular protrusions of the glio-
blastoma cells (Fig. 3e, Supplementary Fig. 4a–c) and toqualitatively as
well as quantitatively distinguish between different cellular migration
and invasion patterns in vivo.

Our Deep3P imaging systempermits acquisition of two separate
channels, which were used for mGFP to visualize tumor cells, and to
record the THG signal. The latter yields label-free image contrast
that visualizes both myelinated white matter tracts in densely and
sparsely myelinated regions (Fig. 4, Supplementary Fig. 5a–c), as
well as blood vessels in the brain29,30. To further confirm that the
THG signal captures myelin, we performed correlation analyzes
between myelin fibers labeled via MBP and THG signal in regions
differing in myelin fiber density (Supplementary Fig. 5c). Since white

matter tracts and blood vessels constitute important tumor micro-
environmental niches8,28, we aimed at unambiguously differentiating
the THG signal.

To this end, we trained a customized, interactive machine-
learning algorithm based on ilastik31 (see Methods) to distinguish
between the background, blood vessels, and myelinated axonal tracts
(Fig. 4). This enabled us to investigate the bidirectional relationship
between brain tumor cells and the blood vessel and white matter
microenvironmental compartments (Fig. 4a–d, Supplementary
Movie 1–3). We validated our AI-classifier by intravenous injection of
FITC-dextran as ground truth signal for blood vessels (see Fig. 4e–g,
Supplementary Fig. 5d andMethods). This workflow allowed to clearly
distinguish between blood vessels and myelinated axonal tracts both
in 2D (Fig. 4c) and 3D rendering (Fig. 4d).

We further corroborated that the THG signal carries distinct
information in its pixel distribution of blood vessels and myelinated
white matter tracts using a dimensionality reduction analysis using
uniform manifold approximation and projection (UMAP) (Fig. 4h, see
Methods). Comparing our customized machine-learning workflow to
the standard machine learning pipeline, we could observe that the
amount of pixels classifiedwith high uncertainty significantly decreased
(Fig. 4b). Lastly, we validated the classifier with human annotation
(Supplementary Fig. 5a). Taken together, this workflow enables us to
analyze both tumor cells and their microenvironment of blood vessels
and myelinated axonal tracts at the same time using a single fluores-
cence detection channel (Fig. 4f, Supplementary Fig. 5c). The near
diffraction-limited resolution of Deep3P allows to clearly identify TMs
and the even finer class of neurite-like structures called small processes3

in the corpus callosum (Fig. 4i, Supplementary Fig. 4c).

Dynamic deep brain investigation of glioblastoma invasion
Our Deep3P imaging workflow and analysis revealed a number of
distinct glioblastoma invasion and colonization patterns within the
deep cortex and white matter as well as microenvironmental changes
in the white matter in vivo that were enabled by the near diffraction-
limited resolution and deep imaging depth.

In the corpus callosum, a majority of glioblastoma cells were
aligned with myelinated axonal tracts, both with respect to their cell
somata and their TMs (Fig. 5a–d) indicating distinct morphological
adaptations of glioblastoma cells in the cortex and corpus callosum,
depending on the tumor microenvironment. These adaptions are
similar to those byphysiologically resident cells in the corpus callosum
(Supplementary Fig. 5e–g). Statistical comparisons of glioblastoma cell
and TM directionality analyzes revealed a significant correlation of
tumor cell directionality with its microenvironment (Fig. 5d). Cell
polarity in the cortex showed no clearly structured direction, while in
the corpus callosummore than 60 percent of cells grew parallel to the
myelin fibers in an angle smaller than 30° (Fig. 5d), without a correla-
tion between myelin and vessel orientation (Supplementary Fig. 5h–j,
Supplementary Fig. 6a–e). Interestingly, a subpopulation of glio-
blastoma cells was found to be not aligned with the corpus callosum
fibers (Fig. 5a–d). Next, we used Deep3P and its stable time-lapse deep
brain imaging ability to analyze how glioblastoma cells could invade
from the deep cortex into the distinct microenvironment and white
matter-rich structure of the corpus callosum (Supplementary Fig. 1a).
We found that there is a significant enrichmentofperivascular invasion
of glioblastoma cells to enter the corpus callosum as compared to
perivascular invasion prevalent within the cortex (Fig. 5e, f). An aver-
age of 60 percent of glioblastoma cells use vessels as a track to enter
the corpus callosumwhile less than 40 percent of glioblastoma cells in
the cortex show a perivascular migration pattern, despite the lower
vascular density in the corpus callosum (Supplementary Fig. 7a, b).
This illustrates how tumorcells are able to adapt their invasion strategy
making use of blood vessels to invade the white matter. Furthermore,
Deep3P revealed two vascularmechanismswithin the corpus callosum
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that allowed an invasion that is orthogonal to the myelinated axonal
tract direction. First, we discern that glioblastoma cells could extend
their TMs to attach to vessels, revealed by the high spatial resolution
afforded by the use of our AO (Fig. 5g–i). Using this fixed point, glio-
blastoma cell somata can then translocate their soma towards the
vessel as an invasion mechanism. Furthermore, we could even more
often observe perivascular invasion as an alternative vascular route
(Fig. 5g–i). Most vessels to which tumor cells attached to had vessel
diameters typical of capillaries32 (Fig. 5j). We confirmed the structural
relationship between TMs, glioblastoma cell somata, and vessels with
three-dimensional electron microscopy reconstructions in a patient-

derived xenograft model, validating the ability of Deep3P to uncover
biology deep in the brain at high resolution (Supplementary Fig. 7c). In
the patient-derived glioblastoma xenograft models used in this study
to investigate the early stages of brain tumor colonization, no blood-
brain barrier disruption was observed (Supplementary Fig. 7d, e) and
blood vessel architecture stayed stable over weeks as evidenced by
intravital imaging (Supplementary Fig. 7f–h).

Interestingly, these invasionpatterns resemblemigrationpatterns
of oligodendrocytic and astrocytic precursor cells during
neurodevelopment26,27. This shows that not only cell-intrinsic
mechanisms of neural precursor cells are hijacked by glioblastoma

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Spatial Frequency 1 / pixel

N
or

m
al

iz
ed

 s
pe

ct
ra

l p
ow

er
3PM-Noise2Void

3PM-Noise2Void  + PerStruc-Denoiser

b Raw Denoised

10 μm10 μm

DenoisedRaw

TH
G

m
G

FP

10 μm

THG mGFP

raw denoised raw denoised

20

30

40

50

SN
R

 [d
B]

THG mGFP

d e
Raw

Raw

Denoised PM on raw

PM on raw

PM on denoised

PM on denoisedDenoised

c

0 0  

100 

100 

0 

100 

0 

0

100 

100 

0
100 X [μm]

Y [μm]

100 

0 

160

80

80160240320

Y [μm]

X [μm]

0 

160

80

80160240320

Y [μm]

X [μm]

0 

160

80

80160240320

Y [μm]

X [μm]
0 

160

80

80160240320

Y [μm]

X [μm]

z 
= 

84
0-

94
0 

μm

-900

-600

-300

0

30 35 40 45 50
SNR [db]

D
ep

th
 [μ

m
]

Denoised

Raw

276 μm 

410 μm 

532 μm 

788 μm 

980 μm 

10 μm

10 μm

10 μm

10 μm

10 μm

3PM-N2V

SNR = 37 dB SNR = 40 dB 20 μm

Main components of the
periodic structured noise

z = 850 μm

z = 870 μm z = 920 μm

10 μm

20 μm

z = 870 μm

DenoisedRaw

z = 960 μm

z = 940 μm

3PM-N2V + PerStruc-Denoiser

p < 2.22e-16p < 2.22e-16

0

200

400

600

800

1000

Z [μm]

a

Article https://doi.org/10.1038/s41467-024-51432-4

Nature Communications |         (2024) 15:7383 6



cells for invasion but also that theirmicroenvironmental dependencies
are phenocopied.

Subcellular dynamic behavior of TMs including branching, pro-
trusion, and retraction, previously only described in the superficial
cortex3, were observed in both deep gray and white matter (Fig. 6a, b,
Supplementary Fig. 8a). Interestingly, branching of TMs was reduced
within the corpus callosum, potentially indicative of a more directed
movement pattern of TMs along white matter tracts as compared to a
scanning behavior of TMs prevalent in the superficial layers of the
cortex3. Furthermore, three distinct invasion patterns of locomotion,
branching migration and translocation could be detected within the
corpus callosum, thanks to the superior spatial resolution and depth
penetration of Deep3P (Fig. 6c, d, Supplementary Movie 4). These
migration mechanisms reflect conserved neuronal mechanisms of
invasion that can be seen during neuronal development3,33. Interest-
ingly, this is congruent with previous observations in the superficial
layers of the cortex3. However, in contrast to invasionwithin the cortex
branchingmigration within the whitematter is significantly reduced in
line with reduced branching behavior of the TMs (Fig. 6d–f). Between
PDX models, the invasive patterns were similar (Supplementary
Fig. 8b-e) on a cellular and subcellular level. It will be important to
characterize the distinct molecular mechanisms of these three inva-
sion phenotypes in their microenvironmental niches of the gray and
white matter which is now possible via Deep3P. While these mechan-
isms are phenotypically distinct, their invasion speed did not sig-
nificantly differ (Fig. 6e).

Glioblastoma network formation and tumor cell proliferation in
the white matter
In addition to gap junction-coupled tumor-tumor networks that were
so far exclusively described in the gray matter3,6,15,34–36, we could also
observe how tumor-tumor networks in the white matter are formed
(Fig. 7a–c, Supplementary Fig. 9a, SupplementaryMovie 5). In contrast
to tumor-tumor networks in the gray matter, these tumor-tumor net-
works are to amajority aligned with the white matter fiber direction of
the corpus callosum as compared to the cortex (Fig. 7b, c). This illus-
trates how tumor network formation respects the anatomical bound-
aries and integrates into the peculiar microenvironment of the corpus
callosum (Fig. 7a–c). In addition to investigating invasion and tumor
network formation, Deep3P could also be used to characterize the
specialized patterns of glioblastoma cell division qualitatively and
quantitatively within the deep, nativemicroenvironment of the corpus
callosum (Fig. 7d, Supplementary Fig 9b, Supplementary Movie 6).

White matter disruptions during early glioblastoma
colonization
Lastly, we investigated the role of glioblastoma invasion and early
colonization in the corpus callosum on myelinated fiber tracts. Evalu-
ating white matter integrity during glioma infiltration with clinical
imaging such as magnetic resonance imaging (MRI) would be a useful
bioimaging marker for estimating whole-brain colonization of glioma.

It has been proposed that diffusion tensor imaging (DTI) enables
imaging of early tumor infiltration into the corpus callosum37. How-
ever, a comparison to the ground truth of tumor invasion and an exact
characterization of tumor density was not possible in these studies.
Here, we first examined a patient cohort of eight IDH-wildtype glio-
blastoma patients that showed macroscopic affection of the corpus
callosum on clinical MRI. We quantified the apparent diffusion coeffi-
cient (ADC) of the affected ipsi- and non-affected contralateral corpus
callosum. Here, we could not detect any significant differences in the
ADC values in the different parts of the corpus callosum (Fig. 8a, b,
Supplementary Fig. 10a). This suggests that standard clinical diffusion
imaging at 3 Tesla is not able to reveal the early glioblastoma white
matter colonization. To investigate this phenomenon during early
glioblastoma invasion and colonization, we longitudinally performed
MRI scans of tumor-infiltratedmouse brains (Fig. 8c) and analyzed the
fractional anisotropy of different regions in the corpus callosum. We
started with a semi-automatic segmentation of the corpus callosum
using tractography (Fig. 8d). Over weeks after tumor infiltration, no
changes in fractional anisotropy, mean diffusivity and axial diffusivity
were observed (Fig. 8e). Further, no differences in these measures
between ipsi- and contralateral corpus callosum were detected at any
time point up to 73 days after tumor injection.

We were able to quantify changes in the white matter tracts that
were disrupted by glioblastoma cell invasion in the early stages of
glioblastoma colonization using our customized machine learning
approach of white matter classification (Fig. 8). We found that the
shape of THG discontinuities could potentially serve as an imaging
biomarker of early glioblastoma cell invasion into white matter tracts
with potential clinical-translational implications. While tumor glio-
blastoma cell-infiltrated holes in the white matter showed a sig-
nificantly increased roundness, the holes caused by resident cells of
the tumor microenvironment were more oval-shaped in the corpus
callosum (Fig. 8f, g), with similar overall ranges of circularities (Sup-
plementary Fig. 10b). However, the white matter tract directionality
did not change significantly in the early stages of glioblastoma colo-
nization (Fig. 8h, i), potentially also explaining difficulties of modern
clinical imaging to delineate white matter glioma infiltration38. Addi-
tionally, we observed that TMs, the fine neurite-like protrusions, dis-
placedwhitematter tracts significantly less than their glioblastomacell
soma (Fig. 8j, k). This might indicate that the TMs are used to scan and
invade themicroenvironment without causingmajor disruptions of its
myelinated microenvironment. Taken together, these observations
could serve as ground truth for further development of microscopy
approaches and high-resolution clinical imaging to detect early glio-
blastoma invasion.

Discussion
In summary, we developed a tailored intravital imaging workflow that
uses 2PM and 3PM together with AO that enabled longitudinal, deep
brain tumor imaging up to a depth of 1.2mm in the livingmouse brain.
Thismethodology opens up avenues to study the cancer neuroscience

Fig. 3 | Denoising of AO-3PM and subsequent machine learning allows brain
tumor imaging across the entire cortex and corpus callosum. a Top left: 3D
rendering of a stack going from the surface down to the CC. Red: blood vessels,
blue: CC, green: GBMCs. Based on probability maps. Top right: Comparison of raw
(left) and denoised (right) images within the CC (dashed lines on the left indicate
imaging depth). Arrowheads in themGFP image point to a GBMC soma that can be
barely seen without denoising. Arrowheads in the THG signal point to fibrous
structures that can be clearly identified after denoising. Bottom: signal-to-noise
ratio (SNR) comparison of raw and denoised in THG and mGFP signal (two-sided
Mann-Whitney test, n = 114 slices for each mGFP and THG signal, shown as median
+/- quartile, whiskers: min/max within 1.5 IQR). b Left: Exemplary raw and denoised
images of GBMCsatdifferent depths. Right: SNR in raw anddenoised images across
entire image stack. (n = 6 experiments with similar results) c Comparison of the

denoised 3PM-N2V image (left) and its version with additional application of the
PerStruc-Denoiser (middle) showing the qualitative improvement corresponding
to a 3 dB increase in SNR allowing a clearer identification of TMs (arrowhead).
Arrows point to structured noise. Right: Averaged line power spectrum of the
images depicting the PerStruc-Denoiser’s suppression of the main components of
the periodic structured noise (see arrows pointing to its main components). d 3D
renderings based on raw images, denoised images, probability maps based on raw
images and probability maps based on denoised images. e Close-up 3D renderings
of singleGBMCsbasedonprobabilitymaps. The arrowheads on the zoom-ins point
at small processes (top images and bottom left image) and a TM branching point
(bottom right image). Gamma values were adjusted for 3D visualization in (a, d, e).
Source data are provided as a Source Data file.
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Fig. 4 | Machine learning-based multicolor imaging of glioblastoma, blood
vessels andwhitematter tracts. a Scheme for customizedmachine learningbased
classification of THG signal into myelin and vessel signal. b Distribution of uncer-
tainty level with machine learning compared with customized machine learning
(left) and statistical comparison of uncertainty levels (n = 239568 THG pixels, two-
sided Mann–Whitney test, shown as median +/- quartile, whiskers: min/max within
1.5 IQR). c Exemplary image of THG signal without (top) and with (bottom) pre-
dicted labels of blood vessels andmyelin fibers. Arrowheads indicate blood vessels;
arrow indicates myelin fibers (n = 3 experiments with similar results). d 3D ren-
dering within the CC, illustrating the results of the machine learning-based classi-
fication. Arrowhead indicates vessels, arrow indicates myelin fibers. e Validation of
ML-classification for blood vessels with FITC as fluorescent dye colored in green.
The arrowheads point at vessels (n = 3 experiments with similar results).

f Comparison of high and low FITC signal with THG signal (n = 62244 pixels, two-
sided Mann–Whitney test, shown as median +/- quartile, whiskers: min/max within
1.5 IQR). g Histogram of measured blood vessels based on their diameter and
colored based on their identification fromTHG signal (blue: visible with FITC and in
THG signal, green: visible only with FITC, n = 68 vessels). h UMAP based on pixel
features that are different between background, myelin, and vessels based on the
machine learning prediction (n = 100 features). Pixels are colored based on the
local frequency of pixels in the dimensionality-reduced space (n = 239568 pixels).
i Close-up 3D rendering of a single GBMC (green) and its surrounding micro-
environment (vessel in red,myelin in blue). The asterisk points at a vessel branching
points, the arrow at a TM branching point and the arrowhead at a glioblastoma
small process. Gamma values were adjusted for 3D-visualization in (d, i). Source
data are provided as a Source Data file.
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of brain tumors beyond superficial cortex layers in the pathophysio-
logically highly relevant white matter.

Compared to previous proof-of-principle technical work in 3PM
and AO18,20,22,39,40, we optimized and advanced these technologies for
longitudinal intravital measurements at the sub-cellular scale in >1mm
depth and over several hours for samples with low SNR. Instrumental
to this was the diligent optimization of imaging parameters, condi-
tions, and overall workflow (see Supplementary Note 1 and

Supplementary Methods), as well as the addition of an artificial
intelligence-driven image restorationworkflow adapted to the distinct
noise sources of 3 PM to substantially increase image SNR and thereby
keep overall excitation light photoburdenminimal. Here, we note that,
generally speaking, all machine learning methods need to be properly
validated and– if needed - retrainedorfine-tunedonnewexperimental
data. As similar 3P- AO systems are not yet widely available elsewhere,
we could not test or apply our tailored denoising and segmentation
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pipelines on 3PM data outside our own setups. It is important to note
that performance for the same imaging modality can vary depending
onmultiple parameters, including themodel system, tissue properties,
and acquisition parameters. As the denoising part of our pipeline is
self-supervised and segmentation is supervised weakly, we believe this
not to be a barrier for wider adoption.

Overall, this workflow significantly increased the robustness of
3PM ensuring to study white matter glioblastoma biology non-
invasively in situ. Lastly, we used customized machine learning to
separate the THG signal and thereby clearly distinguish most blood
vessels and white matter tracts, enabling simultaneous volumetric
time-lapse imaging of tumor cells and their microenvironment. At the
moment, the main disadvantage of our Deep3P methodology is the
relatively slow acquisition speed, due to constraints associated with
laser power, pulse energy, and sample physiology20, as well as AO
optimization time overheads, which limits the overall volumetric FOV
that can bemonitored over time. Yet, the introduction of efficient two-
photon microscopy pre-screening as well as the comparably fast
modal-based AO procedure22 ensure that biologically interesting brain
regions can be effectively and non-invasively imaged over time.

The effectiveness of our Deep3P approach is demonstrated by
its ability to track highly dynamic subcellular and cellular processes
of glioblastoma in white and gray matter. This approach uncovered
different adaptations of glioblastoma cell morphology, direction-
ality, and invasion phenotypes in the corpus callosum as compared
to the cortex. For these findings, the superior depth penetration,
spatial resolution as well as image SNR was of paramount impor-
tance. Our approach also allows for the intravital investigation of
tumor biology including proliferation, invasion, and therapeutic
resistance across different brain regions and brain tumor entities.
Further, the machine learning-based separation of the THG signal
allowed the discrimination of blood vessels and the myelinated
axons from the raw image data. This analysis approach can be in
principle also generalized and adapted to other non-linear micro-
scopy techniques that capture label-free image contrasts of differ-
ent biological structures.

The understanding of invasion mechanisms deep in the brain and
their relationship to the microenvironmental niches of blood vessels
and myelinated fibers are fundamental to glioblastoma biology and
potential therapies. We find not only a mechanism of vascular translo-
cation that ismechanistically distinct to the perivascular invasion route.
In addition, we observe an enrichment of migration along the vascular
route into the corpus callosum with different invasion mechanisms
prevalent within the corpus callosum. While the route of perivascular
migration has been previously described16,17 and was associated with a
breakdown of the blood-brain barrier and altered neurovascular cou-
pling, neither vascular translocation at all nor perivascular migration in
the corpus callosum was described yet. Interestingly, we observe these
phenomena in the very early stages of glioblastoma colonization where
the blood-brain barrier is still intact with respect to leakage of Evans

Blue.Whether the leakageof smallermolecules remainspossible,will be
a question for future research. Lastly, we investigated the clinical-
translational important question of why standard clinical imaging and
even high-field MRI is not able to reliably capture early glioblastoma
invasion and colonization with an exploratory study of a human IDH-
wildtype glioblastoma patient cohort, and quasi-correlative imaging
between high-field MRI and Deep3P in our patient-derived xenograft
models. Within the confines of a limited sample size, our investigation
of white matter disruptions revealed only minor changes of the overall
structure in myelinated white matter tracts. These near diffraction-
limited microscopical findings further explain difficulties of clinical
imaging and even sophisticated modalities such as diffusion tensor
imaging38 to diagnose the earliest stages of glioblastoma colonization in
clinical settings. In addition, this quasi-correlative approach can be
further used to improve MRI by comparing experimental sequences
with the intravital, microscopic ground truth. To overcome hurdles on
the way to clinical application, multimodal data integration of pre-
clinical knowledge, microscopic pathology, and high-resolution MRI
imaging, potentially with the help of deep learning, will be crucial to
understand both the clinical and biological meaning of these observa-
tions. Taken together, these are fundamental in our understanding of
glioblastoma biology.

In addition to its utility in brain tumor imaging, we envision that
our newly developed integrated microscopy and analysis workflow
allows for the integration of fluorescent cell state indicators and other
subcellular fluorescent reporters with low SNR to simultaneously
characterize biological behavior as well as cellular and molecular cell
states in the future. In principle, Deep3P can be implemented with
multiple fluorescent marker proteins to visualize different cell popu-
lations, provided they fall within the 3P excitation wavelength
regions41. Furthermore, this method enables the development of cor-
relative technologies deep in the brain, as previously demonstrated for
correlative light and electron microscopy, allowing for in-depth char-
acterization of intravital cellular behavior and ultrastructure in a non-
invasive manner.

Apart from patient-derived brain tumor models, we believe that
our 3PM and analysis workflow can be straightforwardly applied to
other disease models such as other brain tumors, extracranial tumors,
demyelinating diseases, including imaging of the spinal cord and, as
well as across various model organisms to investigate (sub)cellular
structure and (patho)physiology with minimal invasiveness and sam-
ples with low SNR. Investigating glioma infiltration in model systems
with fully functioning immune systems will be a valuable research
avenue in the future. Further red-shifted 3PM and/or its combination
with wavefront-shaping approaches could lead to even increased
imagingdepthbeyond the corpus callosumto truly enablewhole-brain
imaging of glioblastoma colonization. Integrating feedback micro-
scopy, also utilizing AI to identify regions of interest, might provide a
powerful solution for faster and more automated imaging in the
future.

Fig. 5 | Glioblastomacell polarity and vascular invasionpatterns into and in the
corpus callosum. a Top: Maximum intensity projections (MIP) of regional over-
views of GBMCs in the CC and cortex. Arrowheads: exemplary cells parallel to the
myelin fibers (angle <30°), asterisks: exemplary non-parallelly oriented GBMCs.
Bottom left: THG signal only. Dashed: myelin fiber direction, white symbols:
exemplary GBMCs aligned with white matter tracts, red symbols: exemplary non-
parallelly orientated cells. Bottom right: red and white symbols represent exemp-
lary GBMCs in the region shown above (vessel channel). bDirectionality analysis of
tumor cell regions in CC and cortex (n = 355 GBMCs, n = 12 experiments, n = 10
mice, 2 PDX models). Dashed: myelinated fiber direction within CC. c Rose plot of
tumor cell directionality of regions in (a), in CC and cortex (n = 67 GBMCs, n = 2
experiments).dComparisonof predominant angle directionof cell polarity (n = 211
and n = 164 GBMCs in the CC and cortex, respectively, n = 13 experiments, n = 11
mice, 2 PDX models; two-sided Mann-Whitney, shown as median +/- quartile,

whiskers:min/maxwithin 1.5 IQR). e Schematic andMIP of a GBMC (soma encircled
in white) using vessels to invade into the CC. Dashed: invasion direction along
blood vessel. Vessels, tumor cells and myelinated fiber shown as probability maps.
f Percentage of GBMCs showing perivascular invasion into the CC as compared to
within the cortex (n = 206 GBMCs, n = 14 experiments, two-sided Mann-Whitney
test, shown as median +/- quartile, whiskers: min/max within 1.5 IQR). g Schematic
drawing and h example of tumor cells using vessel related invasion mechanisms.
Dashed: invasion direction. Vessels and tumor cells shown as probability maps. CC
signalwaspost-processedbydenoising. iHistogramof anglesbetweenperivascular
cells and myelin fiber orientation. (n = 29 GBMCs, n = 8 experiments, n = 6 mice, 2
PDX models). j Histogram of blood vessel diameter of perivascular cells in CC
(n = 29 GBMCs, n = 8 experiments, n = 6 mice, 2 PDX models) and cortex (n = 54
GBMCs, n = 7 experiments, n = 7 mice). PDX models: S24 and T269. Source data
provided as Source Data file.
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Overall, our approach allows for the investigation of spatio-
temporally dynamic brain tumor biology in vivo across the gray and
white matter, with the potential to further uncover cellular and sub-
cellular mechanisms in cancer and its microenvironment. This has
important implications for our understanding of brain tumors,
opportunities to study these devastating diseases, and the develop-
ment of clinical therapies.

Methods
Experimental models and subject details
All animal studies were performed with adult male NMRI nude mice
older than six weeks in accordance with the European Directive on
animal experimentation (2010/63/EU) and institutional laboratory
animal research guidelines after approval of the Regierungspräsidium
Karlsruhe, Germany, the EMBL IACUC (protocol 22004_HD_RP) and
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the Animal Welfare Structure of the Luxembourg Institute of Health
(protocol LRNO-2017-01). The 3R principles for reducing the number
of animals were strictly followed and efforts were made to minimize
animal suffering. Animals were scored daily and experiments were
terminated in case of weight loss exceeding 10-20%, neurological
deficits and signs of pain, tumor size was no termination criterion. For
all human tissues, patients have given informed consent and local
regulatory authorities have approved (Ethic Committees at the Man-
nheim and Heidelberg Medical Faculty of the University Heidelberg,
protocols (S-206/2005, S-207/2005, S-306/2019, 2018-614N-MA, 2018-
843R-MA), the National Committee for Ethics in Research (CNER)
Luxembourg (201201/06) and the regionale komiteer formedisinsk og
helsefaglig forskningsetikk at the Helse Bergen (protocol 2013/720/
REK vest). Informed consentwasobtained for all patientswhodonated
their brain post-mortem to the Nervous System Tumor Bank. The
protocol was reviewed and approved by the Northwestern University
Institutional Review Board (IRB) under study STU00095863. Mole-
cular testing with antibodies against the IDHmutation, ATRX staining,
and the Illumina 850k methylation array (Department of Neuro-
pathology, University of Heidelberg) for confirmation of diagnosis
were performed. Written informed consent was obtained for all IDH-
wildtype glioblastoma patients whose MRI scans were retrospectively
reviewed. All examinations were in accordance with the declaration of
Helsinki and approved by the local ethics committee of Heidelberg
University (study permit: S-078/2021).

No sex-based analyzes were performed in this due to low sample
size. The two major cell lines analyzed are from a patient with female
sex (S24) and male sex (T269).

Patient-derived primary glioblastoma cell lines and Illumina
850k methylation array characterization
Cultivation of patient-derived tumor cell lines from resected glio-
blastoma was performed6,15,34,42 in DMEM/F-12 under serum-free, non-
adherent, ‘stem-like’ conditions with B27 supplement (12587-010,
Gibco), insulin, heparin, epidermal growth factor, and fibroblast
growth factor, outlined in detail before15. The molecular classification
of glioblastoma xenograft models used in this study can be found in
Supplementary Data 2. To obtain the DNA methylation status43 at
>850,000 CpG sites in all GBMC lines, the Illumina Infinium Methyla-
tion EPIC kit was used at the Genomics and Proteomics Core Facility of
the German Cancer Research Center in Heidelberg, Germany accord-
ing to the manufacturer’s instructions. Glioblastoma cell lines kept
under stem-like conditions were transduced with lentiviral vectors for
membrane-bound GFP with the pLego-T2-mGFP construct based on
Dondzillo et al.44.

Regular FACS sorting of transduced cells was performed with
FACSAria Fusion 2 Bernhard Shoor or FACSAria Fusion Richard Sweet
and the BL530/30 filter was used for FACS- sorting GFP.

Surgical procedures
Surgical procedures were performed as previously described6,15. Cra-
nial window implantation in mice was done similarly to what we had
previously described with small modifications, including a custom-
made titanium ring for painless head fixation during imaging and an

asymmetric placement of the window above the sinus, allowing opti-
mal imaging accessibility of the corpus callosum on one hemisphere
(see Supplementary Methods). 50.000-100.000 tumor cells were ste-
reotactically injected at a depth of 500 μm into the mouse cortex.

Histological analysis of organoid-based patient-derived ortho-
topic xenograft models
Patient-derived orthotopic xenografts were derived by intracranial
implantation of glioma organoids as described inOudin et al.45. PDOXs
were assessed at the histopathological and molecular levels as
described in Golebiewska et al.46. Invasion of human glioma cells
through corpus callosumwas assessed by immunohistochemistrywith
antibodies against human-specific nestin (abcam, ab6320, 1:500) on
coronal 4-8 µm sections from paraffin-embedded brains. Primary
antibodies were incubated overnight at 4 °C or 3 h at room tempera-
ture, followed by 30min incubation with secondary antibodies. Signal
wasdevelopedwith the Envision+ System/HRPKit in 5–20min (K4007,
Agilent/Dako).

Spatial transcriptomics analysis of cortex and corpus callosum
Spatial sequencing data as well as imaging data was downloaded from
http://molecularatlas.org based on Ortiz et al.47. Data was processed
using Seurat48 and clusters were defined using its FindClusters func-
tion. Based on the associated histology images, clusters were assigned
to either corpus callosum / whitematter, cortex / graymatter, or other
brain regions. Clusters were then visualized based on the assignment
and using a Uniform Manifold Approximation and Projection (UMAP)
in Seurat.

Macroscopic and microscopic histological analysis of glio-
blastoma patients
The postmortem cohort was collected as described in Drumm, et al.1.
Briefly, at the time of brain sectioning, portions of key brain and spinal
cord regions, as well as extra sampling of tumor, were collected for
histologic processing as paraffin-embedded tissue blocks. Tissue sec-
tions of corpus callosum were routinely collected whether gross evi-
dence of tumor involvement was present or not. Each section of
corpus callosum was then stained with hematoxylin and eosin and
examined for the presence of migrating glioma cells.

Standard immunohistochemistry analysis was performed on
patient autopsy specimens to visualize IDH1R132H (Dianova, DIA H09,
1:150) and nestin (Abcam, ab22035, 1:750). To achieve this, four-
micrometer thick sections of FFPE tissue on charged slides were baked
in the oven at 60C before being deparrafinized and re-hydrated.
Antigen retrieval was performed using a pH6 retrieval buffer (Biocare
Reveal). Slides were cooled to room temperature and washed in TBS
before neutralizing endogenous peroxidase (Biocare Peroxidase 1).
Slides were then treated with a serum-free casein background block
(Biocare Background Sniper) before incubation in a 10% goat serum
block for 60min at room temperature. Primary antibody was then
added to the slides for overnight incubation at 4 C. After incubation,
slides were washed well with TBS-T before incubating in HRP polymer
(Biocare MACH 4 Universal HRP Polymer). Finally, reaction products
were visualized with DAB (Biocare Betazoid DAB Chromogen Kit).

Fig. 6 | TM dynamics and neural invasion mechanisms in the corpus callosum.
a RepresentativeMIP time-lapse images showing TMs in the CC that use branching,
protrusion, or retraction. Asterisks point at the GBMC somata, arrowheads point
towards the tips of the TMs of interest. Dashed arrows: direction of the TM
dynamic. b Distribution of TM dynamics in the CC and comparison with cortex
using branching, protrusion or retraction (n = 163 cells from n = 14 datasets in 12
mice in 2 PDX models (S24 and T269)). c Representative MIP time-lapse images of
invasion phenotypes in CC showing locomotion, translocation and branching
migration. Dashed arrows: invasion direction. The straight line in the first translo-
cation image indicates the stable location of the TM tip throughout all images.

d Distribution of invasion phenotypes in the CC compared to the cortex (n = 99
invasive cells from n = 14 experiments in 13 mice, two-sided Mann-Whitney test,
shown as median +/- quartile, whiskers: min/max within 1.5 IQR). e Speed com-
parison of invasion phenotypes in CC (n = 66 GBMCs from n = 7 experiments in 6
mice, two-sided Mann-Whitney test, shown as median +/- quartile, whiskers: min/
max within 1.5 IQR). f Mean squared displacement is shown over time (n = 108
GBMCs, error bars indicate mean +/-s.e.m). Images were post-processed as prob-
abilitymaps and using the “smooth” function in ImageJ/Fiji in (a, c). Source data are
provided as a Source Data file.
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Slides were then counterstained with hematoxylin, dehydrated and
mounted with xylene-based mounting media.

Two-photon microscopy
For 2PM imaging, chronic cranialwindow surgerieswere performedon
adult male NMRI nude mice (Charles River and Janvier) and patient-
derived tumor cells were injected into the cortex. We implemented an

approach for chronic cranial window implantation that allows a better
accessibility of the corpus callosum by transplanting the window
asymmetrically above the superior sagittal sinus (see Supplementary
Methods). 2PM was first performed three weeks after surgery using a
TriM Scope II microscope (LaVision BioTec GmbH) equipped with a
pulsed Ti:Sapphire laser (Chameleon II ultra; Coherent). A 16x, 0.8 NA,
apochromatic, 3mmworking distance, water immersion objective was
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used. Before imaging, TRITC dextran (fluorescent conjugated tetra-
methylrhodamine isothiocyanate-dextran, 500.000g/mol) was dilu-
ted in 0.9% NaCl- solution at 10mg/ml and 100 µl injected
intravenously into the tail vein for vessel signal. GFP and TRITC were
imaged using 960 nm wavelengths. Low-noise high-sensitivity photo-
multiplier tubes were used for fluorescence emission detection. For
the anesthesia, isoflurane gas was diluted in 100% O2 to a concentra-
tion between 5% (for anesthesia induction) and 0.5-1.5 % (for main-
tenance of anesthesia). The breathing rate of the mice was monitored
and body temperature was kept stable at 37° using a heating pad. Eye
cream was applied before anesthesia.

Two-photon microscopy prescreening. After tumor cell injection
into the cortex we screened for tumor growth regularly with 2PM,
considering the advantage of faster imaging speed. Tumor growthwas
assessed regarding dissemination and density of tumor cells. 3 P ima-
ging was initiated when tumor cells could be detected up to a z-depth
of app. 700 μm. We additionally screened the contralateral hemi-
sphere, where no tumor cells had been injected prior as tumor cell
dissemination in the contralateral hemisphere is an indicator for
infiltration into the CC. An area of interest is then chosen, taking into
account the probable accessibility of CC, probable tumor cell density
and presence of superficial landmarks for recognition. To facilitate 2P-
3P- correlative imaging, we mapped the macroscopically visible vas-
culature to the 2PM- tile scans, which later allows faster recognition of
the area of interest. We give a more detailed description of the 2PM-
3PM workflow in the Supplementary Methods file.

For whole brain tile scan imaging, repetitive stacks of 2PM images
were acquired with a field of view of 694 µm x 694 µm. Images were
taken down to a depth of approximately 600–700 µm, with a z-step
size of 10–20 µm. Subsequently, stacks were stitched together result-
ing in an overall field of view of up to 4.3 × 4.3mm×0.7mm using the
Fiji49-based stitching plugin50.

Three-photon microscopy
The core hardware of the multiphoton 3 P microscope with adaptive
optics has been described in detail in previous work22. In the following,
a brief summary of the instrumentation is provided emphasizing any
differences from the details given in Streich et al.22.

Over the course of the study, two excitation sources were used in
this work. One of them is a Spectra-Physics TOPAS tunable non-
collinear optical parametric amplifier generated ~60 fs pulses centered
at 1300 nm with a repetition rate of 400 kHz, pumped by a 16W
Spectra-Physics Spirit. The near-IR pulses from the TOPAS were pre-
compensated for dispersion by a homebuilt single prism (N-SF11) pulse
compressor51. The maximum power at this wavelength and repetition
rate was ~400mW, resulting in a maximum available power under the
objective of 35mW.APockels cellwasused for rapidmodulation of the
laser power during image acquisition. Furthermore, we also employed
a Class 5 Photonics White Dwarf WD-1300-dual laser. The 1300nm
channel used here provided amaximumof over 5Watts at a repetition
rate of 1MHz. In addition to the Pockels cell, a reflective optical density
filter with a static OD =0.8 attenuation was used to adapt the power
range of the White Dwarf, yielding over 100mW after the objective.

Dispersion pre-compensation was done by an internal module in the
White Dwarf which yielded 100 fs pulses after the objective. For
fluorescence detection in the green channel, we switched to an
uncooled H10770PA-40. The adaptive optics module used an ALPAO
DM97-15 continuous membrane deformable mirror, relying on the
factory calibration of the mirror for the Zernike-to-Control Matrix.

Images acquired with “full AO” optimization are optimized using
the same metric and iterative procedure discussed in Streich et al.22.
where the fluorescence intensity is measured and optimized directly
onmGFP labeled cell in themouse brainwhen not specified otherwise.
The metric was found to also produce good enhancement when
optimized on THG signal, enabling optimization in regions where no
labeled cells are available. The typical optimization procedure
involved two iterations of Zernike modes 3 through 21, with five
amplitudes explored per iteration. With frame rates typically > 1 Hz,
the entireprocess is completed in less than3min even in noisy regions.
In bothAOoptimization aswell as imaging, amaximumpulse energy at
the focus of 2nJ was never exceeded52. Even after a four-hour time-
lapse imaging session, only mild bleaching was observed (volume
acquisition times range from 6 to 12min which corresponds to a 30%
to 60% duty cycle for light exposure since a volume is acquired every
20min, though the time spent on each individual plane is atmost 5%of
that). The correction collar of the objective was set to 1mm imaging
depth formost acquisitions. We intentionally chose to optimize image
quality (and hence utilized frame and/or pulse averaging).

In vivo deep brain imaging
For the initial induction of the anesthesia, nude NMRI mice were
placed into a closed box and exposed to 6% isoflurane diluted in
oxygen. For the maintenance of the anesthesia, a concentration of 1.6-
2% isoflurane inoxygenwas used, depending on themouse’s breathing
rate. The targeted breathing rate was between 70 and 90 bpm. Once
anesthetized, eye cream was applied and mice were positioned on a
small animal physiological monitoring system (ST2 75-1500, Harvard
Apparatus), which allowed the maintenance of a stable body tem-
perature at 37.5 °C and monitoring of the breathing rate.

For in vivo imaging experiments, animals were head-fixed using a
customized headbar and complement holder and the cranial window
was aligned so that the objective was placed above the part of the
window that is centered slightly next to the sinus (where corpus cal-
losum is anatomically the highest). Acquisition parameters for deep
brain imaging are summarized in Supplementary Data 3. Here, we note
that imaging depth was reported as raw axial translation of the
objective. Taking the refractive index difference between the cover-
slip, immersion media and various brain tissues into account18, the
actual imaging depth is likely around 5–10% larger than the values
reported. For validation of the THG vessel signal, FITC dextran
(fluorescein isothiocyanate-dextran, 2Mg/mol) was diluted in 0.9%
NaCl- solution at 10mg/ml and 100 µl injected intravenously into the
tail vein.

Resolution estimation of 3PM
For estimation of image resolution used in comparing images with
and without adaptive optics correction, the decorrelation analysis

Fig. 7 | Tumor-tumornetwork formation andglioma cell proliferation in cortex
and corpus callosum. a Brain tumor networks in the CC (left) and in the cortex
(right) shown as 3D renderings in green. CC and cortex imaging were performed
with 3PM and 2PM, respectively. Each network is visualized as network orientation
in the bottom right corner. The network is colored based on the local orientation.
CC imaging depth: z = 840-950 µm. b Rose plot of overall orientation of the tumor
cell network in the CC (n = 271985 local network orientation values from n = 6 brain
tumor networks from n = 5 mice). c The standard deviation of tumor network
orientation is compared in the CC to the cortex. (n = 692 slices from n = 6 brain
tumor networks from n = 5mice, Mann-Whitney test, shown asmedian +/- quartile,

whiskers:min/maxwithin 1.5 IQR).d Top:MIP time-lapse imaging of GBMCdivision
in the CC. White arrowhead: GBMC before cell division. Yellow and purple arrow-
head: Daughter GBMCs after cell division. The asterisk points at a newly grown TM
after cell division. Post-processed with denoising and “clear outside” function in
ImageJ/Fiji. Bottom: 3D rendering of another cell in the CC before and after cell
division. The arrowheads point to the somata of the cell beforedivision and the two
daughter cells after division, the arrows point to the TMs (n = 18 cell divisions from
n = 7 experiments in 6 mice in 2 PDXmodels (S24 and T269)). Gamma values were
adjusted for 3D-visualization in (a, d). Source data are provided as a Source
Data file.
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Fiji plugin was used53. The calculation was performed for all slices of
the green channel in 5 different volume stacks. Slices that were clear
outliers (order of magnitude off) or where the calculation failed
(decorrelation curves had no maxima) were excluded and a mean
and standard deviation for the stack resolution was calculated. The
corresponding resolution ratio per volume was calculated with a
standard deviation using error propagation. A weighted average of

five such volumes was calculated with the corresponding standard
deviation.

3PM deep learning-based denoising
Network architecture. In our approach, we designed a 3D version of
the classic U-Net architecture25,54–57 (see Supplementary Fig. 2a). The
architecture is composed of an encoder-decoder structure connected
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through skip connections. The encoder network contains 5 hier-
archically organized encoder blocks. Each block consists of two con-
secutive units, including a 3D convolutional layer, a leaky ReLU
activation layer, and a group normalization layer. In parallel, the
decoder network is made up of 5 blocks with similar layer configura-
tions and a nearest-neighbor upsampling layer at each level. The
number of feature maps in the first level of the encoder network is set
to 16, and then increases geometrically at each level. The featuremaps
from the encoder blocks are passed to the corresponding decoder
blocks through the skip connections, allowing the combination of
high-level features from the encoder with the semantic features from
the decoder. This enables the U-Net architecture to effectively incor-
porate both local and global information in the reconstruction,making
it well-suited for image restoration tasks.

Self-superviseddenoising. In this study,weemployed theNoise2Void
strategy for self-superviseddenoisingof 3PMdata,which allows for the
training on the samedata to be denoised24. This approach relies on the
assumption that the noise is independently generated for each pixel,
which is valid for the dominant noise sources in 3PM such as Poisson
shot noise and Gaussian readout noise. During the training, a random
subset of pixels, referred to as “blind spots”, aremasked in the 3D input
data and the network is optimized to predict the values of these pixels.
This masking forces the prediction to be based solely on the sur-
rounding patch. Given the independence of the noise, the network can
only learn to determine the locally dependent true signal part of the
pixel, effectively learning to denoise the volume data.

For our 3PM-Noise2Void method, we used 2% of the pixels as
blind-spots, which were masked with randomly sampled pixel values
from the adjacent neighborhood. A combination of L1 and L2 loss
metrics was used to measure the difference between the blind-spot
values in the prediction and raw volumes. We employed an ADAM
optimizer58, with β1 = 0.5, β2 = 0.99, and a learning rate of 1e−3, to
minimize this loss value over 300 epochs. The input volumes were
randomly cut out into 16x64x64 patches, which were further aug-
mented by rotation and flipping before applying the masking.

3PM data post-processing. The 3PM data also contains periodic
structured noise caused by the ripple noise of the photomultiplier
tubes (PMTs), which ismodulated by the line scanning process into a
line-wise periodic signal. This noise violates the assumption of pixel
independence and causes the 3PM-Noise2Void approach to restore
or even amplify it, leading to errors in downstream analysis (see
Fig. 3c). To address this problem, we optimized the hyperpara-
meters of the 3PM-Noise2Void, identifying the z-size parameter as a
key factor. We found that a depth of 16 slices minimizes the restored
structured noise. However, in cases where this was not sufficient, we
developed a post-processing method, referred to as PerStruc-
Denoiser.

This method accounts for the origin of the noise by aligning and
subsequently extracting the structured noise that occurs misaligned
row-by-row and with different patterns due to the acquisition proce-
dure and inconsistent scanning speed. The method begins by flipping
each odd row of a z-slice to ensure each line is in the same scanning
direction and thus has the samepattern. Next, the function determines
the phase differences of the structured noise for all lines of the data to
a reference line by calculating the phase shift at the main frequency
component of the structured noise in the Fourier domain. This refer-
ence line is chosen as the row in the volume with the lowest standard
deviation, which presents the clearest structured noise pattern and
serves as an accurate reference point for the phase detection. The
PerStruc-Denoiser shifts each line under periodic boundary conditions
to align the periodic structured noise. By performing a median pro-
jection along the row and then along all z-slices, the algorithm extracts
the pure structured noise of a single line. This line is subtracted from
the modified volume, and the alignment shifts and flips are reversed.
Furthermore, a Gaussian filter with a small mask size (σ = 1 pixel) is
applied line by line to suppress remaining high-frequency structured
noise. Finally, the median value of the data is adjusted back to the
original one, effectively reducing the periodic structured noise in the
3PM-Noise2Void denoised data and improving the downstream ana-
lysis of biological structures.

Machine learning-based classification of THG signal
The THG-signal channel of 3PM images was denoised as described
above. In the custom approach, as opposed to the basic approach,
subsequently, both the raw images aswell as the denoised imageswere
interpolated in their z-dimension with a factor of 4. The image z stacks
were processed with a bilinear interpolation in this step. Semantic
segmentation with ilastik was performed on the upsampled stack of
raw images, using the denoised images as a prediction mask to limit
the amount of false positives caused by the noise. In both approaches,
Ilastik “Autocontext”workflowwith 2 training stages was chosen for its
superior performance on noisy data59. The THG signal was segmented
into three classes of either vessel (1), myelin (2), or background (3). All
color/intensity features, edge features and texture features were used
up to a standard deviation of σ = 6. Additionally, 3D-features were
calculated. Pixels were classified using a Random Forest classifier with
manually drawn labels31.

To evaluate the effect of our pre-processing, an image stack was
partially segmented. Labels were exported and subsequently inte-
grated into the customized ML workflow as described, with the
exception only labels from the ML training without pre-processing
were used andno additional labelingwasperformed.With uncertainty,
we refer to the classifier uncertainty, which in ilastik is computed as
follows: let (p1,… pN) be probabilities predicted for classes 1…N for a
pixel in the image. Further, let pMax1 be the highest probability of
(p1, …, pN) and pMax2 the second highest. The pixel uncertainty is

Fig. 8 | White matter reactivity in the corpus callosum upon glioblastoma
invasion and colonization. a Representative MR images of two patients with IDH-
wildtype glioma with affection of the CC (T1CE and ADC). b ROI-based quantifica-
tion of apparent diffusion coefficient (ADC) on diffusion imaging (n = 8 glioma
patients) in ipsi- and contralateral CC, (two-sided Mann-Whitney-Test, shown as
median +/- quartile, whiskers: min/max within 1.5 IQR and data points). c Axial MR
image showing fractional anisotropy map in a glioma-infiltrated mouse brain (left)
showing the CC as a region of interest (red) which is transformed out of the tract
(d). Right: Zoom inCC (PDXmodel: S24).dTracts of the bodyofCC, extracted from
respective DTI image stacks and transformed into ROIs. e Mean fractional aniso-
tropy (FA), mean diffusivity (MD) and axial diffusivity (AD), in mice MRI scans at
multiple time points in CC. (n = 42MR acquisitions (26 days (n = 5), 33 days (n = 7),
60 days (n = 12) and 73 days (n = 13) after injection)). f Regions with and without
tumor infiltration analyzed in the CC.mGFP and source THG signal post-processed
with denoising. g Morphological parameter (circularity) of tumor-infiltrated holes

and non-infiltrated holes (n = 27 cells from n = 3 experiments in 3 mice in 2 PDX
models (S24 and T269), two-sided Mann-Whitney test, shown as median +/- quar-
tile, whiskers:min/maxwithin 1.5 IQR). h Left: CC fibers in tumor-infiltrated regions
compared to non-infiltrated regions. Images post-processed with denoising. Right:
The orientation plot of fibers is shown. i Comparison of orientation of brain tumor
free tissue with tumor-infiltrated regions. (n = 29 sample regions from n = 8 mice
(S24 and T269), two-sided Mann-Whitney test, shown as median +/- quartile,
whiskers: min/max within 1.5 IQR). j White matter displacing (left) and non-
displacing (right) GBMC somata and TMs. Arrowheads show tumor-infiltrated-
holes. Asterisks show a soma and a TMand their location in the corresponding THG
signal showing no displacement. Images post-processed with denoising.
k Comparison of a portion of displacing TMs to displacing GBMC somata (n = 33
GBMC somata andn = 22TMs fromn = 4mice in 2 PDXmodels (S24 andT269), two-
sided Mann–Whitney test, shown as median +/- quartile, whiskers: min/max within
1.5 IQR). Source data provided as Source Data file.
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then computed as 1-(pMax1-pMax2). For example, if we have 2 close
class predictions, pMax1 = 0.49 and pMax2 =0.51, uncertainty = 0.98.
If we have 2 far class predictions, pMax1 = 0.98 and pMax2 = 0.02,
uncertainty = 0.02.

To visualize the morphological heterogeneity of myelin, vessel,
and background, a Uniform Manifold Approximation and Projection
(UMAP) was created based on 100 features that were most distinct
between groups. Those features were identified using the FindAll-
Markers function in Seurat48.

For validation of the THG vessel signal with intravenous FITC
injection, FITC images were thresholded and converted to a masked
image in Fiji to obtain a segmentation for FITC signal and background.
All pixels of a selected regionwere then analyzed and their intensity for
both groups was compared.

Sample preparation, microscopy and analysis for scanning
electron microscopy
Tumor-bearing PDX mice were transcardially perfused and tissue was
obtained as previously described3,6. For the postfixation, the mouse
brainwasput into 4% (w/v) PFAovernight and afterwards stored at4 °C
in PBS. The brain was subsequently cut into 200 µm thick sections. To
unequivocally identify the glioma cells in scanning electron micro-
scopy, immunolabeling with an antibody against human-specific nes-
tin (abcam, ab22035, 1:500) was conducted3. For this purpose, the
brain sliceswere put into 10% (w/v) sucrose dissolved in PBS for 10min
and for further 10min in 20% (w/v) sucrose dissolved in PBS. The slice
was subsequently incubated in 30% sucrose (w/v) over 12-15 h at 4 °C.
Freeze-thaw-cycles were performed in liquid nitrogen twice for 5min.
Afterwards, the slices were incubated in 5% FBS in PBS at RT for 1 h.
This was followed by incubation overnight at 4 °C with a human-
specific mouse anti-nestin antibody (abcam, ab22035, 1:500) in the
blocking solution. It was washed three times with blocking solution
afterwards. The slices then were incubated for 12–15 h at 4 °C with a
secondary antibody (a biotinylated anti-mouse antibody, abcam,
ab6788, 1:500)). Slices were washed in PBS for three times and then
incubated in the Vectastain ABC kit for 1 h at RT. Afterwards, the
samples were exposed to a solution of glucose and DAB (with glucose
at a concentration of 2mg/ml, andDAB at a concentration of 1.4mg/ml
dissolved in PBS) for 10min. This was followed by an hour-long incu-
bation in a glucose-DAB-glucose oxidase solution (with glucose oxi-
dase at a concentration of 0.1mg/ml, from Serva) to generate an
electron-dense precipitate. The efficacy of the process was assessed
using widefield light microscopy.

The labeled sections were embedded in resin and mounted onto
silicon wafers6. For image acquisition, we used a LEO Gemini
1530 scanning electron microscope (Zeiss) combined with an ATLAS
scan generator. Potential contacts of brain tumor cells and blood ves-
sels were observed by the identification of blood vessels according to
basic ultrastructural features and the DAB (diamniobenzidine)-pre-
cipitate in the brain tumor cells respectively. For three-dimensional
reconstruction of blood vessel-TM contacts, images were taken at the
same position in consecutive layers. A working distance of 2–4mmwas
set at an apertureof 20 µmandan acceleration voltageof 2 kV. Thepixel
sizes were between 3.8 nm and 15 nm in 400–3600 µm2 big images,
enabling to create an image stack with a z-resolution of 280nm. The
manual segmentation of the structures was performed in Fiji.

Immunhistochemistry
For immunohistochemistry, xenografted mice were transcardially
perfused with 4% (w/v) PFA in PBS (Sigma or Gibco) under deep
anesthesiawith isoflurane. Brainswere collected and stored in 4% (w/v)
PFA overnight and subsequently stored in PBS. 80-300 µm thick tissue
sections were made using a Leica VT000S vibratome.

Sections were permeabilized with 5% (v/v) fetal bovine serum
(FBS) and 1% (v/v) Triton X-100 for 2 h at room temperature, shaking.

Primary antibodieswereapplied at a 1:100dilution in a 1% FBSand0,2%
Triton X-100 solution and incubated for 24 h at 4 degrees Celsius,
shaking. Sections were washed for 3x 15min at room temperature,
shaking. Appropriate secondary antibodies (anti rat antibody, Invi-
trogen, Cat#A21247; antimouse antibody, Invtrogen, Cat#A11017 if not
stated differently) were incubated at a 1:500 dilution in 1% FBS and
0,2% Triton X-100 for 24 h at 4 degrees Celsius, shaking. They were
subsequentlywashed 3 × 10minwith 1% FBS in PBS and then 3 × 10min
with PBS at room temperature, shaking. Sections were mounted using
“SlowFade Gold” solution. Images were acquired with a Leica LSM710
ConfoCor3, Zeiss using a 63x immersion oil objective (NA 1.4).

Evans blue in vivo staining
Evans blue (E2129-10G, Sigma)wasdiluted in0.9% sodiumchloride to a
concentration of 20mg/ml. Subsequently, 150 µl of the solution was
administered via intraperitoneal injection in mice, with a 12-hour
interval before perfusion and brain extraction.

Vessel quantification
Maximum intensityprojectionsoffieldof viewsmeasuring237×237x25
microns were analyzed. Six regions out of three tumor injected mice on
two time points were chosen. 3D registration was performed using a
custom written Fiji macro. Vessels were identified manually.

Blood brain barrier analysis
Bloodvesselswere segmentedusing ilastik. Then, tomeasurepotential
extravasation, the intensity of the extravascular background normal-
ized to the mean region intensity of the images was compared.

Intravital, microscopic blood vessel analysis
For the analyzes of vessel widths, vessel diameter wasmeasured in Fiji.
As diameters in the FITC signal were systematically larger than in THG
signal, THG vessel diameter wasmultiplied with 1.248373 (mean factor
difference between vessels measured between FITC/THG). Vessel
density was assessed using the Fiji plugin “Vessel analysis”60.

Polarity analysis of single glioma cells, myelin fibers and vessels
Tumor cell polarity was investigated analyzing the primary orientation
of each tumor cell in Fiji47,49 and calculating the angle between the
tumor cell orientation and a horizontal line. In very dense tumor
regions, a subset of sliceswas analyzed to unequivocally identify single
tumor cells. Subsequently, for each region in the corpus callosum, the
overall direction of fibers was analyzed in the same manner and the
calculated angles were subtracted. The angles were recalculated so
that all angleswere in the rangeof -90 to90degrees. For the analysisof
angles between myelin and vessels, denoised THG signal within the
corpus callosum was analyzed. Changes of direction in each vessel
were considered individually. The angle between each section of a
vessel and the nearest myelin fibers was measured using Fiji.

Angle analysis between glioma cells and myelin fibers in
the cortex
For the correlation between glioma cells and myelin fibers within the
cortex, confocal images of PDX brain slices stained for MBP (Novus
Cat# NB600-717,1:100) were analyzed. First, the glioma cells and
myelin fibers were segmented in ilastik to get binary masks. Second,
boundaries were dilated by 5 µm to define the area close-by to the
glioma. Third, to obtain themyelin fibers that are running through this
area adjacent to the tumor cell, this area mask wasmultiplied with the
myelinfibermask, resulting in amaskofmyelin-fibers that are adjacent
to the tumor cell. Fourth, thismaskwas then skeletonized in Fiji. Lastly,
to obtain single fiber segments that are not touching each other,
branching points of the skeleton were removed. Additionally, skeleton
segments consisting of only a few pixels (≤ 4) were removed to avoid
the influence of artifacts. The major direction was then assessed using
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the start and endpoint of each segment, and compared to the major
axis orientation of the glioma cell.

THG validation
For THG validation, we labeled myelin in brain slices of wild type mice
by performing immunohistochemistry using an MBP antibody (invi-
trogen, Cat#MA1-10837, 1:100).

Orientation analysis of normal brain cells
Histological slides of themouse brain from the Allen Brain Atlas where
analyzed. Coherency of the slide was calculated using OrientationJ61.
Segmentation was performed using Ilastik. The coherency analyzes
whether image features are oriented or not oriented on a local scale61,
with values closer to 1 indicating higher orientation, and values closer
to 0 indicating less structuring. Mean coherency was calculated in the
regions of interest.

Somatokinesis measurement
Somatokinesis measurements were performed in ImageJ/Fiji49. First,
time-lapse images of tumor cell regions were registered using custom
written registration scripts. Then, tumor cells were cropped and re-
registered with the 3D Drift Correction plugin in ImageJ/Fiji62 when
necessary. The glioblastoma cell somata were labeled using a selection
tool in Fiji and the center of each cell was measured. The distance
between the centerpoints of thefirst and last timepointwas calculated
and divided by the duration of the experiment to obtain the somato-
kinetic speed of the glioblastoma cell.

Invasion phenotype classification
Invasion phenotype classification was performed as previously
described3. The invasion phenotypes are characterized as shown in
Table 1.

Invasion phenotypes for each cell were classified based on their
invasive behavior during the time course of up to 4 h.

Tumor microtube and small process identification
A tumor microtube was defined as a small cellular protrusion with a
minimum length of 10 µm and a thickness ranging between
0.5–2.5 µm15. Small processes were defined as cellular protrusions
smaller than 10 µm in length3.

Directionality analysis of brain tumor networks
Tumor cell regions in the corpus callosum and in the cortex were
imaged with 3PM and 2PM, respectively. For each slice, the local
orientation was calculated using a local window of σ = 3 pixels and a
cubic spline as gradient, as implemented in OrientationJ61. The calcu-
lated outputwas exported as a stack, displaying the local orientation in
degrees as well as table. For visualization of local network orientation
values using rose plots, calculated orientation values were filtered
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ciated orientation values. For further visualization, images of tumor
cell regions were binarized to generate a mask for the tumor cell
network. The absolute values of the stack displaying the local orien-
tation in degrees were multiplied with the tumor cell mask to receive

the local orientation of the tumor cell network. The difference to the
horizontal line was calculated for each local orientation and visually
displayed as a spectrum from 90 degrees (lowest intensity) to 0
degrees (brightest intensity) in the maximum intensity mode of Arivis.
This was performed for both cortex as well as corpus callosum brain
regions.

White matter reactivity analyzes
Multiple regions with tumor infiltration were analyzed in the white
matter-rich areas of the corpus callosum. Regions without THG signal
in the corpus callosumwere analyzed in Fiji using the polygon tool and
measuring their shape descriptors on selected slices. Holes were
labeled as either tumor cell-infiltrated or without tumor infiltration.
Subsequently, the circularity of both groups was compared.

Orientation analysis of myelinated fibers was analyzed using
OrientationJ61. Vector fields were visualized as arrows in R.

To analyze displacement of myelin fibers by TMs or somata, TMs
and somata were selected. Then, THG signal was manually labeled as
displaced or non-displaced, based on THG signal. The distribution of
displacing and non-displacing TMs and somata per group was
analyzed.

Human MRI and diffusion imaging analysis
IDH-wildtype glioblastoma patients that received clinical indicated
MRI scans at the Department of Neuroradiology (University Hospital
Heidelberg) were retrospectively reviewed. Written informed consent
was obtained from all patients and all examinations were in accor-
dancewith the declaration of Helsinki and approved by the local ethics
committee of Heidelberg University (study permit: S-078/2021).
Glioma patients were included into the analysis that showed unilateral
affection of the corpus callosum (genu or splenium) at baseline based
on T1 post Gd contrast MRI (n = 8 patients). Additionally, follow-up
investigations 10.3 ± 5.8 months after baseline were assessed. Imaging
was performed at 3 T on a Magnetom Skyra or Prisma (Siemens Heal-
thineers, Erlangen Germany). Sequences included T1w after Gd-
contrast administration and diffusion imaging.

Sequence parameters were as follows: T1 mpRAGE 3D Sequence:
TR: 1.7ms, TE: 3.3ms; FOV: 320× 263matrix size: 320 × 263 voxel size:
1mm. Diffusion imaging (Resolve 2D sequence): TR: 3.7ms, TE: 69ms,
matrix size: 192 × 192 FOV: 220× 220; slice thickness 5mm. Regions of
interestwere selectedmanually on the ipsi- and contralateral splenium
or genu of the corpus callosum and the apparent diffusion coefficient
(ADC) was quantified on a PACS RA1000 workstation (GE Healthcare,
Chicago, US) by a board-certified neuroradiologist (M.O.B., >10 years
of experience in neuroradiology).

High-field animal MRI
MR scans were conducted using a 9.4 Tesla horizontal bore small
animal MRI scanner (BioSpec 94/20 USR, Bruker BioSpin GmbH,
Ettlingen, Germany) equipped with a gradient strength of 675 mT/m
and a 2 × 2 surface array receive-only coil. During the imaging proce-
dure, anesthesia was induced using 4% isoflurane (Baxter, Unters-
chleißheim, Germany) in 100% O2, and subsequently maintained with
1–1.5% isoflurane in 100% O2 delivered via a nose cone throughout the
scanning process. The respiration rate was continuously monitored,
and the animals were positioned in a prone position on a Bruker
standard MRI bed with an integrated circulating water heating system
to ensure body temperature maintenance. A diffusion tensor imaging
sequence in axial planes was employed, using the following para-
meters: echo time = 17.57ms, repetition time = 1000ms, acquisition
matrix = 75 × 100, field-of-view = 15 × 20mm2, slice thickness = 0.5mm.

High-field diffusion tensor imaging analysis
Fractional Anisotropy (FA), mean diffusivity (MD) and axial diffusivity
(AD) maps were extracted from the respective DTI image stacks using

Table 1 | Characterization of invasion phenotypes

Locomotion Translocation Branching Migration

Somatokinesis yes yes yes

Protrusion yes no yes

Retraction no optional optional

Branching no no yes
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open-source software MITK-Diffusion (https://github.com/MIC-DKFZ/
MITK-Diffusion/)63. Tracts of the body of the corpus callosum (CC)
were extracted using the atTRACTive tool in MITK Diffusion64. Tracts
were transformed into ROIs by binarizing the tract density image using
an empirically chosen threshold of 8. Data emerged from 42 MR
acquisitions (26 days (n = 5), 33 days (n = 7), 60 days (n = 12) and
73 days (n = 13) after injection). 5 acquisitions were sorted out because
of too small ROIs (ROI < 100 voxels).

3D renderings and visualization
Renderings were created in Arivis Vision 4D for 3D and 4D Image
visualization.

Statistical analysis
The results of quantifications were transferred to GraphPad Prism
(GraphPad Software) or R to test the statistical significance with the
appropriate tests as indicated in the figure legends, normality was
tested using the Shapiro-Wilk test. Resultswere considered statistically
significant if the P value was below 0.05. Quantifications were done
blinded. Animal group sizes were as low as possible and empirically
chosen and longitudinal measurements allowed a reduction of animal
numbers by maintaining an adequate power. No statistical methods
were used to predetermine the sample size. In quantifications that
were depicted as boxplots, the upper and the lower hinges correspond
to the third and the first quartiles.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data of the analyzes are provided in the Source Data file.
Spatial transcriptomics data used from reference 47 are available on
[https://www.molecularatlas.org/]. Clinical and Pathological char-
acteristics of Tumor cases is available in Supplementary Data 1. Set-
tings and details for reproducing the experiments are provided in the
Supplementary Note, Supplementary Methods and in Supplementary
Data 3. Source data are provided with this paper.

Code availability
The indirect AO routines developed for integration into ScanImage32
are available at [https://github.com/prevedel-lab/AO.git] as previously
described22. AI denoising was performed using a customized approach
as described above. Code is available on GitHub at [https://github.
com/prevedel-lab/Deep3P-Denoising] and on Zenodo65 [https://doi.
org/10.5281/zenodo.11175040].
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