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Practical and regioselective
halonitrooxylation of olefins to access
β-halonitrates

Xuan Cheng 1,2, Quan Yin1,2, Yi-Fei Cheng1,2, Shao-Hua Wu1,2, Xin-Chang Sun1,2,
De-Yi Kong1,2 & Qing-Hai Deng 1,2

Organic nitrates, as effective donors of the signalingmolecule nitric oxide, are
widely applied in the pharmaceutical industry. However, practical and efficient
methods for accessing organic nitrates are still scarce, and achieving high
regiocontrol in unactivated alkene difunctionalization remains challenging.
Here we present a simple and practical method for highly regioselective
halonitrooxylation of unactivated alkenes. The approach utilizes TMSX (X: Cl,
Br, or I) and oxybis(aryl-λ3-iodanediyl) dinitrates (OAIDN) as sources of halo-
gen andnitrooxy groups,with0.5mol%FeCl3 as the catalyst. Remarkably, high
regioselectivity in the halonitrooxylation of aromatic alkenes can be achieved
even without any catalyst. This protocol features easy scalability and excellent
functional group compatibility, providing a range of β-halonitrates (127
examples, up to 99% yield, up to >20:1 rr). Notably, 2-iodoethyl nitrate, a
potent synthon derived from ethylene, reacts smoothly with a variety of
functional units to incorporate the nitrooxy group into the desiredmolecules.

Alkenes, as one of themost abundant and inexpensive chemicals, offer
the advantages of wide availability and low cost for organic synthesis1.
For instance, ethylene, a key hydrocarbon, is exceptionally affordable
with an annual production exceeding 200 million metric tons2. Con-
sequently, the direct difunctionalization of alkenes, which allows for
the incorporation of two functional groups into the double bond in a
single step, represents an immensely powerful strategy for accessing
complex molecules, as evidenced by numerous elegant studies3–5. A
central challenge in these transformations is controlling the regios-
electivity of olefin addition, which is further complicated by unac-
tivated alkyl-substituted C=C bonds that exhibit poor regioselectivity
due to their limited electronic and steric bias. To address this, several
primary strategies have been employed to promote regioselective
difunctionalizations of aliphatic olefins (Fig. 1a): (1) auxiliary control6–8,
using directing groups to coordinate and stabilize the metal center in
the presumed organometallic species; (2) reagent control9–11, using
specific reagents that dictate the regioselectivity of the reaction; (3)
complex catalytic systems12–17, employing complex catalysts and/or

complex reaction conditions. Therefore, the development of simple
and efficient strategies to achieve difunctionalization of alkyl alkenes
with high regioselectivity represents a challenging and appealing
research goal. Furthermore, although various functional groups such as
halogens18–20, hydroxyl21, OAc22,23, azido24,25, amino26, trifluoromethyl27,
cyano28, alkyl29, aryl30,31, alkynyl32,33, carboxyl34,35, etc., have been suc-
cessfully introduced into double bonds through the difunctionalization
of alkenes (Fig. 1a), there is still a significant demand for the introduc-
tion of other useful and attractive motifs into alkenes to access their
corresponding derivatives.

Organic nitrates, which serve as potent donors of the signaling
molecule nitric oxide (NO), find wide application in pharmaceuticals
and bio-activemolecules36–38, as exemplified bywell-known drugs such
as glycerol trinitrate and isosorbide mononitrate. Moreover, hybrid
drugs formed by combining the nitrooxy group with drug molecules
can exhibit synergistic effects or significantly reduce the side effects of
drugs while enhancing their efficacy39–42. Despite their importance,
there are limited efficientmethods for the synthesis of organic nitrates,
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particularly for the nitrooxylation of alkenes. Previous methods have
often relied on metallic or toxic reagents such as mercury nitrate43,
chlorine nitrate44, thionyl nitrate45, pyridinium bromide nitrate46, ceric
ammonium nitrate47,48, silver nitrate49, or copper nitrate50 as the
nitrooxy source, resulting in harsh reaction conditions or a limited
substrate scope. Recently, Tobias and co-workers achieved the hydro-
nitrooxylation of α-alkenes with aqueous nitric acid via visible-light
catalysis to produce the corresponding organic nitrates with moderate
to high regioselectivities51 (Fig. 1b). This elegant work represents a sig-
nificant advancement in the development of synthetic methods for
organic nitrates.

On the other hand, halogens are fundamental elements in phar-
maceutical and chemical industries52,53. For example, over 250 chlorine-
containing drugswere approved by the FDA and available on themarket
in 201954, and halogens (such as chlorine, bromine, and iodine) play a
crucial role in numerous important chemical transformations55. Given
their significance and broad utility, developing an efficient and practical
method for simultaneously introducing the nitrooxy group and halogen
into alkenes using readily available nitrooxylating reagents to achieve
regioselective olefin halonitrooxylation remains highly attractive.

As part of our continuing research in hypervalent iodine
chemistry56–60, we have recently introduced a class of highly active
noncyclic hypervalent iodine nitrooxylating reagents (1), which were
easily prepared from aryliodine diacetates and aqueous nitric acid56.
Additionally, we discovered that the trimethylsilyl (TMS) group can
efficiently convert reagents 1 into the corresponding active
intermediates56. Motivated by these discoveries, herein we report an
efficient and regioselective halonitrooxylation of alkenes using the
combination of reagent 1 and TMSX (X=Cl, Br, and I) (Fig. 1c). This
protocol exhibits remarkable reactivity, high regioselectivity, and
broad substrate generality. Styrene derivatives as substrates exhibit
complete regioselectivity under catalyst-free conditions, while the

halonitrooxylation of alkyl alkenes in the presence of a catalytic
amount of FeCl3 yield the corresponding products with high regios-
electivities. Notably, this method is easily scalable to gram quantities
and is suitable for late-stage modification of drug molecules.

Results
Optimization of reaction conditions
We began the investigation by choosing dodec-1-ene as the model
substrate. Initially, dodec-1-ene reacted with nitrooxylating reagent
1a/TMSCl directly at 0 °C in dichloromethane, getting the excepted
product 2 in 82% yield with poor regioselectivity (3.8:1 rr) (Table 1,
entry 1). Subsequently, a series of metal salts were evaluated as cata-
lysts (see the details in SI), and it was found that FeCl3 could enhance
the regioselectivity (>20:1 rr) but decreased the yield to 42% (Table 1,
entry 2). Lowering the reaction temperature to −40 °C increased the
yield of product 2 to 76% with 16:1 rr (Table 1, entry 3). Due to the high
reactivity of reagent 1a, wehypothesized that increasing the stability of
the reagents 1 might improve the reaction yield by appropriately
reducing the reaction rate. Previous studies indicated that incorpor-
ating electron-withdrawing groups into the phenyl group of 1 could
enhance the stability of reagents 156. Therefore, we synthesized a series
of reagents 1 with electron-withdrawing groups and found that the
substituent and its position significantly affected the yield and selec-
tivity of the reaction (Table 1, entries 3–17). Using the 4-CF3-substituted
reagent (1d) as the nitrooxy source improved the yield of product 2 to
83% with >20:1 rr (Table 1, entry 6). Surprisingly, when the catalyst
loading was reduced to 0.5mol %, the target product 2 was still
obtained in 82% yield with >20:1 rr (Table 1, entry 18).

Substrate scope
Having established the optimal conditions for chloronitrooxylation,
we proceeded to evaluate the scopeof unactivated alkenes.Mono-, di-,
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tri-, and tetra-substituted unactivated alkenes all underwent the
chloronitrooxylation reaction smoothly (Fig. 2a). Simple alkyl alkenes
(1-dodecene, 1-tridecene, 1-hexene) afforded the corresponding
chloronitrooxylation products (2–4) with good yields (74–82%) and
excellent regioselectivity (>20:1 rr). The allylbenzene and bute-
nylbenzene also got the corresponding products (5–6) in 64–98%
yields with excellent regioselectivity (≥20:1 rr). Substrates bearing
numerous substituents such as Br, Cl, OAc, and aldehyde groups were
tolerated under the reaction conditions, affording the products (7–13)
in 53–99%yieldswith high regioselectivities (17:1 rr to >20:1 rr). A series
of alkenes containing substituted phenyl esters (with F, Ph, CF3, Ac,
Ms(mesyl), NO2, Br, I,

tBu, orMe group) obtained the desired products
(14–24) with regioselectivity ranging from 13:1 to >20:1. Substrates
bearing heterocycles such as thiophene and phthalimide achieved the
corresponding products (25–26) in 57–64% yield with 15:1–17:1
regioselectivity. 1,1-Di-, tri-, and tetra-substituted alkenes were com-
patible, yielding the corresponding products (27–31) with excellent
regioselectivities. Deca-1,9-diene reacted with double equivalent
amounts of 1d/TMSCl to yield the desired product 32 in 62% yield with
high regioselectivity. Additionally, the reaction of cyclic alkenes
(cyclopentene, cyclohexene, norbornene) in the absence of FeCl3
proceeded stereoselectively, affording the respective trans-adducts
(33–35) in 55–78% yields. Interestingly, bromonitrooxylation or iodo-
nitrooxylation of alkenes also proceeded effectively using TMSBr or
TMSI instead of TMSCl, yielding several representative products
(36–44) with comparable yields and relatively lower regioselectivities
(for 36–39). Surprisingly, ethylene and 1-butene smoothly underwent
halonitrooxylation to get the corresponding vicinal halo-nitrates
(45–50) in 63–97% yields.

After investigating the reactions of various alkyl alkenes, we then
explored the substrate scope of activated alkenes (Fig. 2b). Aromatic

alkenes reacted smoothly with nitrooxylating reagent 1a and TMSCl at
0 °C without any catalyst, affording the desired products with com-
plete regioselectivities. The reactions performed well with a series of
styrenes, regardless of electronic nature (e.g. Me, tBu, OAc for
electron-rich groups; halogens, NO2, CF3, CO2Me, CN for electron-
deficient groups; CH2Cl, Ph for electron-neutral groups) in the para
position, affording the corresponding products (51–64) in 62–89%
yields. Styrenes bearing substituents in the ortho and meta position
were also compatible with the protocol to provide the desired pro-
ducts (65–68) in comparable yields (67–78%). Styrenes containing
multiple substituents in the phenyl group reacted well to yield pro-
ducts 69–73 in 50–83% yields, and 2-vinyl naphthalene was converted
to the corresponding product 74 in 71% yield. Hetero-aromatic alkenes
such as 3-vinylbenzofuran and 2-vinylpyridinewere also tolerant of the
reaction conditions to get product 75 in 21% yield and product 76 in
26% yield, respectively. 1,1-Disubstituted aromatic alkenes were effi-
cient substrates, furnishing products 77–80 in 39–94% yields.
Although acyclic 1,2-disubstituted substrates only yielded products
81–83with poor diastereoselectivity, cyclic substrates produced trans-
adducts (84–87) with excellent regio- and diastereo-selectivity.
Moreover, trisubstituted and tetrasubstituted alkenes gave the corre-
sponding products 88–90 in 37–79% yields. In addition, m-divi-
nylbenzene and p-divinylbenzene underwent double reactions by
doubling the amount of reagents, affording products 91 and 92 with
high regioselectivities and poor diastereoselective ratios, respectively.
Fortunately, 1, 3-enynes as the substrates were converted into the
corresponding products 93 and 94 in moderate yields. Furthermore,
using TMSBr and TMSI instead of TMSCl, the corresponding difunc-
tionalization of styrenes was also conducted well. Several representa-
tive substrates underwent the reaction to yield the expected
bromonitrooxylation products 95–100 and iodonitrooxylation

Table 1 | Reaction optimization.a

Entry R [M] temp. (°C) Time Yield rr

1 4-H (1a) – 0 2min 82% 3.8:1

2 4-H (1a) FeCl3 0 2min 42% >20:1

3 4-H (1a) FeCl3 −40 10min 76% 16:1

4 4-Me (1b) FeCl3 −40 10min 54% 16:1

5 4-F (1c) FeCl3 −40 1 h 55% >20:1

6 4-CF3 (1d) FeCl3 −40 2 h 83% >20:1

7 4-CN (1e) FeCl3 −40 8 h 50% 15:1

8 4-NO2 (1f) FeCl3 −40 12h 10% 15:1

9 2-Me,4-NO2 (1g) FeCl3 −40 3 h 56% 5:1

10 3,5-di-F (1h) FeCl3 −40 1 h 74% 12:1

11 2,6-di-F (1i) FeCl3 −40 1 h 90% 3:1

12 2,4-di-F (1j) FeCl3 −40 1 h 56% 4:1

13 3,4-di-F (1k) FeCl3 −40 1 h 71% 7:1

14 3,4,5-tri-F (1l) FeCl3 −40 1 h 65% 12:1

15 3-CF3 (1m) FeCl3 −40 2 h 56% 7:1

16 2-CF3 (1n) FeCl3 −40 2 h 72% 3:1

17 3,5-di-CF3 (1o) FeCl3 −40 2 h 45% 7:1

18b 4-CF3 (1d) FeCl3 −40 2 h 82% >20:1

M metal, temp. temperature.
aReaction conditions: dodec-1-ene (0.20mmol), 1 (0.6 equiv), TMSCl (1.2 equiv), FeCl3 (5mol %), CH2Cl2 (2mL). Yields were for isolated and purified products. Regioisomeric ratios (rr) were
determined by 1H NMR spectra of the crude reaction mixtures.
b0.5mol % FeCl3 was used as the catalyst.
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products 101–105, respectively. The structures of products were
further confirmed by single-crystal X-ray structure analysis of 61
and 84.

To highlight the versatility of our protocols, we investigated their
applicability to a variety of complex substrates (Fig. 2c). Initially, we
synthesized a range of alkenes by introducing styrenyl or aliphatic
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(0.5mol %), CH2Cl2 (2mL), −40 °C, 2 h; Condition B: substrate (alkene)
(0.20mmol), 1a (0.6 equiv), TMSX (1.2 equiv), CH2Cl2 (2mL), 0 °C, 2–5min. Yields

were for isolated and purified products. Regioisomeric ratios were determined by
1H NMR spectra of the crude reaction mixtures. aSee Supplementary Figs. 1–4 for
details. Ac acetyl;Msmethanesulfonyl, tBu tert-butyl, Boc tert-butyloxy carbonyl, Bn
benzyl, Fmoc fluorenylmethyloxy carbonyl.
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alkenyl units onto pharmaceuticals or bioactive molecules via a com-
mon and efficient condensation reaction (see SI). Encouragingly, these
substrates, bearing diverse scaffolds such as pharmaceutical ingre-
dients, sugars, purine nucleosides, amino acids, and peptides, were
well-tolerated in the chloronitrooxylation process, yielding the desired
products 106–126 in 45–93% yields with at least 13:1 rr. Notably, the
bromonitrooxylation and iodonitrooxylation of complex substrates

proceeded smoothly, yielding the corresponding products 127 and
128, respectively.

Synthetic utilities
Moreover, the methods can be easily scaled up to gram scale (Fig. 3a).
Several reactions were chosen to test the effectiveness, yielding the
vicinal chloronitrate 2 (1.65 g, 78% yield, >20:1 rr), 106 (1.72 g, 87%
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yield), and vicinal bromonitrate 100 (2.45 g, 81% yield). Additionally,
2-iodoethyl nitrates (41, 47) were obtained in 0.97 g (94% yield) and
10.34 g (95% yield), respectively. Compound 106 can be further
transformed into a series of derivatives, including vicinal chlor-
oalcohol 129 (83% yield), vicinal chloroether 130 (75% yield), vicinal
chlorothiocyanate 121 (90% yield), vicinal chloroazide 132 (33% yield),
and vinylazide 133 (83% yield), through smooth reactions (Fig. 3b).

Surprisingly, 2-iodoethyl nitrate (47) serves as a powerful syn-
thetic precursor for introducing a nitrooxy group into molecules61.
Various compounds bearing nitrooxy groups 134–147 were easily
prepared via nucleophilic substitution of diverse pharmaceuticals/
functional groups with 2-iodoethyl nitrate using K2CO3 as a base
(Fig. 3c). Significantly, nicorandil (143)62, a medication used to treat
and reduce chest pain caused by angina, was synthesized from nico-
tinamide in 33% yield63.

Mechanistic studies
To gain a preliminary understanding of the reaction mechanism, sev-
eral control experiments were conducted. Adding a radical inhibitor
such as 1, 4-benzoquinone (BQ) or 2,3-dichloro-5,6-dicyano-1,4-ben-
zoquinone (DDQ) to the model reaction using dodec-1-ene or
4-bromostyrene as the substrate resulted in the corresponding pro-
duct 2 or 56 in comparative yields, respectively (Fig. 4a). Notably, the
inhibition of the reaction by TEMPO is likely due to its induction of the
decomposition of reagent 1, thereby preventing the reaction (Fig. 4a).
In addition, a series of competitive experiments usingpara-substituted
styrenes were performed (Fig. 4b). The Hammett plot (log(kR/kH)
versus σ) displayed a linear correlation with a ρ value of −2.34
(R2 = 0.99)64,65. The good linearity, along with the results of the radical
inhibition experiments mentioned above, implies that the reaction
proceeds through an electrophilic route.

We conducted density functional theory (DFT) calculations (The
DFT calculation data are provided in the Source Data) to understand
the reaction pathway. The computational visualizations, illustrated in
Fig. 5a, demonstrate that the formation of the iodonium ion inter-
mediate is less energetically favorable when it arises from the cleavage
of the Cl-I bond (Int2’-51 and Int2’-4) compared to the NO3-I bond
breaking (Int2-51 and Int2-4) by 11.83 kcal/mol for styrene (51-S) and
by 7.76 kcal/mol for 1-hexene (4-S), suggesting the improbability of the
iodonium forming through chlorine displacement. Subsequent reac-
tion steps indicated that the nitrate ion is capable of a direct attack on
the iodonium intermediate. With 1-hexene, this leads to computed
transition state energy barriers of 13.58 kcal/mol for the primary car-
bon (TS1’-4) and 7.06 kcal/mol for the secondary carbon (TS1-4). For
styrene, the barriers are estimated at 16.27 kcal/mol for the primary
carbon (TS1’-51) and 8.57 kcal/mol for the benzyl carbon (TS1-51).

Clearly, Markovnikov selectivity is more evident with styrene, partly
due to the larger differential in energy between the Markovnikov and
anti-Markovnikov processes.Moreover, the low energy barriers for the
reactions with 1-hexene signify that they proceed speedily at room
temperature, which reduces kinetic selectivity.

The addition of FeCl3 has shown fascinating effects, as depicted in
Fig. 5b. The calculations suggest that FeCl3 has a stronger binding
affinity to the nitrate ion (Int4) by approximately 5 kcal/mol compared
to chloride (Int4’), enhancing the stabilization of the resulting iodo-
nium ion. This stabilization leads to a decrease in energy for the
iodonium intermediates of styrene (Int5-51) and 1-hexene (Int5-4) by
1.02 kcal/mol and 4.08 kcal/mol respectively. This implies that due to
the nitrate being stabilized by FeCl3, the energy barriers for the sub-
sequent nitrate addition ring-opening reactions increase. For 1-hexene,
the barriers for the Markovnikov (TS2-4) and anti-Markovnikov (TS2’-
4) ring openings are 14.78 and 24.47 kcal/mol, respectively. For styr-
ene, these barriers sit at 16.98 and 23.45 kcal/mol (TS2-51 and TS2’-51,
respectively). It is evident that the substantial energy barriers for the
anti-Markovnikov process sufficiently retard the reactions at room
temperature, significantly enhancing selectivity.

A plausible reaction mechanism was proposed based on the
experimental results and previous related reports56,66,67 (Fig. 5c). Initi-
ally, 1a reacts with TMSCl to form active species PhI(ONO2)Cl (Int1)
and TMSOTMS. FeCl3 coordinates with the nitrate ion68 in Int1 to form
Int4. Species Int4 then reacts with alkyl alkene to generate Int5, which
subsequently converts to Int6 via aMarkovnikov ring opening. Finally,
Int6 undergoes reductive elimination to yield the desired product,
along with the release of FeCl3 and the generation of iodobenzene as a
byproduct.

Discussion
In summary, we have demonstrated a highly regioselective and prac-
tical halonitrooxylation strategy for a wide range of olefins. This pro-
tocol offers high efficiency, mild conditions, simple operation, and
good compatibility with various functional groups. Especially, the
product of ethylene iodonitrooxylation, 2-iodoethyl nitrate, can be
combined with a range of natural products and drugs to obtain cor-
responding nitrooxylated functional molecules. The gram-scale pre-
paration and late-stage modification of bioactive molecules show the
potential utility of the method. Further investigations into expanding
the method are currently underway in our laboratory.

Methods
General procedure A for the synthesis of β-halonitrates
To a test tube was charged with FeCl3 (0.001mmol, 0.5mol %), olefin
(0.20mmol, 1.0 equiv) and dichloromethane (2mL), and the mixture
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ONO2

Cln
n

Br
Br

ONO2

Cl

65%56

additive

N.P.

TEMPODDQBQ

55%

none

81%
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2

2
82%

(>20:1 rr) N.P.
62%

(>20:1 rr)
66%

(>20:1 rr)

Condition A in Fig. 2

additive (1.5 equiv)

Condition B in Fig. 2

additive (1.5 equiv)

(a) Radical inhibition experiments (b) The Hammett plot

H/R

Fig. 4 |Mechanistic experiments. aRadical inhibitionexperiments.bTheHammett equation: y = −2.3421x + 0.1526 (R2 = 0.9853). BQ1,4-benzoquinone,DDQ2,3-dichloro-
5,6-dicyano-1,4-benzoquinone, TEMPO 2,2,6,6-tetramethylpiperidoxyl, N.P. no product.
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was cooled to −40 °C. Then 1d (0.12mmol, 0.6 equiv) and TMSX
(X =Cl, Br, or I; 0.24mmol, 1.2 equiv) were added and stirred at −40 °C
for 2 h. After the reaction was complete, the crude product was pur-
ified by column chromatography (petroleum ether /ethyl acetate =
500/1 – 5/1, v/v) via silica gel to afford the desired product.

General procedure B for the synthesis of β-halonitrates
To a test tube was charged with 1a (0.12mmol, 0.6 equiv) and
dichloromethane (2mL), and the mixture was cooled to 0 °C. Then
olefin (0.20mmol, 1.0 equiv) and TMSX (X=Cl, Br, or I; 0.24mmol, 1.2
equiv) were added and stirred at 0 °C for 1–5min. After the reaction
was complete, the crude product was purified by column

chromatography (petroleum ether/ethyl acetate = 500/1 – 5/1, v/v) via
silica gel to afford the desired product.

General procedure for the synthesis of 134–147
In a test tube, the corresponding substrate (0.2mmol) was placed and
DMF (1mL) was added. Then, K2CO3 (2.4mmol, 1.2 equiv) and
2-iodoethyl nitrate (2.4mmol, 1.2 equiv) were added and stirred. Upon
completion of the reaction, 10mL of EtOAc were added, followed by
10mL of H2O. The reaction mixture was then extracted and washed
three times with H2O (10mL). The organic layer was washed with brine
(20mL) and was dried with MgSO4. The filtrate was removed under
reduced pressure. The crude mixture was purified by flash column
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chromatography (petroleum ether /ethyl acetate = 50/1 – 1/1, v/v) to
yield the substrates.

Data availability
The authors declare that the data supporting the findings of this study,
including synthetic procedures, characterization data, further details
of computational studies and NMR spectra, are available within the
article and the Supplementary Information file, or from the corre-
sponding author upon request. Source data are provided with this
paper. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition numbers of CCDC2246338 (for
61), and CCDC2327858 (for 84). These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via https://
www.ccdc.cam.ac.uk/structures/. Source data are provided with
this paper.
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