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Temporal multilayer structures in discrete
physical systems towards arbitrary-
dimensional non-Abelian Aharonov-Bohm
interferences

Zhaohui Dong 1, Xiaoxiong Wu1, Yiwen Yang1, Penghong Yu1,
Xianfeng Chen 1,2,3 & Luqi Yuan 1

Temporal modulation recently draws great attentions in wave manipulations,
with which one can introduce the concept of temporal multilayer structure, a
temporal counterpart of spatially multilayer configurations. This kind of
multilayer structure holds temporal interfaces in the time domain, which
provides additional flexibility in temporal operations. Here we take this
opportunity and propose to simulate a non-Abelian gauge field with a tem-
poral multilayer structure in the discrete physical system. Two basic temporal
operations, i.e., the folding/unfolding operation and the phase shift operation
are used to design such a temporal multilayer structure, which hence can
support noncommutative operations to realize the non-Abelian Aharonov-
Bohm interference in the time domain. A two-/three-dimensional non-Abelian
gauge field can be built, whichmay be further extended to higher dimensions.
Ourwork therefore provides a uniqueplatformenabling generalizationof non-
Abelian physics to arbitrary dimensions and offers a method for wave
manipulations with temporal band engineering.

Temporal modulations have recently emerged as a powerful tool for
wave manipulations1–4 and hence stimulate growing interest in the
electromagnetic community. As a typical operation in temporal
modulations, when a system experiences a change of material prop-
erties abruptly in time and uniformly in space with its timescale
comparable to the period of the electromagnetic wave, the so-called
temporal interface (TI)5,6 is created. Unlike its spatial counterpart (i.e.
spatial boundary), the system holds the translational symmetry at TI
while the time-reversal symmetry is broken, thus providing intriguing
opportunities for exploring novel scattering features in controlling
waves7–10. If multiple TIs are aligned sequentially, a temporalmultilayer
structure can be built11, and a variety of promising applications are
unveiled including temporal aiming12, antireflection temporal

coating13, frequency conversion14, and temporal optical activity15. In
analogy to continuous electromagnetic systems, one can introduce TI
by abruptly varying the configuration of the lattice16–20 in discrete
systems where the field can be expanded by a set of finite, discrete set
of bound states or modes21. Fruitful implementations are also con-
ceivable by using multiple TIs in these discrete systems, such as tun-
able temporal cloaking17, temporal beam encoder19 and temporal
interference20. Therefore, cascade TIs offer a unique opportunity to
explore new electromagnetic phenomena in discrete systems.

On the other hand, the Aharonov-Bohm (AB) interference shows a
crucial verification of the physical consequences of gauge fields22,23,
and hence is a long-standing important research subject in physics24. In
particular, recently, there has been emerging interest in synthesizing
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non-Abelian gauge fields to explore novel phenomena25–29, and the
resulting non-Abelian AB interference30–33, therefore, becomes an
important example of non-Abelian effects that is important to topo-
logical quantum computing34. It is of fundamental interest to find a
flexible way to construct non-Abelian AB interference and push such
effect into higher-dimensional gauge-field cases. Obviously, the
operation of TIs in electromagnetic systems holds the potential in
accomplishing such a task, which demands the study.

In this paper, we tackle this problem by utilizing the concept of
temporal multilayer structure by introducing cascade TIs in the dis-
crete tight-binding model. We explore a temporal interference of
degenerate states, and further develop it into anAB interferenceunder
a temporal non-Abelian gauge field using the construction with two
types of TIs. Such a non-Abelian gauge field can be achieved by
leveraging the temporal degenerate-state interference created by TI
operations. Both SU(2) and SU(3) non-Abelian gauge fields are studied
in theory and are verified by simulations, which can potentially be
extended to a SU(N) one. Our work reveals that noncommutative
operations can be performed in a temporal multilayer structure which
further empowers wave manipulation by temporal engineering sys-
tems. Besides, the proposed method of non-Abelian AB interference
holds unique features compared to previous works25,27,32,33 (see sup-
plementarymaterial Section I), which enables the extension to a higher
dimensional gauge field, and, therefore, offers a way of studying high-
dimensional non-Abelian gauge field-related physics in the time
domain.

Results
Temporal multiplayer structure and two types of TIs
We first introduce the concept of the temporal multilayer structure
and its usage in wave manipulations. A simple example is illustrated in

Fig. 1a, where the system experiences two TIs during the evolution of
wave pulse. Suppose the pulse having an initial eigenstate of the sys-
tem (ω1, k) is injected at t =0, where ωn represents the quasi-energy, n
denotes the band index, and k represents the quasi-momentum.When
the first TI occurs, the structure of the system changes, and the
eigenstate varies into the new ones fðω0

n,kÞg. Therefore, the input pulse
projected into the new eigenstates while the momentum k still con-
serves as the systemholds translational symmetry.One canexpect that
if there are multiple bands (n > 1), different projections of the pulse
onto different bands experience evolutions with different group
velocities, so the pulse can be divided into multiple parts which
accumulate different phases during evolutions due to the difference
in their quasi-energies. We now assume the second TI occurs, and the
system changes back to the original one. Under this operation,
instead of getting projected onto the original eigenstate (ω1, k), the
pulse with eigenstates fðω0

n,kÞg is actually projected onto all the
eigenstates {(ωn, k)}. Therefore, by judicious engineering the tem-
poral multilayer structure, one can obtain the desired final state of
the wave. Such temporal architecture exploits various degrees of
freedom of the system offered by multiple and even different types
of TIs, which enables advanced wave controls. Moreover, the system
under multiple temporal operations can be discrete in model, which
offers a versatile platform for a diverse family of TIs thanks to the
flexibility in controlling lattice structures through on-site gain or
loss35, coupling phases16, and strengths18, and more importantly
provides possible experimental feasibility compared to its con-
tinuous counterparts17,19,20.

Next, we introduce two simple temporal operations as two types
of TIs, which arebuildingblocks of the temporalmultilayer structure in
our study. The first one is the band-folding/band-unfolding operation
(see Fig. 1b). Consider two lattice models which are described by
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Fig. 1 | Wave evolution in a temporalmultilayer structure and two kinds of TIs.
a Illustration of the concept of a temporal multilayer structure, where a wave
evolves inside a discrete system experiencing two TIs at different times. Schematic
operations of band-unfolding (andband-folding as the inverse operation) and band

shifting.b, cChanges of the lattice structureby changing the rangesof couplings or
coupling phase for realizing operations. d, e Changes of the states and band
structures accordingly. Red (violet) lines are the bandstructures before (after) the
TI. Green (yellow) dots denote the states before (after) the TI.
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Hamiltonians

H1 = g
X
m

ðe�iφay
mam+ 1 + e

iφay
m+ 1amÞ, ð1Þ

H2 = g
X
m

ðe�iφay
mam+ 2 + e

iφay
m+ 2amÞ: ð2Þ

where g is the coupling strength, am (ay
m) is the annihilation (creation)

operator at them-th lattice site, andφ is the coupling phase. The lattice
constants of H1 and H2 are l and 2l, respectively, i.e., H1 includes only
the nearest-neighbor hoppings while H2 includes only the next-
nearest-neighbor hoppings. In particular, the Hamiltonian H2 can be
split into two individual sublattices which only contain the even
number sites or odd number sites with lattice constant 2l,

H2 = g
X
m22n

ðe�iφay
mam+2 + e

iφay
m+ 2amÞ + g

X
m22n + 1

ðe�iφay
mam+ 2 + e

iφay
m+2amÞ,

ð3Þ

where n is an integer, and therefore the system supports a twofold
degenerate state for givenω and k, whose eigenstates can bewritten in
the odd number site basis with (1, 0)T (i.e., odd-distributed mode) and
even number site basis with (0, 1)T (i.e., even-distributed mode),
respectively. The twoHamiltoniansH2 andH1 canbe interconverted by
the operation of band-folding/band-unfolding by changing the range
of all couplings between sites from {lr} to {lr/s}. Here, both {lr} and {lr/s}
denote the coupling range. Particularly, lr (lr/s) represents the range of
couplings between sites and their lr-th (lr/s-th) nearest neighbors,
which is a positive integer. s is the scaling factor of band folding or
unfolding.We take the band-unfolding operation shown in Fig. 1b as an
example. Such operation transforms H2 to H1 by varying the next-
nearest neighboring couplings to the nearest neighboring ones for all
sites, corresponding to {lr} = {2} and s = 2. After the band-unfolding
operation, the first Brillouin zone is expanded from [ − π/2l, π/2l] to
[ − π/l, π/l], and an initial eigenstate (ω, k) (with k = k0 + rπ/l, where
k0∈ [ − π/2l, π/2l] and r is an integer) marked by the green dots on the
red band projects onto two different eigenstates (ω1,2, k1,2) (with
k1 = k0 + 2rπ/l and k2 = k1 + π/l) shown as the yellow dots on the violet
band with different group velocities in Fig. 1d. Such a phenomenon is
the result from the change of the lattice constant in discrete systems.
Due to the translational symmetry of the lattice in Eq. (3), the two initial
eigenstates (ω, k1) and (ω, k2) are indistinguishable. However, when the
lattice constant changes from 2l to l in themodel, i.e.,H2 is changed to
H1, the two projected eigenstates are distinguishable as the first
Brillouin zone is expanded. Therefore, after this type of TI, we can
represent the wave state in a new basis, where (1, 0)T represents the k1
mode and (0, 1)T represents the k2 mode. If we assume the wave state
before the TI as ðIo,IeÞT in the odd/even-distributedmodebasis and the
wave state after the TI as ðOk1

,Ok2
ÞT in the k1/k2 mode basis, the input-

output relation of this band-unfolding operation can be written by

Ok1

Ok2

 !
=

1ffiffiffi
2

p 1 1

1 �1

� �
Io
Ie

� �
, ð4Þ

whose derivation is given in Methods. Similarly, the band-folding
operation as the inverse operation of the band-unfolding one, changes
the short-range couplings to the long-range ones, i.e.,H1 is changed to
H2, which folds the first Brillouin zone, and hence the eigenstates
(ω1,2, k1,2) project onto the twofold degenerate state, where the
mathematical description is the inverse function of Eq. (4).

The second temporal operation is the band shifting, illustrated in
Fig. 1c, corresponding to the operation that the TI occurs at t = t0 with
the coupling phase changed from φ to φ0 =φ+Δφ on the Hamiltonian

H1. The bandstructure then becomes

ω=2g cosðk � φ0Þ= 2g cosðk � φ� ΔφÞ, ð5Þ

which is shifted by Δφ in the k-axis. Such band shifting is related to the
change of the effective vector potential A introduced by φ, which is
linked to φ with the expression36

φ=
Z m+ 1

m
A � dl, ð6Þ

where l is the vector along the direction form sitem to sitem+ 1. At this
TI, an initial wave state, for example, marked by the green dot on the
red band, experiences a vertical transition to the final state marked by
the yellow dot on the violet band as shown in Fig. 1e, with the con-
servation of the momentum k and the change of the group velocity. In
particular, if Δφ =π, such transition corresponds to a time reversal
operation16. Before we end this section, we note that such two types of
TIs can be combined together so one can perform the band-folding/
band-unfolding and band-shifting operations simultaneously.

Temporal non-Abelian AB interference in 2D gauge field
With the two types of TIs introduced in the previous section, we now
construct a temporal multilayer structure with three TIs which are
operated at t = 6, 30, 54 g−1, respectively (Fig. 2a). At the first TI, we
apply the band-unfolding operation which changes the system’s
Hamiltonian from H2 to H1 with φ =0. The initial wave state (ω, k)
marked by the green dots in Fig. 2a projects onto two wave states
(ω1,2, k1,2) marked by the yellow dots with different group velocities,
and hence the initial wave packet splits into two parts with different
propagation directions as shown in Fig. 2b. At the second TI at
t = 30 g−1, we shift the coupling phaseφ from0 to π corresponding to a
time reversal operation which changes the signs of group velocities of
the two wave packets to the opposite ones. Then two wave states
(ω1, k1) and (ω2, k2) project onto two new wave states (−ω1, k1) and
(−ω2, k2), respectively. At the same time, we add an additional phase θ
(i.e., phase shift operation) onto the k1 mode (details are given in
“Methods” section). Lastly, at the third TI when the two wave packets
encounter, we apply the band-folding operation and shift the coupling
phase φ from π back to 0 simultaneously (detailed boundary condi-
tions in temporal operations used in simulations are given in Meth-
ods). The two wave states (−ω1, k1) and (−ω2, k2) both project onto the
state (ω, k) with interference. However, there is the added phase dif-
ference θ in two temporal paths, the combined wave state at the third
TI may not return to the initial one. Such a temporal interference
process between two degenerate states (i.e., the odd-distributed and
even-distributedmodes) can be described by the input-output relation

Oo

Oe

� �
=
1
2

1 1

1 �1

� �
eiθ 0

0 1

 !
1 1

1 �1

� �
Io
Ie

� �
= eiθ=2

cosðθ=2Þ i sinðθ=2Þ
i sinðθ=2Þ cosðθ=2Þ

� �
Io
Ie

� �
,

ð7Þ

where ðOo,OeÞT denotes the output state in the odd/even-distributed
mode basis. We give a specific example with the numerical simulation
in Fig. 2b by preparing the initial wave as a pure odd-distributedmode
ðIo,IeÞT = ð1,0ÞT and choose θ = 0.5π in the phase shift operation. The
output wave can be predicted by Eq. (7), and the detailed evolution
process is summarized in Fig. 2c, d where evolutions of odd number
sites and even number sites are plotted separately. One can find the
emergence of the even-distributedmode after the thirdTI (t > 54g−1) in
Fig. 2d which shares the same intensity as that of the odd-distributed
mode. Therefore, we here show a temporal interference in a temporal
multilayer structure that offers us the opportunity to explore non-
Abelian physics29,37–39 which requires the transition between the
internal degenerate states of a system.
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Before we explore the signatures of the non-Abelian AB inter-
ference, let us briefly review the non-Abelian AB interference in a two-
dimensional (2D) gauge field30–33. If we consider a particle with pseu-
dospin under a gauge field A, which is described by

A=Axex +Azez , ð8Þ

whereex and ez are the vectors along x and zdirection in the parameter
space, respectively. Suppose there are two paths with equal distance L
along x and z direction for the particle tomove frompoint A to point B
as depicted in Fig. 3a.

The initial state of the particle Ψi and the final state Ψf can be
linked by an operation Uγ, which is written by38

Uγ =P exp i
Z
γ
A � dl

� �� �
, ð9Þ

where γ is a specific path and P denotes a path-ordered integral,
indicating that Ψf may depend on which path the particle chooses. If
the particle first travels along x direction and then z direction, the final
state is given by Ψf = exp iAzL

� �
exp iAxL

� �
Ψi. If the particle chooses

the path first along z direction and then x direction, the final state is
given byΨf = exp iAxL

� �
exp iAzL

� �
Ψi. IfA is a non-Abelian gauge field,

Ax andAzdo not commute andΨf will be different depending onwhich

path the particle takes. Wemake an illustration of the evolution of the
particle for the two paths in the Bloch sphere as shown in Fig. 3b, c by
taking AxL ∝ σx and AzL ∝ σz, where σx and σz are the Pauli matrices. The
non-Abelian gauge field results in sequential rotations of the state
vector around two different axes. One can find that although the
system starts with the same initial state Ψi (red arrows in Fig. 3b, c), it
ends in different final states Ψf (yellow arrows in Fig. 3b, c). The non-
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Fig. 3 | Temporal AB interference and Wilson loop calculation in a 2D
gauge field. a Schematic of two paths for a particlemoving frompoint A to point B
under a gauge fieldA. b, c Evolutions of the state vector of a particle following the
two paths under a non-Abelian gauge field in the Bloch sphere. The red (yellow)
arrow denotes the initial state (final state). d Plot of the logarithm of S versus
parameters of the applied gauge field ϕ and θ, which shows whether the corre-
sponding gauge field is Abelian (blue lines at θ =0, ±π or ϕ =0, ±π) or non-Abelian.
e Theoretical calculation and g numerical calculation results of the intensity con-
trast ρ between the two degenerate states after the interference versus initial
intensity distribution α and phase difference β under the non-Abelian interference.
f, hTheoretical calculation and numerical calculation results of ρ under the Abelian
interference. i Theoretical calculation and j numerical simulation results of the
Wilson loop ∣WCW∣, where ∣WCW∣ ≠ 2 is a necessary but insufficient condition for a
non-Abelian gauge field. Black dash lines indicate the genuine non-Abelian cases.
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Abelian AB interference corresponds to the interference of these two
different final states in such a non-Abelian gauge field.

Now we finally illustrated the way in constructing the non-
Abelian AB interference occurs with the temporal multilayer struc-
ture in Fig. 2a and the resulting signatures for observing such tem-
poral interference presented in Fig. 3e–j. We first show how to realize
the two non-commutable operations in the temporal domain, which
is the key to emulating non-Abelian AB interference. The temporal
degenerate-state interference previously discussed in Fig. 2a can be
represented as an operation Uθ = e

iθ2ei
θ
2σx , which can be used to

simulate the σx gauge field. To construct the relevant σz gauge field,
we apply the phase shift operation on the even-distributed mode
with the phase ϕ, which can be represented by the operation
Uϕ = ei

ϕ
2e�iϕ2σz . With the two temporal operations on-hand, we show

the temporal version of the non-Abelian AB interference under the
gauge field in Fig. 3a. Firstly, we perform the Uθ operation and then
the Uϕ operation at t = 57 g−1 to obtain a final state Ψθϕ

f = e�iϕ2σz ei
θ
2σxΨi

with the global phase being neglected (details are shown in the
supplementary material Section II), which corresponds to the
state vector sequentially rotates around the x and z axis in Fig. 3b.
Similarly, we can obtain a final stateΨϕθ

f = ei
θ
2σx e�iϕ2σzΨi by performing

the Uϕ operation at t = 3 g−1 with a followed Uθ operation, which
corresponds to the sequential rotation of state vector around the z
and x axis in Fig. 3c. Such two sequential operations can be per-
formed simultaneously so the resulting interference pattern
Ψinter =Ψ

θϕ
f +Ψϕθ

f = ðψ1,ψ2ÞT can be reached. Constructing other
forms of non-Abelian gauge field needs a cascade of the two opera-
tions described above. By engineering other kinds of TIs, one may
possibly generate the desired non-Abelian gauge field
independently.

We now study the choices of values of θ andϕ that can synthesize
a non-Abelian gauge field. The criterion of a genuine non-Abelian
gauge field is the non-commutativity of two holonomies38. Here we
choose a pair of time-reversal operations UCW and UCCW which start
and end at point A in Fig. 3a defined as32

UCW � P exp i
I

CW
A � dl

� �� �
= ei

ϕ
2σz e�iθ2σx e�iϕ2σz ei

θ
2σx , ð10Þ

and

UCCW � P exp i
I

CCW
�A � dl

� �� �
= ei

θ
2σx e�iϕ2σz e�iθ2σx ei

ϕ
2σz , ð11Þ

respectively. We plot the logarithm of the summation
S=
P

a,bj½UCW,UCCW�abj2 as the phase diagram in Fig. 3d, where
½UCW,UCCW�ab is the element at the a-th row and the b-th column of the
commutation [UCW, UCCW]. At ϕ =0, ±π and θ =0, ±π, one can see
UCW,UCCW

	 

=0, indicating the Abelian case, while at other choices of

ϕ and θ, UCW,UCCW

	 

≠0, corresponding to the non-Abelian case. The

Abelian case with θ = 0 or ϕ = 0 can be easily understood, as the state
vector only rotates around the xor z axis through thewhole holonomy,
and therefore the two operations UCW and UCCW are commutable,
while theAbelian caseswithθ = ±πorϕ = ±π cases are special since the
state vector rotates around both the x and z axis, but the two
operations are still commutable.

The non-Abelian AB interferences are explored in Fig. 3e, g, with
comparisons from their Abelian counterparts in Fig. 3f, h. In detail, we
prepare the initial state by Ψiðα,βÞ= ðcosα=2,eiβ sinα=2Þ with para-
meters α, β ∈ [−π, π]. Here, α denotes the intensity distribution
between the twodegenerate states, andβdenotes thephasedifference
between them. The intensity contrast is defined as

ρ= logðjψ1j2=jψ2j2Þ, ð12Þ

which are calculated both theoretically and numerically to present the
interference patternΨinter. We plot theoretical results of a non-Abelian
case in Fig. 3e with θ =0.3π and ϕ =0.4π, as well as an Abelian one in
Fig. 3f with θ =π and ϕ = 0.4π, which are depicted as the yellow and
green dots respectively in the phase diagram in Fig. 3d. The choice of
these parameters supports a general case of an Abelian (non-Abelian)
AB interference. For the non-Abelian case in Fig. 3e ρ varies with both
the intensity distribution α and the phase difference β, indicating a
mixture between the two degenerate states, and hence reflecting the
non-Abelian nature of the gauge field. Moreover, we can see that poles
emerge at specific choices of (α, β) = (0.25π, − 0.7π), ( − 0.25π, 0.3π),
( − 0.75π, − 0.7π) and (0.75π, 0.3π) where the even-distributed or odd-
distributed modes of Ψθϕ

f and Ψϕθ
f take destructive interference. For

the Abelian case, as θ =π which causes a switching rather than a
mixture between the two degenerate states, the phase difference β of
the initial state has no effect on the interference (Fig. 3e). As a result,
the intensity contrast ρ only varies with the distribution α of the initial
state. We also perform numerical simulations to verify our theoretical
calculations (where detailed numerical procedure can be found in the
supplementary material Section II) and plot numerical results in
Fig. 3g, h, which are well consistent with the theoretical results in
Fig. 3e, f.

Another criterion of the existence of a non-Abelian gauge
field is the Wilson loop W =TrðUCÞ38, where UC is the Berry hol-
onomy. For an N-dimensional loop operation UC, ∣W∣ = N points to
the case of the Abelian gauge field. Here we calculate the theo-
retical result of the Wilson loop in the proposed temporal mul-
tilayer structure by taking jWCWj= jTrðUCWÞj versus θ and ϕ and
plot it in Fig. 3i. Compared with the phase diagram in Fig. 3d, one
sees that the results of ∣WCW∣ = 2 in Fig. 3i and UCW,UCCW

	 

=0 in

Fig. 3d are matched well at θ = 0 or ϕ = 0, while they are incon-
sistent in the vicinity of θ = ± π or ϕ = ± π. The reason is that
∣W∣ ≠ 2 is a necessary but insufficient condition for the presence
of a non-Abelian gauge field38. We also perform the numerical
simulation to extract ∣WCW∣ plotted in Fig. 3j, which also shows
good agreement with the theoretical result in Fig. 3i.

Towards interference in higher-dimensional gauge field
It is of fundamental interest in exploring non-Abelian gauge fields in
higher dimensions (N > 2). However, to do so, an N-fold degenerate
state is required as the key ingredient, which is intrinsically challenging
in previous atomic or photonic platforms27,32,40–43 due to the limitation
of the degenerate modes in nature. One advantage of the proposed
temporal multilayer structure is the capability for constructing an
arbitrary N-fold degenerate state. Therefore, in this section, we
showcase an example of the temporal non-Abelian AB interference in a
three-dimensional gauge field, and point out the possibility in gen-
eralizing towards higher dimensions.

We here consider a third lattice Hamiltonian

H3 = g
X
m

ðe�iφay
mam+ 3 + e

iφay
m+ 3amÞ, ð13Þ

that supports the next-next-nearest neighbor couplings. The model of
H3 can be splitted into three independent subsystems, which therefore
the system supports a trifold degenerate state for given ω0 and k0 with
k0 = k0

0 + 2rπ=3l, where k0
0 2 ½�π=3l,π=3l�. The trifold degenerate

eigenstates can be written into mode site basis with
ðψ0

1,ψ
0
2,ψ

0
3Þ= ð1,0,0ÞT , ð0,1,0ÞT and (0,0,1)T where ψ0

i represent the
(3n + i)-th sites with n and i being integers. After performing a similar
band-unfolding operation by converting H3 into H1, states project into
three eigenstates with different momentum, denoted by ðω0

1,k
0
1Þ,

ðω0
2,k

0
2Þ and ðω0

3,k
0
3Þ with k0

1 = k
0
0 + 2rπ=l, k0

2 = k
0
1 + 2π=3l and

k0
3 = k

0
1 + 4π=3l, respectively. The noncommutative operations U 0

θ1 ,θ2
and U 0

ϕ1 ,ϕ2
can be achieved by a similar manner as the twofold case,
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where

U 0
θ1 ,θ2

=
1
3

1 1 1

1 ei2π=3 e�i2π=3

1 e�i2π=3 ei2π=3

0
B@

1
CA

eiθ1 0 0

0 eiθ2 0

0 0 1

0
B@

1
CA

1 1 1

1 e�i2π=3 ei2π=3

1 ei2π=3 e�i2π=3

0
B@

1
CA

ð14Þ

is realized by a band-unfolding operation followed by a time reversal
operation as well as phase shift operations θ1 and θ2 for modes ðω0

1,k
0
1Þ

and ðω0
2,k

0
2Þ respectively, and finally a band-folding operation;

U 0
ϕ1 ,ϕ2

=
eiϕ1 0 0

0 eiϕ2 0

0 0 1

0
B@

1
CA ð15Þ

is realized by phase shifts ϕ1 and ϕ2 to ψ0
1 and ψ0

2 in H3. With these two
operations, we can construct the same configuration of non-Abelian
gauge field A0 =A0

xex +A
0
zez as shown in Fig. 3a. A0

x and A0
z are linked

with U 0
θ1 ,θ2

and U 0
ϕ1 ,ϕ2

by U 0
θ1 ,θ2

= expðiA0
xLÞ and U 0

ϕ1 ,ϕ2
= expðiA0

zLÞ. We
then perform the non-commutativity of the two operations. The
wave state Ψðψ0

1,ψ
0
2,ψ

0
3Þ can be parametrized by Ψðα,β,ξ ,χÞ=

ðeiξ cosðαÞ sinðβÞ,eiχ sinðαÞ sinðβÞ, cosðβÞÞT , where α, β ∈ [0, π/2] and
ξ, χ ∈ [0, 2π]44. Here, α, β denotes the intensity distribution between
the degenerate states, and ξ, χ denotes the phase differences between
them. These four parameters thus span a four-dimensional parameter
space, which can be represented by the direct product of two 2D
surfaces, i.e., an octant (α, β) and a torus (ξ, χ) shown in Fig. 4a, b. Any
pure state can be viewed as a point on the two surfaces respectively.
We choose an initial state Ψi, and then successively implement
operations U 0

θ1 ,θ2
and U 0

ϕ1 ,ϕ2
or U 0

ϕ1 ,ϕ2
and U 0

θ1 ,θ2
. The trajectories of

state vector in the parameter space are shown in Fig. 4a–d, where
green (blue) arrow lines denote the action ofU 0

θ1 ,θ2
(U 0

ϕ1 ,ϕ2
) to the state

vector. One can find that U 0
ϕ1 ,ϕ2

has no effect on the octant (α, β) as it
only changes the phase differences ξ and χ, while U 0

θ1 ,θ2
change the

state vector in both the octant (α, β) and the torus (ξ, χ). Moreover, the
two operations U 0

θ1 ,θ2
and U 0

ϕ1 ,ϕ2
show non-commutativity in Fig. 4a–d,

implying thatA0
x andA0

z arenot commutable. In Fig. 4e–g, the results of

UCW,UCCW

	 

are shown. The red dots, lines and surface represent

regions where UCW,UCCW

	 

=0 (i.e., anAbelian gauge field). Apart from

the common Abelian cases being denoted by the red lines and surface
where only one type operation is taken onΨ actually (i.e., eitherϕ1 and
ϕ2 or θ1 and θ2 take 0), the special Abelian cases being denoted by red
dots appear in Fig. 4e, g but not in Fig. 4f for the reason that U 0

θ1 ,θ2
is

noncommutative with U 0
ϕ1 ,ϕ2

except for (ϕ1, ϕ2) = (0, 0). Therefore we
can conclude that the condition for a special Abelian case is θ1, θ2, ϕ1,
and ϕ2 take the value 0 or ± π with (∣θ1∣ + ∣θ2∣)(∣ϕ1∣ + ∣ϕ2∣) ≠ 0. We also
show the slices of S0 =

P
a,bj½UCW,UCCW�abj in Fig. 4e–g. One can find

that the patterns of S0 display a central symmetry at
(ϕ1, ϕ2, θ1) = (0, 0, 0) in Fig. 4e, g, while the center of symmetry of
the pattern in Fig. 4f seems to be shifted along θ1 direction.

We then perform the AB interference under a trifold non-Abelian
gauge field with θ1 = 0.3π, θ2 = 0.4π, ϕ1 = 0.7π, and ϕ2 = 1.2π to give an
example of a general case of the consequence of such a high-
dimensional non-Abelian gauge field. The theoretical results of inten-
sity contrast ρ12 and ρ13 which are defined as ρij = logðjψ0

ij2=jψ0
j j2Þ with

various initial state Ψi(α, β, ξ, χ) are shown in Fig. 5a–c and d–f,
respectively. The interference patterns again vary with not only the
intensity distribution α and β, but also the phase differences ξ and χ,
which reflects the non-Abelian nature of the mixing between the
degenerate states. Moreover, one finds that not only the strip-like
patterns in Fig. 5d–f similar to the twofold case in Fig. 3e, but alsomore
complex patterns in Fig. 5a–c are displayed. This may indicate that
there are exotic phenomena lying on a higher dimensional gauge field.
We also show the simulation results of ρij by numerically solving the
temporal multilayer structure with a similar approach of the twofold
case in Fig. 5g–l, which consists quitewell with the theoretical ones.We
further plot the theoretical and numerical results of the Wilson loop
∣WCW∣ in Fig. 6 with θ1, θ2, ϕ1, and ϕ2 varying, which gives good
agreement between each other. Furthermore, one can find that the
regions of ∣WCW∣ = 3 correspond to the common Abelian case by
comparing Figs. 4e–g and 6. For example, the red region near θ1 = 0 in
Fig. 6a always exists along ϕ1 direction, which corresponds to the red
surface in Fig. 4e, but the red region nearϕ1 = 0 along θ1 direction only
exists for ϕ2 = 0 in all three cases in Fig. 6 which correspond to the red

α

�

|ψ2|
|ψ1|

|ψ3|
a

χ



b

|ψ1|
|ψ2|

|ψ3|
c

α

�

d



χ

6

4

2

0

π

0

-π
-π

e

0

π -π 0
π

�1

� 2=0


1

8

6

4

2

0

π

0

-π
-π

f

0

π -π 0
π

�1

� 2=π/2
8

6

4

2

0

π

0

-π
-π

g

0

π -π 0
π

�1

� 2=πS′ S′ S′


1 
1


2 
2 
2

Fig. 4 | Extension to a three-dimensional gauge field. a, b Evolutions of the state
vector in the parameter space with two sequential operations U 0

θ1 ,θ2
and U 0

ϕ1 ,ϕ2
.

c, d Evolutions of the state vector in the parameter space with two sequential
operations U 0

ϕ1 ,ϕ2
and U 0

θ1 ,θ2
. Red (yellow) arrows denote the initial state Ψi (final

state Ψf). e–g Theoretical calculation results of commutation of the two evolution

operators UCW,UCCW

	 

versusparametersof the applied gaugefieldθ1,ϕ1 andϕ2 for

e θ2 = 0, f θ2 =π/2, and g θ2 =π, respectively. The red dots, lines, and surface
represent regions where UCW,UCCW

	 

=0 (i.e., an Abelian gauge field). The color-

maps are the slices of S0, where S0≠0 represents the genuine non-Abelian cases.

Article https://doi.org/10.1038/s41467-024-51712-z

Nature Communications |         (2024) 15:7392 6

www.nature.com/naturecommunications


lines in Fig. 4e–g. Furthermore, one can find that ∣WCW∣ ≠ 3 for the
points of the special Abelian cases (see the corners of the figures).
These again show the necessity but insufficiency of the Wilson loop
criterion. Wewant to point out that the presented temporalmultilayer

structure can only simulate specific types of three-dimensional non-
Abelian gauge fields because of the limited number of parameters. As
the operation U ∈ SU(3) under an arbitrary three-dimensional non-
Abelian gauge field is characterized by eight independent
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parameters45, while there are only four parameters in our model.
However, an arbitrary operation U ∈ SU(3) may also be possibly
achieved by sequential operations U 0

ϕ0
1 ,ϕ

0
2
U 0

θ01 ,θ
0
2
U 0

ϕ1 ,ϕ2
U 0

θ1 ,θ2
where eight

independent parameters are included (see the supplementarymaterial
Section III).

Before ending this section,we discuss the potential generalization
to a higher-dimensional gauge field in our proposal. We introduce a
model with the Hamiltonian

HN = g
X
m

ðe�iφay
mam+N + eiφay

m+NamÞ: ð16Þ

We can again split HN into N independent subsystems, and therefore
such a lattice model can support an N-fold degenerate state. Band
unfolding/folding and phase shift operations may also be applied with
the temporal multilayer structure. An N-dimensional non-Abelian
gauge field can be constructed by a similar manner as the procedure
similar to the twofold and trifold cases. The temporal multilayer
structure cooperating with phase shift operations can generate
rotations of the state vector around two non-parallel axes, which
correspond to two noncommutative operations for the state and
therefore realize two noncommutative gauge field components.
Further AB interference under an N-dimensional non-Abelian gauge
field may also be demonstrated.

Possible experimental implementations
We have shown the in-principle capability for the proposed temporal
multilayer structure to create N-dimensional non-Abelian gauge fields
in a space including the time dimension. Here in this section, we fur-
ther discuss possible experimental implementations for achieving

such a proposal, as well as the potential outputs in future experiments.
Although our proposal desires several flexible operations in connect-
ing discrete sites with required hopping phases, it can be potentially
realized in various kinds of discrete physical systems, ranging fromreal
space to synthetic dimension. In real space, waveguide arrays46,47 and
coupled-resonator optical waveguides48 could be potential candidates
for the proposed temporal multilayer structure. Spatial discrete pho-
tonic crystal models may also be possible as long as one can apply all
desired operations at different times1–4,49,50. Recent developed syn-
thetic dimensions in photonics51–55 such as time-bins17,20,35,56–58 and fre-
quency lattice59–65 also provide a convenient way to fulfill these tasks.
Here, as a pedagogical example, we take the toymodel in the synthetic
frequency dimension59–65, which leverages the discrete resonant fre-
quencymodes of light as the sites in synthetic space. With appropriate
external modulations61–65, the connectivities between resonant modes
can be designed, which provide desired operations and Hamiltonians.
In the following, we take the twofold case as an example to explicitly
illustrate the possible experimental implementation with the synthetic
frequency dimension. As a side note, we also give a brief discussion on
the possible implementations for other experimental platforms such
as time bins, waveguide arrays, and coupled-resonator optical wave-
guides in the supplementary material Section IV.

The scheme of our proposal is shown in Fig. 7a, where light cir-
culates inside a ring resonator with zero group velocity dispersion,
supporting resonantmodes at frequenciesωp =ω0 + pΩ. Hereω0 is the
reference frequency, Ω is the frequency spacing between two nearby
modes, and p is an integer. The resonator is dynamicallymodulated by
an electro-optic modulator (EOM) with the phase modulation
Γ= exp½iκ cosðqΩt +φmÞ�, where κ≪ 1 is themodulation strength, qΩ is
the modulation frequency (q is a positive integer) and φm is the
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modulation phase. The coupling strengths and phases between lattice
sites may vary with the number of resonances in principle. However,
such variation could be neglected for the case we considered from
rigorous theoretical analysis in ref. 59 and from recent
experiments59,61–65, so the translational symmetry of the synthetic fre-
quency lattice can hold. Such a scheme constructs a synthetic lattice
with the site spacing qΩ along the frequency axis of light59. In order to
conduct a band-unfoldingoperation, i.e., turning theHamiltonianH2 in
Eq. (2) to H1 in Eq. (1), one can change the modulation frequency from
2Ω to Ω60,61. A time reversal operation can be realized by tuning the
modulation phase from ϕm=0 to ϕm=π. Moreover, a pair of wave-
length demultiplexer (WDM) andwavelengthmultiplexer (WM) is used
to separate even-distributed modes (even p) and odd-distributed
modes (odd p) propagating into different paths (Fig. 7a)66 while in the
upper path there exists a phase shifter 1 (PS1) providing a phase shiftϕ.
In the modulated resonator supporting the synthetic frequency
dimension, the circulating time inside the ring resonator gives the
momentum that is reciprocal to the frequency59–62. Hence we place
another phase shifter 2 (PS2) in themainpath of the resonator, and if it
is only turned on in the vicinity of the time corresponding to the
momentum k1 for each roundtrip, a phase shift θ can then be added
onto the k1 mode. By conducting these operations in a proper time
sequence, one can construct the temporal non-Abelian gauge field
following the procedure of the temporal multilayer structure descri-
bed in the previous section.

To observe the resulting non-Abelian AB interference, we use two
configurations of ring resonators in Fig. 7a to produce two wave states
Ψθϕ

f and Ψϕθ
f respectively (see Fig. 7b). Such two wave states are

interfered at a 50:50 coupler via external waveguides and get detected

by the photodetector (PD). The key difference in the resulting intensity
distributions from the output spectra at PD can therefore provide key
potential experimental evidence between an Abelian AB interference
and a non-Abelian one (see supplementary material Section V). For the
Abelian case, the resulting intensity distribution is identical to the input
field spectral distribution except for a shift of the envelope along the
frequency axis, meaning that the phase difference β between the even-
distributed and odd-distributed modes in the proposed system has no
effect on the interference pattern. As a comparison, for the non-Abelian
case, the resulting intensity distribution is different from the input one,
with a clear interference pattern that varies with both α and β.

To further demonstrate the confirmation of the adequacy for
experimental situations, we introduce the rigorous numerical
approach based on wave-equation (WE) method (see details in the
supplementary material Section VI), which has been successfully pro-
ven as very useful in predicting/verifying experimental
observations59,61–65. In Fig. 7c, d, we show numerical calculation results
of the intensity contrast ρ based on WE method without (Fig. 7c) or
with (Fig. 7d) the group velocity dispersion (GVD) being included. One
canfind that both simulation results basedonWEmethod showagood
agreement with the one based on the tight-binding Hamiltonian in
Fig. 3g. Therefore, we can conclude that the effect of frequency-
dependent dispersion is negligible for the experimental proposal in
our considerations. We also discuss the effects of the presence of
losses or noises in the supplementary material Section VII, where we
find that the interference patterns still preserve under losses and
coupling temporal noises. To evaluate the effect of the intracavity loss
andnoisewhich broaden the spectral linewidth of the resonantmodes,
we summarized the experimental characteristics of recent
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experiments in synthetic frequencydimension62,63,67,68 and find that the
resonant modes can still be well distinguished with the presence of
intracavity loss and noise (see the supplementarymaterial Section VII).
As for noises in the input field, the results can still be valid for small
perturbations, but theymay no longer bemaintained if the disorder of
the input field becomes too strong, because it causes a severe broad-
ening of the input wave packet in the frequency or reciprocal space
and then the twowave packets cannot bewell separated after the band
unfolding operation. Therefore, a high preparation fidelity of the input
wave packet is essential to the experimental demonstration of our
proposal, which can be achieved with the current photonic
technology63. Moreover, the TI could be smooth in experiments. We
analyze how the sharpness of the TI influences the interference, and
conclude that the required operation speed for the modulation fre-
quency and phase change can be loosened in the supplementary
material Section VIII. Lastly, one should also notice that the scattering
feature at a TI is different between a Maxwell’s-equations-governed
system and a Schrödinger-equation-governed system69,70. Such a dif-
ference should be taken into account for experimental realization in
some platforms. All the simulation results in this work are performed
without taking an analytical solution of the TIs.

Discussion
In summary, we showcase the construction of the temporal multilayer
structure with multiple functional TIs to support simulations of the
two-/three-dimensional non-Abelian gauge field in the time domain.
Discrete systems are modeled so one can perform flexible band engi-
neerings at different times. The degenerate states in bandstructures
are taken so noncommutative operations for the combined state with
the time evolution can be designed to realize the non-Abelian AB
interference. As the unique advantage, the proposedmethod provides
a simple strategy to construct a high-dimensional degenerate space,
and the noncommutative operations to realize non-Abelian AB inter-
ference are relatively straightforward, which enables the extension to
arbitrary dimensional interference, especially when the synthetic
dimension is used. Such a proposalmay be potentially implemented in
various discrete physical systems with the recently developed tech-
nology, including real space46–48 and synthetic dimensions in
photonics51–55 as well as in atoms55,70.

At last, we want to emphasize that the studied temporal multilayer
structure in discrete systems here holds unique featureswhich have not
been pointed out in previous works to the best of our knowledge. In
particular, for a discrete system, the lattice structure can be flexibly
tuned with reconfigurable long-range couplings and coupling phases,
so it provides key ingredients for the realization of the non-Abelian
gauge field with higher dimensions. The resulting arbitrary non-Abelian
AB interference in the time domain is fundamentally important for
deepening our understanding of non-Abelian physics and wave field
manipulation in real and synthetic space. Therefore, our work may
trigger further research interests in the temporal periodic structure in
discrete systems including both spatial boundaries and TIs. Further-
more, the scattering features of TI in discrete systems are still largely
unexplored, so further studies could enrich the building blocks to build
more temporal multilayer structures with different functionalities.
Lastly, the combination of spatial and temporal degrees of freedom can
also guide the multilayer structure into the spatiotemporal regime1–4,49.

Methods
Derivation of Eq. 4
The input-output relation of the band-unfolding operation can be
written by

Ok1

Ok2

 !
=

P11 P12

P21 P22

� �
Io
Ie

� �
, ð17Þ

where ðIo,IeÞT is the initial wave state, Ok1
,Ok2

is the final wave state,
and Pij = h ~ψiðkÞjψjðkÞi with j ~ψiðkÞi (jψjðkÞi) being the i-th (j-th) eigen-
state of after (before) the band-foldingoperation. However, we cannot
directly obtain Pij since j ~ψiðkÞi and jψjðkÞi are Bloch waves with
different periods. Nevertheless,wecanobtain the eigenstates ofH1 and
H2 with the same lattice constant 2l and thendetermine Pij accordingly.
The eigenstates of H2 are (1, 0)T and (0, 1)T which are given in the main
text. ForH1, we can regard that the even number sites and odd number
sites are different and the lattice constant is 2l, and then obtain the
eigenstates (ω±, k) whose corresponding eigenvectors are
ð1=

ffiffiffi
2

p
, ± 1=

ffiffiffi
2

p
ÞT . One can find that (ω+, k) corresponds to (ω1, k1) and

(ω−, k) corresponds to (ω2, k2), and therefore determines Pij.

Details of the temporal degenerate-state interference
Here, we give the details of the numerical simulation procedure for the
temporal degenerate-state interference as shown in Fig. 2b. We set a
Gaussian-shaped-like initial state cmðt =0Þ= exp½�ðm� 81Þ2=40� �
expðik0mlÞwith k0 = 0.25π/l for odd numberm, wherem = 1, 2,…, 201.
Note that the Gaussian-shaped-like initial state in the m space corre-
sponds to a Gaussian-shaped-like distribution ~kðk0Þ centered at k0 in
themomentumspace. For t∈ [0, 6 g−1] theHamiltonianof the system is
H2 with g =0.002 and φ =0. At t = 6 g−1, we switch the coupling from
the next nearest neighbor one to the neatest neighboring one so that
theHamiltonianbecomesH1 withφ =0. Theoriginal state nowprojects
into twonew stateswith differentmomenta ~kðk1Þ and ~kðk2Þ. To achieve
a time reversal operation16, we switch φ from 0 to π at t = 30 g−1.
Meanwhile, we give an additional phase θ to the ~kðk1Þ component.
Such an additional phase shift can be obtained by firstly performing
the Fast Fourier transformation (FFT) on cm at the time t = 30 g−1 to
obtain ck(n) where n = 1, 2, …, 201, then multiplying a phase factor eiθ

for ck(n) at 0 < k < 3π/4l, and finally performing an inverse FFT to
obtain the new c0mðt =30g�1Þ. We show the FFT ck from cm(t = 30g−1)
and corresponding phase shift θ(n) of different ck in Fig. 8. Lastly, we
change both the coupling range and coupling phase so that the
Hamiltonian returns back toH2 in themain text withφ = 0. In addition,
the phase shift operation can be approximately applied by directly
multiplying the phase factor eiθ to cm(t = 30g−1) for 0 <m< 101 since the
states ~kðk1Þ and ~kðk2Þ are separated in the m space (Fig. 2b). Such an
operation may help to apply phase shift on one of the modes in the
momentum space.

Moreover, all the simulation results based on the TB method are
performed by the rigorous numerical method. No analytical solution
of the temporal interfaces is applied in the numerical simulation. The
boundary condition of the Hamiltonian we use for band-folding

0 0.5 1

1

0

0.5|c
k|

π

0

-π

Ph
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e 
sh

ift
 �

(n
)

kl/2π

Fig. 8 | Illustration of the phase shift operation in the momentum space. Blue
line: ∣ck∣ at t = 30g−1. Red line: additional phase θ(n) for different k components.
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operation is

H =
H1 t ⩽ t0
H2 t > t0

�
, ð18Þ

where t0 is the corresponding time of the temporal interface. The
boundary condition for band-unfolding operation is similar. The
boundary condition of the coupling phase for the time reversal
operation is

φ=
0 t ⩽ t0
π t > t0

�
: ð19Þ

Although we show the sharp change has been used in simulations for
Figs. 2 and 3, the influence of the sharpness of these temporal inter-
faces on the interference in simulations are discussed in the supple-
mentary material Section VIII.

Data availability
The data generated in this study have been deposited in the figshare
database under accession code [https://doi.org/10.6084/m9.figshare.
25479529].

Code availability
The codes used to process the data generated in this study are avail-
able in figshare under accession code [https://doi.org/10.6084/m9.
figshare.25479529].
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