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Genome-wide DNA methylation profiling in
blood reveals epigenetic signature of
incident acute coronary syndrome

Pinpin Long 1,2,11, Jiahui Si3,11, Ziwei Zhu4, Yi Jiang4, Yufei Wang1,2, Qin Jiang1,2,
Wending Li1,2, Xuedan Xu1,2, Yutong You1,2, Minghan Qu 4, Huihui Wang4,
Tingting Mo1,2, Kang Liu1,2, Jing Jiang1,2, Qiuhong Wang1,2, Canqing Yu 5,6,
Yu Guo7, Iona Y. Millwood 8,9, Robin G. Walters 8,9, Ximiao He10, Yu Yuan1,2,
Hao Wang1,2, Xiaomin Zhang1,2, Meian He1,2, Huan Guo1,2, Zhengming Chen 8,9,
Liming Li 5,6, Jun Lv 5,6 , Chaolong Wang 4 & Tangchun Wu 1,2

DNA methylation (DNAm) has been implicated in acute coronary syndrome
(ACS), but the causality remains unclear in cross-sectional studies. Here, we
conduct a prospective epigenome-wide association study of incident ACS in
twoChinese cohorts (discovery: 751 nested case-control pairs; replication: 476
nested case-control pairs). We identified and validated 26 differentially
methylated positions (DMPs, false discovery rate [FDR] <0.05), including three
mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1)
and fourwith causal evidence fromMendelian randomization (PRKCZ, TRIM27,
EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with
the expression in blood of their mapped genes (PIGG and EHBP1L1), which
were further found to overexpress in leukocytes and/or atheroma plaques.
Finally, our DMPs could substantially improve the prediction of ACS over
traditional risk factors and polygenic scores. These findings demonstrate the
importance of DNAm in the pathogenesis of ACS and highlight DNAm as
potential predictive biomarkers and treatment targets.

Acute coronary syndrome (ACS) is one of the most severe subtype of
coronary heart disease (CHD), including a group of conditions char-
acterized by a sudden reduction or blockage of blood flow to the heart
muscle, such as acute myocardial infarction (AMI) and unstable angina

pectoris (UAP)1.Despite substantial progress in theprevention, diagnosis,
and treatment of ACS, it remains a major cause of morbidity and mor-
tality in China and worldwide2. While genome-wide association studies
(GWAS) have identified over 150 genetic variants associated with CHD3,
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few studies specifically focus on ACS subtype and the biological
mechanisms of the GWAS loci remain largely unknown4. The DNA
methylation (DNAm),which integrates environmental factors andgenetic
susceptibility to regulate gene expression without altering the DNA
sequence, has gained increasing research interests5. In addition to pro-
viding mechanistic insights into the development of ACS, DNAm altera-
tions have the potential to serve as preventive and therapeutic targets
because the epigenome can be modified by environmental factors6,7.

A growing body of evidence, including our previous work8, sup-
ports an important role of DNAm in the pathogenesis of ACS9. How-
ever, most previous studies could not distinguish the direction of
causality between changes in DNAm and ACS due to their cross-
sectional design. In contrast, while prospective cohort design is more
reliable to establish causality due to the time-ordering of the associa-
tions, there were five epigenome-wide association studies (EWAS) of
incident CHD or its subtypes based on prospective cohorts10–14. These
studies, however, showed little overlap in their reported differentially
methylated positions (DMPs), possibly due to heterogeneity in popu-
lation, CHD subtypes, and the adjusted covariates. In particular, the
lack of validation in independent populations and different mechan-
isms underlying subtypes of CHD might limit the robustness of these
findings. Targeting homogeneous subtypes of CHD, such as ACS, in a
large EWAS is likely to generate robust associations and to elucidate
the regulatory role of DNAm in disease pathogenesis.

In this study,weconduct a two-stageEWASof incidentACSbasedon
two Chinese cohorts. We first perform genome-wide DNA methylation
analysis of incident ACS at 777,307 cytosine-phosphate-guanine (CpG)
positions in theDongfeng-Tongji (DFTJ) cohort15, then externally validate
significant DMPs in the China Kadoorie Biobank (CKB)16. We further
explore the clinical applications of these DMPs as prevention and treat-
ment targets and risk prediction biomarkers for ACS.

Results
Characteristics of the study populations
After quality control (QC), the discovery dataset (DFTJ) consisted of
751 incident ACS cases (376 men) with a mean age of 64.93 years and
751 matched controls (376 men) with a mean age of 64.84 years; the
replication dataset (CKB) included 476 incident ACS cases (267 men)

with a mean age of 50.97 years and 476 matched controls (267 men)
with amean age of 49.79 years. In both datasets, ACS cases had higher
body mass index (BMI) and higher prevalence of hypertension, dysli-
pidemia, and diabetes (P <0.05) (Table 1).

The Shiyan multi-omics dataset consisted of 156 healthy partici-
pants (78men)with ameanageof 41.93 years (Supplementary Table 1).
The ACS case-control expression dataset consisted of 12 ACS patients
and 12matched controls, who had amean age of 53.75 and 53.82 years,
respectively (Supplementary Table 2). The overall study design flow-
chart is presented in Supplementary Fig. 1.

Differentially methylated CpGs associated with incident ACS
In the discovery stage, after adjusting for major risk factors of ACS
and the proportion of six leukocytes, we identified 72 DMPs (false
discovery rate [FDR] <0.05) and 27 DMPs (Bonferroni-corrected
P value < 0.05) that were associated with incident ACS (Fig. 1 and
Supplementary Data 1). Ten out of these 72 DMPs were annotated to
previously reported cardiovascular disease (CVD) susceptibility genes
(Supplementary Data 2). The most significant DMP was cg00937402
mapped to TUSC3, which had a P value of 2.08 × 10−24. This DMP,
however, together with four other DMPs, failed to pass QC in the
replication dataset. Replication was conducted on the remaining 67
significant DMPs, among which 26 showed directionally consistent
associations at FDR <0.05 (all Pmeta < 2.1 × 10−7, Table 2). The top hit
was cg04869583 mapped to DNM1L (odds ratio [OR] = 0.61, 95% con-
fidence interval [CI]: 0.55–0.68, Pmeta = 1.42 × 10−18). Three of the 26
DMPs were mapped to known CVD susceptibility genes, including
cg00660626 to PRKCZ, cg24395386 to PRDM16, and cg16749093 to
EHBP1L1 (Supplementary Data 2). In addition, 20 of the 26 DMPs were
mapped to genes relevant to CVD related traits, such as obesity, blood
lipid levels, and inflammatory factors (Supplementary Data 3). Sensi-
tivity analysis stratified by ACS subtypes showed no evidence of het-
erogeneity between AMI and UAP (P for heterogeneity >0.2), except
for cg01550915 (P for heterogeneity = 0.04, Supplementary Fig. 2).
Further adjustment of physical activity and dietary intakes had little
impact on the EWAS results (Supplementary Fig. 3), and all of the 26
validated DMPs remained significant (FDR <0.05) in both discovery
and replication cohorts (Supplementary Data 4).

Table 1 | Basic characteristics of study participants in the discovery and replication stage

Discovery stage in DFTJ cohort Replication stage in CKB cohort

Variablesa Controls (n = 751) Cases (n = 751) P valueb Controls (n = 476) Cases (n = 476) P valueb

Basic characteristics

Age, years 64.84 ± 7.20 64.93 ± 7.16 – 49.79 ± 7.22 50.97 ± 7.62 –

Male, n (%) 376 (50.07) 376 (50.07) – 267 (56.09) 267 (56.09) –

BMI, kg/m2 23.93 ± 3.21 24.79 ± 3.32 <0.001 23.34 ± 3.24 23.95 ± 3.70 0.01

Current smokers, n (%) 135 (17.98) 164 (21.84) 0.11 101 (21.22) 115 (24.16) 0.07

Current drinkers, n (%) 216 (28.76) 217 (28.89) 0.89 92 (19.33) 70 (14.71) 0.06

Estimated cell type proportions

CD8+ T cell, % 0.09 ±0.05 0.09 ±0.04 0.94 0.05 ±0.04 0.06 ±0.04 <0.001

CD4+ T cell, % 0.10 ± 0.04 0.10 ±0.05 0.04 0.11 ± 0.04 0.09 ±0.05 <0.001

NK cell, % 0.10 ± 0.05 0.10 ±0.04 0.003 0.13 ± 0.06 0.12 ± 0.06 0.001

B cell, % 0.03 ± 0.02 0.03 ±0.03 0.05 0.03 ±0.02 0.03 ±0.02 0.01

Monocyte, % 0.06 ±0.03 0.07 ± 0.02 0.74 0.07 ± 0.03 0.07 ± 0.03 0.51

Neutrophil, % 0.55 ± 0.08 0.55 ±0.08 0.99 0.61 ± 0.08 0.63 ±0.09 0.01

Diagnosis

Hypertension, n (%) 438 (58.32) 555 (73.90) <0.001 141 (29.62) 254 (53.36) <0.001

Dyslipidemia, n (%) 283 (37.68) 391 (52.06) <0.001 96 (20.17) 127 (26.68) 0.02

Diabetes, n (%) 151 (20.11) 226 (30.09) <0.001 22 (4.62) 46 (9.66) 0.003

BMI body mass index, CKB the China Kadoorie Biobank, DFTJ cohort Dongfeng-Tongji cohort, NK cell natural killer cell.
aData were presented as means ± SD for continuous variables and numbers (percentages) for categorical variables.
bP for values were derived from Student’s t test for continuous variables, and Chi-square test for the categorical variables. P values were determined using two-sided statistical tests.
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DMPs identified in the discovery stage showed significant enrich-
ment in eight Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (P <0.05), with the top being Hedgehog signaling pathway,
inositol phosphate metabolism, circadian rhythm, and phosphatidyli-
nositol signaling system (Supplementary Data 5). Furthermore,many of
the top enriched Gene Ontology (GO) pathways were related to phos-
phoinositol signaling pathways (Supplementary Fig. 4).

For each validated DMP, we selected the most significant cis-
methylation-quantitative trait locus (cis-meQTL) as the instrumental
variable (IV) for Mendelian randomization (MR) analysis (Supplemen-
tary Data 6). Causal evidences were reinforced between four CpGs and
CHDsubtypes, including cg00660626mapped to PRKCZ (UAP,β ± SE =
−0.463 ±0.234, P =0.048), cg27100266 toTRIM27 (UAP,−1.071 ± 0.412,
P =0.009), cg22293416 to EMC2 (UAP, −0.234 ±0.116, P =0.044), and
cg16749093 to EHBP1L1 (MI, −0.385 ±0.175,P =0.028) (Supplementary
Data 7). In addition to UAP, cg27100266 mapped to TRIM27 was also
significantly associated with the overall CHD risk in the MR analysis
(β ± SE = −0.560 ±0.208, P =0.007, Supplementary Data 8).

Expression of genes nearby 26 validated DMPs in ACS-related
tissues
We found three significant negative associations between validated
DMPs with the expression of their mapped genes in leukocytes,
including cg03609847 and PIGG, cg12853539 and HDDC2, and

cg16749093 and EHBP1L1 (P < 0.05) (Supplementary Data 9). In addi-
tion, we observed that the methylation levels at ten DMPs were sig-
nificantly correlatedwith the expression levels of at least one proximal
gene (P <0.05) (SupplementaryData 10). The lowexpressionof several
genes, such as PRDM16 and NRXN3, in the leukocytes might limit the
statistical power to detect their correlation with DNAm (Supplemen-
tary Fig. 5).

Combining evidence from different datasets (Supplementary
Figs. 6–8), we found significant three-way associations at cg03609847
to PIGG (Fig. 2) and cg16749093 to EHBP1L1 (Fig. 3). Consistent with
hypomethylation in incident ACS cases, the expression levels of both
PIGG and EHBP1L1 were elevated in the leukocytes of ACS patients.
Furthermore, overexpression of PIGG and EHBP1L1 in atherosclerotic
plaques suggested that theymay increase the risk of ACSbypromoting
atherosclerosis.

Identification of transcription factors and their potential
regulatory roles
Based on transcription factor binding site prediction, the top 30
transcription factors that may bind to cg03609847 and cg16749093
were listed in Supplementary Data 11. In particular, ChIP-seq experi-
ments provided strong evidence that POLR2A, the largest subunit of
RNA polymerase II, could bind to promoter regions of both PIGG and
EHBP1L1 (Supplementary Data 12). Furthermore, hTFtarget database

λλ=1.150

Fig. 1 | Epigenome-wide association study of incident ACS in the
Dongfeng–Tongji cohort. a Manhattan plot. The 26 validated CpGs associated
with incident ACS are shown in red dots. We labelled genes mapped to the 26
validated CpGs, with 3 mapped to known cardiovascular disease genes labelled in
red text. b QQ plot. The QQ plot illustrates the distribution of observed P values
compared to expected values under the null hypothesis of no association. λ is the
genomic inflation factor. c Volcano plot. The x-axis shows the effect size of each
CpG (raw M value) associated with incident ACS, whereas the y-axis indicates

–log10 (P) of the associations. The 7 hypermethylated CpGs with FDR <0.05 are
shown in red dots, and the 65 hypomethylated CpGs with FDR<0.05 are shown in
blue dots. For Manhattan plot and volcano plot, the horizontal solid line corre-
sponds to the genome-wide significance threshold aftermultiple testing correction
(FDR<0.05), and the horizontal dashed line corresponds to the significance
threshold of Bonferroni-corrected P <0.05. The P value and FDR are calculated
using two-sided tests. ACS acute coronary syndrome, CpG cytosine-phosphate-
guanine, FDR false discovery rate.
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suggested that POLR2A could regulate the expression of both PIGG
and EHBP1L1. In our Shiyan multi-omics dataset, the mRNA expression
level of POLR2A had moderate negative correlations with the methy-
lation level of cg03609847 (R = −0.115; P = 0.152) and cg16749093
(R = −0.193; P = 0.016), and strong positive correlations with themRNA
expression levels of PIGG (R =0.876; P <0.001) and EHBP1L1 (R =0.816;
P <0.001) (Supplementary Fig. 9).

Prediction of ACS risk by MRS and PRS
Based on 67 DMPs, we constructed amethylation risk score (MRS) and
evaluated its predictive performance for ACS in both DFTJ and CKB
cohorts. As shown in Fig. 4 andTable 3, by addingMRS to the reference
model of traditional risk factors, the area under the receiver operating
characteristic curves (AUC) increased significantly from0.628 to0.686
(P < 0.001, Delong’s test) in the DFTJ cohort, and from 0.625 to 0.729
(P < 0.001) in the CKB cohort. In addition, MRS significantly improved
risk discrimination and reclassification of ACS in both cohorts
(Table 3).

For comparison, we evaluated the predictive value of two poly-
genic risk scores (PRSs) of CHD and found that there was little
improvement in the prediction of ACS by adding PRSs to the reference
model (Fig. 4 and Table 3). Although PRS significantly improved risk
discrimination and reclassification of ACS in CKB cohort, the
improvement was much lower than those of MRS (Table 3).

Discussion
Wehaveconducteda two-stageEWASof incidentACSbasedon two large
prospective Chinese cohorts and the Illumina EPIC array covering more
than 850,000CpGs.We identified 26 reproducibleDMPs associatedwith
incident ACS, three of which were mapped to known CVD susceptibility
genes (PRKCZ, PRDM16, and EHBP1L1). Further comparison of gene
expression data from leukocytes, atherosclerotic plaques, and adjacent
normal tissues pinpointed cg03609847 to PIGG and cg16749093 to
EHBP1L1 with potential regulatory roles in the pathogenesis of ACS.
Finally, we constructed an MRS, leading to substantial improvement in
the risk prediction of ACS over traditional risk factors and PRS. These
findings provide insights into the pathogenesis of ACS and have impor-
tant implications for the prevention and treatment of ACS.

Toour knowledge, therewerefiveprospective EWASsonCHD10–14,
of which none focused on ACS and only two had performed inde-
pendent validation10,12. However, no reproducible DMPs have been
reported. Several reasons might contribute to the low replication rate.
First, DNAm is sensitive to environmental exposures, which can result
in substantial heterogeneity in the DNAm patterns in different
populations12. Second, CHD has many subtypes with distinct patho-
genesis and clinical presentations. Third, unreliable results were
common in studies with small sample sizes or no replication data. We
overcome these limitations by conducting a large-scale two-stage
EWAS of ACS in the Chinese population, followed by in-depth

Table 2 | The 26 validated DMPs associated with incident ACS

DMPs Chr: position Gene DFTJ cohorta CKB cohortb Combined analysisc

OR (95% CI) OR (95% CI) OR (95% CI) P meta

cg00660626 1:2107451 PRKCZ 0.76 (0.68–0.85) 0.72 (0.57–0.90) 0.75 (0.68–0.83) 5.05 ×10−8

cg24395386 1:3328593 PRDM16 0.71 (0.64–0.80) 0.68 (0.53–0.86) 0.71 (0.64–0.78) 6.91 ×10−11

cg01057742 1:152445050 LCE5A 0.72 (0.64–0.81) 0.70 (0.55–0.89) 0.72 (0.65–0.80) 7.94 ×10−10

cg18157738 1:201161205 IGFN1 0.74 (0.66–0.84) 0.69 (0.55–0.87) 0.73 (0.66–0.81) 1.24 ×10−8

cg03609847 4:529442 PIGG 0.75 (0.66–0.84) 0.69 (0.54–0.88) 0.74 (0.66–0.82) 1.01 ×10−8

cg12455300 5:40712757 TTC33 0.75 (0.67–0.85) 0.71 (0.57–0.89) 0.75 (0.67–0.83) 3.30 ×10−8

cg27100266 6:28876160 TRIM27 0.74 (0.65–0.83) 0.72 (0.57–0.91) 0.73 (0.66–0.81) 7.72 ×10−9

cg12853539 6:125623465 HDDC2 0.76 (0.68–0.86) 0.71 (0.57–0.89) 0.75 (0.68–0.83) 4.78 ×10−8

cg22111043 7:45019005 MYO1G 1.33 (1.18–1.49) 1.40 (1.09–1.80) 1.34 (1.20–1.49) 1.02 ×10−7

cg13249519 8:98307155 TSPYL5 0.75 (0.67–0.84) 0.77 (0.62–0.95) 0.76 (0.68–0.84) 5.68 ×10−8

cg22293416 8:109493386 EMC2 0.74 (0.66–0.83) 0.67 (0.53–0.85) 0.73 (0.66–0.81) 1.99 ×10−9

cg14341771 9:133266694 HMCN2 0.74 (0.66–0.83) 0.63 (0.50–0.80) 0.72 (0.65–0.80) 5.11 ×10−10

cg19347588 10:3868336 KLF6 0.75 (0.66–0.84) 0.76 (0.61–0.95) 0.75 (0.68–0.83) 3.76 ×10−8

cg16749093 11:65352605 EHBP1L1 0.73 (0.65–0.82) 0.67 (0.52–0.85) 0.72 (0.65–0.80) 1.05 ×10−9

cg04869583 12:32890849 DNM1L 0.59 (0.52–0.66) 0.71 (0.56–0.90) 0.61 (0.55–0.68) 1.42 ×10−18

cg14317273 14:80097860 NRXN3 0.75 (0.67–0.84) 0.69 (0.54–0.87) 0.74 (0.67–0.82) 5.98 ×10−9

cg27392564 15:90200118 KIF7 0.76 (0.68–0.85) 0.74 (0.60–0.93) 0.76 (0.68–0.83) 4.36 ×10−8

cg04517903 16:1557605 TELO2 0.75 (0.67–0.84) 0.72 (0.57–0.89) 0.74 (0.67–0.82) 8.36 ×10−9

cg01550915 16:2358379 ABCA3 0.71 (0.63–0.81) 0.67 (0.53–0.85) 0.70 (0.63–0.78) 1.73 ×10−10

cg23053625 17:42681792 FZD2 0.72 (0.63–0.83) 0.65 (0.50–0.83) 0.71 (0.63–0.80) 1.02 ×10−8

cg14633020 17:43194301 PLCD3 0.72 (0.64–0.81) 0.70 (0.56–0.89) 0.72 (0.65–0.79) 2.36 ×10−10

cg20953894 17:56160072 DYNLL2 0.75 (0.67–0.85) 0.73 (0.58–0.93) 0.75 (0.68–0.83) 6.52 ×10−8

cg07733728 17:80210844 CSNK1D 1.33 (1.18–1.51) 1.34 (1.06–1.70) 1.34 (1.20–1.49) 2.03 ×10−7

cg11702503 19:6215254 MLLT1 0.66 (0.59–0.75) 0.64 (0.50–0.82) 0.66 (0.59–0.73) 1.95 ×10−14

cg20089365 19:45515525 RELB 0.68 (0.60–0.77) 0.78 (0.63–0.96) 0.70 (0.63–0.78) 3.18 ×10−11

cg01680988 20:1114609 PSMF1 1.35 (1.20–1.52) 1.46 (1.16–1.83) 1.37 (1.23–1.52) 4.40 ×10−9

ACS acute coronary syndrome, Chr Chromosome, CKB the China Kadoorie Biobank, DFTJ cohort Dongfeng–Tongji cohort, DMPs differentially methylated positions.
aOdds ratio of the discovery stage (DFTJ cohort) was conducted by conditional logistic regression models with M-values (Z-score transformed) as the independent variable, adjusted for smoking
status, drinking status, BMI, hypertension, dyslipidemia, diabetes, the proportions of six estimated leukocytes (n = 1502).
bOdds ratioof the replication stage (CKBcohort)wasconductedbyconditional logistic regressionmodelswithM-values (Z-score transformed) as the independent variable, adjusted for age, smoking
status, drinking status, BMI, region, hypertension, dyslipidemia, diabetes, the proportions of six estimated leukocytes (n = 952).
cResults from the discovery and replication stages were combined using fixed-effect meta-analysis, and P meta values were two-sided.
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investigations of the potential gene regulatory role and the disease risk
prediction value of the significant DMPs.

We observed significant three-way associations among DNA
hypomethylation, up-regulated gene expression, and increased ACS
risk at cg03609847 (PIGG) and cg16749093 (EHBP1L1). Increased
expression levels of their mapped genes were observed not only in the
leukocytes of ACS patients but also in atherosclerotic plaque tissues,
supporting their potential role in the pathogenesis of ACS. PIGG is a
key gene involved in the biosynthesis and transport of
glycosylphosphatidylinositol-anchored proteins (GPI-Aps)17, which are
involved in heart development18. In addition, overexpression of PIGG
may affect the phosphoinositide signaling pathway, which has been
implicated in cardiovascular disease19. EHBP1L1 is involved in actin
cytoskeleton organization and has been identified to associate with
CHD20 and AMI21. Our findings further support the involvement of

EHBP1L1 in the pathogenesis of atherosclerosis and ACS.Moreover, we
showed thatDNAmat these twoCpGsmight regulate the expressionof
PIGG and EHBP1L1 by affecting the binding affinity of POLR2A, the
largest subunit of RNA polymerase II22.

Among the 26 validated loci, EHBP1L1 (cg16749093), PRKCZ
(cg00660626), and PRDM16 (cg24395386) have been reported to
associate with cardiovascular disease by previous GWAS20,21,23,24. Our
MR analysis further supported causal associations between hypo-
methylation of these DMPs and increased risk of incident ACS. But we
did not observe significant association between methylation and gene
expression levels at PRKCZ and PRDM16, possibly due to their low
expression levels in leukocytes and the limited sample size of the
Shiyan multi-omics dataset. PRKCZ has been implicated in
cardiomyopathy25. Functionally, PRKCZ is involved in the proliferation,
differentiation, and secretion of cardiac myocytes, as well as the
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Fig. 2 | Three-way association among cg03609847, PIGG gene expression, and
ACS risk. a The schematic diagram depicting association directions between
DNAm, mRNA expression, and ACS risk. b The correlation between DNAm of
cg03609847 and PIGG gene expression levels in leukocytes of 156 healthy partici-
pants was examined by Pearson correlation test. c The comparison of PIGG gene
expression levels in leukocytesbetween 12 pairs of ACS cases andmatched controls
was analyzed using the “limma” package. d The comparison of PIGG gene expres-
sion levels in 32 pairs of normal carotid tissue and carotid atheroma plaques was

performed by GEO2R online tool. e The comparison of PIGG gene expression in 13
early atherosclerotic carotid artery segments and 16 advanced atherosclerotic
carotid artery segments was performed by GEO2R online tool. All P values were
two-sided. All box plots show median value, IQR, up to 1.5 IQR (whiskers). RNA
expression was quantified by TPM across all genes, followed by log2(TPM+ 1)
transformation for subsequent analysis. ACS acute coronary syndrome,DNAmDNA
methylation, IQR interquartile range, TPM transcripts per million.
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phosphoinositide 3-kinase (PI3K), inflammatory response, and che-
mokine signaling pathways26,27. In addition, Infante et al.28 have iden-
tified PRKCZ methylation as potential epigenetic-sensitive target for
ACS via network analysis, while Steenaard et al.29 have found that
smoking-related demethylation of cg05603985 might be involved in
development of CHD by regulating PRKCZ expression in whole blood.
The other gene, PRDM16, plays a crucial role in adipocyte transfor-
mation and thermogenesis30, and has been reported to associate with
obesity31, lipid levels32, insulin resistance33, blood pressure34,
and CHD20.

Our findings provide additional insights into the mechanisms
underlying ACS pathogenesis. For example, PLCD3 encodes a member
of the phospholipase C family that catalyzes the hydrolysis of phos-
phatidylinositol 4,5-bisphosphate (PIP2) to the diacylglycerol and

inositol 1,4,5-triphosphate (IP3), both of whichmediate diverse cellular
responses to extracellular stimuli by inducing protein kinase C and
increasing cytosolic Ca2+ concentrations35. The IP3/Ca2+ signaling
pathway could generate Ca2+ signals to control diverse biological
processes and has been implicated in atrial arrhythmias and con-
gestive heart failure36. Our finding of ACS-related DMP at PLCD3 sug-
gests that the InsP3/Ca2+ signaling pathway may be involved in the
pathogenesis of ACS, which needs to be confirmed by future studies.

AMI andUAPare twosubtypesofACS.Our subgroupanalysis found
no heterogeneity in the effect sizes for 25 out of the 26 validated DMPs
between AMI and UAP, except for cg01550915 mapped to ABCA3 (P for
heterogeneity =0.04). Thus, AMI and UAP likely share most of their
pathophysiological basis. For cg01550915, we observed amuch stronger
effect size in UAP (β ±SE=−0.41 ±0.07) than in AMI (−0.09 ±0.14).
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Fig. 3 | Three-way association among cg16749093, EHBP1L1 gene expression,
and ACS risk. a The schematic diagram depicting association directions between
DNAm, mRNA expression and ACS risk. b The correlation between DNAm of
cg16749093 and EHBP1L1 gene expression levels in leukocytes of 156 healthy par-
ticipants was examined by Pearson correlation test. c The comparison of EHBP1L1
gene expression levels in leukocytes between 12 pairs of ACS cases and matched
controls was analyzed using the “limma” package. d The comparison of EHBP1L1
gene expression levels in 32 pairs of normal carotid tissue and carotid atheroma

plaques was performed by GEO2R online tool. e The comparison of EHBP1L1 gene
expression in 13 early atherosclerotic carotid artery segments and 16 advanced
atherosclerotic carotid artery segments was performed by GEO2R online tool. All
P values were two-sided. All box plots show median value, IQR, up to 1.5 IQR
(whiskers). RNA expression was quantified by TPM across all genes, followed by
log2(TPM+ 1) transformation for subsequent analysis. ACS acute coronary syn-
drome, DNAm DNA methylation, IQR interquartile range, TPM transcripts per
million.
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ABCA3 plays a crucial role in maintaining the normal function of pul-
monary surfactant, which has potential implications on cardiac
function37. Our results suggested that the potential effect of ABCA3 in
UAP might be more pronounced than in AMI. However, the underlying
mechanism remains unclear and needs to be investigated in the future.

We proposed and validated anMRS as aweighted sumof the ACS-
related DMPs, in a way like the PRS based on GWAS variants38–43. In
contrast to PRS, which often showed statistically significant but small
improvement in the risk prediction of incident CHD over traditional
risk factors, our MRS substantially improved the prediction accuracy
of ACS risk in bothDFTJ and CKB cohorts, demonstrating the potential
clinical applications of MRS. Because DNAm is responsive to environ-
mental stimuli, an MRS may capture information of one’s health con-
ditions over time, and is therefore more predictive of future disease
risk than a PRS. Consistently, Zheng et al.44 showed that an MRS of
cardiovascular health from young adulthood to midlife was predictive
of an individual’s future risk of subclinical and clinical CVD

independent of traditional risk factors. Several previous studies also
demonstrated the potential clinical value of MRS for CVD risk strati-
fication in European populations10,45,46. Our study strengthens and
extends these previous findings by demonstrating the predictive value
of MRS for ACS in the Chinese populations.

Several strengths of this study, including the large sample size,
independent replication, and targeting the most severe subtype of
CHD, have substantially enhanced the robustness of our findings. Our
prospective study design together with MR analysis provides strong
evidence to support causality of several DMPs in the development of
ACS. By combining information from multiple gene expression data-
sets, we highlight the gene regulatory function of several DMPs and
their potential role in atherosclerosis and ACS. With these merits, our
study represents a remarkable progress towards uncovering the
important role of DNAm in the pathogenesis of ACS. Furthermore, our
proposed MRS may serve as a powerful predictive biomarker to facil-
itate early prevention and intervention of ACS.

Fig. 4 | Evaluation ofMRS, PRS, and traditional risk factors in the prediction of
incident ACS. a Evaluation in the DFTJ cohort. b Evaluation in the CKB cohort.
Traditional risk factors include age, sex, BMI, smoking status, drinking status,
hypertension, dyslipidemia, and diabetes. The MRS was calculated by adding the
M-values of 67 DMPs identified in the discovery cohort, weighted by their β

coefficients from the discovery cohort. ACS acute coronary syndrome, AUC area
under ROC curve, DMP differentially methylated position, MRS methylation risk
score, PRS polygenic risk score, PRSBBJ published PRS based on the BioBank Japan
cohort, PRSCHN published PRS based on Chinese populations, ROC receiver oper-
ating characteristic curve.

Table 3 | Improvement in risk prediction for ACS by methylation risk score and polygenic risk score beyond traditional risk
factors

Index DFTJ cohort (n = 1502) CKB cohort (n = 952)

Difference in estimate 95% CI P valuea Difference in estimate 95% CI P valuea

MRS+ referenceb

AUC 0.058 0.035–0.080 <0.001 0.104 0.077–0.131 <0.001

NRI 0.364 0.259–0.469 <0.001 0.430 0.306–0.554 <0.001

IDI 0.051 0.039–0.062 <0.001 0.075 0.058–0.092 <0.001

PRSBBJ+ referenceb

AUC 0.011 −0.002–0.023 0.101 0.002 0.0001–0.004 0.035

NRI 0.227 0.121–0.334 <0.001 0.115 0.012–0.217 0.028

IDI 0.011 0.005–0.016 <0.001 0.002 0.000–0.003 0.004

PRSCHN+ referenceb

AUC 0.001 −0.008–0.010 0.896 0.001 −0.0007–0.002 0.373

NRI 0.077 −0.030–0.184 0.160 0.155 0.045–0.265 0.006

IDI 0.002 −0.001–0.006 0.208 0.001 0.000–0.002 0.001

ACS acute coronary syndrome, AUC area under ROC curve, CKB cohort the China Kadoorie Biobank cohort, DFTJ cohort Dongfeng-Tongji cohort, IDI integrated discrimination improvement,MRS
methylation risk score, NRI net reclassification improvement, PRS polygenic risk score, PRSBBJ PRS constructed based on a method published in BioBank Japan cohort, PRSCHN PRS constructed
based on a method published in Chinese populations.
aP values were determined using two-sided statistical tests.
bThe reference risk model included age, sex, BMI, smoking status, drinking status, hypertension, dyslipidemia, and diabetes.
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We also acknowledge several limitations in the present study.
First, compared to the DFTJ and CKB cohorts, the participants in the
Shiyan multi-omics dataset are younger and have excluded various
diseases. Thepotential differences in health status and agedistribution
may affect the generalizability of our findings. Additionally, the rela-
tively small sample size and cross-sectional study design of the Shiyan
dataset limit our ability to infer causality and detect moderate effect
associations. In addition, we used the most significant cis-meQTL as
the IV in MR analysis to minimize potential horizontal pleiotropy and
LD between cis-meQTLs, however, the small contribution of a single
SNP to DNAm levels may limit the statistical power of MR. Further-
more, we compared our proposed MRS with the PRS for CHD, under
the assumption that ACS, as a subtype of CHD, would share similar
genetic basis with CHD. Ideally, a direct comparison with the PRS for
ACS should be conducted when large-scale GWAS targeting ACS
become available in the future. Finally, our association analyses have
suggested potential gene regulatory functions of the validated DMPs
in the pathogenesis of ACS, but the underlying mechanisms should be
further explored by experimental studies.

We have identified significant and reproducible associations
between incident ACS and blood DNAm at 26 CpGs. Particularly, evi-
dence from multi-omics data of different sources suggested
cg03609847 at PIGG and cg16749093 at EHBP1L1 were likely involved
in the pathogenesis of ACS by transcriptional regulation and thus
could serve as promising prevention and treatment targets for ACS.
Moreover, we have demonstrated remarkable predictive value of
DNAm markers for incident ACS. Further validation in other popula-
tions and animalmodels arewarranted to ensure the generalizability of
our findings and uncover the in-depth biological mechanism.

Methods
Study population
Our study adopted a two-stage 1:1 matched nested case-control study
design. The discovery stage was based on a nested case-control study
of incident ACS within the DFTJ cohort15. Details of the DFTJ cohort
have been described in the Supplementary methods. Briefly, the DFTJ
cohort is an ongoing prospective cohort of retired employees of the
DongfengMotor Corporation in Shiyan, Hubei, China. TheDFTJ cohort
initially enrolled 27,009 subjects during 2008–2010 and was expan-
ded to enroll a total of 38,295 subjects during April to October 2013.
Thepresent studywasbased on subjects enrolled in 2013, of whom the
baseline information was collected by questionnaire and physical
examination. Information on disease incidence and mortality until
December 31, 2018 was collected through electronic medical records
of the health insurance network of Dongfeng Motor Company. ACS
wasdefined asAMI coded as ICD-10 I21 andUAP coded as ICD-10 I20.0.
Participants were diagnosed by an expert panel of physicians based on
symptoms, clinical examinations according to the ACCF/AHA
guidelines47. Incident cases were defined as those with first ACS diag-
nosis between enrollment and December 31, 2018.

In the present study, we started with 38,295 participants enrolled
in 2013 and excluded those with prevalent CHD (n = 6457), stroke
(n = 2406), cancer (n = 2686), and severely abnormal electro-
cardiogram (n = 838), as well as those with unavailable blood samples
(n = 3626), leaving 24,415 participants. DNAmethylationwasmeasured
from whole blood samples at baseline for 785 incident ACS. For each
incidentACS case,we randomly selected a controlwhowas freeofCVD
and cancer at the timeof the case event. Each pair wasmatched on age
(within one year), sex, and blood draw time (within 6 months). Thirty-
four case-control pairs were excluded during the QC of DNAm data.
Finally, 751 pairs of incident ACS case-control sampleswere included in
the discovery stage.

Replication was based on a nested case-control study of incident
CHDwithin the CKB cohort16. Details of the study design, inclusion and
exclusion criteria, and disease diagnosis were available in Si et al.13.

Briefly, baseline DNAm was measured for 494 incident CHD case-
control pairs, ofwhichCHDwasdiagnosedduring the follow-upperiod
until December 31, 2015. Incident CHD cases were defined as nonfatal
acute myocardial infarction coded as I21 and fatal ischemic heart dis-
ease (IHD) coded as ICD-10 I20-I25. Each case was matched to one
control free of CHD, cancer, or cerebrovascular diseases throughout
follow-up. Cases and controls were one-to-one matched by birth year
(within 3 years), age at baseline (within 3 years), sex, study area, and
fasting time prior to blood draw (0–6, 6–8, 8–10, and ≥10 h). To be
consistent with our discovery cohort, we excluded 10 non-ACS cases
and their matched controls. In addition, eight case-control pairs were
excluded byQC of DNAmdata. Thus, we retained 476 pairs of incident
ACS case-control samples for the replication analysis.

We evaluated correlation between DNAm and RNA expression of
the annotated genes in an independent set of 156 healthy participants
(Shiyan multi-omics dataset) recruited from the same city as the DFTJ
cohort between June and July 202148. We performed gene differential
expression analysis of leukocytes between 12 ACS cases and 12 age- (±5
years) and sex-matched healthy controls collected in Wuhan, Hubei,
China (ACS case-control expressiondataset)8. A detailed description of
the study populations and covariates was provided in the Supple-
mentary Methods.

The study protocols have been approvedby the Ethics Committee
of School of Public Health, Tongji Medical College (Wuhan, China), the
Ethics Review Committee of the Chinese Center for Disease Control
and Prevention (Beijing, China), the Oxford Tropical Research Ethics
Committee, University of Oxford (UK), and Peking University Institu-
tional Review Board (Beijing, China). All participants provided written
informed consent.

Laboratory methods
DNAm measurement and QC. DNAm in leukocytes was profiled by
the Infinium Methylation EPIC BeadChip (Illumina, USA) for samples
from the DFTJ cohort, the CKB cohort, and the Shiyan multi-omics
dataset. To minimize batch effects, blood samples were randomized
prior to testing. Cohort-specific details of laboratory procedures, data
processing, QC, and normalization are provided in the Supplementary
Methods.

RNA sequencing data
For the Shiyan multi-omics dataset, RNA samples extracted from leu-
kocytes were sequenced using NovaSeq6000 (Illumina, USA). Details
of RNA sequencing are provided in the supplementary Methods. RNA
expression was quantified by transcripts per million (TPM) across all
genes, followed by log2(TPM+ 1) transformation for subsequent
analysis.

Gene expression microarray data
Gene expression profiles of 12 ACS case-control pairs were assayed by
HumanHT-12 v4 BeadChip (Illumina, USA). Detailed laboratory pro-
cedures, data processing, QC, and normalization can be found in the
Supplementary Methods.

Statistical analyses
Genome-wide methylation analysis of incident ACS. In the dis-
covery stage (DFTJ cohort), we tested association of DNA methylation
(M-value) at each CpG site with incident ACS using conditional logistic
regressionmodels, adjusted for BMI, smoking, drinking, hypertension,
dyslipidemia, diabetes, and six leukocyte proportions (CD4+ T cell,
CD8+ T cell, natural killer cell, monocyte, neutrophil, and B cell). Leu-
kocyte proportions were estimated with the FlowSorted.Blood.EPIC
function in the “bigmelon” R package. The association between each
CpG and incident ACS in the replication stage was tested using con-
ditional logistic regression with adjustment of the same covariates as
in the discovery stage as well as age (because the 3-year matching
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range might introduce residual confounding) and region (10 regional
centers). Statistical significancewas defined as FDR <0.05basedon the
tested loci at each stage separately11,49. Association results were com-
binedusing the inverse varianceweightedfixed-effectmeta-analysis by
METAL software. For each CpG, we reported the OR per standard
deviation (SD) increase in the M-value, and the corresponding 95% CI.
Sensitivity analysis was performed for ACS subtypes (AMI and UAP). In
the sensitivity analyses, we further adjusted for physical activity,
defined as total energy expendituremeasured in metabolic equivalent
(MET)-hours/week for the DFTJ cohort andMET-hours/day for the CKB
cohort, and major dietary intake of meats, fish, vegetables, and fruits.
We queried the public database to check if DMPs (EWAS catalog and
EWAS Atlas) and their annotated genes (GWAS catalog and Phe-
noScanner) hadbeen reported to associatewith CVDor cardiovascular
traits.

Gene set enrichment analysis
Gene set enrichment analysis was performed for genes mapped to
ACS-related DMPs identified in the discovery stage (FDR <0.05), in
comparison to the background set of genes mapped by CpGs on the
Illumina EPIC array. We used the gometh function in the “missMethyl”
package50 to identify enriched KEGG and GO pathways.

Cis-meQTL and MR analyses
Two-sample MR analysis was applied to estimate the causal effects of
DMPson incident ACS risk (seedetails in the SupplementaryMethods).
Firstly, we performed cis-meQTL analysis for SNPs within 1Mb of each
CpG based on 4411 unrelated samples that have both genotyping data
and DNAm data from the DFTJ cohort (see details in the Supplemen-
tary Methods). Briefly, the methylation M-value of each CpG was
modeled as a linear function of the SNP genotype, with adjustment of
age, sex, smoking status, six leukocyte proportions (CD4+ T cell, CD8+

T cell, natural killer cell, monocyte, neutrophil, and B cell), the top four
methylation principal components, and the top four genotype prin-
cipal components. The most significant SNP in the cis-meQTL analysis
was selected as the IV for the MR analysis of the corresponding CpG.
GWAS summary statistics were obtained from the BioBank Japan (BBJ)
cohort for MI (14,992 cases and 146,214 controls)23, UAP (5891 cases
and 146,214 controls)23, andCHD (25,892 cases and 142,336 controls)38.
We used theWald ratiomethod implemented in the “TwoSampleMR”
package to estimate the causal effect of each DMP on MI, UAP,
and CHD.

Correlations between DNA methylation and gene expression
Expression quantitative trait methylation (eQTM) analysis was per-
formed to identify which DMPs were associated with expression levels
of targeted or nearby genes. For the validated DMPs, we extracted
mRNA expression levels of their annotated genes as well as genes
within 1Mb in leukocyte samples of 156 participants in the Shiyan
multi-omics dataset. We examined the correlation betweenDNAm and
mRNA levels using the Pearson correlation test. Because LCE5A and
IGFN1 were expressed in less than 30% of the samples, they were
replaced by the second nearest genes of the CpGs (FLG2 and TMEM9,
respectively). A two-sided P <0.05 was considered statistically sig-
nificant. We used the GENE2FUNC function in the FUMA GWAS tool to
examine the expression of genes annotated to DMPs in 54 tissues51,52.

Differential gene expression analysis
For the validatedDMPs,weperformed differential expression analyses
of their annotated genes in leukocytes and atherosclerotic tissues.
First, we compared gene expression in leukocytes in 12 pairs of ACS
cases and matched-healthy controls using linear regression models
implemented in the “limma” package, with no adjustment of
covariates8. Next, we analyzed gene expression data in relevant tissues,
downloaded from the Gene Expression Omnibus (GEO) database

under the accession numbers GSE43292 andGSE28829. TheGSE43292
dataset included gene expression profiles of atherosclerotic plaques
and the adjacent normal tissues from 32 hypertensive patients,
assayed by the Affymetrix Human Gene 1.0 ST Array (Illumina, USA)53.
The GSE28829 dataset included gene expression profiles of 13 early
atherosclerotic carotid artery segments and 16 advanced athero-
sclerotic carotid artery segments, assayed by the and the Affymetrix
Human Genome U133 Plus 2.0 Array (Illumina, USA)54. The analyses of
GSE43292 and GSE28829 datasets were performed using the GEO2R
online tool with default settings (https://www.ncbi.nlm.nih.gov/geo/
geo2r/).

Evaluation of the transcriptional regulatory role of DNAm
We explored whether the association between DNAm and gene
expressionwas related to transcriptional regulation.We first predicted
the transcription factor binding site within 50 bp upstream and
downstream of the CpG sites through the AnimalTFDB 3.0 database55.
We further selected transcription factors thatwere likely to bind to the
target genes by searching the ENCODE database, which displays a list
of transcription factors supported by evidence from ChIP-seq
experiments56. Then we checked whether the selected transcription
factors have potential regulatory effects on the target genes by
searching the hTFtarget database57. Finally, we examined Pearson’s
correlations between mRNA expression levels of candidate transcrip-
tion factors, methylation levels of CpGs, and mRNA expression levels
of target genes in Shiyan multi-omics dataset.

Construction and evaluation of a methylation risk score for
incident ACS
Based on the EWAS results of discovery stage, we constructed a MRS
for incident ACS in a way similar to the PRS. TheMRSwas calculated as
a weighted sum ofM-values of the 67 significant CpGs identified in the
discovery stage (FDR <0.05):MRS = β1M1 + β2M2 +… + β67M67, where βi
is the effect size of the ith CpG on incident ACS obtained from the
discovery EWAS and Mi is the M-value of the ith CpG. This MRS con-
struction method was applied to both DFTJ and CKB cohorts.

For comparison, we also computed PRS based on imputed
genome-wide array genotyping data for participants from both the
DFTJ and the CKB cohorts. Since there are limited large-scale GWAS
studies specifically targeting ACS in Asian populations or other
populations, we chose to construct the PRS for CHD instead. We
used two published PRS models calibrated for East Asians: PRSBBJ
reported by Koyama et al.38 and PRSCHN reported by Lu et al.39 PRSBBJ
was constructed from 75,028 genetic variants based on meta-
analysis of three GWAS of CHD (BBJ, CARDIoGRAMplusC4D, and the
UK Biobank). PRSCHN consisted of 540 genetic variants and was
calibrated for the Chinese population.

We evaluated the performanceMRS and PRS in predicting the risk
of incident ACS based on logistic regression models. Evaluation was
based on participants with both DNA methylation and genotype data
(n = 1886 from DFTJ and n = 947 from CKB). The reference model
consisted of traditional risk factors, including age, sex, BMI, smoking
status, drinking status, hypertension, dyslipidemia, and diabetes. We
evaluated the improvement of performance when adding MRS or PRS
to the reference model. We trained the models using data from the
DFTJ cohort and evaluated model performance using the CKB cohort.
The predictive performance was measured by the AUC58, the inte-
grated discrimination improvement (IDI), and net reclassification
index (NRI)59. In order to reduce over-fitting in the discovery stage, the
AUC, IDI, and NRI of the DFTJ cohort were calculated using the 5-fold
cross-validation method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The full EWAS summary statistics of generated in this study have been
deposited in the OMIX, China National Center for Bioinformation /
Beijing Institute of Genomics, Chinese Academy of Sciences, under
accession code OMIX006068 (https://ngdc.cncb.ac.cn/omix). The
phenotypes associatedwith validated CpGswere extracted fromMRC-
IEU EWAS catalog database (http://www.ewascatalog.org/) and EWAS
Atlas (https://ngdc.cncb.ac.cn/ewas/atlas/index). The phenotypes
associated with genes mapped to validated CpGs were extracted from
GWAS catalog database (https://www.ebi.ac.uk/gwas/home) and Phe-
noScanner database (http://www.phenoscanner.medschl.cam.ac.uk).
In the Mendelian randomization analysis, the GWAS summary statistic
data for MI (Sakaue et al., PMID: 34594039), UAP (Sakaue et al., PMID:
34594039), and CHD (Koyama et al., PMID: 33020668) are derived
from theBBJ cohort. Lookupof the transcription factorswithCpGsand
target genes was conducted using the public database of AnimalTFDB
3.0 (https://guolab.wchscu.cn/AnimalTFDB#!/), ENCODE, and hTFtar-
get (https://guolab.wchscu.cn/hTFtarget/#!/). The GSE43292 and
GSE28829 datasets used in this study are publicly available in the GEO
database. Construction of PRS was based on two published PRS
models calibrated for East Asians: PRSBBJ reported by Koyama et al.
(PMID: 33020668) and PRSCHN reported by Lu et al. (PMID: 35195259).
The raw individual participant data included in this project are pro-
tected and are not available due to data privacy laws. All other pro-
cessed data supporting the key findings of this study are available
within the article and its Supplementary Information/Source Data
files. Source data are provided with this paper.
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