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Multiscale mapping of transcriptomic
signatures for cardiotoxic drugs

JensHansen 1,2 , YuguangXiong 1,2,MustafaM.Siddiq1,2, PriyankaDhanan1,2,
Bin Hu1,2, Bhavana Shewale1,3, Arjun S. Yadaw1,2, Gomathi Jayaraman1,2,
Rosa E. Tolentino1,2, Yibang Chen1,2, Pedro Martinez1,2, Kristin G. Beaumont 4,
Robert Sebra 4, Dusica Vidovic5, Stephan C. Schürer5, Joseph Goldfarb1,2,
James M. Gallo 2,6, Marc R. Birtwistle 1,7, Eric A. Sobie1,2,
Evren U. Azeloglu 1,2,8, Seth I. Berger 9, Angel Chan 1,10,
Christoph Schaniel 1,11, Nicole C. Dubois 1,3,12 & Ravi Iyengar 1,2,12

Drug-induced gene expression profiles can identify potential mechanisms of
toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved
tyrosinekinase inhibitors (TKIs) inhuman induced-pluripotent-stem-cell-derived
cardiomyocytes, using bulk transcriptomic profiles. We use singular value
decomposition to identify drug-selectivepatterns across cell linesobtained from
multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs
include energy metabolism, contractile, and extracellular matrix dynamics.
Projecting these pathways to published single cell expression profiles indicates
that TKI responses can be evoked in both cardiomyocytes and fibroblasts.
Integration of transcriptomic outlier analysis with whole genomic sequencing of
our six cell lines enables us to correctly reidentify a genomic variant causally
linked to anthracycline-induced cardiotoxicity and predict genomic variants
potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA
expression profiles when integrated with publicly available genomic, pathway,
and single cell transcriptomic datasets, provide multiscale signatures for cardi-
otoxicity that could be used for drug development and patient stratification.

Adverse side-effects of therapeutically useful drugs continue to be a
substantial problem1. Post-approval pharmacovigilance studies often
reveal adverse events that lead to warning labels mandated by the FDA2.
Early indications of a potential for adverse events will be useful in drug

development3,4 and the use of whole genome sequence data from indi-
viduals can predict who might be susceptible to adverse events. These
assertions are based on the premise that various functions at the
molecular and cellular levels drive adverse events in different cell types5.
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Preclinical studies at the molecular level are useful, as has been
demonstrated by HERG channel protein interacting drugs and the
potential for arrhythmias6,7. Drug-relatedadverse events areoftenorgan-
selective. Many efficacious antineoplastic drugs, such as tyrosine kinase
inhibitors (TKI) that are used for targeted therapy, are associated with
cardiac insufficiencies and development of heart failure8,9. We have
shown that drug-induced transcriptomic profiles in adult human heart
cells can be associatedwith clinical adverse event propensity as assessed
from FDA pharmacovigilance data10. However, systematic mapping of
the molecular pathways, cell origins and genomic determinants asso-
ciated with drug therapy-related cardiotoxicity have not been con-
ductedyet. Thegoal of this studywas toconduct experiments to identify
such transcriptomic signatures and by integrating signatures with pub-
licly available data generate hypotheses for multiscale understanding of
cardiotoxicity in future studies.

Human induced pluripotent stem cell (hiPSC)-derived
cardiomyocytes11 have been useful for understanding cardiotoxicity12.
Hence, transcriptional profiles in human cardiac cells can form starting
points for studies focused on mechanism-based drug signatures that
could be used for prediction of cardiotoxicity potential. Here, we have
used six hiPSC-derived cardiomyocyte cell lines fromhealthy individuals
to study 52 FDA-approved and two experimental drugs and identify
drug-selective transcriptomic signatures across the different human
subject lines by singular value decomposition (SVD)-based analysis of
total transcriptomic responses. Single cell analyses of these hiPSC-
derived “ventricular cardiomyocytes” indicated that they are composed
of multiple clusters. They include a cluster very similar to adult cardio-
myocytes. Additional clusters show varying levels of similarity to dif-
ferent cell types in the human heart, including fibroblasts. Projections of
drug-affectedpathways inferred frombulk transcriptomicdata of hiPSC-
derived cardiomyocytes on to single cell expression profiles of human
hearts from healthy and heart failure patients indicate that TKIs could
affect both cardiomyocytes as well as other cell types to produce
adverse events, and that the drug-induced pathways are similar to those
altered in hiPSC-derived cardiomyocytes from patients with failing
hearts13,14. Using outlier analyses andWhole Genome Sequencing (WGS)
from the cell lines used for the transcriptomic studies, we correctly re-
identified the genomic variant casually associated with anthracycline-
induced cardiotoxicity (AIC) that was originally discovered in genome-
wideassociation studies (GWAS)15.Weused this approach to identify and
predict potential effects of genomic variants associated with TKI action
as identified by transcriptomic signatures. These findings indicate that
integration of experimental data with public data sets can be a powerful
driver of multiscale understanding of organ level adverse events asso-
ciated with drug therapy.

Results
To identify pathway activities and potential genomic variants asso-
ciated with TKI-induced cardiotoxicity (TIC), we treated six hiPSC-
derived cardiomyocyte cell lines from six healthy individuals (Sup-
plementary Fig. 1) (Supplementary Data 1) with one of 27 TKIs, 4
anthracyclines and 26 other cardiac and non-cardiac-acting drugs for
48 hours, using therapeutically relevant drug concentrations (Sup-
plementary Data 2A, Supplementary Table 116). Untreated control data
was generated at the same time and has been previously published as
part of characterization of these cell lines16. In this study, we used the
untreated control data from each experiment to identify the drug-
treatment-induced differentially expressed genes (DEGs). All drugs
(except endothelin and TNF-alpha) are FDA-approved. The group of
TKIs contained 23 small molecule TKIs and 4 monoclonal antibodies
against TKs. They could be separated into 10 cardiotoxic and 17 non-
cardiotoxic TKIs based on the results of clinical studies (Supplemen-
tary Data 3) and FAERS data analysis (Supplementary Fig. 2). Bulk
transcriptomic analysis of control16 and drug-treated cell lines gener-
ated 266 lists of DEGs (Supplementary Data 4) (Supplementary Data 5

shows averaged DEGs). All lists of DEGs, each representing the
response observed for one sample, i.e., a unique cell line/drug com-
bination (Supplementary Fig. 3A), were subjected to pairwise correla-
tion and hierarchical clustering (Supplementary Fig. 3B).

Singular value decomposition to reveal drug-selective expres-
sion responses
To identify drug-selective expression responses we used SVD to search
for shared gene expression components in multiple cell lines treated
with the same drug (Fig. 1A, Supplementary Fig. 4). Clustering of the
unprocessed transcriptomic data only grouped a few samples treated
with the same drugs into the same cluster (Fig. 1B, Supplementary
Fig. 3B). In contrast, the identity of the cell line, or the amplitude of the
drug response, i.e., the number of significant DEGs,mainly determined
the clustering results (Supplementary Fig. 5A). To determine if we
could identify drug-selective clustering, we calculated one F1 score for
each drug that documents how close all cell lines treated with that
drug cluster together (Supplementary Fig. 5B). With possible values
larger 0up to 1, themedianF1-score of 0.116 documents very lowdrug-
selective clustering efficiencies (Fig. 1C).

SVD (Supplementary Fig. 6A) of all 266 samples identified 266
eigenarrays (Supplementary Fig. 6B) whose linear combination using
sample-specific coefficients gives the complete gene expressionprofiles.
The first eigenarray correlates (Supplementary Fig. 6C) with the ampli-
tude of the response (Supplementary Fig. 6D), and its most prominent
genes (Supplementary Data 6) enrich for muscle contraction (Supple-
mentary Fig. 6E, Supplementary Data 7). These results indicate that the
first eigenarray describes a general response to perturbation that masks
drug-selective effects. Removal of the first eigenarray (Supplementary
Data 8) disrupts the clustering by the number of significant DEGs
(SupplementaryFig. 7). Since theclustering is still dominatedbycell-line-
selective effects, the removal did not markedly improve the drug-
selective clustering efficiencies (Supplementary Fig. 8).

We ranked the remaining eigenarrays by their ability to separate
samples of each drug or cell line from all other samples (Supplemen-
tary Fig. 9A). Our algorithm allowed a clear separation of cell-line and
drug-selective effects (Supplementary Fig. 9B). For each drug, we
combined unique sets of drug-selective eigenarrays to drug-selective
subspaces with the goal of optimizing the drug’s clustering efficiency
(Supplementary Fig. 10A), while preserving a maximum of the original
information, as quantified by cosine similarity. Changing the relative
contribution of F1 scores (Supplementary Fig. 10B) and cosine simila-
rities (Supplementary Fig. 10C), we screened the potential subspaces
for outlier responses where one cell line showed a significantly dif-
ferent response to the drug of interest than all other cell lines (Sup-
plementary Figs. 10D, 11, 12). Such outlier responses were linked to our
genomic analysis at a later stage. For 24 drugs, we could identify
subspaces with outlier responses (Supplementary Fig. 10E), for the
other 30 drugs, we selected subspaces based on high relative con-
tribution of the F1 score (95%).

Drug-selective gene expression profiles are similar for drugs
with similar mechanisms
Projection of gene expression profiles into the final drug-selective
subspaces generated drug-selective gene expression profiles (Sup-
plementary Data 9) (averaged DEGs in Supplementary Data 10) with
high clustering efficiencies (Fig. 1D, Supplementary Fig. 10F). Drug-
selective DEGs were combined into a new matrix. Clustering of this
matrix identifies clusters that mostly contained samples that were
treated with the same drug and documented preservation of outlier
characteristics (Fig. 1E, Supplementary Fig. 13). Twelve of the 24
identified outlier samples are clearly separated from the cell lines
treatedwith the samedrug (closed circles in Fig. 1E and Supplementary
Fig. 13). Another seven outlier samples are grouped together with the
samples treated with the same drug in a larger cluster (open circles in
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Supplementary Fig. 13), but are separated from those, once that cluster
is subclustered. Only four identified outliers reside in the same cluster
(open rectangles) as the other cell lines treated with the same drug.
Comparison of Figs. 1B and 1E in terms of the breadth of the colored
bars allows for visualization of this drug-selective clustering.

Our algorithm identified drug-selective gene expression profiles
for each drug independently. Nevertheless, drugs with similar
mechanisms and overlapping targets still cluster together (Fig. 1E,
Supplementary Fig. 13), indicating the potential biological validity of
our approach. All eight TKIs targeting EGFR signaling, either by inhi-
biting the receptor (EGFR, ERBB2) or its intracellular ERK signaling
cascade (MAP2K1, MAP2K2)17 are part of the same cluster. One of the

four non-TKI drugs in this cluster, phenylephrine, and isoprenaline
which is part of a slightly bigger cluster, stimulate adrenergic signaling
that can cross-activate ERK signaling in the heart18,19, as documented
for phenylephrine in the perfused rat heart19. Two additional non-TKI
drugs in this cluster, verapamil and amiodarone, influence adrenergic
signaling as antagonists20–22 and verapamil has been shown to antag-
onize ERK signaling in rat cardiomyocytes23. Similarly, the JAK inhibi-
tors ruxolitinib and tofacitinib and the proteasome inhibitors
bortezomib and carflizomib are part of two independent clusters that
contain no other drugs. Two of three antidiabetics, rosiglitazone and
saxagliptin are part of a smaller cluster that first merges with a cluster
containing decitabine, a drug with hyperglycemia as a major side
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effect24 and then with a cluster containing cyclosporine and olme-
sartan. Cyclosporine increases insulin resistance in humans25 and
olmesartan −/+ amlodipine ameliorates it in rats26 and patients27,
respectively. The anthracyclines epirubicin, daunorubicin and doxor-
ubicin are part of larger cluster, while the anthracycline idarubicin
clusters together with their identified outlier samples.

In summary, our SVDpipeline uncovers similar expressionprofiles
induced by similar drugs. Since it does not actively search for such
similarities, but only aims at maximizing the overlap between DEGs
induced by the same drug, this finding serves as internal validation for
the extraction of drug-selective components by our computational
pipeline.

The grouping of drugs with similar mechanisms into higher-level
clusters explains eleven non-outlier samples that are separated from
the other samples treated with the same drug (closed rhombuses),
leaving only four samples that are not part of drug-selective clusters
for no obvious biological reason (open rhombuses) (Supplemen-
tary Fig. 13).

SVD-based resolution of drug-dependent DEGs enables identifi-
cation of subcellular processes relevant to TKI-induced
cardiotoxicity
Complete and decomposed DEGs were subjected to pathway enrich-
ment analysis using the Molecular Biology of the Cell Ontology
(MBCO)28 (Supplementary Fig. 14A). MBCO subcellular processes
(SCPs) are organized in three to four levels where higher-level SCPs
(i.e., levelswith lower numbers)describemoregeneral, and lower-level
SCPs more detailed cell biological processes. Predicted up- or down-
regulated SCPs of each drug/cell line combination and SCP level were
ranked by significance (Supplementary Data 11, 12 and 13). We refer to
these ranks as enrichment ranks in the following.

Overall comparison of the enrichment results before and after
decomposition documents a large increase in the number of over-
lapping SCPs in different cell lines treated with the same drug (Sup-
plementary Figs. 14B, C, D, E, 15A).

In addition, our SVDdecomposition allowed identificationof SCPs
that were masked in the complete dataset. For example, we could
document downregulation of SCPs involved in single protein degra-
dation as an effect selective for anthracyclines (Supplementary
Fig. 15B), results that we did not obtain using the complete DEGs
(Supplementary Fig. 15C). For a discussion of these SCPs, their
potential link to supportive treatments and examples that demon-
strate agreement with prior knowledge from small-scale experiments
see Supplementary Note 2.

Subcellular processes and cell types indicative of cardiotoxic
response to TKI treatment
To identify signatures associated with TIC we searched for SCPs that
are almost exclusively up- or downregulated at higher enrichment

ranks by cardiotoxic TKIs as compared to non-cardiotoxic TKIs, using
F1 score and Area under the Curve (AUC) statistics (Fig. 2A, Supple-
mentary Figs. 16 and 17, Supplementary Data 14). SCPs were ranked by
decreasing AUC. The top 10, 10, 25 and 10 level-1, -2, -3 and -4 SCPs
were grouped by functional similarities (Fig. 2B, Supplementary
Fig. 18) and integrated into the MBCO hierarchy (Fig. 2C, Supple-
mentary Fig. 19). In addition, we mapped identified SCPs back to the
cardiotoxic TKIs that up- or downregulate them (Supplemen-
tary Fig. 20).

Besides being elevated or decreased above or below a threshold
that determines an SCP’s association with a cardiotoxic response, an
SCP’s activitymight already be beyond that threshold at baseline level,
i.e., before TKI treatment. Candidates for this group couldbe SCPs that
are regulated by non-cardiotoxic TKIs. A non-cardiotoxic TKI might
change the baseline SCP activity from sufficient to insufficient for a
cardiotoxic response. Consequently, our second focus was the iden-
tification of SCPs that non-cardiotoxic TKIs would up- or down-
regulate to potentially suppress cardiotoxicity (Supplementary
Figs. 18, 19, 21).

Single cell RNA sequencing (RNAseq) of four of our six cardio-
myocyte cell lines identified at least two major subtypes mapping to
adult cardiomyocytes and an epicardium-derived cell type that is
similar to fibroblasts16 (Supplementary Fig. 22A–D, Supplementary
Data 15, 16A, B). The SCPs we identified by bulk transcriptomics often
describe canonical functions of cell types other than cardiomyocytes.
We determined how the top SCPs in our data map to our subtypes
(Supplementary Fig. 23, Supplementary Data 16C–F), and to the major
cell types of the adult human heart analyzed by others using single cell
transcriptomics29 (Fig. 3A, Supplementary Fig. 23, Supplementary
Data 17, 18A–D).

Many of the identified SCPs described well-known biology
involved in inherited and acquired cardiomyopathies that develop
independently of chemotherapy and map to multiple cell types of the
adult human heart. Our results suggest that cardiotoxic TKIs might
mimic these mechanisms by early (within 48 hours) transcriptional
regulation.

Four SCPs involved inmuscle contraction and sarcomere renewal
were simultaneously identified for the cardiotoxic andnon-cardiotoxic
drugs (Fig. 2B, Supplementary Fig. 18). Another two SCPs were iden-
tified for each group independently. These SCPs that span all four SCP
levels (Fig. 2C, Supplementary Fig. 19) are regulated by the two TKI
toxicity groups in opposite directions. The difference in directionality
suggests insufficient sarcomere renewal as relevant for TIC. All cardi-
otoxic TKIs, except vandetinib and trastuzumab downregulate (Sup-
plementary Fig. 20), while 13 of 17 non-cardiotoxic TKIs upregulate
(Supplementary Fig. 21) at least one of these SCPs, respectively. The
SCPsmap to cardiomyocyte clusters identifiedby single cell RNAseqof
our cell lines and of the adult human heart29 (Fig. 3A, Supplementary
Fig. 23). In agreement with our data, proper heart functioning depends

Fig. 1 | Singular value decomposition identifies drug-selective gene expression
responses. 266 samples, each representing a unique combination of one out of
three to six hiPSC-derived cardiomyocyte cell lines treated with one out of 54
drugs, were subjected to bulk RNAseq analysis. 266 lists of differentially expressed
genes (DEGs) were calculated using the negative-binomial test implemented in the
‘exactTest’ functionality of the edgeR package. A Our computational pipeline uses
singular value decomposition (SVD) to identify drug-selective gene expression
responses that are components of the complete responses. Flow chart is used with
permission from Mount Sinai Health System, licensed under CC BY. See methods
section and Supplementary Fig. 4 for details. B Pairwise correlation analysis fol-
lowedbyhierarchical clustering reveals thatmost drug responses aredominatedby
cell-line-selective effects hiding drug-selective effects. Heatmap colors describe
drugs used for treatment, as documented in E. See Supplementary Fig. 5A for larger
dendrogram. C We used F1 score statistics to document the clustering efficiency,
i.e., how close samples treated with the same drug cluster together. Low clustering

efficiencies quantitatively describe the finding that only a few complete DEG
responses are dominated by drug-selective effects. D Projection of the complete
DEG responses into each of the identified 54 drug-selective subspaces greatly
increases the clustering efficiencies for all 54 drugs. Numbers of treated cell lines
are shown below the bars. Orange: Small molecule kinase inhibitors (KI), red:
monoclonal antibodies against KIs, purple: anthracyclines, blue: cardiac-acting
drugs, turquoise: non-cardiac-acting drugs. E Pairwise correlation of 266 merged
drug-selective responses, followed by hierarchical clustering, documents that SVD
allows identification of components induced in all cell lines treated with the same
drug. Clusters that contain drugs with similar mechanisms are labeled with gray
bars. White insets indicate drugs in those clusters that are not part of the outlined
mechanisms. White circles indicate outlier samples that were identified by our
pipeline and cluster as outliers in the merged dataset as well. See Supplementary
Fig. 13 for a larger dendrogram. #: count of, Ø: without, &: and.
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on a continuous turnover of cardiomyocyte sarcomere proteins30.
About half of hypertrophic and dilated cardiomyopathies are asso-
ciatedwithmutations in sarcomeric proteins31. Further supporting this
line of reasoning, we found downregulation of muscle contraction-
related SCPs in single cell RNAseq fromhiPSC-derived cardiomyocytes
froman infantwithDCM32 (SupplementaryData 19A–C) and fromadult
cardiomyocytes13,14 (Supplementary Data 20A, B) (Fig. 3B, Supple-
mentary Fig. 24). These SCPs might serve as a starting point for sup-
portive therapy. Four of the six regulated genes of the SCP ‘Thin
myofilament organization’ (Supplementary Data 11C) are involved in
blocking the binding of the myosin head to the thin myofilament
during muscle contraction. This mechanism is targeted by the new
drug mavacamten that was recently approved by the FDA to treat
obstructive Hypertrophic Cardiomyopathy (HCM)33.

Our data associates the upregulation of SCPs involved in the citric
acid cycle and mitochondrial energy generation with a cardiotoxic
response (Figs. 2B, C, Supplementary Figs. 18, 19). They are almost
exclusively upregulated by pazopanib (Supplementary Fig. 20), a TKI
with a high rate of cardiotoxicity (>10%) (Supplementary Data 3). In
contrast, many studies document an overall reduction in oxidative
phosphorylation during heart failure34 and identified SCPs are down-
regulated in adult Dilated Cardiomyopathy (DCM)13,14 and HCM13,14

cardiomyocytes as well as in hiPSC-derived DCM cardiomyocytes32, as
predicted from single cell and nucleus RNAseq datasets (Fig. 3B,
Supplementary Fig. 24, Supplementary Data 21A, B, C). In support of
our findings, compensatory upregulation of oxidative phosphoryla-
tion was suggested for patients belonging to a large DCM subgroup
that is caused by truncating titin variants35–37.

Fig. 2 | Potential subcellular processes indicative of TKI-induced cardiotoxi-
city. Up- and downregulated genes among the top 600 drug-selective gene
expression profiles were subjected to pathway enrichment analysis using MBCO
and Fisher’s Exact test. Significantly up- or downregulated SCPs (nominal p-
value ≤0.05) were ranked separately by significance for each sample and SCP level.
A To screen for SCPs that are selectively induced or repressed by cardiotoxic TKIs,
we calculatedhowmanycardiotoxic andnon-cardiotoxic TKIs upregulate anSCPof
interest in any cell line at any rank cutoff from 1 to 30. Definition of cardiotoxic TKIs
as true positives allowed calculation of an F1 score (beta = 0.25) at each analyzed
enrichment rank and quantification of the Area under the Curve (AUC). Similarly,
we calculated F1 scores and an AUC by analyzing TKIs that downregulate the same
SCP. Tofilter formixed effects, we subtractedhalf of the otherAUC fromeachAUC.

SCPs were ranked by decreasing AUCs. Flow chart is used with permission from
Mount Sinai Health System, licensed under CC BY. B Top up- (red) or down-
regulated (dark blue) 25 level-3 SCPs predicted for the cardiotoxic TKIs were
grouped based on the higher-level functions. White numbers indicate AUC ranks.
C The same analysis was applied to level-1, -2 and -3 SCPs, except that we only
focusedon theAUCobtained for enrichment ranks 1 to 20, due to a smaller number
of SCPswithin these levels.We also repeated thewhole analysis, screening for SCPs
selectively induced or repressed by non-cardiotoxic TKIs. Identified SCPs up- and
downregulated for cardiotoxic (red and dark blue, respectively) and non-
cardiotoxic TKIs (light blue and orange, respectively) for all levels were integrated
into the MBCO hierarchy. Selected branches are shown. See Supplementary Fig. 19
for all predictions.
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Increasing evidence links ferroptosis, an iron-dependent accu-
mulation of lipid peroxides that triggers cell death, to heart failure38.
Some identified SCPs in our data might converge on ferroptosis as an
endpoint. The SCP ‘Desaturation of fatty acids’ was associated with a
cardiotoxic response (Fig. 2B, C, Supplementary Figs. 18, 19) due to its
upregulation by pazopanib (Supplementary Fig. 20). Upregulated
genes mapping to this SCP (Supplementary Data 11C) can generate
polyunsaturated fatty acids (PUVAs)39,40 that are precursors of lipid
peroxides38. A lower activity of the level-2 SCP ‘Cellular antioxidant
systems’ and its level-1 parent ‘Cellular redox homeostasis’, pathways
offering protection against ferroptosis38, is associated with a cardio-
toxic response (Supplementary Figs. 18 and 19). They were down-
regulated by the cardiotoxic TKIs vandetinib and bevacizumab
(Supplementary Fig. 20). In addition, downregulation of ‘Cellular iron
storage’ by the anthracyclines doxorubicin and daunorubicin identi-
fied by us (Supplementary Figs. 14D, 15B) and others41 suggests sti-
mulation of ferroptosis by an increase of intracellular free iron41. In
agreement, supportive therapy with iron chelators protects against
AIC42, though the protective effect might involve mechanisms that are
unrelated to iron homeostasis43.

Potential clinical relevance of our findings is additionally indi-
cated by identification of SCPs involved in cholesterol metabolism and
natriuretic peptide signaling (Fig. 2B, Supplementary Fig. 18). Our SCPs
agree with recommended treatment schemes of cardiomyopathy and
drug-induced cardiomyopathy involving statins44 and neprilysin45,46,
respectively. Prediction of extracellular collagen-crosslinking (Sup-
plementary Fig. 18) can be linked to histopathological observations
that correlate with disease progression47,48. Involvement of identified

signaling pathways in TIC i.e., PDGF, HIF-1alpha, Oncostatin M and
Hippo signaling (Fig. 2B, Supplementary Fig. 18) is supported by their
involvement in drug-independent cardiomyopathy. These and other
findings regarding the predicted SCPs are discussed in further detail in
Supplementary Note 2.

Taken together the data from our experiments, when integrated
with data from the literature, indicate the TKIs are likely to have their
cardiotoxic effects by regulating SCPs in multiple cell types of the
heart and mimicking mechanisms involved in drug-independent car-
diomyopathy and heart failure.

Subcellular processes associated with anthracycline toxicity
To document which pathway activities are specifically associated with
AIC in distinction to the cardiotoxicity induced by very cardiotoxic
TKIs (frequency >10%), we used the F1 score and AUC algorithm to
compare both groups of drugs (Supplementary Fig. 25). Results were
integrated into the MBCO hierarchy (Supplementary Fig. 26). As
already described, the observed downregulation of ‘Cellular iron sto-
rage’ agrees with the central role of ferroptosis in AIC41. Observed
upregulation of ‘Nucleotide excision repair’ agrees with the docu-
mented involvement of both nucleotide excision repair and homo-
logous recombination in recognition and repair of anthracycline-DNA
adducts49. Upregulation of histone genes and other genes involved in
chromatin remodeling could be the consequence of anthracycline-
induced histone eviction50. As suggested by our data, dysregulation of
mitochondrial dynamics is another mechanism involved in AIC41.
Similarly, dysregulation of proteasomal degradation and autophagy
has been reported previously51, as well as activation of cell death
pathways52.

TKI transcriptomic signatures are similar in cardiomyoctes
cocultured with and without endothelial cells
Our experimental protocol raises the possibility that the signatures we
obtain are the consequence of our single cell type culture conditions
that are missing other cell types of the human heart. One cell type
thought to be relevant for cardiotoxicity is the endothelial cell type of
the blood vessels53. To determine if our signatures in cardiomyocytes
may be influenced by other cell types, we repeated the stimulation of
two selected cell lines with pazopanib and dabrafenib in absence or
presence of human coronary arterial endothelial cells (HCAECs)
(Supplementary Fig. 27A, Supplementary Data 2B). Cardiomyocytes in
the presence of endothelial cells showed increased beating rates. Drug
treatment at therapeutic doses did not affect the morphology or via-
bility of either endothelial cells (Supplementary Fig. 27B) or cardio-
myocytes. Cardiomyocytes and endothelial cells were cocultured in
cocultureplateswithporousmembranes for 48hours and then treated
with drugs for another 48 hours. This set up allows to obtain the car-
diomyocytes separately for extraction and bulk transcriptomics under
the same conditions used for the original experiments.

Pazopanib is a multi-tyrosine kinase inhibitor whose antineoplastic
effect is associatedwith inhibition of angiogenesis and interferencewith
vascular endothelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF) signaling in human endothelial cells54. Endothelial dys-
function causedbyVEGFblockage is discussedas apotentialmechanism
involved in pazopanib-induced cardiomyopathy55, suggesting that
pazopanib’s high cardiotoxicity (>10%, Supplementary Data 3) could at
least partly depend on interactions between endothelial cells and car-
diomyocytes. As a second drug, we selected the B-Raf inhibitor dabra-
fenib, as a representative for TKIs with less evidence for cross-cellular
effects56,57.

Eight lists of DEGs of the newdata (SupplementaryData 22A)were
mergedwith theoriginal 266 lists (SupplementaryData 4). Themerged
274 lists of DEGs were projected into the drug-selective subspaces
identified from the original 266 lists (Supplementary Data 22B, C),
followed by pairwise correlation analysis and hierarchical clustering.

Fig. 3 | SCPs can be mapped to cellular subtypes and known cardiomyopathy
disease mechanisms. A We subjected marker genes for ventricular and atrial
cardiomyocytes (VCM, red fields, and ACM, turquoise fields, respectively), cardiac
fibroblasts (CFB, brown fields) and smooth muscle cells (SMC, brown fields)
obtained from single nucleus RNAseq of the adult human heart29 to pathway
enrichment analysis using MBCO and Fisher’s exact test. Significant SCPs of each
cell type (nominal p-value ≤0.05) were ranked by significance (numbers in the
diagram). Names of SCPs whose higher and lower activities favor a cardiotoxic
response are colored red and blue, respectively. B DEGs in heart cells obtained by
single cell (SC)13 or nucleus (SN)14 RNAseq from patients with DCM or HCM as well
as in hiPSC-derived cardiomyocytes obtained from an infant patient with DCM32

were subjected to pathway enrichment analysis usingMBCOand Fisher’s exact test.
Significantly up- (red fields) or downregulated (blue fields) SCPs of each cell type
(nominal p-value ≤0.05) were ranked by significance (numbers in the diagram).
Names of SCPs are colored as described in (A).
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Both, pazopanib and dabrafenib (Supplementary Fig. 28A) treated cell
lines clustered closely together and there was only a slight change in
the overall F1 scores (Supplementary Fig. 28B). A distinct clustering of
DEGs generated in presenceor absenceof the endothelial cells was not
observed for either TKI. Clustering of the new combined final drug-
selective DEG matrix that now contained 274 instead of 266 lists of
DEGs showed only minor rearrangements within a larger cluster of
nine drugs that contained pazopanib and dabrafenib (Supplementary
Fig. 28C and D). Predicted pathways (Supplementary Fig. 29, Supple-
mentary Data 23–25) and cardiotoxic pathways induced or repressed
by pazopanib (Supplementary Fig. 30A) and dabrafenib (Supplemen-
tary Fig. 30B) showed onlyminor differences between the new and old
datasets. Overall, this analysis suggests that the effect of endothelial
cocultures on TKI-induced signatures in cardiomyoctyes is minimal.

Candidates for genomic variants associated with drug-induced
cardiotoxicity
Usingwhole genome sequencing of the six cell lines16, our next analysis
step focused on the identification of potential genomic variants that
might be associated with a higher or lower risk for drug-induced car-
diotoxicity (DIC) or more specifically TIC (Fig. 4A, Supplementary
Fig. 31). Cardiotoxic responses to TKI treatment are observed in less
than 10% to 20% of the treated patients (Supplementary Data 3).
Consequently, we hypothesized that the population-wide frequency of
a potential monogenic allele associated with DIC should be in a similar
range. Relevance for cardiac tissuewas assumed for those variants that
map togene coding regions or are part of cis-expression (e) or -splicing
(s) QTLs in the adult human heart58. We hypothesized that potentially
cardiotoxic or -protective variants could interfere with a drug’s phar-
macokinetics (PK) or -dynamics (PD) or with pathways that are tar-
geted by that drug.

Variants of the first interference group should induce a different
transcriptomic response, allowing us to link cell-line-specific variants
to identified 24 outlier responses. Since, based on statistical like-
lihoods, either none or only one of our six healthy volunteers should
suffer from cardiotoxicity induced by a drug of interest, we focused on
variants that are overexpressed in an outlier cell line for a drug of
interest, if compared to the other five lines. Mechanistic knowledge is
added by considering only variants that map to genes with potential
involvement in a drug’s PK/PD.

Variants of the second group should map to pathways that either
contain drug target proteins or are inducedor repressedby thedrugof
interest on the transcriptional level. Using the results of our tran-
scriptomic analysis, we focused on the second subgroup with a parti-
cular interest in those SCPs that are associated with a cardiotoxic or
non-cardiotoxic response.

Identification of genomic variants interfering with a
drug’s PK/PD
Based on outlier responses to daunorubicin and doxorubicin (Fig. 4B,
Supplementary Figs. 11 and 12), our PK/PD algorithm allowed re-
identification of the variant rs2229774 (Fig. 4C, SupplementaryData 25)
within the coding region of the RARG gene15, one out of three genomic
variants with the strongest evidence for AIC59. The suppressive activity
of the transcription factor RARG on the expression of the anthracy-
cline target TOP2B is reduced by this variant, leading to increased
AIC60. Pathway enrichment analysis suggests missing upregulation of
WNT receptor signaling as a potential mechanism of rs2229774-trig-
gered AIC (Fig. 4D, Supplementary Fig. 14D). In agreement, inhibition,
or activation of WNT signaling in mice and cell assays enhances or
mitigates AIC, respectively61–63.

In total, our outlier-based screening approach identified 128 and
111 potential variants that map to 100 and 88 genes involved in the PK/
PD of three anthracyclines and three cardiotoxic TKIs, respectively
(Fig. 4E, Supplementary Fig. 32A, Supplementary Data 26). Identified

variant candidates could trigger or protect from AIC or TIC. Three of
the variants map to drug target proteins of ponatinib and trametinib
(Supplementary Fig. 32B), TKIs with medium (1–10%) and high ( > 10%)
rates of TIC, respectively (Supplementary Data 3).

Considering all 24 drugs with documented outlier responses for
this analysis we identified 464 variants (Supplementary Fig. 32A)
mapping to 288 genes (Supplementary Fig. 32C) (Supplementary
Data 26).

SCP-based identification of genomic variants associated with
TKI-induced cardiotoxicity
Identified level-2, -3 and -4 SCPs associated with the response to car-
diotoxic and non-cardiotoxic TKIs enrich for genes that aremapped to
inherited DCMor HCM, either within the HuGE Phenopedia database64

or obtained from GWAS65,66 (Fig. 4F). We left out level-1 SCPs from this
analysis, since they were predicted based on genes mapping to a sub-
function of the general cellular functions the level-1 SCPs describe. It
needs to be considered that someof these variants could contribute to
drug cardiotoxicity bymodulating propensity for cardiac insufficiency
without primarily effecting cardiomyocytes. Nevertheless, the sig-
nificant overlap supports our hypothesis that TKIs induce cardiotoxi-
city bymimickingmechanisms involved in inherited or acquired drug-
independent cardiomyopathy, as discussed above and in Supplemen-
tary Note 2.

To identify a second set of potential variants interfering with TIC
we mapped all variants that met our population-wide requirements to
identified SCPs. In total, we identified634, 410 and80non-overlapping
variants mapping to level-2, -3 and -4 SCPs that are up- or down-
regulatedby cardiotoxic TKIs (Fig. 4G) (see SupplementaryFig. 32D for
variantsmapping toSCPs regulatedbynon-cardiotoxicTKIs).Mapping
identified SCPs back to the drugs that induce them (Supplementary
Fig. 20) enables identification of variants that might interfere with
cardiotoxicity of a drug of interest (Supplementary Data 27). For
example, we predicted 13 variants mapping to four genes of the SCP
‘Thin myofilament organization’ (Fig. 4H) thatmight interfere with the
cardiac response to sunitinibandponatinib downregulating this SCP in
six (enrichment ranks 2 × 3, 4, 2 × 7) and five (5 × 1) of six treated cell
lines, respectively (Supplementary Fig. 20), but also to lapatinib,
dabrafenib and bevacizumab. Two of those genes are involved in the
same function that is targeted by mavacamten, as described above.

Since most variants identified in GWAS of drug-independent car-
diomyopathy and mapping to our SCPs occur at high frequency and
are not part of cis e/s-QTLs, they do not meet our population-wide
requirements. Hence, we do not list them as being involved in drug-
induced cardiotoxicity. Some of these variants might not primarily
affect cardiomycoytes or other abundant cells in the heart. Addition-
ally, HCM and DCM exist as both monogenic and polygenic diseases.
Similarly, single ormultiple variants might be related to TIC, requiring
development of more sophisticated genomic algorithms. Never-
theless, identified SCPs are a good starting point to reduce the burden
of multiple testing hypothesis by restricting the focus on genes with a
functional implication in TIC.

Discussion
Akeyquestion that arises in identifying transcriptional signatures from
short term treatment of cell lines with drugs is whether early tran-
scriptional events in a 1–2 day time frame can be predictive of later
physiological (pathophysiological) states of an organ that takes weeks
or months to manifest when a drug is used clinically. While it is not
possible to answer this question for multiple organs and drug classes,
in the case of TKIs and heart the answer is yes. Two types of relation-
ships support this conclusion. We previously showed that tran-
scriptomic signatures of TKIs with differing toxicity profiles in FAERS
could be associated with these profiles67. In this study, the pathway
analyses of drug-induced gene expression lists across cell lines show
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that many TKIs with adverse event propensity selectively regulate
pathways that have also been shown to be involved in different types
of cardiomyopathies68. Additionally, the identity of the pathways
themselves such as contraction dynamics and extracellular matrix are
directly relevant to development of cardiac insufficiency. It is note-
worthy thatmavacamten, a drug approved in 2022 by the FDA to treat
obstructive hypertrophic cardiomyopathy33 regulates the level of
actin-myosin bridge formation and thus controls contractile dynamics.

Further, our previous data served as the external validation set for
a computational study that integrated transcriptomic signatures with
machine learning to predict cardiotoxicity69. Taken together, it
appears reasonable to conclude that the pathways regulated by car-
diotoxicdrugs can serve aspathway signatures for cardiotoxicity. Such
signatures could be used in drug development. Transcriptomic pro-
files of drug candidates could predict risk of cardiotoxicity from early
cell-based study (Fig. 5A). Additionally, knowledge of pathway
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Fig. 4 | Identificationof genomic variants that are potentially associatedwith a
cardiotoxic response.Whole genome sequencing of our six cell lines16 was used to
identify alleles in our cell lines at known variant positions. A See text and methods
for details of our pipeline for identification of potential genomic variants involved
in PK/PD or induced SCP activities for a drug of interest. Flow chart is used with
permission fromMount Sinai Health System, licensed under CC BY.B Clustering of
DEGs within the daunorubicin-selective subspace reveals an outlier response in cell
lineMSN09 after daunorubicin treatment.CThe identified variant rs2229774 in cell
line MSN09maps to the coding region of the transcription factor RARG regulating
the expression of TOP2B and ABCB8, both involved in PK/PD of daunorubicin and
doxorubicin that induce an outlier response in this cell line. D Enrichment sig-
nificance ranks for “WNT-Beta-catenin signaling pathway” obtained by analysis of
upregulated genes after daunorubicin or doxorubicin treatment of indicated cell
lines. The cell line MSN09 (purple) contains the rs2229774 mutation in the RARG
gene. Field colors change from bright to dark yellow with increasing ranks. ‘>’
indicates that the SCPwas not predicted or predictedwith a rank > 99. E In total, we

identified 213 and 201 potential variants associated with TIC or AIC by interference
with PK/PD mechanisms, respectively. Variants mapping to multiple gene classes
are split equally among them to prevent double counting. Drug names are colored
according to their class (orange: Small molecule kinase inhibitors (KI), red:
monoclonal antibodies against KIs, purple: anthracyclines). F We compared the
overlap of identified SCP genes associated with a cardiotoxic or non-cardiotoxic
response to genes associated with inherited DCM or HCM, either within the HuGE
Phenopedia database or identified in GWAS. TWAS: transcription-wide-association
studies. G Variants that meet our population-wide criteria weremapped to up- and
downregulated level -2, -3 and -4 SCPs that we predicted as indicative for TIC.
Variants that map to identified SCPs of multiple levels are only counted for the
lowest level SCPs (higher level numbers) to prevent double counting. Drug names
are colored as described in (E). H Up- and downregulated SCPs associated with a
cardiotoxic response were mapped back to the cardiotoxic TKIs that induce them.
Numbers in brackets show identified variants for each SCP gene. Blue indicates that
the SCP is a level-3 SCP.
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activities involved in cardiotoxic side effects may allow focused drug
repurposingwith the aimto reverse relevant pathwayactivities andnot
overall TKI-induced gene expression (Fig. 5B)70. Ideally, pathway
activities targeted by the mitigating drug should not participate in the
antineoplastic effect, allowing continuation of TKI treatment even
when cardiotoxicity is a possibility, as anticipated by the concept of
permissive cardiotoxicity71.

Our method for identifying drug-selective DEGs could have wider
applications since both bulk and single cell expression profiles often
represent the combination of multiple DEG sets induced by different
actions on the same cell type or mixtures of cell types (i.e., tissue). Our
computational pipeline decomposes these mixed gene expression
profiles into individual effect-selective DEG sets and identifies the DEG
sets involved in the response of interest. For example, grouping
patientswith the samedisease into subgroups based on shared disease
clinical manifestations could enable identification of gene expression
profiles associated with each selected subgroup that can lead to tai-
lored treatment options. A particular advantage of our pipeline is that
patient groupings do not need to be mutually exclusive, i.e., patients
can be assigned to each disease subgroup independently of the other
assignments.

A serendipitous finding from our studies on the hiPSC-derived
cardiomyocytes is that single cell RNAseq allowed us to resolve these
cells into multiple clusters16. As single cell transcriptomic data from
normal29 and diseased13,14 adult human heart became available in 2022
we compared the clusters in our data to the different cell types in the
adult human heart. This comparison allowed us to identify the group
that is most like ventricular cardiomyocytes and to identify a group
related to fibroblasts. Several of the top ranked SCPs are most likely
expressed in all these cell types, since they arenot specifically enriched
in any of them. Thus, the integration of bulk transcriptomic and single
cell transcriptomic data allows us to project the SCPs onto different
cell types of the heart. These integrated analyses suggest that the
cardiotoxic drugs are likely to have their pathophysiological effects by
affecting multiple cell types. The effects on fibroblasts and extra-
cellularmatrix dynamics72 can readily affect the elasticity of the cardiac
muscle and it has long been known that extracellular collagen-
crosslinking is directly related to heart failure47,48. It appears likely

that the effects of TKIs on fibroblasts can contribute in part to cardi-
otoxic effects. In evaluating drug candidates for cardiotoxicity, it may
be necessary to consider the drugs’ effects not onlyon cardiomyocytes
but also on cardiac fibroblasts and other cell types in the heart.
Nevertheless, an initial screen with just cardiomyocytes in cell-based
experiments may suffice to weed out compounds that may be cardi-
otoxic. Our data with cardiomyocyte and endothelial cell cocultures
did not change the pazopanib- and dabrafenib-induced expression
patterns, supporting this idea.

Using the common differential expression patterns for each drug
across cell lines, it is possible to identify outlier responses in a parti-
cular cell line (i.e., human subject). Such responses could provide
information about genomic characteristics that could be associated
with adverse events since these events occur in typically 1–20% of the
population. Genomic variants associated with the proteins involved in
PK/PD are likely candidates. We tested the validity of this assumption.
We found that the genomic variant rs2229774within the coding region
of RARG can be identified by integration of whole genome wide
sequencing of our six healthy cell lines and transcriptomic outlier
analysis of the anthracycline drugs. GWAS15 and follow-up studies60

had previously identified RARG to be causally linked to AIC, since
RARG regulates the expression of the anthracycline target topoi-
somerase 2B. The variant in the RARG gene is one of three genomic
variants with the strongest clinical evidence for AIC59. Based on this
validation we searched for genomic variants associated with cardio-
toxic TKIs.We considered PK, PD, and keypathways regulatedby these
drugs and developed a list of variants whose occurrence could trigger
TIC in a monogenetic manner. Here, data integration identifies geno-
mic variants that could serve as hypotheses for targeted genomic
studies to identify risk determinants (Fig. 5C), even before a sufficient
number of patients has developed side effects to meet minimum
sample sizes required for traditional GWAS statistics. Comparison of
induced pathways between regular and outlier responses could sug-
gest targets for mitigating therapies. Our data indicates missing
upregulation of WNT-signaling after anthracycline treatment in the
RARG variant positive cell line, a known target for enhancement or
mitigation of AIC in mice and cell assays61–63. Building on our outlier-
based strategy, more sophisticated genomic algorithms could be

Fig. 5 | Potential useof cell-based transcriptomicdata for drug therapy induced
adverse events. The flowcharts summarize how integration of experimentally
gathered transcriptomic data with publicly available pathway and genomic data
bases can (A) help predict toxicity of drug candidates, (B) identify potential new

drug targets to mitigate cardiotoxicity and (C) enable design of clinical studies to
associate genomic variants with cardiotoxicity propensity. All three flow charts are
used with permission from Mount Sinai Health System, licensed under CC BY.
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developed to allow prediction of variants involved in polygenetic
traits.

Although our study has successfully identified pathway signatures
for TKI-induced cardiotoxicity, some limitations should be noted. One
limitation of our study is its focus on transcriptomic responses
induced by TKI treatment. For many drugs the known mechanism of
action involves the direct inhibition of physiological function by
binding to their protein targets. Resulting drug effects can be inde-
pendent of transcriptomic effects, such as changes in protein activities
or protein degradation rates. Inclusion of additional high-throughput
technologies will allow more extensive characterization of drug-
induced cardiotoxicity. Functional assays offer an additional oppor-
tunity to predict a drug’s cardiotoxicity73–80 and can be used to analyze
if our transcriptomic findings translate into physiological effects that
could be targeted by mitigating therapies. We also recognize the lim-
ited number of cell-lines (i.e., human subjects) used in our study.
Although amatrix of six lines (threemales, three females) and 54 drugs
is substantial, we may have been able to extract more pathway and
genomic information, if we could have conducted the studywith 20 or
30 lines. Further, systematic coculturing of cardiomyocytes with
endothelial cells, pericytes, fibroblasts and immune cell subtypes will
yield a more detailed mechanistic information underlying the cardio-
toxicity. Additionally, our study is at one time and one therapeutically
relevant concentration and does not separate transient from perma-
nent effects by analyzing reversal of transcriptomic changes after drug
withdrawal. Testing for many of these variables was limited by
resource availability.

In spite of these limitations, our study shows that integration of
transcriptomic data fromone cell typewith pathway and genomic data
in various publicly available datasets can provide reliable pathway
signatures and serve as a powerful hypothesis generator for different
laboratory and clinical studies to detect and avoid adverse events
associated with drug therapy.

Methods
Materials
The sources of allmaterials are listed in Supplementary Table 1A that is
taken from Schaniel et al.16, since the two studies were conducted
concurrently. It is also available as detailed Protocols associated with
the LINCS project (http://iyengarlab.org/dtoxs/). Supplementary
Table 1B contains the sources of all materials used for the co-culture
experiments.

Healthy human subject iPSC lines
Skin fibroblasts were obtained from six healthy volunteers (Supple-
mentaryData 1), reprogrammed into human induced pluripotent stem
cells (hiPSC) using the mRNA plusmicroRNA boost reprogramming
method according to the manufacturer’s recommendation (Stemgent
now Reprocell). Subjects were recruited and consented under Mount
Sinai Institutional Review Board-approved protocol (HS# 14-00530).
See related documents at our previous publication16. Reprogrammed
lines, which were characterized for normal karyotype and plur-
ipotency, were differentiated using the embryoid body formation
method in PRMI 1640 containing 2mM/L L-glutamine, 4 x 10−4 M
monothioglycerol and 50mg/mL ascorbic acid (differentiation med-
ium) the presence of 3 ng/mLBMP4 for one day, followed by 20ng/mL
BMP and 20 ng/mL Activin A for two days. On day 3 embryoid bodies
were harvested, washed and cultured in 5 ng/mL VEGF plus 5μM
XAV939 for two days, followed by culture in 5 ng/mL VEGF for three
days. Medium was changed to differentiation medium and exchanged
every three to four days until day 20 when embryoid bodies were
dissociated and replated onto Matrigel-coated 6-well plates at a den-
sity of 1 x 106 cells/mL in differentiation medium. The following day,
themediumwas replaced with 4mM lactate in DMEMwithout glucose

(lactate medium) for four days, after which the lactate medium was
titrated down in the following lactate to differentiationmedium ratios:
day 5, 3:1; day 6, 1:1; day 7: 1:3; day 8, 0:4. Cells were maintained for
several days in differentiationmediumbefore drug treatment for 48 h,
using concentrations as described (Supplementary Data 2A).

Human Coronary Artery Endothelial Cells (HCAECs)
HCAECs were purchased from PromoCell, they were thawed and
maintained as indicated. Briefly, HCAEC were maintained in Endothe-
lial Cell Growth MediumMV supplemented with 10% Fetal Calf Serum,
0.8% Endothelial Cell Growth supplement, 10ng/ml Epidermal Growth
Factor, 90µg/ml Heparin and 1 µg/ml Hydrocortisone (Endothelial Cell
Growth Medium MV Kit, PromoCell). Cells were grown up to 80%
confluence and then passaged using 0.04% Trypsin/0.03% EDTA and
trypsinwas inactivatedwith 0.05%Soybean Trypsin Inhibitor with 0.1%
BSA (PromoCell).

Treatment of cardiomyocyte cell lines
We stimulated six cardiomyocyte cell lines with 54 different single
drugs or DMSO for 48 h. The sources and concentrations of the drugs
used for the treatments are in Supplementary Table 1. Typically, each
cell line/drug combination had quadruplicate measurements, while 11
or 12 control replicates were generated, except for cell line MSN02
with 5 control replicates. While DMSO and drug treatments were done
in parallel, data generated from the control replicates has been pub-
lished previously16.

Treatment of cardiomyocytes in coculture with HCAECs
For co-cultures of HCAECs with human iPSC-derived cardiomyocytes
(CMs), the HCAECs were plated on glass coverslips (18mm diameter).
Glass coverslips were first sterilized under a UV light for 15min, then
placed in a petri dish with 70% ethanol for 5min. The glass coverslips
were thoroughly rinsed 3 times with sterile filtered ddH2O and allowed
to air dry under a tissue culture hood. Once the glass coverslips were
dried they were coatedwith 1mg/ml Poly-L-lysine hydrobromide (PLL)
overnight at 4 °C. The next day, the PLL was rinsed thoroughly three
times with water and the glass coverslips were allowed to air dry under
a tissue culture hood.

We wanted to use a 1:1 ratio of HCAECs to CM cells as referenced
from a summary of studies that had measured the proportion of CMs
to endothelial cells in the human heart81. We seeded approximately
125,000 HCAECs per coverslip in a 6 well plate. Since HCAECs are
doubling in culture every two to three days, we wanted to ensure that
the HCAECs did not exceed approximately 500,000 cells at the end of
the experiment. We let the HCAECs settle onto the glass coverslips in
the EndothelialCell GrowthMediumMVovernight and thenext daywe
co-cultured them with CM cells using Nunc co-culture plates.

CMcells wereplated at 500,000 cells perwell of a 6-well plate and
grown in CM media. One co-culture insert containing the coverslip
with the HCAECs facing top was gently inserted into each well of that
6-well plate (see Supplementary Fig. 27A for cartoon of the co-culture).
We made sure enough media covered both the CM cells and the
HCAECs (about 4 ml of media per well). The co-cultures were main-
tained in CMmedia and allowed to acclimate for 48 h beforewe began
the drug treatments, using concentrations as described (Supplemen-
tary Data 2B).

At the end of the experiment, the glass coverslips with the
HCAECs were removed and placed into 4% paraformaldehyde solution
for 30min. The coverslips were then washed with PBS and cells were
stained with Actin-Green. We briefly washed the coverslips with PBS
and incubated them with 1% BSA in 0.25% Triton-X with 4 drops of
Actin-Green for 30 mins, briefly washed them with PBS and finally
mounted them with ProLong Gold with Dapi. We imaged on a Zeiss
LSM 880 Confocal.
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Bulk transcriptomics
After treatment, cardiomyocyte cells of each replicate were separately
harvested in TRIzol Reagent (Thermo Fisher Scientific, 15596018),
followed by RNA isolation according to the manufacturer’s instruc-
tions. We quantified the RNA using Qubit RNA BR Assay kit (Thermo
Fisher Scientific, Q10211) on a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific, Q32866). The RNA 6000 Nano kit (Agilent, 5067-1511) was
used to determine the RNA integrity on a 2100 Bioanalyzer Instrument
(Agilent, G2939BA). We only used RNA samples with an RNA Integrity
Number (RIN) of > 8 (our samples commonly had a RIN of 9-10) for
library preparation. A minimum of 100 ng total RNA (ideally 300-500
ng) was subjected to library preparation, using the TruSeq Stranded
mRNA Library Prep (96 Samples) (Illumina, 20020595), TruSeq RNA
adapter plate (96 plex) (Illumina, 15016427) and IDT for Illumina-
TruSeqRNAUD Indexes (96 Indexes, 96 Samples) (Illumina, 20022371)
and according to Illumina’s TruSeq Stranded mRNA reference guide.
We quantified the prepared libraries on a Qubit 2.0 Fluorometer using
the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32851).
Library integrity was checked on a 2100 Bioanalyzer Instrument using
the Agilent DNA 1000 Kit (Agilent, 5067-1505). We only subjected
libraries with a library peak 250–450 bp and no to very low adapter
contamination to sequencing. Pooled libraries were clustered in either
an S1 flowcell or a full NovaSeq 6000. The cell line/drug combinations
were then sequenced using a 100bp Single End configuration, and
typically 24 million reads were mapped to the hg38 reference genome
for each cell line/drug combination.

Curation of cardiotoxic risk profiles from FAERS database
Wecurateddata from the FDAadverse event reporting system (FAERS)
database to calculate reporting odds ratios of drugs that act on cardiac
systems.We downloaded data from the FDAwebsite from (2004_Q1 to
2019_Q4)which contains over 10million adverse event reports in AERS
(2004_Q1 to 2012_Q3) & FAERS (2012_Q4 to 2019_Q4). The quarterly
data files include the following: a) demographic and administrative
information including imaging reports, b) eachpatient identified by an
id number, c) drug information from the case report, d) adverse event
information from the report, f) patient outcome information from the
report, g) information on the source of the report and h) information
on the date of report. To parse FAERS (and AERS) data into a relational
database (by default it is sqlite), we downloaded the ASCII zip file for
each quarter and used the FAERS toolkit (http://github.com/kylechua/
faers-toolkit). For further analysis,we used a python script to parse raw
data fromtextfiles and identify the frequencyof occurrenceof adverse
events of interest. Finally, we used a reporting odds ratios (mean and
95% confidence interval) formula for each drug of interest.

Identification of differentially expressed genes
Control transcriptomic data16 and transcriptomic data generated by
treatment of six cardiomyocyte cell lines with 54 drugs was analyzed,
as described previously82, except that we used human reference gen-
omehg38 in this study. Briefly,we aligned the bulk transcriptomicdata
to hg38 using STAR83, followed by mapping of read counts to genes
using the RefGene reference annotation and feature counts84. Pairwise
correlation, followed by hierarchical clustering, identified replicates
with deviating gene expression profiles that were consequently
removed from the analysis (Supplementary Data 2). Drug-treated or
control cell lines were subjected to differential expression analysis
using the negative-binomial test implemented in the ‘exactTest’ func-
tionality of the edgeR package85. Each of the calculated 266 lists of
differentially expressed genes describes the response observed in a
unique cell line/drug combination. Genes with a False Discovery Rate
(FDR) of at max 10% were defined as significant. Each of these lists
contained significance p-values for 16,345 genes, ranging from zero to
one. We transformed these p-values into -log10(p-values) and added a
negative sign in case of downregulated genes (or kept the positive sign

in case of upregulated genes), to document the direction of change.
P-values that were zero were replaced by 10−64 before transformation,
since this is the lowest non-zerop-value that is generated by our edgeR
pipeline.

Pairwise correlation and hierarchical clustering
All generated signed -log10(p-values) were integrated into a matrix
where the columns represent the 266 treated cell line/drug combina-
tions and the rows the 16,345 genes. We calculated the pairwise cor-
relation coefficients between all rows and all columns, followed by
hierarchical clustering of the rows and columns based on the pairwise
correlation coefficients (distance function: (1-cor(x))/2). Rows and
columnsof theoriginalmatrixwere rearrangedbasedon the clustering
results before visualization. To document how efficient the clustering
algorithm groups cell line/drug combinations that represented dif-
ferent cell lines treated with the same drug into the same cluster, we
calculated an F1 score for each cluster drug combination. Every cluster
that could be obtained by cutting the dendrogram at any height and
contained at least two cell line/drug combinations was analyzed. The
F1 score is the harmonic mean of precision and recall (we selected
beta = 1). Here, precision documents the fraction of cell line/drug
combinations in a particular cluster that were treated with a particular
drug, recall documents the fraction of all cell line/drug combinations
treated with that drug that were in that cluster. For each drug, we
determined the cluster with the highest F1 score and saved that
F1 score for that drug.

Singular value decomposition and identification of drug-
selective subspaces and gene expression profiles
The gene expression matrix filled with the signed -log10(p-values) was
subjected to our computational pipeline for the identification of drug-
selective responses (Supplementary Fig. 4). It is based on singular
value decomposition (SVD) and implemented in the programming
language R. SVD decomposes the input matrix into a matrix of
orthonormal left singular vectors, a diagonal matrix of singular values
and a matrix of orthonormal right singular vectors. Applied to gene
expression data, the left singular vectors are often referred to as
eigenarrays86, because each gene expression profile (columns in the
inputmatrix) is a linear combination of all eigenarrays (Supplementary
Fig. 6A). The right singular vectors contain the cell line/drug
combination-specific coefficients for this linear combination. The
eigenarray-specific singular values document how much of the initial
variance can be explained by each eigenarray and need to be added as
additional factors to the terms in the linear combination to reconstruct
the original values.

To further characterize the eigenarrays, we correlated the cell
line/drug combination-specific coefficients associated with each
eigenarray with the number of significantly differentially expressed
genes (DEGs) (FDR ≤0.1) in each cell line/drug combination, using
Pearson correlation (Supplementary Fig. 6C). The first eigenarray was
removed from the gene expression matrix and the new matrix sub-
jected to the same pipeline. We used a two-tailed t-test to analyze
whether the cell line/drug combination-specific coefficients of each
eigenarray significantly differed between all cell line/drug combina-
tions of the same drug and all other cell line/drug combinations
(Supplementary Fig. 9A). Similarly, we analyzed whether the cell line/
drug combination-specific coefficients of each eigenarray significantly
differed between all cell line/drug combinations of the same cell line
and all other cell line/drug combinations, using a two-tailed t-test. As a
result, we obtained one p-value for each drug and eigenarray combi-
nation or cell line and eigenarray combination. P-values were trans-
formed into -log10(p-values) and integrated into a matrix where the
columns represent the eigenarrays and the rows the drugs or cell lines.
The matrix was subjected to pairwise correlation analysis and hier-
archical clustering, as described above.
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Any combination of eigenarrays spans a subspace that contains
a particular fraction of the complete DEG profiles. For each drug, we
ranked all eigenarrays by significance and generated 263 potential
drug-selective subspaces spanned by the top three to 265 ranked
eigenarrays. We then projected all 266 complete gene expression
profiles into each of these subspaces, followed by pairwise correla-
tion analysis and hierarchical clustering. Each potential drug-
selective subspace can be characterized by two different mea-
sures. The first measure is the maximum F1 score that documents
how close all cell line/drug combinations treated with the drug of
interest cluster together. The second measure is the median cosine
similarity that documents howmuch of the gene expression profiles,
after removal of the first eigenarray induced by the drug of interest,
is still preserved in that subspace. The maximum F1 score was
determined as described above for the complete dataset. For each
subspace we calculated a final selection score that is the weighted
mean between the maximum F1 score and median cosine similarity.
The relative contribution of the F1 score and the median cosine
similarity to the final selection score was defined by the F1 score
weight. High and low F1 score weights favor F1 score or median
cosine similarity, respectively. Varying the F1 score weights from
0.00 to 0.95 in steps of 0.05 and searching for the subspace with the
highest selection score yielded 20 potential drug-selective sub-
spaces for each drug.

Besides our interest in the characterization of drug-selective gene
expression profiles, we were also interested in the identification of cell
lines that showed a significantly different response from the other cell
lines to treatment with the same drug. To identify cell lines with such
outlier responses we screened each of the 20 potential drug-selective
subspaces for clustering results that indicated an outlier response, i.e.,
a single cell line that does not cluster together with the other cell lines
treated with the same drug. To find such outlier responses, we calcu-
lated cell line/drug combination-specific F1 scores using the same
approach described above, except that the cell line/drug combination
of interest has to be in that cluster. Dixon’s Q test of cell line/drug
combination-specific F1 scores was used to identify outlier responses
(Bonferroni-corrected p-value ≤0.05). Identified outliers were only
accepted if the mean F1 score of all non-outlier cell line/drug combi-
nations was larger than 0.5. If an outlier response was identified in any
of the 20 potential drug-selective subspaces, we ranked the potential
subspaces by Dixon’s Q test adjusted p-value, followed by decreasing
mean F1 score of all non-outlier cell line/drug combinations and
increasing F1 scoreweight. The top ranked subspacewasdefined as the
drug-selective subspace. If no outlier was identified, we selected that
subspace with the highest selection score based on an F1 score
weight of 0.95.

Projection of gene expression profiles into the final drug-selective
subspaces generated drug-selective gene expression profiles thatwere
combined into a new matrix.

Pathway enrichment analysis
We subjected the complete set of DEGs, the DEGs after removal of
the first eigenarray and the drug-selective DEGs to pathway enrich-
ment analysis (Supplementary Fig. 14A). For each group of DEGs, up-
and downregulated genes among the top 600most significant DEGs
(as indicated by complete or decomposed absolute -log10(p-values))
were separately subjected to enrichment analysis using the Mole-
cular Biology of the Cell Ontology (MBCO)28 (http://mbc-ontology.
org or http://github.com/SBCNY/Molecular-Biology-of-the-Cell) and
Fisher’s Exact test. Only SCPs predicted with a maximum nominal
p-value of 0.05 were considered. For each treatment, predicted up-
or downregulated level-1, -2, -3 and -4 SCPs were separately ranked
by significance, generating eight lists of ranked SCPs per treatment.
Pathway enrichment analysis was implemented in the programming
language C#.

Identification of SCPs associated with cardiotoxic and non-
cardiotoxic responses
To identify SCPs that are associated with cardiotoxic and non-
cardiotoxic TKI responses, we counted, at each significance rank cut-
off, how many cardiotoxic or non-cardiotoxic small molecule kinase
inhibitors and monoclonal antibodies up- or downregulate an SCP of
interest with a significance rank below or equal to the current cutoff
(Supplementary Fig. 16). Counting results were used to calculate pre-
cision and recall of each SCP at each rank to be either up- or down-
regulated by either the cardiotoxic or non-cardiotoxic TKIs. F1 scores
were calculatedwith a high emphasis on the precision (beta = 0.25). To
ensure consistent results across multiple ranks, we calculated the area
under the F1 score curve (AUC) between the ranks 1 and 20 for SCPs of
the levels 1, 2 and 4 and 1 and 30 for SCPs of level 3. Different rank
cutoffs were selected due to the different number of SCPs of each
level. Consequently, we obtained four AUCs for each SCP (up- or
downregulated by cardiotoxic or non-cardiotoxic TKIs). To enable
cross-comparison of AUCs across different levels, we normalized the
AUCs by calculation of the percent of the maximal available area
covered by each AUC. To emphasize identification of SCPs that are
either up- or downregulated by cardiotoxic or non-cardiotoxic TKIs,
we introduced a penalty on each AUC by subtracting half of the AUC
calculated for the same group but based on the DEGs changing in the
opposite direction. Final AUCs of the same toxicity group were ranked
(independently of the direction of change) and the level-1, -2, -3 and -4
SCPs associated with the top 10, 10, 25 and 10 ranked AUCs further
investigated. Different rank cutoffs were selected due to the different
number of SCPs of each level. This pipeline was implemented
in C# and R.

The same pipeline was used for the identification of SCPs asso-
ciated with anthracyclines or highly cardiotoxic TKIs (cardiotoxicity
frequency > 10%).

Integration of additional datasets obtained from cardiomyo-
cytes with or without endothelial cocultures
Eight lists of DEGs that were generated from bulk transcriptomic
sequencing of cell lines MSN08 and MSN09 after stimulation with
dabrafenib, pazopanib or vehicle control in presence or absence of
endothelial co-cultures were merged with the 266 original lists of
DEGs. Merged 274 lists of DEGs were projected into the drug-selective
subspaces identified from the original 266 lists of DEGs, as described
above. F1 scores, drug-selective DEGs and up- or downregulated SCPs
were calculated as described above.

Single cell and nucleus RNAseq dataset analysis
Single cell RNAseq data of four hiPSC-derived cell lines that were also
used in this study were obtained from Schaniel et al.16 (GSE175761). We
reanalyzed the data using an updated Seurat package (version 4.1.3)87.
Cells with feature counts below 500 and expression of mitochondrial
genes of more than 50% were removed during quality control. The
Seurat functionality ‘SCTransform’ was used to normalize, scale,
identify the top 2000 features, and regress out mitochondrial gene
counts in each individual dataset. The four datasets were integrated
using the Seurat ‘IntegrateData’ pipeline. We used the top 30 principal
components for dimensionality reduction. After identification of cell
neighborhoods using ‘FindNeighbors’ we clustered the combined
integrated Seurat object using a resolution of 0.085, since this reso-
lution allowed identification of six different clusters that can be map-
ped to reasonable cardiac cell types. Cluster marker genes were
calculated using the Wilcoxon Rank Sum test implemented in the
‘FindMarkers’ functionality, the ‘RNA’-assay and log-normalized ‘data’-
slot and a significance cutoff of an adjustedp-value ≤0.05. To annotate
clusters to cell types we subjected the top 500 significant marker
genes to pathway enrichment analysis using Fisher’s Exact test and cell
type genes identified in single cell and single nucleus RNAseq of the
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adult88 or the developing human heart89. To identify cluster-specific
SCPs we subjected the marker genes to enrichment analysis using
MBCO28, using the right-tailed Fisher’s exact test.

Supplementary Fig. 22A shows UMAPs with cluster-cell type
annotations that are similar to our previous annotations published
Supplementary Fig. S4D in Schaniel et al.16. Supplementary Fig. 22B
shows a similar distribution of cells among the different clusters in
each of the four cell lines as Supplementary Fig. S4E in our previous
publication. Cell type annotations in current Supplementary Fig. 22A
match those in our previous publication shown in Supplementary
Fig. S4G16.

Cell type marker genes in the adult human heart29 used above
were calculated using a published Seurat object and FindMarkers as
described above. The top 500 marker genes of each cell type were
subjected to enrichment analysis using MBCO28 and the right-tailed
Fisher’s exact test.

Up- and downregulated genes between hiPSC-derived cardio-
myocytes from juvenile patients with dilated cardiomyopathy and
healthy controls32 were subjected to enrichment analysis using
MBCO28 and the right-tailed Fisher’s exact test.

Up- and downregulated genes among the top 600 most sig-
nificant DEGs in each cell type obtained by single cell13 or single
nucleus RNAseq14 from patients with dilated and/or hypertrophic
cardiomyopathy were subjected to enrichment analysis using MBCO28

and the right-tailed Fisher’s exact test as well.

Whole genome sequencing
Whole genome sequencing of the six cell lines used in this study has
been previously published16 and is deposited on dbGAP under the
accession id phs002088.v2.p1. Here, we reanalyzed the data as
described previously in ref. 16, except that we used the hg38 reference
genome. Sequencing reads were aligned to hg38 reference using bwa-
mem2. Aligned bam-files were called to g.vcf files using deepvariant
and a joint vcf of calls weregenerated usingGLnexus. Jointly the vcffile
was annotated using ANNOVAR to provide RefSeq gene-based anno-
tations, gnomAD allele frequencies, CADD 1.6 scores, SpliceAI scores,
ClinVar annotations, dbSNP annotations, GTEx annotations for atrial
and ventricular expression and splice QTLs downloaded from the
GTEx portal. Variants reported in the NHGRI-EBI Catalog of human
genome-wide association studies were annotated.

Identification of genomic variants potentially associated with
drug-induced cardiotoxicity
Building on our transcriptomic analysis, we implemented a pipeline in
C# and R that searches for potential variants of drug-induced cardio-
toxicity (Supplementary Fig. 31). We searched for variants that either
interfere with a drug’s pharmacokinetics (PK) or -dynamics (PD), or
map to SCPs identified to be associated with a cardiotoxic or non-
cardiotoxic response by our transcriptomic analysis.

In both cases, we initially filtered variants based on population-
wide statistics. Cardiotoxic responses to kinase inhibitor treatment
are normally observed in 1% to 20% of the treated patients (Supple-
mentary Table 4). Consequently, the population-wide frequency of
an allele in a genomic variant associated with drug-induced cardio-
toxicity should be in a similar range or even lower, so we focused on
variant alleles with frequencies of 10% or less. For each variant, we
only considered the least frequent allele, minor allele in the following
(no excluded allele would have meet our population-wide frequency
cutoff of 10%). Relevance for cardiac tissue should be assigned for
those variants that either map to gene coding regions or are part of a
cis-expression (e) or -splicing (s) QTL in the adult heart that we
obtained from the GTEx Portal (GTEX v8)58. For further analysis, we
only considered variants that met these filter criteria.

For the identificationof variants that interferewith PK/PDof a given
drugwe integrated the results of our transcriptomic outlier analysis with

theWGS results of our cell lines. With cardiotoxic responses in 1–20% of
treated patients (Supplementary Data 3), either none or only one of our
six healthy volunteers that donated skinfibroblasts for hiPSC generation
and cardiomyocyte differentiation should suffer from cardiotoxicity
induced by a drug of interest. Consequently, we considered only
those variants in each cell line that show a higher count for the minor
allele (as identified in the population-wide analysis) in that cell line
compared to the other five cell lines. For the last selection step, we
hypothesized that interferencewith the drug’s PK/PD induces a different
transcriptomic response, allowing us to link drug-related outlier
responses identified in our transcriptomic analysis to variants over-
represented in our cell lines. To link the remaining variants to a
drug’s PK/PD, we curated all human drug target proteins, transporters
and enzymes of drugs with an identified outlier response from
theDrugbankdatabase21 (2024 January). In addition to the genes directly
involved in each drug’s PK/PD, we were also interested in mechanistic
regulators of those genes, i.e., transcription factors or kinases. We
downloaded the libraries ‘Chea_2022’90,91, ‘Encode_tf_chip_seq_2015’92,
‘Transfac_and_jaspar_pwms’93, ‘TRRUST_transcription_factors_2019’94,
‘Kea_2015’95 from the enrichR website96 (2024 January) and curated all
human, mouse and rat transcription factors and kinases that regulate
any target proteins, transporters or enzymes. Mouse and rat TFs as well
as their target genes were mapped to human homologues, using
‘HOM_AllOrganism.rpt’ downloaded from the Mouse Genome Infor-
matics Web Site97 and ‘homologene.data’ downloaded from the NCBI
website98 (2024 January). Only variants mapping to genes involved in a
drug’s PK/PD, either directly or as potential mechanistic regulators, and
identified in a cell line with an outlier response to that drug were sug-
gested as potential variants.

For the identification of variants with cardiotoxic or cardiopro-
tective effects by interference with transcriptionally regulated SCPs
that are associated with a cardiotoxic or non-cardiotoxic response, we
mapped all variants identified in the population-wide analysis to
identified SCPs. To prevent double counting we removed any variants
mapping to genes that are annotated to multiple SCPs in parent-child
relationships from all ancestor SCPs before visualizing the results as
stacked bar diagrams.

Comparison of identified variant genes with prior knowledge
To compare our predictions with genes involved in inherited car-
diomyopathies, we extracted all genes annotated to “Cardiomyo-
pathy, Hypertrophic” or “Cardiomyopathy, Dilated” in the HuGE
Phenopedia64 (downloaded on 2020 June 04) and genes associated
with DCM65 or HCM66 in GWAS. In the DCM study65, we focused
on those genes annotated to the MRI phenotypes ‘LVEF’, ‘LVESV’
and ‘LVESVi’, since DCM was the disease most strongly associated
with these phenotypes, as stated by the authors. We compared both
the genes listed in the column ‘Nearest Gene’ and ‘TWAS Gene’ of
Suppl. data file 3 with our results. In case of the HCM66 study, we
used all genes listed in the column ‘Locus Name’ in their
Suppl. Data 2.

Wemerged all predicted genes that contain potential variants and
map to level-2, -3 and -4 SCPs of the MBCO ontology28 identified to be
up- or downregulated by cardiotoxic or non-cardiotoxic drugs at
higher enrichment ranks as by the other TKI group. Here, we ignored
genes annotated to level-1 SCPs, since level-1 SCPs cover multiple
subfunctions only a few of whichmight contribute to the prediction of
the level-1 SCPs by our algorithm. Consequently, level-1 SCPs might
contain genes that are unrelated to the subfunctions that enabled their
prediction. Since our algorithm can only identify genes annotated to
any level-2, -3 and -4 SCPs, we selected those genes as the background
set of genes for a Fisher’s exact test. For statistical accuracy, we
removed all genes associated with inherited DCM and HCM in the
datasets described above that were not part of the background gene
list. A right-tailed Fisher’s exact test was used to calculate the
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significance of the overlap between the genes annotated to identified
SCPs and the published gene lists.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Transcriptomic and genomic data generated in this and our previous
study16 have been deposited in the NCBI GEO and dbGAP databases
under the accession codes GSE174773, GSE217421, GSE253490 and
phs002088.v1.p1, respectively. The processed lists of DEGs and
genomic variants that are used by our code deposited on Github are
available at https://iyengarlab.org/dtoxs/datasets.php (‘Datasets used
for prediction of transcriptomic and genomic signatures for TKI-
induced cardiotoxicity’). All data sets obtained from processing are
available at www.predictox.org. These include DEGs, pathways, pre-
dicted genomic variants and summary DrugTox cards. iPSC lines are
available on request.

Code availability
C# and R-code have been deposited at https://github.com/DToxS/
SVD-curated_transcriptomic_signatures_cardiotoxic_drugs99.
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