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Catalytic undirected methylation of
unactivated C(sp3)−H bonds suitable for
complex molecules

Jin-Fay Tan 1, Yi Cheng Kang 1 & John F. Hartwig 1

In pharmaceutical discovery, the “magic methyl” effect describes a substantial
improvement in the pharmacological properties of a drug candidate with the
incorporation of methyl groups. Therefore, to expedite the synthesis of
methylated drug analogs, late-stage, undirected methylations of C(sp3)−H
bonds in complexmoleculeswould be valuable. However, currentmethods for
site-selective methylations are limited to activated C(sp3)−H bonds. Here we
describe a site-selective, undirected methylation of unactivated C(sp3)−H
bonds, enabled by photochemically activated peroxides and a nickel(II) com-
plex whose turnover is enhanced by an ancillary ligand. The methodology
displays compatibility with a wide range of functional groups and a high
selectivity for tertiary C−H bonds, making it suitable for the late-stage
methylation of complex organic compounds that contain multiple alkyl C−H
bonds, such as terpene natural products, peptides, and active pharmaceutical
ingredients. Overall, this method provides a synthetic tool to explore the
“magic methyl” effect in drug discovery.

The “magic methyl” effect is a phenomenon in medicinal chemistry
wherein the incorporation of a simple methyl group in a biologically
active molecule leads to a substantial increase in pharmacological
activity1–6. This outcome is attributed to the alterations of several
physicochemical parameters, including, but not limited to, metabolic
stability7, binding affinities8, conformational flexibility9, and energetics
of desolvation10. One notable example is Simvastatin, a well-known
cholesterol-lowering drug that has a greater potency than that of
Mevastatin and Lovastatin (Fig. 1a, left)11. Such an effect has led, in
numerous pharmaceutical ingredients, to a 100−1000-fold increase in
potency after installation of a methyl group (Fig. 1a, right)1,2. Conse-
quently, methylated analogs of biologically active compounds have
become targets in drug discovery campaigns. However, the prepara-
tions of these methylated analogs often require laborious and time-
intensive de novo syntheses. As a result, late-stage methylations of
C–H bonds at sp3 and sp2 carbon centers, particularly those without
the need for a directing group12–15, would be valuable.

While methylations of C(sp2)−H bonds have been extensively
investigated12,14, the undirected methylation of C(sp3)−H bonds is a
much more challenging reaction to achieve. Various researchers have

reported the methylation of activated C(sp3)−H bonds located α to a
heteroatom or at a benzylic position (Fig. 1b)16–23. While these
advancements are notable, the site-selective methylation of unac-
tivated C(sp3)−H bonds remains an unsolved synthetic problem. One
relevant report is Li’s methylations of hydrocarbons (Scheme 1c)24.
However, this transformation is not selective for methylations of pri-
mary, secondary, and tertiary C(sp3)−H bonds. Therefore, it is not
applicable to the site-selective methylation of structurally complex
biologically active compounds. Recently, Stahl reported the undir-
ected methylation of C−H bonds located α to a heteroatom or at a
benzylic position with alkyl peroxides and a nickel catalyst under
photolytic conditions17. While this protocol leads to themethylation of
activated C(sp3)−H bonds, it is not generally applicable for the
methylation of unactivated C(sp3)−H bonds (vide infra).

Building on our group’s Cu- and Ni-catalyzed oxidation and ami-
nation of unactivated C−Hbonds with peroxide reagents25–27, as well as
our catalytic azidation and halogenation of tertiary C–H bonds of
complex molecules with Zhdankin’s λ3-azidoiodane28–30, we report a
nickel-catalyzed site-selective methylation of unactivated tertiary
C(sp3)−H bonds with peroxides activated photochemically that is
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applicable to the methylation of complex organic molecules and nat-
ural products (Fig. 1d). The success of this transformation rests on
three design features: (1) a sequence comprising the generation of
alkoxy radicals from the photolysis of alkyl peroxides under mild
conditions, abstraction of a hydrogen atom from a tertiary C(sp3)−H

bond, and parallel generation of Me• by β-methyl-scission; (2) the
formation of a tertiary C(sp3)−methyl bond catalyzed by a nickel(II)
complex; and (3) an increase in the turnover of the nickel catalyst by an
appropriate ancillary ligand (Fig. 1e). The reaction is compatible with a
wide array of functional groups, making it suitable for the late-stage
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Fig. 1 | The “magic methyl” effect in medicinal chemistry and undirected
methylations of C(sp3)−H bonds. a Selected examples of drug molecules with an
increase in biological activity after installation of methyl groups in the highlighted
positions. Themethyl groups arehighlighted in cyan.bTheundirectedmethylation
of activated C(sp3)−H bonds is reported, but the site-selective methylation of
unactivated C(sp3)−H bonds is not known. The sites of C−H functionalization is
highlighted in green; the installed methyl group is shown in blue. c The drawbacks

of Li’s methylation include functionalizations that are unselective and a substrate
scope that is limited to alkanes. d The site-selective undirected methylation of
unactivated tertiary C(sp3)−H bonds presented in this work is suitable for the late-
stage methylation of structurally complex organic molecules. e Proposed
mechanism of Ni-catalyzed formation of C(sp3)−methyl bond mediated by photo-
sensitization and ligand-promoted increase in the turnover of the nickel catalyst.
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methylation of structurally complex biologically active compounds,
and occurs with high selectivity for tertiary C(sp3)−H bonds over other
alkyl C−Hbonds. The site-selective introduction ofmethyl groups onto
the unactivated C(sp3)−H bonds in active pharmaceutical ingredients
and natural products enables the exploration of the “magic methyl”
effect in drug discovery.

Results and discussion
Development of the undirected methylation of unactivated
tertiary C(sp3)−H bonds
Our reaction design was based on photochemical homolysis of the O
−O bond in alkyl peroxides31,32 by triplet energy-transfer from a pho-
tosensitizer, (Ir[dF(CF3)ppy]2(dtbpy))PF6 (Ir-F)33. Increasingly, this
photolytic approach has been used to activate peroxides to generate
alkoxyl radicals for C−H functionalizations at milder temperatures
than those of the direct thermal, homolytic cleavage of the O–O
bond17,34,35. The efficiency of C–H bond cleavage by hydrogen atom
transfer (HAT) under these photochemical conditions is enhanced
over that of thermolysis (>90 °C)25,26,36–38 because bimolecular HAT
outcompetes the relative rate of unimolecular β-methyl-scission at
lower temperatures39,40. Homolytic bond-dissociation energies (BDE)

of 93−96 kcalmol−1 for tertiary C−H bonds cause these C–H bonds to
undergoHATwith alkoxy radicals faster than primary and secondary C
−H bonds (BDE > 98 kcalmol−1)41,42. The resulting tertiary radical and a
Me• generated from an alkoxy radical could then undergo a radical-
radical coupling mediated by a catalyst, forging a bond between a
quaternary carbon and a methyl group in the product.

We commenced our studies to achieve this reactionby this design
by evaluating a series of nickel catalysts and ligands, in combination
with Ir-F and dicumyl peroxide under blue LED irradiation. Published
conditions17 delivered the methylated product 2a from the methyla-
tion of isoamyl benzoate 1a in less than 5% yields (Table 1, entries 1−4).
While most of our initial experiments (full details in Supplementary
Section 3.1) yielded trace or no product, reactions with Ni(acac)2 as
catalyst gave an appreciable yield (20%) of 2a (Table 1, entries 5). This
observation is consistent with recent reports of C(sp3)−C(sp3) cou-
plings between two sterically distinct carbon radicals in which reac-
tions with Ni(acac)2 as catalyst gave the highest yields16,43–48. The
addition of an exogenous tripyridine (L1) or KTp* (L5) to serve as
ligand did not improve the yield (Table 1, entries 6−7), and Lewis acid
additives or other nickel(II) acetylacetonate complexes were either
detrimental or did not increase the yield (Table 1, entries 8−12). An

Table 1 | Initial studies on the undirected methylation of tertiary C(sp3)−H bonds catalyzed by transition metals

Entries Catalyst Ligand Additive
(0.5 equiv.)

Conversion (%) Yield
(%)

1 NiCl2.diglyme L1, L2,
L3,
or L4

- 30–40 <5

2a NiCl2.diglyme L1 TFA 18 <5

3 NiCl2.diglyme L1 B(OH)3 29 <5

4 NiCl2.diglyme L3 MeB(OH)2 31 <5

5 Ni(acac)2 - - 37 20

6 Ni(acac)2 L1 - 35 18

7 Ni(acac)2 L5 - 28 9

8 Ni(acac)2 L1 B(OH)3 18 5

9 Ni(acac)2 - B(OH)3 17 6

10 Ni(acac)2 - MeB(OH)2 39 20

11 Ni(dpm)2 - - 36 19

12 Ni(hfac)2 - - 30 4

13 Ni(acac)2 - 2,4-pentane-
dione
(1.0 equiv.)

38 36

14 - - 2,4-pentane-
dione
(1.0 equiv.)

14 0

Standard reaction conditions: 0.1mmol 1a, 1.0 μmol Ir-F, 5.0μmol catalyst, 5.0μmol ligand, 0.6mmol dicumyl peroxide, 0.5 or 1.0 equiv. additive,MeCN, blue LED irradiationwith cooling fan, 25 °C.
Yields were determined by 1H NMR spectroscopy.
aDi-tert-butyl peroxide was used in place of dicumyl peroxide, in TFE instead of MeCN.
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extensive evaluation of various reaction parameters, including
catalysts43–50, solvents, oxidants, and photosensitisers did not increase
the yield above 20% (full details in Supplementary Sections 3.1−3.6).
Furthermore, control experiments in which the reaction was spiked
with the three defined, isolable products (2a, α-cumyl alcohol, or
acetophenone) demonstrate a lack of inhibition of the reaction by
these compounds (Supplementary Information Section 6.1).

However, conducting the methylation with 1 equiv. 2,4-pentane-
dione led to an increase in yield (Table 1, entry 13). Various other
bidentate, anionic additives were tested, but only 2,4-pentanedione
led to an increased turnover of the reaction, and the amount of this
additive could be reduced to 0.5 equiv. without impacting the yield
(Fig. 2a and Supplementary Information Section 3.8).With this finding,
we applied some of the previously explored conditions that gave high
conversions of 1a but low yields of 2a, including the use of unsym-
metrical peroxides (Fig. 2b, entries 3−5). The conditions that we
eventually selected comprise the combination of dicumyl peroxide
and di-tert-butyl peroxide in a solvent mixture of TFE and MeCN
(Fig. 2b, entry 6). β-Methyl-scission from the alkoxy radicals derived
from dicumyl peroxide is faster than from the alkoxy radicals derived
fromdi-tert-butyl peroxide. For themethylation reaction to proceed in
high yields, hydrogen atom transfer (HAT) and generation ofMe• by β-
methyl-scission of alkoxy radicals must occur with similar rates. A
combination of the two peroxides can lead to these similar rates,
therefore allowing the methylation to proceed in higher yields.

Substrate scope of methylation
Having identified conditions for the undirected methylation of
model substrate 1a, we evaluated reactions with a series of functional
groups on the aryl rings of 4-methylpentyl aryl esters. Substrates
bearing electron-withdrawing and electron-donating groups, such as
cyano, trifluoromethyl, and methoxy groups, all underwent methy-
lation smoothly with full selectivity for the tertiary C(sp3)−H bonds
(Fig. 3, 2a–d). In addition, aryl halides and an aryl pinacol boronic
ester (Fig. 3, 2e–h) were well tolerated, underscoring the mildness of
this protocol. No reactivity was observed in the presence of redox-
sensitive or potentially metal-chelating functionalities, such as a

nitro group (Fig. 3, 2i or a free amide (Fig. 3, 2j). This transformation
also occurred with substrates containing a variety of pharmaceuti-
cally relevant heterocycles, including isoxazole, thiazole, thiophene,
and Boc-protected indole (Fig. 3, 2k–n). Heteroarenes containing a
basic nitrogen atom, such as pyridines and quinolines, which often
poison metal catalysts, were both tolerated and did not undergo
methylation by a Minisci-type ortho-alkylation, although the methy-
lated products were obtained in lower yields than they were for other
classes of heteroarenes (Fig. 3, 2o–q). A naphthyl-substituted ester
also formed the product in good yield (Fig. 3, 2r). We also investi-
gated the methylation of cyclic hydrocarbons. For a comparison
between the methylation of these compounds with our protocol and
with prior methods, see Section 6.8 of the Supplementary
Information.

To determine whether this reaction is applicable to the late-
stage methylation of more densely functionalized molecules, we
conducted the undirected methylation of a series of biologically
active molecules and natural products. A protected L-leucine deri-
vative underwent methylation with good reactivity, allowing access
to a non-natural amino acid (Fig. 3, 2s). Furthermore, the undirected
methylation also occurred in a similar fashion for this L-leucine
derivative on a 5mmol scale (1.38 g of 1s) to deliver the product in
51% yield. While the unprotected acid of L-leucine formed a lower
yield than others, this reaction does demonstrate that the reaction
can occur in the presence of a free carboxylic acid (Fig. 3, 2t). A
benzoylated derivative of D-Leucinol also underwent methylation
under our condition (Fig. 3, 2u). Moreover, a Leu-Glu dipeptide
underwent methylation at the tertiary C(sp3)−H bond (Fig. 3, 2v),
indicating a potential utility of this method for the selective mod-
ification of leucine residues in peptides.

The methylation also occurred with a series of derivatives of
biologically active molecules. For example, the methylation occurred
smoothly with a derivative of sulbactam, a β-lactamase inhibitor (Fig.
3, 2w). The 4-methylpentyl esters of niflumic acid and fenofibrate, as
well as a N−2-methylbutyl derivative of thalidomide, (Fig. 3, 2x–z), all
underwent methylation selectively at the tertiary C(sp3)−H bonds. It is
worth mentioning that the 2-aminopyridine moiety in 2x did not
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combination of 50mol% 2,4-pentanedione with a mixture of dicumyl peroxide and
di-tert-butyl peroxide gave the highest yield for the undirected methylation of
model substrate 1a. Ir-F = (Ir[dF(CF3)ppy]2(dtbpy))PF6; acac = acetylacetonate;
TFE = 2,2,2-trifluoroethanol.
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interfere with this transformation. The acetyl ester of cedrol, a ses-
quiterpene alcohol found in cedar oil, underwent methylation exclu-
sively at themore sterically accessible C(sp3)−Hbond among the three
tertiary C(sp3)−H bonds (Fig. 3, 2aa). A derivative of the plant growth
hormone gibberellic acid, a pentacyclic diterpene, underwent methy-
lation selectively at a single C(sp3)−H bond among five tertiary C(sp3)
−H bonds (Fig. 3, 2ab). The four other tertiary C(sp3)−H bonds did not
react because they are sterically encumbered or proximal to electron-
withdrawing functionalities. The results of this method were com-
pared to those from conditions published for methylations of acti-
vated C(sp3)−H bonds located α to heteroatoms or at benzylic
positions. For representative examples 2a, 2s, 2v, and 2ab in Fig. 3, the
published procedures gave the methylated product in less than 10%
yield, and, in the hands of multiple researchers in our group, 18% for
2u17. Overall, in comparison with published conditions, our reaction
leads to the methylation of unactivated C(sp3)−H bonds with greater
efficiency, exclusive site selectivity, and applicability to the methyla-
tion of complex biologically active molecules.

Activated C(sp3)−H bonds α to a heteroatom have BDEs below
90 kcal/mol, due to the stabilization of the corresponding carbon
radical by theneighboringheteroatom40–42. This effect causesC(sp3)−H

bonds α to a heteroatom to undergo HAT faster than unactivated
C(sp3)−H bonds16–22. We examined the possibility of methylating
unactivated C(sp3)−H bonds in the presence of C(sp3)−H bonds α to a
nitrogen atom. Because alkyl amines are prevalent in drug molecules,
the selective methylation of unactivated C(sp3)−H bonds in the pre-
sence of alkyl amines would increase the range of substrates amenable
to this methodology. Leveraging a complexation with BF3 of the
nitrogen in secondary alkyl amines51, we conductedmethylation of the
tertiary C(sp3)−Hbond in the BF3 adduct of 4-methyl piperidine (Fig. 4,
5a). The methylation occurred cleanly with full selectivity at the
unactivated tertiary C(sp3)−H bond. The four C(sp3)−H bonds α to the
nitrogen were not functionalized, due to the inductive effect of the
borane coordination that renders the adjacent C(sp3)−H bonds
electron-deficient52,53. In contrast, protecting groups such as Boc and
Bz groups on the nitrogen of 4-methyl piperidine led to complex
mixtures under the conditions for the methylation of C(sp3)−H bonds,
whereas the hydrochloride salt of 4-methyl piperidine gave less than
5% conversion (Supplementary Section 3.11). The selectivemethylation
of tertiary C(sp3)−H bonds also occurred in amine−BF3 complexes of
benzyl amine and isoindoline (Fig. 4, 5b, c). Decomplexation of the BF3
adduct after methylation occurred with cesium fluoride (Fig. 4, 6).
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1mol% Ir-F, 4mol% NiCl2•diglyme, 4mol% 4,4’,4”-tBu-tpy, 1 equiv. substrate, 6

equiv. di-tert-butyl peroxide, TFE, blue LED irradiationwith cooling fan, 25 °C, yields
by 1H NMR spectroscopy. dPublished conditions (iii): 1mol% Ir-F, 4mol%
NiCl2•diglyme, 4mol% TPA, 1 equiv. substrate, 0.5 equiv. MeB(OH)2, 6 equiv.
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NMR spectroscopy. e5.0mmol substrate, 25.0μmol Ir-F, 250.0μmol Ni(acac)2,
2.5mmol 2,4-pentanedione, 20.0mmol dicumyl peroxide, 20.0mmol di-tert-butyl
peroxide, 1:1 MeCN/TFE, blue LED irradiation with cooling fan, 25 °C, isolated yield.
Ir-F = (Ir[dF(CF3)ppy]2(dtbpy))PF6; acac = acetylacetonate; TFE = 2,2,2-
trifluoroethanol.
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Mechanistic investigations
To gain insight into the mechanism of this methylation and higher
catalytic turnover of Ni(acac)2 when conducted with added 2,4-pen-
tanedione, we first investigated the effect of varying the amounts of
the components in the reactionwithout added 2,4-pentanedione.With
a constant loading of Ni(acac)2 of 5mol%, we found that increasing the
loading of Ir-F from 1mol% to 2mol% led to a decreased conversion of
dicumyl peroxide (Fig. 5a, entries 1 and 2). This observation suggested
that Ir-F catalyzes its own deactivation, presumably by accelerating the
rate of the production ofMe•, which adds to the aromatic ligands of Ir-
F and deactivates the photosensitiser in the absence of Ni(acac)2. The
conversion of dicumyl peroxide in the presence of 2mol% Ir-F and
10mol% Ni(acac)2 was comparable to that in the presence of 1mol% Ir-
F and 5mol% Ni(acac)2 (Fig. 5a, entry 3), indicating that Ni(acac)2
competes with Ir-F for Me•. Consistent with this hypothesis, the con-
version of dicumyl peroxide was just 14% in the absence of Ni(acac)2
(Fig. 5a, entry 4). Thus, the presence of the Ni(II) catalyst appears to
inhibit the deactivation of Ir-F, leading to a corresponding increase in
the conversion of the peroxide.Moredetailed studies that indicate this
interplay between Ir-F and Ni(acac)2 can be found in Supplementary
Information Section 6.9.

To understand the mode of deactivation of the photosensitiser,
we studied the fate of Ir-F by subjecting aliquots of a reaction (Fig. 5a,
entry 1) to LC-MS analysis after 4 h and 16 h, respectively (full details in
Supplementary Information Section 6.3). After 4 h, an m/z matching
the molecular weight of the unmodified Ir-F complex ([M] = 977) was
identified in the LC-MS chromatogram (Fig. 5a, bottom left). In con-
trast, after 16 h, the m/z of the major Ir species was [M+ 14] and
[M+ 28], signifying monomethylation and dimethylation of Ir-F
(Fig. 5a, bottom right). The same set of m/z was observed when the
reaction was performed in the absence of nickel catalysts17. These
findings indicate thatmethylations of the aromatic ligands of Ir-F likely
lead to deactivation of the photosensitiser in the absence of Ni(acac)2
or after Ni(acac)2 is consumed. Consistent with this assertion, the
deactivation of Ir-F in the absence of Ni(acac)2 was accompanied by a
change in color of the reactionmixture from the usual bright yellow to
deep orange.

We also determined the changes to dicumyl peroxide, substrate
1a, and product 2a as a function of time in the absence of added 2,4-
pentanedione (Fig. 5b). The formation of 2a reached a maximum of
20% after ~4 h. In contrast, the conversion of dicumyl peroxide and 1a
continued after this time. Thisobservation implies that theNi(acac)2 or
the catalyst formed from it is fully deactivated after about 4 h,

preventing further methyl−C(sp3) coupling, but the peroxide con-
tinues to react in the presence of Ir-F to generate cumyl alcohol and
acetophenone, and, presumably, unproductive formation of Me•.
Studies on the fate of the acetylacetonate ligand suggest that it
undergoes methylation to form 3-methyl-2,4-pentanedione. The
addition of 2,4-pentanedione potentially restores the active form of
the Ni catalyst, thereby leading to higher turnovers. Consistent with
this hypothesis, a control experiment conducted with 2,4-pentane-
dione and without 1a under our photochemical condition resulted in
the formation of 3-methyl-2,4-pentanedione (15% yield, Fig. 6 and
Supplementary Information Section 6.5). This hypothesis is also con-
sistent with reports of Cu-catalyzed methylations of 1,3-dicarbonyl
derivatives54,55.

In conclusion, we have developed an undirected, site-selective
methylation of unactivated tertiary C(sp3)−H bonds that is applicable
to the modification of peptides, terpenes, and active pharmaceutical
ingredients. One key to this transformation is a simple nickel(II) acet-
ylacetonate complex whose lifetime is enhanced by added 2,4-penta-
nedione. The methodology can be applied to the late-stage
methylation of complex organic molecules that contain multiple alkyl
C−H bonds with high selectivity for tertiary C(sp3)−H bonds and a high
compatibility with a wide array of functional groups. As a result, this
procedure provides a direct route to methylated derivatives of biolo-
gically active compounds and natural products. Mechanistic studies
uncovered a delicate interplay between the nickel catalyst and the Ir
photosensitiser and revealed a potential regeneration of the catalyti-
cally active nickel complex mediated by 2,4-pentanedione. We antici-
pate the results of this study to inspire the future development of the
methylation of unactivated secondary or primary C(sp3)−H bonds.

Methods
General procedure for the methylation of unactivated C(sp3)
−H bonds
Ir-F (1.2mg, 0.5mol%, 1.0μmol), Ni(acac)2 (2.6mg, 5mol%, 10.0μmol),
and dicumyl peroxide (0.800mmol, 4 equiv, 216mg) were weighed
into a vial charged with a magnetic stirrer. A pre-formed 1:1 mixture of
degassed MeCN and TFE (0.2mL) were added, followed by the sub-
strate (0.200mmol, 1.00 equiv), di-tert-butyl peroxide (0.800mmol, 4
equiv, 146μL), and 2,4-pentanedione (10.0μmol, 0.5 equiv, 10μL). The
vialwas sealed, and the headspaceof the vial wasflushedwith a stream
of N2 for 1min. The mixture was then stirred and irradiated under a
blue LED Kessil lamp for 16 h with a cooling fan maintaining the tem-
perature at 25 °C. The reaction mixture was concentrated under

25 °C, 16 ha

BF3·OEt2 (1.1 equiv.)

MeCN/TFE (1:1), Blue LED

Dicumyl peroxide (4 equiv.)

Ir-F (1 mol%)
Ni(dpm)2 (5 mol%)

Isolated yield

Di-tert-butyl peroxide (4 equiv.)

2,4-Pentanedione (0.5 equiv.)

41%

5a−5c

5a

HN
BF3

Me
HN

BF3

H
HN

H

N

Me

H BF3

38%
5b

N
Me

H BF3

35%
5c

N

O

H
BF3

O

Me

80%
6

NH

O
O

Me

CH2Cl2, 0 °C to RT, 1 h

MeCN, 85 °C, 12 h

CsF (5.0 equiv.)

BF3 decomplexation

BF3 complexation

R

H

Selective methylation
Not functionalised

H

R

H

R

1 equiv.
4a−4c

3a−3c

Fig. 4 | Scope of substrates containing BF3-protected amines that undergo
methylation at unactivated tertiary C(sp3)−H bonds. aStandard reaction condi-
tions: 0.2mmol amine−BF3 substrate, 1.0 μmol Ir-F, 10.0 μmol Ni(dpm)2, 0.1mmol
2,4-pentanedione, 0.8mmol dicumyl peroxide, 0.8mmol di-tert-butyl peroxide, 1:1

MeCN/TFE, blue LED irradiation with cooling fan, 25 °C, isolated yields. The
installed methyl groups are shown in blue; the activated C(sp3)−H bonds that are
not methylated are highlighted in green. Ir-F = (Ir[dF(CF3)ppy]2(dtbpy))PF6; dpm =
2,2,6,6-tetramethyl-3,5-heptanedionate; TFE = 2,2,2-trifluoroethanol.
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reduced pressure and filtered through a short silica plug, followed by
rinsing the plug with CH2Cl2. Volatile materials were evaporated, and
1,3,5-trimethoxybenzene (internal standard) was added to the crude
mixture. Crude 1H NMR spectroscopy was performed in CDCl3 to

quantify the conversion and the yield. After recovering the analytical
sample and concentrating under reduced pressure, the crude residue
was purified by flash column chromatography (silica and C18 reverse
phase) to give the methylated product.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

Fig. 5 | Mechanistic investigations to identify features controlling catalyst
activity. a Conversions of peroxides with varying loadings of Ir-F and Ni(acac)2. A
higher loading of Ir-F leads to more rapid inactivation of the Ir-F toward activation
of the peroxides, while the presence of Ni(acac)2 increases the lifetime of Ir-F.
Investigations of the fate of Ir-F after the reaction, based on themass spectra of the
major peaks in the UV-vis trace of the LC chromatograms after the reactions.
Monomethylated and dimethylated species of Ir-F were detected in the absence of

Ni(acac)2. Thepicturedepicts thedifference in color of the two reactionmixtures at
the end of the reaction with and without Ni(acac)2. b Monitoring the quantitative
changes of 1a, 2a, and dicumyl peroxide over time. The termination of the for-
mation of 2a after ~4 h, paired with the continued consumption of dicumyl per-
oxide and 1a after 4 h, suggest that the full deactivation of Ni(acac)2 occurs before
the full deactivation of Ir-F. Ir-F = (Ir[dF(CF3)ppy]2(dtbpy))PF6; acac =
acetylacetonate.
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Data availability
Complete experimental procedures and compound characterization
data are available in the Supplementary Information; any other data
are available from the authors on request.
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