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Machine learning-based design of
electrocatalytic materials towards high-
energy lithium||sulfur batteries development

Zhiyuan Han1,6, An Chen 2,3,6, Zejian Li1,6, Mengtian Zhang1, Zhilong Wang 2,3,
Lixue Yang1, Runhua Gao1, Yeyang Jia1, Guanjun Ji 1,4, Zhoujie Lao1, Xiao Xiao1,
Kehao Tao2,3, Jing Gao2,3, Wei Lv 1, Tianshuai Wang 5 , Jinjin Li 2 &
Guangmin Zhou 1

The practical development of Li | |S batteries is hindered by the slow kinetics of
polysulfides conversion reactions during cycling. To circumvent this limita-
tion, researchers suggested the use of transition metal-based electrocatalytic
materials in the sulfur-based positive electrode. However, the atomic-level
interactions among multiple electrocatalytic sites are not fully understood.
Here, to improve the understanding of electrocatalytic sites, we propose a
multi-view machine-learned framework to evaluate electrocatalyst features
using limited datasets and intrinsic factors, such as corrected d orbital prop-
erties. Via physicochemical characterizations and theoretical calculations, we
demonstrate that orbital coupling among sites induces shifts in band centers
and alterations in the spin state, thus influencing interactionswith polysulfides
and resulting in diverse Li-S bond breaking and lithium migration barriers.
Using a carbon-coated Fe/Co electrocatalyst (synthesized using recycled Li-ion
battery electrodes as raw materials) at the positive electrode of a Li | |S pouch
cell with high sulfur loading and lean electrolyte conditions,we report an initial
specific energy of 436Whkg−1 (whole mass of the cell) at 67mA and 25 °C.

Lithium | |sulfur (Li | |S) batteries undergo complex reaction routes and
sluggish reaction kinetics as sulfur converts into various lithium
polysulfides (LiPSs) with variable chain lengths1. The required activa-
tion energy for transforming soluble LiPSs into insoluble Li2S2/Li2S
restricts the efficient utilization of active materials, thereby impeding
the development of high-energy-density rechargeable S-based non-
aqueous batteries. Electrocatalysts such as transition-metal
compounds2–4, metal nanoclusters5, and atom site catalysts (ASCs)6

have been developed to improve the kinetic of the LiPSs conversion
reactions. Although isolating single atomic site catalysts (SASCs) is

thought to maximize catalytic activity7, the complex sulfur reactions
often require multiple active sites to effectively manage adsorption,
activation, or chemical bond scission of LiPSs8.

To develop efficientmulti-site catalysts useful for producing high-
energy Li | |S batteries, it is necessary to deeply understand its activity
origin. Previous studies have primarily focused on the interaction
between catalysts and LiPSs9–12. However, the ensemble effect—inter-
actions among multiple active sites within catalysts—remains under-
explored, which plays an important role in determining the catalyst-
LiPS interaction13. This is partly because of the absence of effective
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approaches to analyze such complex systems, which contain numer-
ous combination possibilities and indistinct activation mechanisms at
the atomic level14,15, and pose significant challenges to conventional
theoretical approaches based on first principles. Machine learning has
achieved significant results in materials science and chemistry16–19,
particularly in areas such as catalysts20–22, photovoltaics23,24, synthesis
planning25,26, and reaction optimization27,28. However, its application is
often hindered by the shortage of experimental data for relevant
materials. These persistent challenges impede a deep understanding
of the fundamental mechanisms governing atomic interactions and
the rational design of catalysts for high-energy Li | |S batteries.

Here we combine an interpretable machine learning model with
density functional theory (DFT) calculations to decipher the ensemble
effect and experimentally verified its influence mechanism on sulfur
electrochemical reactions at the atomic level. Diatomic site catalysts
(DASCs) with various geometric features and atom combinations are
chosen as model materials because of their remarkably enhanced
interactionbetweenmulti-sites29–31.Weproposean interpretablemulti-
view machine-learned framework designed to automatically evaluate
the 182-dimensional potential feature space within DASCs, which aims
to identify the key indicator of the ensemble effect from limited data
samples. We integrate three feature engineering modules into our
framework to extract the most relevant features to the catalytic per-
formance, such as the corrected d orbital electronic properties, which
indicate the multifactorial influence on the performance of multi-site
catalysts. Moreover, we use DFT calculations based on the indicator
uncovered bymachine learning, to reveal the ensemble effect ofmulti-
site catalysts in sulfur electrochemical reactions. Our study uncovers
that the inter-site communication and coordination structure effects
among multiple active sites promote orbital hybridization changes
between these sites and LiPSs. This mechanism, distinct from the tra-
ditional single-site activation pathway, enhances Li | |S bond breaking
and Li+ migration kinetics, thereby guiding the design of DASCs. Our
designed catalysts have enabled anAh-level Li | |S pouch cell to achieve
a specific gravimetric energy of 436Whkg−1 (based on the whole cell
mass), which can be calculated for the first discharge cycle with an
applied current of 67mA. Our work deciphers the underlying impact
mechanism of the ensemble effect on sulfur electrochemical reactions
and provides insight into the activity origins in multi-site catalysts.

Results
Designing of electrocatalysts using machine learning
To design highly efficient multi-site catalysts for high energy density
Li | |S batteries, it is necessary to understand the ensemble effect,
which involves the interactions among multiple active sites. The
ensemble effect is influenced by a diverse array of factors such as
intrinsic physicochemical properties of different atoms, variable active
sites, and inter-site communication, all of which contribute to the
catalytic activity. A deep understanding of the key factors is crucial to
fully comprehend the origins of catalytic activity. It is supposed that
the catalytic activity of multi-site catalysts is governed more by com-
plex atomic interactions, rather than by individual descriptors32. It is
not feasible to unravel the complex nonlinear relationships by che-
mical intuition alone. Data-driven approaches, particularly machine
learning, provide robust support in revealing these complex correla-
tions and refining theoretical models20,33–35. However, the scarcity of
data and the complexity of feature spaces pose significant challenges
to machine learning models.

To reveal the impact of the ensemble effect inmulti-site catalysts,
we chose DASCs as themodel materials, with the adsorption energy of
Li2S used as the indicator of catalytic activity. DASCs were selected for
their stable synthesis and characterization compared to triple active
site catalysts or high entropy atom catalysts, making them more sui-
table for large-scale development. We integrated DFT calculations and
an interpretable multi-view machine-learned framework, consisting of

three components: the filter module, the wrapper module, and the
embedded module (Fig. 1a and Supplementary Note 1). A substantial
proportion of our effort in the machine learning framework was
devoted to constructing potential features, such as the physico-
chemical properties of transition metals, and to applying multi-view
feature engineering for extracting the feature importance space
associated with the catalytic activity of DASCs. Using different meth-
ods to collect a variety of sample features can make better use of
limited datasets. This approach provides an effective solution to the
problem of data scarcity in small-datamachine learning scenarios. The
importance space of the filter module enabled initial screening of
feature, whereas the wrapper and embedded modules refined and
produced statistically robust chemical rules, mapping from impor-
tance to feature spaces. This procedure progressively refined and
narrowed the feature space, instrumentally in revealing key factors
influencing the catalytic activity of multi-site catalysts, such as the
electronegativity, the first ionization energy of metals and the cor-
rected composite features.

Feature engineering holds an important role in machine learning,
enhancing the performance of the final model and elucidating the
intricate relationships between features and predicted outcomes.
Initially, we used domain-specific knowledge in data analytics to filter a
vast initial feature space, as detailed in Fig. 1b–d and Supplementary
Tables 1–3. The primary strategy of the Filter module was to evaluate
each feature and subsequently refining the feature space based on
these evaluations. We employed the Pearson correlation coefficient as
a key evaluativemetric, noted for its efficiency and rapid initialfiltering
capability of large feature spaces. We developed a two-stage filtering
process guided by Pearson correlation scores. The first stage, illu-
strated in Supplementary Fig. 1a, b, identified and excluded undiffer-
entiated features, such as the electronegativity of the non-metallic
atom (N), consistent across all DASCs, was irrelevant for our machine
learning model. The second stage, detailed in Supplementary Fig. 1c,
involved removing one feature from each pair with a Pearson coeffi-
cient above 0.7. For instance, the bond length of N and M1, as well as
the mean bond length of N and M1 were deemed insufficiently
impactful on LiPSs adsorption. This filtering process effectively
reduced the feature space to 128-dimensional (F128).

We optimized a large dataset by the filter module, but this was
insufficient to select the most optimal features. The predictive per-
formance of the F182 dataset model is depicted in Supplementary
Fig. 2a. The R2 value of 0.51 for this model indicates its predictive
accuracy is unreliable. We used the wrapper module to refine feature
selection with learning algorithms, directly assessing features by
model performance to identify the most relevant subspace. This pro-
cess further reduced feature counts36–38. As illustrated in Supplemen-
tary Fig. 2b, the enhanced model performance achieved after
removing fewer contributory features resulted in an improved accu-
racy of 0.61.

Distinct from the prior two modules, the embedded module
combines feature selection and model training in an algorithm-driven
process. In this study, we used an extreme gradient boosting regres-
sion (XGBR) treemodel for the final feature selection and training step.
This embedding method further improved the accuracy of the model,
achieving an R2 of 0.63 (Supplementary Fig. 2c). This model was con-
sidered pre-trained, still including numerous reference features. We
then applied the hyperparameters and weights from this model to a
dataset comprising only site, structural, and component features. This
adjustment significantly increased the accuracy of the final model to
0.82 (Supplementary Fig. 2d). Moreover, we extended the proposed
machine learning framework to complex trimetallic sites. Supple-
mentary Fig. 3 and Supplementary Fig. 4 are the heat map of Person
correlation coefficientmatrix for feature set after filtermodule and the
performance of the final ML model, respectively. The high-accuracy
prediction results (R2 = 0.83) demonstrate that the machine learning
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Fig. 1 | Investigation of ensemble effect bymachine learning. a Schematic of the
different approaches toward feature engineering. (Left) Filter module: features are
evaluated and prioritized using correlation coefficients before initiating model
training. (Center) Wrapper module: feature selection is conducted using a base
algorithm, with further optimization through iterative model training. (Right)
Embedded module: final feature selection is determined by individual contribu-
tions to the model, with concurrent model training. M1, the central metal site. M,
the synergistic metal site. N, the coordinating nitrogen site. b The original dataset
represented by the normalized data (only component features and site & structure
features are shown, but the original dataset also contains another 131 reference
features, as detailed in Supplementary Table 3, to expand the feature space and

serve as the data base for pre-training). The size and color of a squares describe the
feature value, and the size is mapped according to the absolute value of the dif-
ference between the feature value and 0.5 to allow visibility of the values close to0.
Thus, this means that the larger the red squares are, the values are closer to 0; the
smaller the blue squares are, then the values are closer to 1. The detailed definition
of features is listed in Supplementary Table 1–3. c, d Feature heat maps (including
structure and component features) of the partial DASC (Main metal = Fe). The
horizontal axis is the short name of DASC, the vertical axis is the number of fea-
tures, and the shade of the color indicates the relative magnitude of the values.
e Feature importance (%) of the final XGBR model based on embedded module
results.
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framework can efficiently and accurately predict the adsorption
energy of multi-metal-center catalysts with more complex site struc-
tures, which reduces the computational cost.

Notably, throughout the interpretable multi-view machine-
learned framework, the chemical patterns related to the ensemble
effect were progressively uncovered. The feature importance ranking
of the final prediction model revealed the key factors influencing the
catalytic activity of multi-site catalysts (Fig. 1e). These factors can be
categorized into two types. The first type includes electronic proper-
ties such as the electronegativity (χM), d-band center (εd_M), d-electron
number of synergistic metals (θM) and the first ionization energy of
central metal (I1M1), relating to the inter-site communication among
multi-active sites. The second type comprises the atomic radius of the
metals (RM1,RM) and the spacing between coordinating nitrogen atoms
(L3N), reflecting the coordination structure effect inmulti-site catalysts.
These findings offer a valuable direction for further research into the
ensemble effect.

Multi-site catalysts synthesis and characterization
To systematically investigate the principles derived from machine
learning for Li | |S batteries, a series of Fe-based DASCs were

synthesized. Elemental Fe was selected due to its improved catalytic
activity in sulfur electrochemical reactions compared to other transi-
tionmetal elementswithinmetal/nitrogendoped carbon catalysts, and
its plentiful availability39 Additional elements, Co, Ni, and Cu, were
selected as synergistic sites to fine-tune the ensemble effect in the
DASCs. The spherical aberration-correction high-angle annular dark-
field scanning transmission electron microscopy (HAADF-STEM) ima-
ges (Supplementary Fig. 5a–d), three-dimensional morphology images
(Fig. 2a–d), and the energy dispersive spectrum (EDS) element map-
ping image (Fig. 2e, f and Supplementary Fig. 5e) reveal the uniform
distribution of atomically dispersed atomic sites of Fe SASC and FeCo,
FeNi, and FeCu DASCs on a carbon substrate, notably without the
aggregation of metal or alloy nanoparticles and clusters. The X-ray
diffraction (XRD)patterns of Fe SASCs and FeCo, FeNi andFeCuDASCs
(Supplementary Fig. 6) show the wide diffraction peaks at 26 and 44
degrees of the (002) and (100) planes of graphitized carbon. The
absence of other distinct peaks suggests an atomic level dispersion
without forming nanoparticles.

The fine chemical states changes of the Fe site in DASCs were
revealed by X-ray photoelectron spectroscopy (XPS). As shown in
Supplementary Fig. 7, The addition of synergistic Co sites resulted in a
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decrease in Fe²⁺ from 20% to 15%, while the Fe²⁺ content increased to
42% and 32% in the presence of Ni and Cu, respectively. The sequence
of oxidation states is as follows: FeCo > Fe > FeNi > FeCu. The dis-
tribution of metal atoms in FeCo DASC was further investigated
through the analysis of intensity profiles derived from high-resolution
HAADF-STEM images in Supplementary Fig. 8a. The bright dots high-
lighted with white circles represent metal atoms in pairs, confirming
the successful synthesis of diatomic site catalysts. The measured dis-
tance between these atom pairs is approximately 2.1–2.2 Å. Similar
observations for FeNi and FeCu DASCs are shown by HAADF-STEM in
Supplementary Fig. 8b, c. Figure 2g, h shows the Fourier transform and
wavelet transforms of Fe K-edge extended X-ray absorption fine
structure (EXAFS) signals by k2-weight for Fe SASCs and FeCo, FeNi and
FeCu DASCs alongwith their control samples. The Fe SASC only shows
amainpeak at approximately 1.5 Å in R space, which is indicative of the
Fe-N scattering path. In contrast, the main peak for FeCo, FeNi and
FeCu DASCs is located at a higher R-value (around 1.8 Å), suggesting a
longer Fe-N bonds. Additionally, an obvious sub-peak at about 2.2 Å
corresponds to the Fe-M coordination in the first shell. The spin states
of Fe in FeCo DASC were analyzed using 57Fe Mössbauer spectroscopy
at 6.2 K. The results revealed a reduction in the content of high-spin
Fe²⁺ architecture (isomer shift (IS): 1.16mms⁻¹, quadrupole splitting
value (ΔEQ): 3.0mm s⁻¹) in FeCo DASC compared to Fe SASCs (Sup-
plementary Fig. 9).

Notably, the metallic precursors in this work were obtained
through the recycling of waste lithium-ion batteries (LIB), which were
able to produce metal ions solution at the ton scale. The recycling
process, depicted in Fig. 2i, involved extractingmaterials from various
LIB positive electrodes and waste current collectors obtained from
battery recycling companies.Whenusing 5 g LiFePO4 and 5 g LiCoO2 as
precursors, we obtain 1.7 g FeCo DASC and 1.3 g Co SASC after metal
extraction and thermal treatment, achieving 96% crystal-to-catalyst
recovery. This sustainable strategy greatly reduces theproduction cost
of ASCs to two-thirds compared with conventional methods (further
information is provided in Supplementary Tables 4, 5; Supplementary
Note 2 and Supplementary Fig. 10). The design of the production line is
shown in Supplementary Fig. 11, showing the potential scalability for
large-scale DASC production.

Mechanistic investigations via computational modeling
Based on the important features and underlyingmechanisms fromour
interpretable multi-view machine-learned framework, we applied DFT
to decipher the specific mechanism of ensemble effect using Fe-based
ASCs asmodel systems. Incontrast to the coordination environmentof
SASCs, DASCs exhibit not only metal-nitrogen bonds but also metal-
metal bonds. Electron localization functions provide the visualization
of lone pairs and bonding pairs, verifying the existence of d-d orbital
hybridization between the two metal sites (Fig. 3a, b), which is mainly
amongorbitals betweendx2-y2,dz2, anddyz (Supplementary Fig. 12). The
hybridization can be quantified by the integrated Crystal Occupation
Hamiltonian Population (ICOHP) between metal sites. It is noteworthy
that the FeCo DASC has the highest absolute value of ICOHP (−0.97)
than FeNi DASC (−0.42) and FeCu DASC (−0.35), indicating the highest
bond strength and thus the strongest d-d orbital hybridization
between Fe and Co sites. Experimental validation is provided through
X-ray Absorption Near Edge Structure (XANES) data (Fig. 3c). Com-
paredwith Fe SASC, theXANESprofiles of FeCoDASC showanobvious
shift toward higher energy, experimentally validating the influence of
d-d orbital hybridization. This suggests a more oxidative state for the
Fe center metal site, which can be attributed to the electronic inter-
action with the Co metal site.

The adsorption configurations show that metal sites with lower
atomic numbers act as the central metal to interact with sulfur in LiPSs
because of their stronger d-p hybridization (Supplementary
Fig. 13a–d)12. The charge density difference analysis reveals the strong

interfacial charge interaction in the center metal-sulfur and coordi-
nated nitrogen-lithium, respectively (Supplementary Fig. 13e–h). In the
bonding interactions of metal-sulfur, the primary mechanism involves
the coupling of d-p orbitals. Previous work has demonstrated that the
dz2 and dxz/yz states of the SASC are more stable for square planar
coordination of D4h symmetry. As illustrated in Fig. 3d, e, the order of
energy levels of the Fe metal center can be changed with the syner-
gistic metal site introduction. The introduction of the Co atom
decreases the energy levels of dx2-y2 and changes the filling state. In
contrast, the energy levels of dz2 are increased with partial filling of the
spin-down dz2 orbital of Fe. Moreover, it also leads to the increased
delocalization of the dyz and dxz orbitals, as well as partial filling of the
spin-down orbitals of dyz (Supplementary Fig. 14). This leads to the
change in the spin state of the Fe sites, consistent with the Mössbauer
spectroscopy (Supplementary Fig. 9). Based on the d-p orbital hybri-
dization theory, the antibonding (π* and σ*) states will be gradually
occupied with the increasing number of dz2 and dyz electrons of Fe in
FeCo DASC, leading to weaker binding strength for Fe-S bond com-
pared to that observed in Fe SASC system. Furthermore, we observe
that the synergistic metal affects the central position of the Fe d-band
and subsequently modulates the strength of the Fe-sulfur binding
(Fig. 3f; Supplementary Fig. 15a; Supplementary Table 6). With the
decrease of the d-band center in the Fe site and moving away from
Fermi levels, the binding strength between Fe and sulfur is weakened.

In light of the interfacial charge interaction between coordinated
nitrogen and lithium in LiPSs (Supplementary Fig. 13e–h), an investi-
gation was conducted to elucidate the role of coordinated nitrogen.
Two-dimensional differential charge density analyses demonstrate
that the introduction of the synergistic metal leads to new forms of
coordinated nitrogen between metal sites (Fig. 3g–j). In the FeCo
DASC, Bader charge analysis reveals the coordinated nitrogen atoms
where Li adsorbs exhibit intermediate average charges (6.13 e), in
contrast to those in Fe SASC (6.21 e), FeNi DASC (6.19 e), and FeCu
DASC (6.23 e). This difference is attributable to the inter-site com-
munication among the catalysts. The introduction of the synergistic
metal raises the p-band center of coordinated nitrogen towards Fermi
levels, leading to an increase in nitrogen-lithium binding energy
(Fig. 3k, Supplementary Figs. 15b, 16, and Supplementary Table 6).
Additionally, Projected Density of States (PDOS) reveals that the
nitrogen in the FeNi DASC and FeCu DASC exhibits spin-polarized
status, which is beneficial for increasing the adsorption energy with
Li40 (Fig. 3l). As the electronegativity of the synergisticmetal increases,
the p-band center of coordinated nitrogen rises, explaining the influ-
ence mechanism of extracted important features by our interpretable
multi-view machine-learned framework. A moderate p-band center
and the absence of spin polarization result in an optimal adsorption
energy, which weakens the Li-S bonds while ensuring rapid lithium
transport. The moderate nitrogen-lithium binding energy of the FeCo
DASC can weaken the Li-S bonds in LiPSs and ensure fast lithium
migration on the catalyst surface. (Figs. 3l, 4a, b).

In addition, guided by the extracted structural features (RM, RM1,

and L3N) of machine learning, we investigate the implied mechanism.
The structural feature combinations that determine the lattice strain in
themulti-site catalysts, change with the synergistic metal sites and can
be measured by the ratio of the sum of metal sites and L3N. The
alterations in the Fe-N bond length, in conjunction with inter-site
communication among the synergistic metal sites, collectively led to
the change in the d-band center of the Fe sites. The influence of
synergistic metal (Co, Ni, and Cu) on the electronic structure of the
central Fe extends beyond the intrinsic electronic properties and
atomic radii of the coordinating metals. Furthermore, it encompasses
the overall environment within the coordination structure, such as the
distance between three nitrogen atoms. These factors collectively
define the characteristics of the coordination environment, thus
embodying the ensemble effect.
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In summary, guided by the indicators identified throughmachine
learning, we applied DFT to reveal the ensemble effect in multi-site
catalysts for sulfur electrochemical reactions, focusing on inter-site
communication and coordination structure effect. Specifically, FeCo
DASCs demonstrated an improved d-d coupling effect, leading to a
higher central metal-sulfur binding energy compared to other dia-
tomic catalysts. Moreover, a critical activation mechanism involving
coordinated nitrogen in DASCs resulted in a marked increase in
nitrogen-lithium binding energy, surpassing that of single-metal cata-
lysts. In FeCo DASC, the nitrogen-lithium binding energy is optimally
balanced, effectively weakening the Li-S bonds and enhancing the Li+

migration kinetics. Notably, FeCo DASC stands out in comparison to
single-metal and other diatomic systems, particularly in weakening Li-
S bonds.

Influence of ensemble effect to catalytic activity
Taking FeCo DASC as a representative example, we explored the
mechanism of sulfur-based electrochemical reactions under the
influence of the ensemble effect, contrasting it with Fe SASC, where
ensemble effects are absent (Fig. 4c and Supplementary Fig. 17). The
presence of the ensemble effect results in a markedly different acti-
vation degree of the LiPSs on FeCo DASC compared to LiPSs on Fe
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SASC without ensemble effects. Fe atoms still act as the central site
interacting with the sulfur atom in LiPSs because of their stronger d-p
orbital hybridization than Co atoms. Moreover, the coordinated
nitrogen atoms between Fe and Co atoms are activated and interact
with lithium atoms in LiPSs, showing a smaller N-Li distance compared
to those in Fe SASC.

Subsequently, we conducted a series of kinetic tests to validate
the impact of the ensemble effect on the sulfur-based electrochemical
reactions. The cyclic voltammetry (CV) curves were first tested to
probe the cathodic peak current under various temperatures2. A linear
correlation was observed between the logarithmic peak current and
the reciprocal of the absolute temperature across all the investigated
materials (Supplementary Fig. 18). The calculated apparent activation
energy (Ea) values fromCV curves exhibited the following order: FeCo
DASC< FeNi DASC< FeCu DASC < Fe SASC< catalyst-free (Fig. 4d),

which is in good agreement with the DFT estimations. The FeCo DASC
exhibits the best catalytic activity due to the presence of the ensemble
effect. Then equal quantities of each catalyst were loaded on the
electrode and theCV curvesweremeasuredusing symmetric cells with
Li2S6-containing electrolyte (Supplementary Fig. 19). The electrodes
with DASCs exhibited reduced polarization compared to those with
SASC, indicating the important role of ensemble effects in enhancing
the electrode reaction kinetics (Fig. 4e). The FeCo DASC showed the
lowest overpotential among thedifferent DASCs, suggesting improved
catalytic activity. Supplementary Fig. 20 presents contour plots of CV
patterns for Fe SASC, FeCo DASC, FeNi DASC, and FeCu DASC,
respectively. Two cathodic peaks at approximately 2.30 V (Peak A) and
2.04 V (Peak B), respectively, correspond to the reduction of S8 to
LiPSs and Li2S2/Li2S. The peak at about 2.37 V (Peak C), observed
during the anodic sweep, represents the transition from Li2S2/Li2S to
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LiPSs and S8. It is notable that the positive electrodes employing FeCo
DASC exhibit a higher current response compared to positive elec-
trodes employing Fe SASC and other Fe-based DASCs. Moreover, even
when the scanning speed is reduced, the positive electrode with FeCo
DASC consistently demonstrates a current response, suggesting
improved catalytic activity attributed to the ensemble effects. Subse-
quently, we employed FeCo DASC and Fe SASC as representative cat-
alysts, with and without ensemble effects, respectively.

Electrochemical impedance spectroscopy (EIS) measurements
were conducted at various temperatures to determine Ea at different
potentials. The charge transfer resistance at varying temperatures was
fitted using a simplified-contact Randles-equivalent circuit, revealing a
linear correlation between the reciprocal of absolute temperature and
the logarithm of the reciprocal of the charge transfer resistance
(Supplementary Fig. 21). Subsequently, the activation energy was
derived following the Arrhenius reaction. The resulting Ea values
indicate that the conversion of S8 molecules into soluble LiPSs is
relatively facile (Fig. 4f). Conversely, the transformation of LiPSs into
the ultimate insoluble products needs a higher activation energy,
representing the rate-determining step in Li | |S batteries. The derived
activation energy values show that cells with FeCo DASC exhibit lower
activation energies compared to those with Fe SASC, consistent with
the relative free energy landscape during the discharge process
(Supplementary Fig. 22). It is noteworthy that the Co SASC shows a
higher reaction barrier than FeCo DASC. In the FeCo DASC, interac-
tions between Fe-S and Li-N bonds can be observed, indicating that Co
plays a crucial role in modulating the electronic structure of the Fe
sites and the coordinated nitrogen.

Then we set a reductive potential of 2.05 V to drive LiPSs convert
to Li2S production and observed the distribution of solid Li2S particles
influenced by the ensemble effect after the deposition of LiPSs. We
calculated specific capacities for Li2S precipitation on the positive
electrodes with Fe SASC and FeCo DASC by integrating the current-
time curve during deposition, resulting in values of 325.0 and
384.8mAhg−1, respectively (Supplementary Fig. 23). The enhanced
Li2S precipitation capacity observed on positive electrodes with FeCo
DASC implies improved reaction kinetics from LiPSs to Li2S, which is
attributed to the ensemble effect. After Li2S precipitation, we exam-
ined the positive electrode surfaces (Supplementary Fig. 24). In com-
parison to samples with Fe SASC, FeCo DASC surfaces displayed
thicker Li2S deposition, consistent with a higher deposition capacity.
The divergent deposition morphology, while employing the same
solvent, canbe attributed to thepresenceof highly active FeCoDASC41.
Furthermore, we also investigated the oxidation of the deposited Li2S
through a potentiostatic charging process (Supplementary Fig. 25).
Remarkably, FeCo DASC exhibited a higher dissolution capacity in
comparison to Fe SASC, suggesting amore effective oxidation process
on the surfaces with FeCo DASC.

We then employed in situRamanspectroscopy toprovide insights
into the regulation of the shuttle effect by FeCo DASC42. In assessing
the diffusion of LiPSs towards the lithium negative electrode side, we
only observed limited signals corresponding to S62- throughout the
discharge and charge processes for positive electrodes with FeCo
DASC (Supplementary Fig. 25a). This observation indicates the effec-
tive mitigation of the shuttle effect. In contrast, positive electrodes
without FeCo DASC exhibited two prominent peaks at 281.6 cm−1

attributed to S82- at the initiation of the discharging process (Supple-
mentary Fig. 25b). Upon discharging, signals of S62- and S42- + S32-

emerged. The notable signals for S62-, S42-, and S32- indicate the presence
of severe LiPSs shuttling, which is responsible for the capacity loss.

In summary, we introduce an integrated framework that com-
binesmachine learning, DFT, and electrochemical testing to reveal the
ensemble effect and guide the design of effective catalysts. Our multi-
view machine learning model was developed to identify key features
that impact the ensemble effect within a vast feature space of multi-

site catalysts. Expert analysis classified these key features into two
categories: those associated with the electronic properties and those
related to the structural properties of themulti-sites. The results of the
machine learning inspired us to use DFT to uncover the origins of
catalytic activity through insights into inter-site communication and
coordination structure effects. The deciphered mechanism finally
guided the rational design of multi-site catalysts and was verified by
electrochemical tests (Fig. 4g).

Assembly and testing of Li | |S batteries
To validate the impact of the ensemble effect on devices, the elec-
trochemical performance test of Li | |S batteries was conducted. In
Supplementary Fig. 26, we present the electrochemical characteristics
of Li | |S batteries using the developed catalysts. Various DASCs
enabled higher capacities than the Fe SASC, highlighting the important
role of the ensemble effect in improving the battery performance.
Notably, the FeCo DASC with the most effective ensemble effect
enabled the highest capacity of 1468mAhg−1 among all the atomic
catalysts at a specific current of 167.5mA g−1 for the 1st cycle of the Li | |
S cells (Supplementary Fig. 26a). We also assessed the rate capabilities
of positive electrodes with Fe SASC and various Fe-based DASCs to
compare their reaction kinetics for Li-S chemistry, using a sulfur
loading of approximately 2mg cm−2 (Supplementary Fig. 26b). At
specific currents of 335, 837.5, 1675, and 3350mAg−1, the discharge
capacities for the 1st cycle the Li | |S cells with FeCo DASC were 1112,
980, 916, and 828mAh g–1, respectively, considerably surpassing those
of other samples. Furthermore, the EIS measurements of the cell with
FeCo DASC also revealed the lowest charge-transfer impedance, indi-
cative of the lowest charge-transfer resistance at the FeCo DASC/LiPS
interface, contributing to the rapid conversion of LiPSs (Supplemen-
tary Fig. 26c).

To illustrate the practical potential of FeCo DASC, we conducted
performance assessments using Li | |S batteries with varying sulfur
loadings (Supplementary Fig. 26d). The results revealed stable cycling
performance, characterized by high first cycle-areal capacities of 3.12,
6.27, and 9.51 Ah g−1 for sulfur loadings of 3.0, 4.7, and 8.5mgcm−2,
respectively. Additionally, we tested Li | |S cells with FeCo DASC to
long-cycling stability tests at 1675mAg−1 (Supplementary Fig. 26e).
After 500 cycles, the Li | |S cells with the FeCo DASC retained a dis-
charge capacity of 0.56 Ah g−1, with an average capacity decay rate of
only 0.05% per cycle. In contrast, the Li | |S cells without FeCo DASC
experienced rapid capacity degradation. These improvements in
cycling stability can be attributed to the ensemble effect of
FeCo DASC.

To assess the practical applicability of the proposed ensemble
effect in Li | |S cell formatwith high electrode area, pouchcell assembly
and testing were conducted. The internal detailed physicochemical
processes of Li | |S pouch cells have previously been described as black
box behavior43. In this study, we conducted the FEM simulations for a
comprehensive visualization and comparative analysis of Li | |S pouch
cell performance, both with and without the ensemble effect (Sup-
plementary Note 3 and Supplementary Tables 7–9). The model fea-
tured a sulfur positive electrode with a double-sided areal loading of
14mg cm−2, a 150 µm thick lithium negative electrode, and an
electrolyte-to-sulfur (E/S) ratio of 2.8. The ensemble effect was found
to enhance the kinetics of the sulfur positive electrode reaction,
thereby accelerating the conversion of polysulfides. Figure 5a illus-
trates that in the absence of the ensemble effect, intermediate poly-
sulfides at the positive electrode inefficiently convert into lower-order
LiPSs, migrating towards the negative electrode and accumulating due
to the electric field. With the ensemble effect, active sulfur converts
promptly into lower-order LiPSs, precipitating on the positive elec-
trode surface, thereby reducing polysulfide concentrations in the
electrolyte and minimizing the shuttling effect. This effectively miti-
gates lithium negative electrode corrosion, decreases lithium
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consumption, and prevents the development of dendritic lithium
morphologies (Fig. 5b). These observations are supported by in situ
Raman spectroscopy analysis (Supplementary Fig. 25). Simulations
further demonstrate that the ensemble effect enhances sulfur

utilization and alters Li2S deposition within the positive electrode.
Without the ensemble effect, the active materials near the separator
are efficiently utilized, and Li2S tends to deposit in a two-dimensional
mode during discharge (Fig. 5c). Conversely, the ensemble effect
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significantly improves performance in high-sulfur-loading positive
electrodes under practical conditions by engaging the entire electrode
in the reaction process, even in thick electrodes distant from the
separator. This transition to a three-dimensional deposition mode
facilitates subsequent reactions, enhancing discharge capacity and
confirming the observed differences in deposition capacity and mor-
phology (Supplementary Fig. 23).

Furthermore, a 1.6 Ah Li | |S pouch cell was assembled using the
winding stackingmethod, with parameters similar to those used in the
earlier described FEM simulations (Fig. 5d and Supplementary Fig. 27).
This cell achieved an initial specific energy of 436Whkg−1 at 67mA
(Fig. 5e, f), showing stable cycling performance. This specific energy
value is well aligned with the state-of-the-art literature of lab-scale Ah-
level Li | |S pouch cells (Fig. 5g)6,44–50. Detailed calculations are provided
in the Supplementary Fig. 27. Moreover, the ensemble effect of FeCo
DASC enables the cell to achieve a high specific capacity of
1214.9mAhg−1 for a low electrolyte-to-sulfur (E/S) ratio of 2.8μLmg−1,
high sulfur content (76.1%), high areal sulfur loading (12.7mgcm−2),
and a low negative/positive (N/P) ratio of 1.29. The Li | |S pouch cell
performance we present here is better when compared with selected
state-of-the-art Ah-level Li | |S pouch cells reported in the literature
(Fig. 5h)6,44,46,51,52. It is noteworthy that the specific energy and cycling
performance of our Li | |S pouch cell could be further improved by
optimizing positive electrode design parameters, such as tortuosity
and porosity, along with advancements in Li-metal protection and
electrolyte formulation.

In summary, by combining an interpretable multi-view machine-
learned framework and DFT, we deciphered the inter-site commu-
nication mechanism and coordination structure effect among multi-
catalytic sites, thereby proposing the ensemble effect in sulfur elec-
trochemical reactions. The influence of the ensemble effect was
experimentally validated, offering universal insights for the design of
efficient multi-site catalysts for Li | |S batteries. Previous research has
primarily concentrated on clarifying the adsorption and interaction
processes between catalysts and LiPSs. Our experimental and simula-
tion results highlight the fundamental role of inter-site communication
and coordination structure effect among multiple active sites in
influencing the kinetics of sulfur electrochemical reactions at the
atomic level. The orbital coupling between active sites causes shifts in
band centers and changes in spin states, thereby affecting interactions
with polysulfides and leading to variations in Li-S bond breaking and
lithium migration barriers. The visualization of the internal physico-
chemical processes in Li | |S pouch cells underscores the key role of the
ensemble effect in boosting reaction kinetics, reducing polysulfide
shuttling, and enhancing sulfur utilization. As proof-of-concept for
practical scalability, we assemble and test an Ah-level Li | |S pouch cell
containing the catalyst which was capable of deliver an initial specific
energy of 436Whkg−1 at a current of 67mA.

Methods
Extraction of metal from spent lithium-ion battery
The steps for extracting cobalt ions from spent lithium cobalt oxide
(LiCoO2, LCO) positive electrodes are as follows. First, 0.5 g of spent
LCO and 0.05 g of waste graphite (10wt%) were mixed and evenly
ground, then sintered at 800 °C for 3 h in an argon atmosphere,
resulting in a mixture of cobalt oxide and lithium oxide. Next, lever-
aging the difference in water solubility, the decomposition product
was dispersed in deionized water and filtered to obtain a cobalt oxide
precipitate and a lithium-containing aqueous solution. Finally, the
cobalt oxide obtained was dissolved in dilute nitric acid, and the pH
was adjusted to neutral to obtain a cobalt nitrate solution, which is
used for the synthesis of ASCs. The steps for extracting iron ions from
spent lithium iron phosphate (LiFePO4, LFP) positive electrodes are as
follows: First, 0.5 g of spent LFPmaterial wasmixedwith 0.5 g of oxalic
acid and 1mLof deionizedwater in a ballmill jar. Themixturewas then

ground for 2 h at 500 rpm with a ball to material ratio of 20:1. Then,
based on the difference in water solubility, the ball milled products
weredispersed indeionizedwater andfiltered toobtain an ironoxalate
precipitate and a solution containing lithium and phosphorus. Finally,
the iron oxalate was dissolved in dilute nitric acid and the pH was
adjusted to neutral to obtain an iron nitrate solution, which is then
used for the synthesis of ASCs. The steps for extracting nickel ions
from spent ternary nickel-cobalt-manganese (LiNi0.8Co0.1Mn0.1O2,
NCM811) positive electrodes are as follows: First, 0.5 g of spent
NCM811wasmixedwith 0.05 g ofwaste graphite, and then themixture
was sintered at 650 °C for 3 h under an argon atmosphere to obtain
nickel-cobalt-manganese oxides and lithium-containing compounds.
Next, based on the difference in water solubility, the decomposition
products were dispersed in deionized water and filtered to separate
the transition metal oxides from the lithium-containing solution.
Finally, the aforementioned oxides were dissolved in dilute nitric acid
and the pH was adjusted to neutral to obtain a nickel nitrate solution,
which is then used for the synthesis of ASCs.

The steps for extracting copper ions from discarded copper cur-
rent collectors are as follows: The waste copper foil was sintered at
500 °C for 3 h in a muffle furnace, then after grinding, the above pro-
duct was dissolved in dilute nitric acid, and heated with stirring (at
∼90 °C). Once completely dissolved, the pHwas adjusted to neutral to
obtain a copper nitrate solution, which was used for the synthesis of
ASCs. The steps for extracting aluminum ions from discarded alumi-
num current collectors are as follows: Place the waste aluminum foil in
dilute nitric acid, heat with stirring (at ∼90 °C), and after complete
dissolution, adjust the pH to neutral to obtain an aluminum nitrate
solution, which is used for the synthesis of ASCs.

Synthesis of diatomic site catalysts
Take FeCo DASC as an example, 288mg of C6H12O6, 0.011mmol
Fe(NO3)3, 0.011mmol Co(NO3)2, and 1.38 g of (NH3OH)Cl were ultra-
sonically dissolved in a 20mLmixture of ethanol and ultrapure water in
a 1:1 ratio for 10min. The mixture was then dried at 70 °C for 12 h,
followed by carbonization in a crucible heated to 600 °C at a rate of 5 °C
min−1 under an Ar atmosphere for 4 h. The resulting FeCo DASC were
milled into a fine powder for further characterization. FeCo DASC can
also be loaded to carbon felt by dripping the mixture onto the support
material. Similarly, FeNi and FeCuDASCs were synthesized using similar
procedures like FeCo by changing the metal precursors to specific
types. The Fe SCA was prepared using 0.022mmol Fe(NO3)3 metal
precursor, while keeps the other parameters and procedures consistent.

Ex situ physicochemical characterization
The samples for ex situ physicochemical characterization were trans-
ported without sample holder protection except for a special expla-
nation. The XRD measurement for DASCs was performed using a
Bruker D8 Advance diffractometer, utilizing Cu Kα emission
(λ = 1.5406Å). The morphology and elemental composition were
examined through field-emission scanning electron microscopy (SU
8010) at 5 kV, accompanied by energy-dispersive X-ray spectroscopy.
Specifically, the samples used to observe Li2S deposition morpholo-
gies were prepared in an Ar-filled glove box. After Li2S deposition, the
coin cellsweredisassembled,washedwithDME, andnaturallydried for
2 h. The electrodes were then attached to the sample holder using
conductive tape under Ar protection anddirectly transferred to the SU
8010 device without air exposure. High-resolution transmission elec-
tron microscopy investigations, using a FEI Titan G2 80–200 micro-
scope, provided detailed insights into the microstructure. Elemental
distribution and HAADF-STEM imaging were conducted at a voltage of
200 kV. Cold-field-emission spherical aberration corrected transmis-
sion electron microscope (Thermo Fisher Scientific, Spectra 300)
operated at 80kV. The quantitative analysis of mass content was
performed using inductively coupled plasma atomic emission
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spectroscopy (ICP-AES, MDTC-EQ-M29-01). XPS measurements, con-
ducted on an ESCALAB 250Xi system, were utilized to explore the
catalyst compositions. Furthermore, the EXAFS measurements were
carried out on the sample at 21 A X-ray nanodiffraction beamline of
Taiwan Photon Source (TPS), National Synchrotron Radiation
Research Center (NSRRC). This beamline adopted a 4-bounce channel-
cut Si (111) monochromator for mono-beamX-ray nanodiffraction and
X-ray absorption spectroscopy. The end-station is equippedwith three
ionization chambers and Lytle/SDD detector after the focusing posi-
tion of the KB mirror for transmission and fluorescence mode X-ray
absorption spectroscopy. The photon flux on the sample ranges from
1 × 1011∼ 3 × 109 photon/sec for X-ray energy from 6–27 keV.

In situ Raman test
In situ Raman spectroscopy (Lab RAMHR Evolution) was employed. A
hole was made in the negative electrode shell and the lithium metal
foil, allowing the 532 nm laser to pass through a quartz window and
illuminate the separator. This setup enabled the detection of lithium
polysulfide diffusion toward the lithium negative electrode.

Li2S6 symmetric cells measurements
Symmetric coin cells were assembled using carbon paper electrodes
loaded with 1mg of various DASCs. Each cell was filled with 30 µL of a
0.5M Li2S6 solution as the electrolyte. The Li2S6 solution was prepared
by reacting solid Li2S (∼2–5μm, 99.9%, MACKLIN) with S powder (AR,
Shanghai Huzheng Industrial Co., Ltd,) in a mixture of 1,3-dioxolane
(DOL) and dimethoxyethane (DME) (1:1 vol%) by a stoichiometric ratio
of 1:5. DOL (99.9%) and DME (99.9%) were sourced from Suchow
DoDoChem. Co., Ltd. The reactionmixture was continuously stirred at
60 °C for 12 h in anAr-filled glovebox. An additional 10 µL of electrolyte
was dropped on the separator. The CV profiles of these cells were
tested at a scanning rate of 1mV s−1 within a voltage range of −1.0 to
1.0 V at 25 °C.

Li2S deposition test
A mixture of sulfur and lithium disulfide in a 7:1 molar ratio was pre-
pared in tetraglyme ( > 99%, Sigma-Aldrich) under vigorous stirring to
produce a0.5MLi2S8 solution. 20 µL of this solutionwasdroppedonto
the positive electrode (carbon paper loaded with various DASCs), and
20 µL of standard electrolyte was applied to the lithium negative
electrode (500μm in thick, and 16mm in diameter, China Energy
lithium Co., Ltd.). The standard electrolyte (LS-002, 1M dilithium
(trifluoromethane sulfonylimide) imide (LiTFSI) in DME:DOL = 1:1 Vol%
with 1% LiNO3) was sourced from Suchow DoDoChem. Co., Ltd.), The
test was conducted at 25 °C using coin cell. After discharging the cells
galvanostatically to 2.06 V at 0.134mA, the cells were further dis-
charged potentiostatically at 2.05 V until the current dropped below
0.001mA. The specific capacities were calculated by integrating the
current-time curve during deposition.

Li2S dissolution test
Post Li2S deposition, the coin cellsweredisassembled in an argon-filled
glove box, and the positive electrodes were rinsed with DME (99.9%,
Suchow DoDoChem. Co., Ltd.) to eliminate residual LiPSs. These
positive electrodes were then reassembled into new coin cells with
lithium negative electrodes (500μm in thick, and 16mm in diameter,
China Energy lithiumCo., Ltd.) and standard electrolytes (1M LiTFSI in
DME:DOL = 1:1 Vol% with 1% LiNO3, Suchow DoDoChem. Co., Ltd.) for
Li2S dissolution. The cells were charged potentiostatically at 2.35 V and
25 °C until the charge current fell below 0.001mA to ensure complete
Li2S dissolution.

Assembly and testing of Li | |S cells
Sulfur (Shanghai Huzheng Industrial Co., Ltd, AR) was impregnated
into CNT (5∼ 8 nm in diameter, 8∼ 20μm in length, >99% purity,

Guangdong Canrd New Energy Technology Co. Ltd.) via a melt-
diffusion process at 155 °C for 10 h, resulting in S/CNT compositeswith
70wt% sulfur. Positive electrodes were fabricated by mixing S-CNT
powder (70wt% sulfur), conductive carbon (CNT, 5∼ 8 nm in dia-
meter, 8∼ 20μm in length, >99% purity, Guangdong Canrd New
Energy Technology Co. Ltd.), polyvinylidene fluoride (PVDF, >99.5%,
Guangdong Canrd New Energy Technology Co. Ltd.), and ASCs (Fe
SASC, and FeCo, FeNi and FeCu DASCs) in a 7:1:1:1 ratio in 1-Methyl-2-
pyrrolidinone (NMP, 99.9%,MACKLIN) to create a slurryby continuous
magnetic stirring for 12 h in air, subsequently spread onto Al foil
( > 99.6%, 25μm in thick, Guangdong Canrd New Energy Technology
Co. Ltd.) and dried under vacuum at 60 °C. Lithiummetal foil (500μm
in thick, and 16mm in diameter, China Energy lithium Co., Ltd.) served
as the negative electrode. The conventional electrolyte was DOL and
DME (1:1 by volume) solution containing 1M LiTFSI and 1wt% LiNO3.
DOL, DME, LiTFSI and LiNO3 were sourced from Suchow DoDoChem.
Co., Ltd. Thewater content in all the non-aqueous electrolytes solution
is less than 20ppm. Each coin cell contained 40 µL of electrolyte and
was assembled in an argon-filled glove box, where the content of O2

and H2O are lower than0.1 ppm. A LAND 2001A battery testing system
evaluated the galvanostatic charge-discharge performance within a
voltage range of 1.7 V to 2.8 V (vs. Li/Li+). CV and EIS tests were per-
formed using a VMP3 electrochemical workstation (Bio Logic). A
potentiostatic signal at different temperatures and potentials were
used for EIS measurement with a frequency between 10MHz and
0.1 Hz and a 5mV amplitude. CV tests were conducted using the coin
cells between the electrochemical window of 1.7–2.8 V and the scan
rate from 0.1 to 0.5mV s−1. The apparent active energy was calculated
from the relationship between the inverse of absolute temperature (T)
and the logarithm of the reciprocal of the peak current according to
the Arrhenius equation ( j / k =Ae�

Ea
RT). Where A is the pre-exponential

factor, R is the universal gas constant, k is the rate constant and T is the
absolute temperature (Kelvin). For the pouch cell construction, the
sulfur positive electrode was fabricated by dispersing a mixture of S/
carbon composite, FeCo DASC, Super P (40 nm, >98%, Guangdong
Canrd New Energy Technology Co. Ltd.), and LA133 binder ( < 1μm,
15% of solids content, Guangdong Canrd New Energy Technology Co.
Ltd.) in deionized water, maintaining a mass ratio of 8.43:0.15:0.4:0.6.
This slurry was then casted on Al foil and subsequently dried under
vacuum at 60 °C for 12 h. The Al foil was ultrasonically welded to the Al
tab, while the Li foil was pressed to the Ni tab. The pouch cell was
assembled by coiling the sulfur positive electrode, Celgard 2400, and
lithium foil in a sandwich configuration, forming a total of seven layers.
The assembly was carried out in a Dry Room with a size of 8 square
meters and a dew point of −50 °C. After injecting 3.61 g of standard
electrolyte, the cell was left to rest for 24 h before testing. During
testing, the cell was clamped using a fixture to maintain a pressure of
0.19MPa. All the electrochemical measurements were conducted in
environmental room equipped with air conditioner under 25 °C. The
coulombic efficiency was calculated by the ratio of discharge capacity
to charge capacity per cycle. For coin cell, the specific capacity and
specific current refers to the mass of active materials. For pouch cell,
the specific energy refers to the whole mass of the cell.

DFT calculations
Spin-polarized DFT calculations were conducted using the Vienna Ab
initio Simulation Package (VASP) with the Projector Augmented Wave
(PAW) method. The calculations employed a cutoff energy of 450 eV
and utilized the Perdew–Burke–Ernzerhof (PBE) exchange-correlation
functional53. TheGaussian smearingmethodwas used and thewidth of
smearing was chosen as 0.05 eV. In the vertical direction, a vacuum
layer of about 15 Å in thickness was introduced for all the surfaces. For
the binding energy and adsorption conformation simulations, we used
the DFT-D3 functional to include the physical van der Waals
interaction54, which was demonstrated to be very important in the
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simulation of Li2S adsorption55. The optimized lattice constants of
graphene are 2.47 Å, consistent with the experimental results. A
6 × 6 × 1 model of graphene is adopted in this work. The Brillouin zone
was sampled using Monkhorst-Pack scheme with a k-point mesh of
2 × 2 × 1 in the Gamma-centered grids for the structural relaxation56.
The structure relaxation was continued until the forces on all the
atoms were converged to less than 0.01 eV/Å.

FEM simulations
Based on the practical conditions of assembling pouch cell, we cal-
culated the relevant parameters within the Li | |S battery and simulated
its electrochemical performances using COMSOL Multiphysics
6.0 software. The polysulfide distribution evolution, Li2S deposition
behaviors as well as the polysulfide corrosion with Li negative elec-
trode were detailed simulated, in which the governing equation57,58

were described in the Supplementary Information. By adjusting the
relevant parameters with reaction kinetics, we achieved the simulation
for the ensemble effect on Li | |S battery performance.

Data availability
The data used in this study have been deposited in the Zenodo repo-
sitory (DOI: 10.5281/zenodo.13786952). Source data are provided with
this paper.

Code availability
The codes ofmachine learningmodels anddata processing used in this
study are available on Zenodo59 and at: https://aimslab.cn/#/soft_
materials_imvf.
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