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120 GOPS Photonic tensor core in thin-film
lithium niobate for inference and in situ
training

ZhongjinLin1,2, Bhavin J. Shastri 3, ShangxuanYu1, JingxiangSong1, YuntaoZhu2,
Arman Safarnejadian4, Wangning Cai1, Yanmei Lin2, Wei Ke2, Mustafa Hammood1,
Tianye Wang1, Mengyue Xu 2, Zibo Zheng4, Mohammed Al-Qadasi1,
Omid Esmaeeli1, Mohamed Rahim5, Grzegorz Pakulski5, Jens Schmid 5,
Pedro Barrios5, Weihong Jiang5, Hugh Morison 3, Matthew Mitchell 1,
Xun Guan6, Nicolas A. F. Jaeger1, Leslie A. Rusch 4, Sudip Shekhar 1,
Wei Shi 4, Siyuan Yu2, Xinlun Cai 2 & Lukas Chrostowski1

Photonics offers a transformative approach to artificial intelligence (AI) and
neuromorphic computing by enabling low-latency, high-speed, and energy-
efficient computations. However, conventional photonic tensor cores face
significant challenges in constructing large-scale photonic neuromorphic
networks. Here, we propose a fully integrated photonic tensor core, consisting
of only two thin-film lithium niobate (TFLN) modulators, a III-V laser, and a
charge-integration photoreceiver. Despite its simple architecture, it is capable
of implementing an entire layer of a neural network with a computational
speed of 120 GOPS, while also allowing flexible adjustment of the number of
inputs (fan-in) and outputs (fan-out). Our tensor core supports rapid in-situ
training with a weight update speed of 60 GHz. Furthermore, it successfully
classifies (supervised learning) and clusters (unsupervised learning) 112 × 112-
pixel images through in-situ training. Toenable in-situ training for clusteringAI
tasks, we offer a solution for performingmultiplications between two negative
numbers.

Artificial intelligence (AI) is increasingly being integrated into various
sectors, including autonomous vehicles, smart buildings, and smart
factories, as illustrated in Fig. 1a. At the heart of AI systems are tensor
core processors, which are expected to exhibit several key
characteristics:
(1) High-speed, large-scale matrix-vector multiplication: These proces-

sorsmust efficiently process data froma variety of devices for tasks

such as classification (supervised learning) and clustering (unsu-
pervised learning), as depicted in Fig. 1a. Crucially, they perform
matrix-vector multiplication and dynamically adjust the input (fan-
in) and output (fan-out) sizes of each network layer as needed.

(2) Rapidweight updates: Accurate and efficient training necessitates
the use of in situ training1–4. This method incorporates real-
time feedback from processors into the weight update loop,
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accounting for processor imperfections and environmental
changes. Rapid weight updates speed up training and facilitate
“on-the-fly” or online learning, which is particularly beneficial for
applications such as autonomous vehicles5.

(3) Low energy consumption and compact form factor: AI systems
often deploymultiple processors (see Fig. 1a), so theseprocessors
must be energy-efficient and compact to facilitate widespread
integration.
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Fig. 1 | Concept of our integrated photonic tensor core (IPTC). a Top: Appli-
cations and functions of artificial intelligence (AI)44,54–56. AI systems require pro-
cessors to be adaptable to analyze data from different devices for various AI tasks,
including supervised and unsupervised learning AI tasks. Bottom: A schematic of
our proposed IPTC, consisting of four physical components: lasers, two thin-film
lithiumniobate (TFLN)Mach-Zehndermodulators (MZMs), and charge-integration
photoreceivers. Using these four physical components, our processor can imple-
ment an entire layer of a neural network. b A schematic of a conventional

wavelength-division multiplexing (WDM)-based IPTC, which includes m neurons.
PCM: phase changematerial. c The performance of our device compares with that
of several state-of-the-art photonic tensor cores9–11,15,18,28,30 in termsof compactness,
dot product operation principle, computational speed, and the available dimen-
sion of vector in a dot product. Here, the available dimensionmeans the processor
completely executes the dot product operation without the assistance of tradi-
tional digital electronic computers.
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However, finding a tensor core processor that meets all these
requirements simultaneously is challenging6–14. Traditional digital
computers struggle with the speed and energy efficiency required for
matrix algebra due to Joule heating, electromagnetic crosstalk, and
parasitic capacitance15,16. In contrast, photonic integrated circuits
(PICs)-based tensor core processors provide high computational
speed, low energy consumption, and compactness, effectively over-
coming these issues15,17–19. Nonetheless, developing an integrated
photonic tensor core (IPTC) capable of large-scale matrix-vector
multiplicationwith adjustable input (fan-in) and output (fan-out) sizes,
alongside rapid weight updates, remains a significant challenge. For
example, IPTCs utilizing wavelength-division multiplexing (WDM) are
inherently limited by the number of available wavelength channels,
which constrains the fan-in size in a neural network layer (see
Fig. 1b)13,20. In addition, IPTCs based on interferometric meshes8,18

require a single laser source but face scalability issues due to the
multitude of directional couplers and phase shifters involved. To date,
most IPTCs have been limited to using either static (non-volatile)
weights, such as those employing phase change materials15,21, or vola-
tile weights based on thermo-optic effects [18], which are slow and
power inefficient. These methods are unsuitable for in situ training22.
Although some IPTCmodels that utilize two cascadedmodulators can
achieve rapid weight updates, they still require summing in the digital
domain, which strongly limits the final computational speed, or they
need 2N modulators for performing dot product operations on two
N-dimensional vectors23–26. Recently, a solution first proposed by De
Marinis et al.27, which uses photocurrent integrators to perform
accumulation operations in a time-division multiplexing (TDM)
scheme, has been gaining attention28,29.

Here, we introduce an IPTC with thin-film lithium niobate (TFLN)
photonics and charge-integration photoreceivers (Fig. 1b), combining
the advantages of photonics and analog electronics.Our processor can
perform large-scale matrix-vector multiplications at high computa-
tional speeds9–11,15,18,28,30, as quantified in Fig. 1c. This fully integrated
processor, comprises only two TFLN modulators, an III–V laser, and a
charge-integration photoreceiver (Fig. 1b). By adjusting the integration
time of the charge-integration photoreceiver, we can flexibly modify
the fan-in size for matrix-vector multiplications. Our processor can
handle a fan-in size of 131,072–significantly surpassing the capacity of
previously reported IPTCs by four orders of magnitude (Fig. 1c).
Leveraging the high modulation speed of TFLN modulators and the
fast accumulation operation of charge-integration photoreceivers31–33,
our tensor core achieves a computational speed of 120 GOPS. More-
over, with a weight update speed of 60GHz, our tensor core enables
fast in situ training. Our device successfully classifies (supervised
learning) and clusters (unsupervised learning) 112 × 112-pixel images
via in situ training. Notably, to the best knowledge, our device is the
first to provide a solution for performing multiplications between two
negative numbers, thanks to the ability of TFLNmodulators to operate
across a wide wavelength range. Thus, our device is the first one cap-
able of performing in situ training for clustering images. For com-
pactness, our tensor core employs hybrid integration techniques to
combine the TFLN chip with III–V lasers and photodetectors34,35.

Results
Concept and principle
Figure 1a presents a schematic of the proposed TDM-based IPTC,
consistingof two cascadedTFLNMach-Zehndermodulators, one laser,
and one charge-integration photoreceiver. Our device uses charge-
integration photoreceivers for accumulative operations and leverages
TFLN Mach-Zehnder modulators for high-speed multiplication
operations and weight updates. Therefore, using just four physical
components, our IPTC can implement an entire layer of a neural net-
work with n fan-in andm fan-out. n andm can be dynamically adjusted
as needed. In contrast, the conventional WDM-based IPTC requires n

modulators, n ×m weight additions, and m large-bandwidth photo-
detectors to implement a layerwith n fan-in andm fan-out (see Fig. 1b).

The input data is flattened into a vector and modulated on a
time basis becoming X ðtÞ= Pn

j = 1 xj

R1
0 δðt � j=f sÞdt, where n is the

dimension of the input vector, δ is the Dirac delta function, and fs is
the baud rate of the modulator. Simultaneously, the weights of
the ith row are flattened into a vector becoming WiðtÞ=

Pn
j = 1 wijR1

0 δðt � j=f s +ΔTÞdt, where ΔT is a delay time that needs to be cali-
brated to guarantee each weight vector element can be correctly
multiplied by the corresponding element of the input vector. At a time,
t, xj is modulated bywij performing the multiplying operation of the jth

element. In thisway, themultiplicationof all of the elements ofX(t) and
Wi(t) are multiplied sequentially and then summed by the integrator.
Therefore, the dot product operation between the input and weight
vectors, Y i =

Pn
j = 1 xjwij , can be obtained by simply reading the output

voltage of the integrator through an analog-to-digital converter whose
sampling rate only needs to be fs/n. By adjusting the integration timeof
the integrator, n can be changed and made to be very large. By com-
puting the output of eachnode sequentially in a time series, our device
can implement an entire layer of a neural network. Therefore, our
processor can offer the flexibility to dynamically change the sizes of
fan-in and fan-out in a layer. Moreover, through this architecture, our
device can perform fast in situ training because it can update the
weight vectors at the modulation speed of the modulator.

Prototype
Figure 2a presents a photo of a prototype of our device. In addition,
Fig. 2b–e provides zoomed-in micrographs of the fabricated TFLN
chip, flip-chip photodetectors, traveling-wave electrodes of the mod-
ulator, and laser, respectively.Moredetails regarding the fabricationof
the TFLN chip can be found in Methods. Using flip-chip bonding
technology, two photodetectors (marked as PD1 and PD2), in a
balanced detection scheme, were affixed above two grating couplers,
as shown in Fig. 2c. The laser and TFLN chip were connected using a
photonic wire bond whose shape can be adapted to match the actual
positions of the waveguide facets (see Fig. 2e). As shown in the right
side of Fig. 2c, we also connected our TFLN chip with a fiber array by
photonic wire bonds for calibrating bias voltages and delay time, and
assisting in the multiplication involving two negative numbers. Details
regarding the photonic wire bonding technology are shown in Meth-
ods and Supplementary Note 1. Figure 2f illustrates the relative heights
of the TFLN chip, laser, and photodetectors.

Figure 2g presents the light-current-voltage (L-I-V) curves for the
light coupled into the TFLN chip from the laser with a wavelength of
1307.22 nm.More detailed performances of the hybrid integrated laser
are shown in Supplementary Note 2. Thanks to the periodic capaci-
tively loaded traveling-wave electrodes (see Fig. 2d)32,36,37, the 3-dB
electro-optic bandwidth of ourmodulator is broader than 60GHz (see
Fig. 2h). The output voltage of the integrator linearly increaseswith the
integration time for a constant input optical power (see Fig. 2i). In a
balanced detection scheme, when the optical power received by PD1 is
lower than that received by PD2, the output voltage variation of the
integrator is positive and, when it is higher than that received by PD2,
the output voltage variation of the integrator is negative. This means
that the proposed photoreceiver can perform add and subtract
operations in the matrix-vector multiplication. More details regarding
the charge integrator and the corresponding electrical controlling
circuit can be found in Supplementary Note 3.

Dot product accelerator
In this section, we demonstrate how to perform a dot product
operation between two vectors using our device. A schematic of data
flows through our device is shown in Fig. 3a. Python, an open-source
programming language, was used to control all our devices. We
recorded 3780 photonic dot product measurements using our device
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by randomly varying the two vectors. The dimension of each vector
was set at 131072, a limit imposed by our high-speed arbitrary wave-
form generator (AWG). The two vectors weremodulated separately by
two modulators at a modulation rate of 60 Gbaud, enabling a com-
putational speed of 120 GOPS, and a weight update speed of 60GHz.
The time delay between two vectors was initially calibrated to guar-
antee that each element of the first vector can be correctly multiplied
by the corresponding element of the second vector. More details
regarding the experimental setup can be found in Supplementary
Note 4. The measured output voltage (i.e., dot product result), scaled

between − 1 and + 1, as a function of the expected dot product result,
is shown in Fig. 3b. Compared with the expected dot product result,
the error of the measured one has a standard deviation of 0.03 (6.04
bits)–more than the4bits of precision required for performingAI tasks
(details can be found in Supplementary Note 4)38.

Images classification
We built a multilayer perceptron (see Fig. 4a) and tested it against the
MNIST large-scale handwritten digit database39,40. Here, the multilayer
perceptron includes 4 layers: an input layer, two hidden layers, and an
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output layer. Each handwritten digit image, having 112 × 112 pixels, was
flattened into a 12544 × 1 vector as the input of the first layer. The
number of nodes in the first and second hidden layers was set to 70
and 300, respectively, and the leaky ReLU function was used for the
nonlinear activation function41.

Classification is a supervised learning AI task that requires labeled
data to train the model. Our multilayer perceptron model was trained
with 2000 labeled digit images using an in situ training scheme (see
Fig. 4b) thatour IPTCperforms forwardpropagation. At the same time,
the electronic computer handles nonlinearity function and back-
propagation. Weight vectors were updated by the stochastic gradient
descent method42, allowing individual samples to be trained itera-
tively. The training process from forward propagation to back-
propagation was repeated until convergence. Figure 4c shows the
validation accuracy as a function of epoch for in situ training scheme
compared to that runningon just a centralprocessingunit (CPU).More
details regarding the training algorithm and the interfaces between the
central processing unit (CPU) and the optoelectronic assembly can be
found in the Methods and Supplementary Note 4.

The confusion matrix for 500 images (Fig. 4d, e) shows an accu-
racy of 91.8 % for the generated predictions, in contrast to 92% for the
numerical results calculated on a CPU. Our IPTC achieved near theo-
retical accuracy, indicating that the in situ training scheme enables the
system to inherently account for the hardware nonidealities, including
fabrication variations and noise. Essentially, the nonidealities are
“baked into” the training process. This has also been experimentally
demonstrated in ref. 3.

Images clustering
Supervised learning can successfully solve real-world challenges, but it
has some drawbacks. One of the main limitations is that it requires
a large number of accurately labeled data to train the model43,44.
Creating such a database is a time-consuming and resource-
intensive task that may not always be feasible. In contrast, unsu-
pervised learning can be operated on unlabeled data to discover its

underlying structure, offering an alternative approach for extracting
data features.

We demonstrate the potential of our device for unsupervised
learning AI tasks by utilizing it to cluster the MNIST large-scale hand-
written digits with principle component analysis — one of the most
commonly used unsupervised learningmodels45. Principle component
analysis simplifies high-dimensional data by geometrically projecting
them onto a limited number of principal components (PCs), i.e., unit
vectors, to obtain the best summary of the data45. Clustering hand-
written digits with principle component analysis involves two main
steps: (1) finding the PCs for the unlabeled database, i.e., training the
model, and (2) projecting the data onto each PC. Here, we used the
power method to find the PCs that46

bi+ 1 =
Abi

k Abi k
, ð1Þ

where A =XTX, XT means the transpose of X, X is a p × n data matrix
with column-wise zero empirical mean, and p and n are the total
number of handwritten digits and the pixels of each digit, respectively.
bi is an × 1 unit vector, obtained at the ith iteration, andb0 is a randomly
generated unit vector. bi converges to the first PC (PC1) when the
variance of the projected points, Xbi, achieves the maximum value.
The subsequent PCs can be obtained by a similar approach after
subtracting all the previous PCs from X. More details regarding the
power method can be found in Methods.

Through Eq. (1), we can know that the training involves the mul-
tiplication between two negative numbers. To achieve this, as illu-
strated in Fig. 5a, we found a solution that injects light with a
wavelength of λ2 into the second modulator, in addition to injecting
light with a wavelength of λ1 into the first modulator. When the phase
difference between the two arms of the first and secondmodulators is
adjusted to θ1 and θ2, respectively, the output of the balanced pho-
todetectors becomes I0 sinθ1 sinθ2, indicating that this method
enables the multiplication between two numbers with any signs. More
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Fig. 4 | Classification results of handwritten digits using our device. a A block
diagram of a multilayer perceptron neural network, which consists of an input
layer, two hidden layers, and an output layer that provides classification outputs.
b A schematic of the in situ training, a form of online training, where our IPTC
handles forward propagation while the computer manages the nonlinearity func-
tion and backpropagation. c The validation accuracy as a function of epoch for

in situ training (solid red line) scheme compared to that running on just a central
processing unit (CPU, dashed blue line). d, e Theoretically calculated confusion
matrices (purely run by the CPU) and experimental confusion matrices (run by our
IPTC) using the MNIST large-scale database39. For “in situ" training, 2000 hand-
written digits are used for training, and 500 digits are used for testing. Our IPTC
achieves classification accuracy comparable to that achieved by the CPU.
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details regarding theworking principle can be found in Supplementary
Note 4. The convergence speed of our device is comparable with that
of the CPU (see Fig. 5b), demonstrating that a dot product computing
precision of 6.04 bits is enough to train the model using the power
method.

Using the power method discussed above, we can obtain all the
principal components. However, in general, the first few PCs are suf-
ficient to summarize the data. In our example, the projections onto
PC1-PC44 encompass 90% of the features. To visualize the clustering
result of the handwritten digits using our device, Fig. 5c and d present
the projections onto PC1-PC3, accounting for 28.7% of the features.
Although only the first three PCs are used, the unlabeled handwritten
digits can still be well clustered. Moreover, projecting the data onto
the three PCs using our device is 5 times faster than a CPU (Intel i9-
9900 @ 3.10GHz).

TDM and WDM-based architecture
To show the scalability of our solution, we propose an end-to-end
photonic neural network that combines the benefits of TDM andWDM
methods, as illustrated in Fig. 6. This network is capable of executing
multiple AI tasks simultaneously, spanning from the input to the out-
put layer, with nanoseconds latency, all without relying on a digital
processor for assistance. As an example, shown in Fig. 6, is a proposed
neural network that includes 4 layers: an input layer, twohidden layers,
and an output layer.

(1) From the input layer to the hidden layer 1. The information ofK
AI tasks is encoded by K input TFLN modulators and transmitted on K
corresponding wavelengths. These signals from input TFLN mod-
ulators are then split and channeled into m-weighted TFLN mod-
ulators. Although some waveguides must pass through (K − 1)
crossings, the total insertion losses remainmanageable, as an insertion
loss of 0.02 dB per crossing has been demonstrated47. Following this,

each weighted TFLN modulator feeds into a K-channel WDM, which
separates the wavelengths to K charge-integration photoreceivers for
generating vector-vector dot products. K commercial complementary
metal-oxide-semiconductor (CMOS) switches48 control the output
timings of these photoreceivers. In addition, a CMOS comparator,
which selects themaximumbetween the input and reference voltages,
facilitates the ReLU activation function of each vector vector dot
product49. Theuseof 90wavelengths fromacomb source for photonic
neural networks30 and a 64-channel integrated WDM50 have been
previously demonstrated, making K, m = 64 a practical choice. With
this setup, we can achieve a computational speed of 491 TOPS and an
energy efficiency of 6.5 fJ/OP (i.e., 153 TOPS/W), factoring in a mod-
ulation speed of 60 Gbaud/s, including the energy consumption of the
laser, DACs, charge-integration photoreceivers, CMOS switches, and
CMOS comparators. Further details are available in Supplemen-
tary Note 6.

(2) Fromhidden layer 1 to 2, and fromhidden layer 2 to the output
layer, conventional WDM-based architectures3,15 are employed. These
parts are unaffected by limitations related to fan-in size, thanks to the
relatively small numbers of nodes in the hidden layers. The outputs of
hidden layer 1 are fully connected to the m neurons in hidden layer 2.
Similarly, thehoutputs fromhidden layer 2 are fully connected to thep
neurons of the output layer, resulting in p network outputs.

This hybrid processor enables the sequential processing of 64
images, each with a resolution of 112 × 112 pixels, within 62.5 ns. Its
significant potential extends to various fields, including autonomous
vehicles requiring simultaneous image processing from multiple
cameras.

Discussion
Our device’s computational speed, compactness, and ability for large-
scale dot product operations are summarized in Fig. 1c, where the
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performance of our device is compared to that of other state-of-the-art
photonic devices9–11,15,18,28,30. Our device can simultaneously achieve
high performance across all these aspects. Note that “ability” refers to
our processor to perform dot product operations without the assis-
tance of a digital processor for accumulation operations. According to
the demonstrated performance of the TFLNmodulator51, our IPTC can
achieve a computational speed of over 520 GOPS, and the vector
dimensioncanextend toover onemillion (thedotted triangle shown in
Fig. 1c) usingmore advancedmodulator driver boasting higher speeds
and larger memory capacity.

Compared to photonic processors based on free-space52 or
discrete30 optics, our fully integrated processor is compact. However,
the footprint of fastmodulators is not the primary reason for choosing
the TFLN technology. The size of high-speed drivers, often the bot-
tleneck in achieving an ultra-high compute density, must also be
considered.Our choiceof TFLNmodulators is driven by their ability to:
(1) simultaneously achieve a low insertion loss, CMOS-compatible
voltage, and a broad electro-optic bandwidth32. (2) Operate across a
wide wavelength range, perform multiplication of two negative num-
bers, and for their compatibility with hybrid TDM and WDM archi-
tectures, as previously discussed, and (3) exhibit no modulation loss,
unlike silicon modulators, which suffer from variable insertion loss
depending on the applied voltage.

In summary, we have experimentally demonstrated that our
device can perform large-scale matrix-vector multiplications with
flexibly adjustable fan-in and fan-out sizes and facilitate rapid weight
updates. Our device is the pioneering IPTC with the capability to
handle the multiplication between two negative numbers. It is capable
of processing both supervised and unsupervised learning AI tasks
through in situ training. Thanks to its compatibility with current
commercial optical transceivers, our solution has the potential to

rapidly enter the commercial phase. By taking advantage of electronic
and photonic analog computing, our research paves the way for
developing a universal IPTC.

Methods
Design and fabrication of TFLN chip
The proposed TFLN chip was fabricated using a wafer (NanoLN) con-
sisting of a 360nm thick, x-cut, y-propagating, LN thin film on a
500μm thick quartz handle with a 2μmSiO2 layer in between the two.
The optical devices were patterned using optical lithography and
etched using inductively coupled plasma. Then, a cladding layer with a
1μm thick SiO2 was deposited on the top of optical devices. Gold and
heater electrodes were then patterned with a lift-off process. To
achieve a low-voltage, high-bandwidth electro-optic solution, we used
1 cm-long, capacitively loaded, traveling-wave electrodes on our TFLN
modulators. Our modulators exhibit a 3-dB electro-optic bandwidth
broader than 67GHz, a Vπ of 2.4 V, and an extinction ratio larger than
20 dB. For the TDMandWDM-based architecture,We note that during
the review process of this paper, other teams were developing similar
schemes,whichconstitute thefirstpart of thephotonic neuralnetwork
shown in Fig. 6, using bulk fiber-optic modulators, with results pre-
sented in conference proceedings25,26.

Photonic wire bonding process
Photonic wire bonding is a technique for building hybrid connections
between disparate optical components, such asTFLNchips, lasers, and
fiber arrays, using three-dimensional (3D) polymerwaveguides created
by in situ, two-photon polymerization53. In our case, the photonic wire
bonds were used between the TFLN chip and the laser. We also used
the photonic wire bonds in various locations of our hybrid photonic
circuit for calibration and testing purposes. The hybridization process
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was carried out as follows: first, the TFLN chip, a fiber array (used in
calibration and testing), and the laser were glued to an aluminum
submount with a low alignment precision using ultraviolet curable
epoxies; second, the photoresist was dispensed on the optical ports of
the TFLN chip, fiber array, and laser; third, the photonic wire bonder
(Vanguard Automation GmbH, SONATA1000) was used to expose the
photoresist and develop the shape of the interconnecting photonic
wires. More detailed performances of photonic wire bonds and the
hybrid integrated laser are shown in Supplementary Note 2.

Experimental setup
A vector network analyzer (Agilent N5227A) with a bandwidth of up to
67GHz was used to characterize the electro-optic response of the
fabricatedmodulator at a telecomwavelength of 1310 nm. To perform
the dot product operation, our device was driven by an arbitrary wave
generator (Keysight, M8194A). For comparison purposes, themachine
learning algorithms are also executed using a CPU (Intel i9-9900 @
3.10GHz). More details can be found in Supplementary Note 4.

The principle of the stochastic gradient descent method
For the multilayer perceptron, the weight vectors in this study were
updated using the stochastic gradient descent method, allowing
individual samples to be trained iteratively. The training was imple-
mented using a labeled dataset (x, t), wherex is the network input, and
t is the target to be compared with the network output. In the forward
propagation, the output vector, z(l), of the lth layer can be given by

zðlÞ =wðlÞ � gðzðl�1ÞÞ, ð2Þ

where w(l) represents the weight matrix between the (l−1)th and (l)th

layers, g(z(l−1)) is the activation function for the output of the ððl � 1Þth
layer, and z(1) = x.

Through backpropagation, the “error”, δ(l−1), of the (l−1)th layer can
be calculated by

δðlÞ = ðwðlÞÞT � δðl + 1Þ, ð3Þ

where ðwðlÞÞT means the transpose ofw(l), and δ(4) = (t − z(4)) in the case
of our network only has 4 layers. Then, the weight matrix can be
updated by

wðlÞ =wðlÞ +ΔwðlÞ, ð4Þ

whereΔwðlÞ = γðδðl + 1Þ � gðzðl + 1ÞÞÞ � ðzðlÞÞT, γ is the learning rate, and ⊙ is
the Hadamard product (element-wise multiplication operator).

In our “in situ" training scheme, our IPTC performed forward
propagation while the computer handled nonlinearity function and
backpropagation. This training process from forward propagation to
backpropagation was repeated until convergence or all samples were
trained.

The principle of power method for finding all principle
components
We can find each PC by repeating Eq. (1), but the matrix A needs to be
changed for different PCs. To find the kth PC, w(k), the matrix A can be
given by

A= X̂
T
k X̂k , ð5Þ

where

X̂k =X�
Xk�1

s = 1

XwðsÞw
T
ðsÞ ð6Þ

X is a p × n data matrix with column-wise zero empirical mean, p and n
are the number of samples and the pixels of each digit image,
respectively. w(s) means the sth PC.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Source data can be found at https://doi.org/10.6084/m9.figshare.
26965324.

Code availability
The code used in this study is available from the corresponding
authors upon reasonable request.
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