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Brain change trajectories in healthy adults
correlate with Alzheimer’s related genetic
variation and memory decline across life
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Throughout adulthood and ageing our brains undergo structural loss in an
average pattern resembling faster atrophy in Alzheimer’s disease (AD). Using a
longitudinal adult lifespan sample (aged 30-89; 2–7 timepoints) and four
polygenic scores for AD, we show that change in AD-sensitive brain features
correlates with genetic AD-risk and memory decline in healthy adults. We first
show genetic risk links with more brain loss than expected for age in early
Braak regions, and find this extends beyond APOE genotype. Next, we run
machine learning on AD-control data from the Alzheimer’s Disease Neuroi-
maging Initiative using brain change trajectories conditioned on age, to
identify AD-sensitive features and model their change in healthy adults.
Genetic AD-risk linked with multivariate change across many AD-sensitive
features, and we show most individuals over age ~50 are on an accelerated
trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults
with elevated brain change showedmorememory decline through adulthood,
compared to high genetic risk adults with less brain change. Our findings
suggest quantitative AD risk factors are detectable in healthy individuals, via a
shared pattern of ageing- andAD-related neurodegeneration that occurs along
a continuum and tracks memory decline through adulthood.

Advanced age is the primary risk factor for Alzheimer’s disease (AD) –
the leading form of dementia. Across healthy adult life, our brains
undergo gradual and widespread structural changes1–4. Many of these
changes are qualitatively similar to atrophy patterns seen in AD,

suggesting shared vulnerability of brain systems in ageing and AD5–7.
For example, medial temporal lobe regions including hippocampus
andentorhinal cortex are amongst the earliest regions to showatrophy
and tau deposition in AD8,9, and each exhibits accelerated structural
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loss from around ~50years of age. Prior to this, many brain structures
exhibit slow but steady average volume reduction from early
adulthood2,10–13.Whole-cortical atrophypatterns are also largely shared
between ageing and AD4,6, with characteristic temporo-parietal atro-
phy patterns in AD also found to a lesser degree in healthy people,
including those at low AD risk5,14. This parallel pattern is critical to
understand4, because reported AD incidence increases exponentially
after 65 years of age15,16.

If brain regions vulnerable in AD exhibit gradual change through
ageing, healthy individuals at higher AD risk may show faster atrophy
over extended age spans. Polygenic risk scores for AD (PRS-AD) cal-
culated from risk variants in genome-wide association studies (GWAS)
provide a marker to test this; in AD patients, genetic AD risk links with
longitudinal outcomes including faster brain and cognitive decline,
earlier AD onset, and clinical progression17–19. In healthy adults, how-
ever, attempts to link genetic AD risk to alterations in brain structure
have typically been cross-sectional and yielded mixed results20–26. For
example, although many studies report no effect of APOE-ε4 on cross-
sectional hippocampal volumes20–26, recent large-scale studies found
smaller hippocampal volumes in older ε4 carriers27,28. However, evi-
dence suggests smaller hippocampal volume as a function of genetic
AD risk may be evident in neonates29, children2,30 and young adults31,32,
and longitudinal work suggests the effect of genetic risk upon lower
hippocampal volume is roughly equivalent fromchildhood to old age2.
Further, many 70 year-olds have similar size brain measures to many
30 year-olds, and individual differences in brain structure at any age
typically exceed the magnitude of change effects through ageing2,33.
Hence, brain differences observed in older at-risk individuals may be
ascribable to preexisting differences from early life. Consequently,
only longitudinal designs are suited to examine whether elevated
genetic AD risk confers a direct genetic effect on the slope of brain
ageing across adult life.

Longitudinal studies attempting to link brain changes to genetic
AD risk in healthy adults have been inconclusive, often restricted to
small samples of older adults34–36, and adult lifespan samples with
extensive follow-up are lacking. Small studies have reported group-
level effects34,35 or no effect of APOE-ε4 upon hippocampal change in
healthy older adults37. Another study found evidence PRS-AD related
to hippocampal and entorhinal thinning in an older sample enriched
for APOE-ε4 and memory concerns, though did not report polygenic
effects beyond APOE36. Additionally, in a large sample of healthy older
individuals, hippocampal change was found to be greater in APOE-ε4
carriers (N = 748)38. However, a recent GWAS39 (N = 15,640) observed
that an association between APOE and faster hippocampal and amyg-
dala change in ageing disappeared when accounting for disease
(notably, the sample includedmanyADcases). Thus, the effectofAPOE
upon brain change in candidate AD regions was seemingly driven by
disease-related processes and not detected in healthy brains39. More-
over, the trajectories of genetically high-risk versus low-risk groups
provide little evidence that genetic AD risk affects the slope of brain
decline across adult life2,24,25. Individualized estimates of the degree to
which a healthy person’s brain is changing more or less than expected
for their age may be better suited to answer whether genetic AD risk
impacts the slope of brain ageing in healthy adults.

Regions with greater brain atrophy in AD are encompassed within
the Braak staging scheme8,40. This describes the spatiotemporal
sequence of tau deposition9,41—from a cortical entorhinal epicentre
(Stage I) to hippocampus (Stage II), amygdala and inferior temporal
cortex (Stage III), and later the rest of cortex8,40. This “AD signature”9 is
not specific to AD but found to a lesser degree in normal ageing5,6,42.
Beyond this core set of regions with seemingly shared vulnerability in
ageing and AD, many other brain features exhibit faster atrophy in AD.
Applying a data-driven approach to delineate these in AD patients—
combined with multivariate analyses of individualized brain change
estimates—may reveal new insights into whether genetic AD risk

influences the slope of brain ageing in a select few or across many AD-
relevant features in healthy adults.

Finally, several studies suggest that genetic AD risk is subtly
related to longitudinalmemorydecline in healthy older adults43–45, and
one adult lifespan study reported a weak association with decline in
cognition on average46. Thus, AD risk variants may influence differ-
ences in memory decline trajectories that are protracted through life
and begin in early adulthood45–48. However, the extent to which one’s
genetic predisposition influences brain and cognitive outcomes
probably differs also between individuals at high genetic risk, which
may explain why genetic risk alone is not highly predictive of cognitive
change46,49. Given that individualized approaches to risk assessment
are predicated on assessing the conjunction of risks, considering
genetic risk together with an individualized marker of relative brain
ageing may improve identification of individuals at higher AD risk in
healthy adult lifespan data.

Here, we aimed to the test the hypothesis that brain change tra-
jectories in healthy adults correlate with AD-related genetic variation
and memory decline across adult life. We hypothesized that neuro-
degeneration in ageing and AD is linked on a continuum, and that
individuals changingmore than their agewould predict in AD-sensitive
features across adult life would have quantitatively higher genetic AD
risk.We further hypothesized that individuals with both higher genetic
risk and faster atrophy for their age would exhibit more memory
decline detectable across adulthood. Using brain trajectories in a
healthy adult lifespan samplewith frequent longitudinal follow-up (2-7
timepoints, 1430 scans from 420 individuals aged 30–89 years), and
genome-wide significant single nucleotide polymorphisms (SNPs)
from four ADGWAS,we (1) show that PRS-AD associateswith change in
several earlyBraakStage regions inhealthy adults.Next,weempirically
identify brain features with faster atrophy in AD using machine learn-
ing (ML) on the individual-specific slopes in longitudinal AD-control
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
scans = 4410, N = 978, 2–9 timepoints). Modelling multivariate change
in these in our adult lifespan sample, we (2) show that PRS-AD is
associated with change in many AD-sensitive brain features in healthy
adults. In an independent sample with notably less follow-up (2-3
timepoints), we corroborate some of the observed PRS-AD associa-
tions with brain change in healthy adults. Last, we (3) show that high
PRS-AD individuals who are also high on a multivariate brain change
marker show greater drop-off in memory over adult life, compared to
high PRS-AD individuals with less brain change. Thus, the conjunction
of a multivariate brain change marker and known genetic risk identi-
fied a subset of comparatively high-risk individuals showing more
memory decline over healthy adult life (30–89 years).

Results
Univariate associations between PRS-AD and brain change
To estimate brain change relative to a person’s age in adult lifespan
data, we used all longitudinal scans fitting age-range and inclusion
criteria (≥30 years of age;Methods). This allowed us to obtain the best-
fitting age trajectory models from which we could subsequently esti-
mate how much an individual’s change trajectory deviated from the
population-average (i.e., from the level of change predicted given age).
Change was estimated via the individual-specific random slopes in a
Generalized Additive Mixed Model (GAMM) of age (sex, scanner, and
intracranial volume [ICV] corrected; Methods). We first explored
change in initial hippocampal ROI’s – Braak Stage II50. Fig. 1a–c shows
the longitudinal lifespan trajectory, and individual-specific degree of
absolute and age-relative change for the left hippocampus (see Sup-
plementary Fig. 1 for right). As expected2, almost all individuals
aged ≥ 30 years were estimated to exhibit hippocampal loss, but to
differing degrees, and very few individual-specific slopes were esti-
mated to show growth over time (Fig. 1a–c). As also expected, the
degree of absolute hippocampal change accelerated on average
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between the ages of 50 and 60 years. Note that negative absolute
change values reflect hippocampal loss, whereas positive would indi-
cate an estimated growth. Positive values on age-relative change then
correspond to less hippocampal loss thanexpected given age,whereas
negative values reflect more hippocampal loss than expected given
age. Fig. 1b, c thus provides the context that higher hippocampal
change values correspond to less decline, not growth. The degree of
age-relative change was significantly associated with PRS-AD in the
hypothesized negative direction: on average across the adult lifespan
(30–89 years), individuals losing more hippocampus than expected
for their age had significantly higher PRS-AD. This genetic association
was probed separately for the bilateral hippocampi (left: β = −0.22,
t(212) = −3.3, p =0.001; right: β = −0.16, t = 2.4, p =0.015; [PRS-AD Jan-
sen]) and was significant using all four GWAS-derived scores (covari-
ates: mean age, sex, N timepoints, interval between first and last
timepoint, and 10 genetic ancestry factors [GAFs]). To ensure we were
capturing ageing-specific effects at some point (see Supplementary
Fig. 1), we tested the association using change rates extracted from

progressively older age-ranges (i.e., progressively discardingdata from
comparatively younger individuals; Methods). This also ensured the
analysis outcome was not based on a single arbitrary decision such as
the age range to test the association across51,52. FDR-correction was
applied across all 576 PRS-AD tests in this analysis. We then tested
whether surviving associations remained statistically significant at
p <0.05 using polygenic scores computed without APOE (PRS-
ADnoAPOE), assuming a 5% chance false positive rate per structure.
Despite the progressively smaller sample size, all tested PRS-AD asso-
ciations with age-relative hippocampal change (left and right) were
significant at p < 0.05 [uncorrected] using all four scores (coloured
points in Fig. 1e, f depict associations at p <0.05 [uncorrected]). 31 of
the 36 tests (86%)with age-relative left hippocampal change, and 25/36
(69%) with age-relative right hippocampal change, survived FDR-
correction (see lower panels in Fig. 1e, f; partial r2 effect size is shown
for associations surviving correction). Using PRS-AD to predict abso-
lute hippocampal change instead in comparable statisticalmodels (i.e.,
also correcting for mean age), PRS-AD associations were also mostly

Fig. 1 | Hippocampal change in healthy adults associates with genetic AD risk.
Longitudinal data was used to estimate individual-specific age-relative and abso-
lute change in hippocampus (Braak Stage II), modelling the adult lifespan trajec-
tories using GAMMs with random slopes. a Adult lifespan trajectory for left
hippocampus from 30–89years (data corrected for sex and scanner). b Estimated
absolute change per individual (datapoints) in left hippocampus as a function of
their mean age (across timepoints). This contextualizes change values in terms of
an estimated loss. c Estimated age-relative change per individual in left hippo-
campus (individual-specific slopes) as a function of their mean age. Units are
interpretable in terms of additional hippocampal volume loss per individual, above
or below the mean level of loss expected for their age. Black stroke indicates
whether or not genetic data was available per participant, and thus whether the
datapoint was included in the PRS-AD association tests. d Linear models found
more hippocampal loss than expected given age was associated with higher PRS-
AD, on average across the full adult lifespan samplewith genetic data (30–89years;
N = 229; association visualized for one score [Jansen]; colour and size depictsmean
age). The association is shown for both the left and right hippocampus; however,
note that across the full age-range only the left hippocampus survived FDR-

correction, as depicted in panels (e, f). Models and datapoints are corrected for
mean age and other covariates (Methods). e-f Linear PRS-AD associations with age-
relative (left facet) and absolute change (right facet) in left (E) and right (F) hip-
pocampus, using four GWAS-derived scores, tested for progressively older age-
ranges to ensure capture of ageing-specific effects (i.e., moving from left to right
on the X-axis, the leftmost age-range represents tests across the full adult lifespan
[30–89 years; N = 229], whereas the rightmost age-range depicts associations tes-
ted in only the oldest adults [70–89 years]; standardized β). Significant associa-
tions at p <0.05 (uncorrected) are depicted in colour (upper panels), with colours
corresponding to the GWAS used to derive the four scores (Jansen, Kunkle, Lam-
bert, Wightman). For associations surviving FDR-correction (p[FDR] < 0.05 applied
across 576 two-sided tests), partial r2 of PRS-AD is shown (lower panels).Where the
association survived correction, we retested it after removing APOE (PRS-ADnoAPOE).
Partial r2 of PRS-ADnoAPOE is depicted by a black cross if the FDR-corrected asso-
ciation remained significant at p <0.05. Trajectories depict mean measures. Error
bands and error bars depict 95% CI. Summary-level source data are provided as a
Source Data file.
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significant (47/72 [65%] survived correction). Probing whether these
surviving associations remained after discounting the effect of APOE
per structure, 19/58 (33%) PRS-ADnoAPOE associations with left hippo-
campal change (age-relative or absolute) remained significant at
p <0.05, surpassing the 5% false positive rate expected by chance
(black crosses in Fig. 1e, f depict partial r2 of PRS-ADnoAPOE where sig-
nificant [p <0.05]). For right hippocampus, 6/45 (13%) associations
remained significant at p <0.05 with PRS-ADnoAPOE, also surpassing the
chance false positive rate (Fig. 1f). Post-hoc tests confirmed the
impression that the estimated regression coefficients became more
negative as the age subset steadily comprised only older individuals
(Fig. 1e, f); on average across change metrics, each increasing age
subset was associated with a reduction in the negative beta coefficient
of −.026 for left hippocampus (t = −14.1; pperm = 9.9e−4), and −.023 for
right hippocampus (t = −15.4; pperm = 9.9e−4). Alternative post-hoc
analyses dependent on power across the full age-range (30–89 years)
found significant PRS-AD× age (mean) interactions upon age-relative
change in left and right hippocampi for all four scoresbut thesedidnot
survive multiple comparison correction (Supplementary Table 6;
Supplementary Fig. 5).

We then repeated theprocedure for BraakStage I (entorhinal) and
III regions (subcortical and cortical ROIs; Methods). For Stage I, we
observed no significant PRS-AD associations with change (age-relative
or absolute) in left entorhinal cortex, but observed several significant
associations with each in right entorhinal cortex, 5 of which survived
correction (Fig. 2a). 3 of these surviving associations remained sig-
nificant at p < 0.05 with PRS-ADnoAPOE (lower panels in Fig. 2a), sur-
passing the false positive rate. Post-hoc tests confirmed that the
estimated regression coefficients became more negative as the age
subset comprised only older individuals for right (beta reduction =
−0.013, t = −7.8, pperm =0.018) but not for left entorhinal cortex (beta
reduction = −0.008, t = −5.0, pperm =0.10). However, alternative post-
hoc analyses across the full age-range (30–89 years) found no PRS-
AD× age (mean) interactions upon age-relative entorhinal change,
suggesting our datamay have been underpowered to detect a two-way
continuous interaction using change estimates (Supplementary Fig. 5;
Supplementary Table 6).

For the subcortical Stage III region (amygdala), we similarly
observed negative associations between age-relative change in left and
right amygdala and PRS-AD (Fig. 2b), 21 of which were significant after
FDR-correction, and using absolute change yielded similar results (15
surviving associations). 4/11 (36%) PRS-ADnoAPOE associations remained
significant at p <0.05 for left amygdala (surpassing the false positive
rate), whereas no associations with right amygdala change remained
after excluding APOE. The estimated regression coefficients became
stronger as the age subset comprised only older individuals (beta
reduction left amygdala = −0.018, t = −7.6, pperm = 0.002; right amyg-
dala = −0.019, t = 10.0 pperm =0.004), though alternative analyses
dependent onpower across the full age-range foundnopost-corrected
significant PRS-AD× age (mean) interactions upon age-relative change
in amygdala (Supplementary Fig. 5; Supplementary Table 6). For the
cortical Stage III region, none of the tested PRS-AD associations with
change in left or right cortex survived correction (Fig. 2c), the
regression coefficients became stronger as the age subset comprised
only older individuals in each (beta reduction left cortex = −0.011,
t = −6.2, pperm = 0.013; right cortex = −0.013, t = −6.3; pperm = 0.004),
and we found no significant PRS-AD× age (mean) interactions in
alternative analyses across the full age-range (Supplementary Fig. 5;
Supplementary Table 6).

Across the 576 PRS-AD tests, conditioning brain change estimates
on age conferred a 91% average strengthening in the observed PRS-AD
regression coefficients, compared to using absolute change estimates
and correcting for mean age (t = −26.9, p = 2.0e−80; Figs. 1, 2). This was
also evident in the subset of results where both change estimates were
FDR-corrected significant (54%, t = −20.6, p = 1.1e−28).

Sensitivity analysis
The PRS-AD results were not driven by outlying observations (see
Supplementary Fig. 3). Furthermore, post-hoc analysis supported our
choice of a genome-wide significant threshold for constructing PRS-AD
scores (see Discussion); at more liberal SNP inclusion thresholds, the
four scores became less comparable, dropping from a median corre-
lation between scores of R = 0.73 at our chosen threshold, to R = 0.29
at the most liberal threshold. Moreover, the data suggested including
more SNP’s was not beneficial, but may be detrimental to finding PRS-
AD effects on brain change in healthy adults, at least in hippocampus
(Supplementary Fig. 4).

Identifying features with faster atrophy in AD
Given the univariate results, we expected thatmultivariatemeasures of
change would be better suited to detect PRS-AD associations with
brain change in healthy adults. Thus, we sought to empirically obtain a
list of brain features with faster atrophy in AD, then test whether
multivariate change across these features relates to PRS-AD in the
LCBChealthy adult lifespan sample (Methods). First, in longitudinalAD
patient-control data from ADNI (Supplementary Table 3), we defined
two longitudinal groups we could bemaximally confident consisted of
healthy individuals and those succumbing to AD based on diagnosis:
NC-long consisted of normal controls consistently classed as healthy
over time, whereas AD-long comprised all individuals with an AD
diagnosis by their final timepoint (Fig. 3a; Methods). Then, in 364
features we modelled a GAMM of age (irrespective of group), and
entered the individual-specific slopes into ML binary classification
(Fig. 3b; sex, scanner field strength, and ICV corrected; note that the
ADNI sample did not change field strength over time;Methods). Group
differences in slopes (age-relative change) were in the expected
direction (Fig. 3c). The top features deemed most important for
separating AD-long from NC-long individuals based on age-relative
change in ADNI included many well-known AD brain vulnerabilities
(e.g., ventricles, medial temporal and temporo-parietal regions; see
Fig. 4a). Though our intentionwas not to refine prediction of AD cases,
we note the model achieved an area under the curve (AUC) of 0.952 in
independent data from the Australian Imaging Biomarker & Lifestyle
Flagship Study of Ageing (AIBL; Fig. 3d–f; Supplementary Fig. 8;
precision-recall AUC [AUC-PR] = 0.883).

Multivariate associations between PRS-AD and brain change
In the LCBC healthy adult lifespan sample, we then modelled adult
lifespan change in all 364 features used to train the AD-control model,
and estimated the individual-specific slopes as before. Then, we cal-
culated a multivariate marker of change based on the list of features
the model found most important for classifying AD patients from
controls, and related this to PRS-AD. Specifically, we calculated the
principal component (PC1) of age-relative change across the first 50
features with model-implied importance (PC1relChange). Note that hip-
pocampal and amygdala volumes were not included in PC1relChange to
ensure these did not drive the multivariate effect (see the maroon bar
in Fig. 4a; explaining 13%variance).As hypothesized, 14 of the 36 tested
associations relating PC1relChange to PRS-AD were FDR-corrected sig-
nificant (Fig. 4b; correction applied across all 144 PRS-AD tests in this
analysis). Again, post-hoc tests confirmed the estimated regression
coefficients became stronger as the age subset comprised only older
individuals (beta reduction = −0.023, t = −9.9, pperm =0.002) and
alternative analyses across the full age-range found post-corrected
significant PRS-AD× age (mean) interactions upon PC1relChange using all
four scores (Supplementary Table 7). Next, to determine the age at
whichbrain change inAD-sensitive features starts increasing in healthy
adults, we calculated the principal component of absolute change
across the sameset of 50 features (PC1absChange; explaining45%variance)
plotted as a function of mean age (Fig. 4c). The results suggested that
all healthy individuals were on a trajectory of change in AD features
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that showed onset of accelerated change around age ~50 (Fig. 4c; see
Supplementary Fig. 14 for derivative plots). Further, change trajec-
tories were steepest in features that were most important for separ-
ating AD-patients from controls (Supplementary Fig. 10). To ensure
that themultivariate associationswere not driven by one or a fewbrain

features, we ran a sliding windowPCAwithin the 50–89 year age-range
(Methods). PRS-AD associations with age-relative change were evident
when calculating PC1 across many combinations of features (coloured
bars in Fig. 4a depict feature windows for the PCA and link with the
coloured points denoting p-values for the PRS-AD associations in

Fig. 2 | Change in early Braak stage regions in healthy adults associates with
genetic AD risk. Linear PRS-AD associations with age-relative and absolute change
in brain regions encompassed within (a) Braak Stage I (entorhinal) and (b-c) Braak
Stage III regions (amygdala and inferior temporal cortical ROI), using the four
GWAS-derived scores, tested for progressively older age-ranges to ensure capture
of ageing-specific effects (i.e., moving from left to right on the X-axis, the leftmost
age-range represents tests across the full adult lifespan [30–89years; N = 229],
whereas the rightmost age-range shows the associations tested in only the oldest
adults [70–89years]; standardized β). Significant associations at p <0.05

[uncorrected] aredepicted incolour (upperpanels),with colours corresponding to
the GWAS used to derive the four scores (Jansen, Kunkle, Lambert, Wightman). For
associations surviving FDR-correction (p[FDR] < 0.05 applied across 576 two-sided
tests), partial r2 of PRS-AD is shown (lower panels; lowerpanels in A [left] andC [left
and right] are correctly empty because no association survived correction).Where
the association survived correction, we retested it after removing APOE (PRS-
ADnoAPOE). Partial r2 of PRS-ADnoAPOE is depicted by a black cross if the FDR-corrected
association remained significant at p <0.05. Error bars depict 95% CI. Summary-
level source data are provided as a Source Data file.
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Fig. 4d; see Supplementary Fig. 11 for correlations between features).
13 of the tested associations were significant after FDR-correction,
illustrating that change across many AD-sensitive features relates to
PRS-AD in healthy adults (Fig. 4d). The data suggested that PRS-AD
associations derived via this method were largely though not entirely
driven by APOE (3 of the 27 [11%] FDR-corrected tests remained sig-
nificant at p <0.05 using PRS-ADnoAPOE, surpassing the 5% false positive
rate; lower panels in Fig. 4).

As proof-of-principle, we directly applied the AD-control model
weights to the LCBC healthy adult lifespan change estimates. This
prediction incorporates information from the weights of all 364 fea-
tures. The dependent variable was the model-implied log odds of
having AD (probADrelChange; Methods). Importantly, because the model
was trained on an index of relative brain change conditioned on age,
the logistic prediction applied to the healthy adult lifespandata cannot
be interpreted in terms of its implied binary outcome (i.e., AD/no-AD).
This is because the model could assign the same probability of having
AD to a hypothetical 30 year-old with an estimated additional brain
loss of 10mm3/year as to a 60 year-old with the same additional brain
loss, despite the change being higher in the 60 year-old, because it
exceeds the mean brain loss anticipated at age 60 (see Fig. 1c). Note
that this clarifies why the model had high sensitivity but lower speci-
ficity in separating AD from controls in AIBL; it is a characteristic of the
measures we used for model training more than the model itself. Still,
we hypothesized the learned model weights would be useful, and
would relate to PRS-AD similar to the relative change values in specific
features. As expected, almost all of the tested PRS-AD associationswith
probADrelChange were significant at p <0.05, 14 of which survived cor-
rection; (see Supplementary Fig. 9B). Repeating all steps of the model
estimation procedure using absolute change instead (from hyper-
parameter estimation to prediction; AUC=0.933 in unseen data from
AIBL; AUC-PR =0.864; Supplementary Fig. 8), we found fewer sig-
nificant PRS-AD associations with probADabsChange (7 survived correc-
tion; Supplementary Fig. 9C, D). This suggests age-relative changemay
be a superior marker for capturing differences in brain ageing. Again,
the data indicated PRS-AD associations derived by this method were

largely though not entirely driven by APOE (8/21 [38%] of the FDR-
corrected tests with change remained significant using PRS-ADnoAPOE;
Supplementary Fig. 9; FDR-correction applied across all 72 PRS-AD
tests in this analysis).

Replication analysis
To reduce the number of tests, in an independent adult lifespan
replication sample with fewer follow-up observations (2-3 timepoints;
Lifebrain sample), we tested PRS-AD associations with hippocampal
and amygdala change, and PC1 of age-relative change across the first
50 AD-sensitive features, not including hippocampal or amygdala
volumes (i.e., PC1relChange; Fig. 4a). For hippocampus (Supplementary
Fig. 12), we observed similarly negative effects, 22 of which were sig-
nificant for age-relative change (p <0.05 [uncorrected]; 31 for absolute
change; Fig. 5a). Similar to the discovery sample, PRS-AD effects on
age-relative hippocampal change were larger than absolute change,
and often remained significant after discounting APOE (black crosses
in Fig. 5a depict partial r2 for PRS-ADnoAPOE where this remained sig-
nificant at p < 0.05). For amygdala, we observed no significant PRS-AD
associations within any age-range, and we also observed no significant
associations with PC1relChange (Fig. 5b, c). However, like the discovery
sample, the principal component of absolute change across the same
set of 50 features (PC1absChange; explaining 54%) revealed that all healthy
individuals lay on a trajectory of accelerated change in AD features,
with a similar onset of acceleration around the age of 50 years (Fig. 5d;
Supplementary Fig. 14).

Memory change analysis
Finally, in the LCBC adult lifespan discovery sample, we separated
individuals into discrete groups based on the conjunction of brain and
genetic risk factors. We hypothesized that high PRS-AD individuals
who are also high on a multivariate marker of relative change in AD-
sensitive features would showmore pronounced longitudinalmemory
decline across adult life (pink quadrant 4 in Fig. 6d;Methods). For this,
we used the partial association between PC1 of age-relative change
calculated across the first 50 AD-sensitive features—here including

Fig. 3 | Visualization of longitudinal AD analysis pipeline. a Longitudinal
grouping in ADNI data. X-axis shows the scan observations across timepoints in the
sample. Each line represents a participant. Single-timepoint ADNI diagnoses (Y-axis;
NC normal controls, MCI mild cognitive impairment, AD Alzheimer’s disease) were
used to define two longitudinal groups of AD and NC individuals (AD-long;N = 606,
obs = 2730; NC-long, N = 372; obs = 1680). NC-long individuals were classified as
healthy at every timepoint whereas AD-long individuals were diagnosed with AD by
their final timepoint (Methods). Single-timepoint MCI diagnoses were considered
only for the purpose of defining the longitudinal AD group. Because the grouping
used all diagnosis observations (i.e., not only scan observations), trajectories of AD-
long individuals that appear to end with a NC or MCI diagnosis also correspond to
individuals with an AD diagnosis by their final timepoint, as do those seemingly
reverting. b GAMMs of Age (across groups; upper plot) were used to model age-

relative change (individual-specific slopes) in 364 brain features, shown for one
example feature (lower plot). The ADNI-derived slopes were then used as input to
machine learning binary classification using XGBoost115. c Most features exhibited
significant group-differences in age-relative change as expected (datapoints depict
t-statistics for t-tests); black stroke indicates significant differences after FDR-
correction (p[FDR] <0.05 applied across 364 two-sided tests). d–f Out-of-sample
prediction for the binary classifier (AIBL data; Supplementary Fig. 8) including
receiver operator curve (d), confusion matrix and performance metrics (e). The
purpose of the classification procedurewas to empirically derive brain features with
accelerated change in AD, to use these in healthy adult lifespan data. Subcort sub-
cortical, vol volume, int intensity, gm/wm grey/white matter contrast. Error bands
depict 95% confidence intervals, while the boxplot displays the median as the
measure of centre with the box spanning from the 25th to the 75th percentiles.
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hippocampal and amygdala volumes (PC1relChange1-50)—and PC1 calcu-
lated across the four PRS-AD scores (PC1PRS-AD; explaining 87%; Meth-
ods). Akin to the brain analysis, memory-change estimates were
derived via the individual-specific random slopes in a GAMM of age,
and we used longitudinal memory observations from the full adult
lifespan sample to optimizememory-change estimates in the subset of
participants that also had genetic data (Methods). Fig. 6a–c shows the
longitudinal lifespan trajectory, and estimated individual-specific
degree of absolute and age-relative change in memory performance
on the California Verbal Learning Test (CVLT; PC1 across subtests;
Methods). Absolute memory change was estimated to be pre-
dominantly negative, with memory decline occurring gradually across
the adult lifespan and accelerating around the mid ~60 s (Fig. 6b;
though we also observed a trend towards steeper slopes in mid-life
prior to this; see Supplementary Fig. 15 and Discussion). High PRS-AD
individuals who were also high on a multivariate marker of relative
brain change showed significantly more age-relative (p =0.01) and
absolute memory decline (p =0.003) on average across the adult
lifespan, compared to high PRS-AD individuals with less brain change.
These group differences in memory change were not driven by dif-
ferences in APOE-ε4 carriership (Fig. 6e; main models corrected for
carriership,mean age, sex, N timepoints, interval between first and last
timepoint), and persisted in alternative models controlling for the
number ofAPOE-ε4 alleles (p =0.009; p =0.003) and baselinememory

performance (p =0.008; p =0.002). In the main model, we also
observed a significant difference in absolute memory change between
the high PRS-AD-high brain change group and the low PRS-AD-low
brain change group (p =0.026; Fig. 6e). These group differences sur-
vived multiple comparison correction (FDR-correction applied across
six one-sided group tests; Methods). Importantly, the reported group
differences in memory-change persisted when correcting for differ-
ences in genetic risk (PC1PRS-AD) but not for differences in multivariate
brain change (Supplementary Fig. 16). Finally, the main group differ-
ence in memory decline was not driven by the oldest adults or by
residual group-differences in age, but persisted using change esti-
mates from alternative age subsets (see Supplementary Fig. 17). These
data suggest the conjunction of riskmarkers – amultivariatemarker of
change in AD-sensitive features and known PRS-AD – helped identify a
subset of comparatively higher-risk individuals showing more long-
itudinal memory decline through heathy adult life.

Discussion
Variation in brain ageing trajectories in healthy adults links with AD-
related genetic variation and memory decline outcomes through
adulthood. Specifically, we found that healthy individuals who are
losing more brain than expected for their age in early Braak regions—
bilateral hippocampus, amygdala, and right entorhinal cortex – are at
significantly higher genetic AD risk. Some of these polygenic

Fig. 4 | ADNI-derived features applied to the healthy adult lifespan. a Top brain
features for classifying AD-long from NC-long individuals in ADNI data based on
age-relative change. Coloured bars indicate feature selections across which we
calculated PC1, and link with the subsequent plotted data in (b–e).b Linear PRS-AD
associations in the LCBC healthy adult lifespan sample using PC1 of age-relative
change across the top 50 features with accelerated change in AD (excluding hip-
pocampal and amygdala volumes); PC1relChange; maroon bar in (a). Datapoints show
-log10 p-values for PRS-AD associations with PC1relChange, tested at progressively
older age-ranges, for all four scores. Dashed line indicates p =0.05, and black
stroke depicts significant PRS-AD associations at p <0.05 (uncorrected). Data-
points above the dotted line are significant at p(FDR) < 0.05. Datapoint symbol
corresponds to the GWAS used to derive the four scores (Jansen, Kunkle, Lambert,
Wightman). For associations surviving FDR-correction (across 144 two-sided tests),
partial r2 of PRS-AD is shown (lower panel). Where the association survived cor-
rection, we retested it after removingAPOE (PRS-ADnoAPOE). Partial r2 of PRS-ADnoAPOE

is depictedby ablack cross if the FDR-corrected association remained significant at
p <0.05. c Standardized PRS-AD betas in b as a function of age-range (inversed to

be negative due to the non-directional nature of PCA). d PC1 of absolute change
across the top 50 brain features with accelerated change in AD (excluding hippo-
campal and amygdala volumes); maroon bar in (a) as a function of mean age
(across timepoints). Accelerated brain change in AD-accelerated features was
evident between ages 50–60. Note that since the y-axis represents change, the
slope of the curve represents acceleration (see also Supplementary Fig. 14). e Lin-
ear PRS-AD-change associations using a PCA-based sliding window analysis within
the age-range 50–89 years. Colours and order correspond to the coloured bars in
(a). Dashed line indicates p =0.05, and datapoints with black stroke depict sig-
nificant PRS-AD associations at p <0.05 (uncorrected). Datapoints above the dot-
ted line are significant at p(FDR) < 0.05. For associations surviving FDR-correction,
partial r2 of PRS-AD is shown (lower panel). Error bands and error bars depict 95%
CI. lh left hemisphere, rh right hemisphere, vol volume (subcortical), int intensity
(subcortical), w–g grey/white matter contrast, cc corpus callosum, DC dience-
phalon, csf cerebrospinalfluid. Subcortical features (aseg atlas) are delineatedwith
“.”, whereas cortical features (aparc atlas) are delineated with “_”. Summary-level
source data are provided as a Source Data file.
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Fig. 5 | Replication. a-b Linear PRS-AD associations with age-relative and absolute
brain change in an independent adult lifespan sample (Lifebrain replication sam-
ple), using the fourGWAS-derived scores, tested forprogressivelyolder age-ranges
to ensure capture of ageing-specific effects (i.e., moving from left to right on the X-
axis, the leftmost age-range represents the association across the full adult lifespan
on average [30–88 years; N = 293], whereas the rightmost age-range shows the
associations tested in only the oldest adults [60–88 years]). Univariate linear
associations were tested for (a) left and right hippocampus, and (b) left and right
amygdala. Significant associations at p <0.05 (uncorrected) are depicted in colour
(upper panels), with colours corresponding to the GWAS used to derive the four
scores (Jansen, Kunkle, Lambert, Wightman). For associations that were significant
atp <0.05 (uncorrected), partial r2 of PRS-AD is shown (lowerpanels). For these,we
retested the association after removing APOE (PRS-ADnoAPOE). Partial r2 of PRS-
ADnoAPOE is depicted by a black cross if the association remained significant at
p <0.05 (uncorrected). cMultivariate linear PRS-AD association tests using PC1 of

age-relative change across the top 50 brain features with accelerated change in AD
(excluding hippocampal and amygdala volumes; PC1relChange; as in Fig. 4a, b).
Datapoints show −log10 p-values for the association with PC1relChange, tested at
progressively older age-ranges, for all four scores. Datapoint symbol corresponds
to the GWAS used to derive the four scores (Jansen, Kunkle, Lambert, Wightman).
d StandardizedBetas in c as a function of age-range (inversed to be negative due to
the non-directional natureof PCA). Dashed line indicatesp =0.05. ePC1of absolute
change across the top 50 brain features with accelerated change in AD (excluding
hippocampal and amygdala volumes; maroon bar in Fig. 4a), plotted as a function
of mean age across timepoints. Accelerated brain change in AD-accelerated fea-
tures was evident around age 50–60. Note that since the y-axis represents change,
the slope of the curve represents acceleration (see also Supplementary Fig. 14).
Error bands and error bars depict 95% CI. Summary-level source data are provided
as a Source Data file.
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associations extend beyond the risk conferred by APOE alone, most
notably in hippocampus. In multivariate analyses, we then show that
faster-than-expected brain ageing across many AD-sensitive features
associates with PRS-AD in healthy adults, and that accelerated atrophy
in AD features is evident in most healthy individuals over age ~50. This
latter finding suggests that neurodegeneration in ageing and AD
occurs on a continuum. Accordingly, we find that ML models trained
on longitudinal AD-control data can be applied to brain change esti-
mates in healthy adults and the prediction relates to PRS-AD. Finally,
genetically high-risk individuals showing faster-than-expected brain
change exhibited more longitudinal memory decline compared to
genetically high-risk individuals with less brain change, across the
adult lifespan, and independent of APOE-ε4. Thus, the conjunction of a
multivariate brain change marker and known genetic risk found a
subset of comparatively high-risk individuals exhibitingmorememory
decline through adulthood.

Univariate analyses using change in early Braak regions found
many PRS-AD associations in healthy adults, illustrating accelerated
brain ageing in genetically at-risk individuals. The clearest genetic
effects upon faster atrophy were in hippocampus; healthy adults at
higher genetic AD risk lose hippocampal volume faster than their age
would predict – observed consistently using all four scores. Particu-
larly for left hippocampus, the association was evident after dis-
counting APOE, suggesting differences in left hippocampal loss also
arise from genetic factors beyond APOE. However, we also observed
PRS-ADnoAPOE associations with right hippocampal change, and con-
firmed these in independent data. Shrinkage of the hippocampus—a
critical structure underpinning episodic memory and spatial naviga-
tion operations—is a well-known AD risk marker in patients9,32,53, with
atrophy rates predicting clinical conversion54. However, most studies
in healthy adults have not linked genetic AD risk to hippocampal
change2,20–26,39,55, including in large adult lifespan samples24,25 and our

Fig. 6 | Longitudinalmemory change analyses. Exclusively longitudinal data was
used to estimate individual-specific age-relative and absolute change in CVLT task
performance (PC1 across subtests), modelling the adult lifespan trajectories using
GAMMswith random individual-specific slopes. a Adult lifespan trajectory analysis
for CVLT memory performance from 30–89years. Lines connect longitudinal
observations. b Estimated absolute memory change per individual (datapoints) in
CVLT task performanceplottedas a functionof theirmeanage (across timepoints).
c Estimated age-relative change per individual in CVLT task performance (indivi-
dual-specific slopes) as a function of mean age. For each participant with memory
change data, black stroke indicates whether or not genetic data was available.
d The linear association between the principal component across the four PRS-AD
scores and theprincipal componentof age-relative change across thefirst 50ADNI-
derived features (listed in Fig. 4a) was used to define four quadrant groups

representing the conjunction of brain and genetic risk factors. e Memory change
for individuals with both memory change and genetic data within the quadrant
groups (colours in d-e depict groups). Linear models found that individuals with
higher PRS-AD who also exhibited more age-relative brain change in AD-sensitive
features (in pink) showed significantly more age-relative (left plot) and absolute
(right plot) change in memory across the healthy adult lifespan, relative to high
PRS-AD individuals estimated to show less relative brain change. These significant
group differences survived FDR-correction for multiple comparisons (applied
across six one-sided tests; Methods; two-sided p-values shown). The distributions
are visualized for these two groups; datapoints corrected for covariates including
mean age and APOE-ε4 carriership [Methods] (see also Supplementary Fig. 17).
Error bands depict 95% CI. Summary-level source data are provided as a Source
Data file.
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previous report2. And since AD risk variants may influence hippo-
campal differences early in life2,29,30, cross-sectional findings in older
adults27,28,56 cannot attribute genetic effects to accelerated brain
ageing57. By isolating genetic effects on change, our study confirms
quantitative genetic AD risk influences variation in hippocampal
change rates in healthy adults.

This aligns with a study by Harrison et al.36 finding a longitudinal
relationship between hippocampal change and PRS-AD in older adults.
However, that study recruited participants with memory complaints
and a family AD history via memory clinics. In contrast, our sample
comprised healthy adults in longitudinal studies which are known to
be biased towards retaining high performers58,59, as seems evident in
the cognitive scores of the older adults here (see Supplementary
Table 2; Supplementary Fig. 18). It also agrees with a study finding
more hippocampal atrophy in healthy older APOE-ε4 carriers38. Yet, we
also found AD risk SNP’s beyond APOE predict hippocampal ageing
trajectories in healthy adults, which to our knowledge has not been
shown. Previously, we did not find evidence PRS-AD or APOE-ε4 alters
the slope of hippocampal ageing, but found an offset effect suggesting
the difference between high- and low-risk groups in hippocampal
volumewas as large at age ~25 as at age ~802. However, that study used
a PRS-AD incorporating many more SNP’s (p <0.0560), and did find
some, albeit inconsistent, evidence for a slope effect using the same
SNP-inclusion threshold ashere. Taking an individual-centric approach
to estimate change, we found genome-wide significant SNPs could
explain up to ~13% variance in hippocampal change rates (effect sizes
after discountingAPOEwere ~5%; Fig. 1e, f). This longitudinalmarker of
relative brain ageing consistently excelled, exhibiting stronger rela-
tionships to PRS-AD than absolute change that were detectable over
wider age-spans. This suggests that conditioning change estimates on
age may help uncover signal in comparatively younger adults. Still,
while the data suggest PRS-AD associationswerenotdriven byonly the
oldest adults, comparatively older adults likely contributed more to
the differences in brain change signal (Supplementary Fig. 7). This fits
with the tendency we observed towards stronger genetic effects upon
slopes in older adults, consistent with theories suggesting genetic
effects become amplified in older age when neural resources are
depleted61.

PRS-AD also linked with faster atrophy in right entorhinal cortex
and bilateral amygdala. This also aligns with Harrison et al.36, where
entorhinal change linked with PRS-AD in older adults in memory clin-
ics. It may also fit with a study finding right entorhinal cortex shows
among the largest differences in APOE-ε4 carriers28. However, we also
found evidence SNPs beyond APOE predict entorhinal change. Simi-
larly, faster amygdala loss was related to PRS-AD in healthy adults, and
there was some evidence to suggest SNP’s beyond APOE predict
amygdala trajectories, at least in left amygdala. PRS-AD associations in
right amygdala were seemingly driven by APOE. These data contradict
a recent GWAS, which found the effect of APOE upon amygdala and
hippocampal change in ageing disappeared after accounting for
disease39. In contrast, we found faster amygdala atrophy in healthy
adults with higher PRS-AD.However, while amygdala effects were clear
in the discovery sample—one of the most densely sampled MRI data-
sets for lifespan follow-up—thesedid not replicate in a samplewith less
follow-up, hence this awaits replication. Nevertheless, in healthy age-
ing and AD, medial temporal lobe structures show early vulnerability
to structural loss5, highest expression of topAD risk genes62–64, and our
study provides evidence PRS-AD influences faster atrophy in some of
these structures in healthy adults. Speculatively, faster atrophy may
co-occur with faster tau accumulation, consistent with higher tau in
risk-allele carriers64,65. Critical questions remain concerning which
mechanisms drive the shared vulnerability of these structures to life-
span influences and AD, and why AD risk variants speed up their age-
related neurodegeneration. One candidate shared characteristic may
be a high degree of plasticity66–68.

Yet many other brain features exhibit faster atrophy in AD.
Through data-driven analyses to delineate these, we found faster
change acrossmany AD-sensitive features relates to PRS-AD in healthy
adults. These associations with multivariate change measures were
largely though not entirely driven by APOE (Fig. 4; Supplementary
Fig. 9). We also found replicable evidence that almost all individuals
above age ~50 are on an accelerated trajectory of neurodegenerative
ageing in brain features showing faster atrophy in AD (see also Sup-
plementary Fig. 10). This agrees with work documenting overlapping
atrophy patterns in ageing and AD4,5,14. These individualized estimates
suggest that neurodegeneration occurs along a continuum from nor-
mal ageing to AD. Further, since it is unlikely most healthy adults here
would be amyloid positive, this may run counter to the amyloid cas-
cade hypothesis, which posits plaque build-up as an initial triggering
event for neurodegeneration69–71. However, amyloidmay be associated
with differences in its degree. Our approach to link neurodegenerative
changes in AD to ageing likely benefitted from multivariate analyses
using change in healthy adults. We also found that ML models trained
on AD-control data can be applied to healthy adults and the prediction
relates to PRS-AD. This seemed to work best when the model was
trained on estimates of change conditional on age, possibly because
this places often extreme change values in AD on a scale more com-
parable across ages. Modelling relative change in AD vs. controls may
also enable better identification of features exhibiting a quantitative
difference in change despite the presence of a similar qualitative pat-
tern. That our patient-control groups were based on two extremes
(consistently healthy versus becoming AD) further suggests the dif-
ferencemay lie more in degree than kind, as does the fact that our ML
model still captured 100% of independent AD cases (Fig. 3). Together,
these findings suggest genetic AD risk elicits a widespread impact on
faster brain ageing in healthy adults, and that the border between
neurodegeneration in ageing and AD is unclear.

Of note, while PRS-AD effects were not solely driven by APOE,
APOEnevertheless accounted formuchof thepredictive power of PRS-
AD, as associations often disappeared or were attenuated using PRS-
ADnoAPOE. This fits with studies finding PRS-AD associations with cog-
nitive andmetabolic factors in adults are largely driven by APOE72, and
limited utility of SNP’s beyond APOE to predict AD markers18. Most
associations after excluding APOE were with scores derived from the
genome-wide significant SNP’s/weightings reported by Jansen et al.73,
possibly suggesting these better capture differences in brain ageing
(though PRS-ADnoAPOE effects were also evident using scores from two
other GWAS60,74). We chose a conservative PRS-AD threshold based on
studies indicating this shows highest discrimination of patients75,76,
and an assumption that scores would be less comparable at more
liberal thresholds, due to including different sets of genetic variants
and less consistent effect size estimates (see77 for why simply deferring
to the latest AD GWAS estimates is also not without assumption).
Indeed, we found no evidence that incorporating more SNPs in the
PRS increased sensitivity to detect genetic effects upon brain ageing.
Rather, it may be detrimental to this goal (Supplementary Fig. 4). PRS-
AD scores also correlated more poorly when including more
variants. The implication is that the choice of GWAS and PRSwill affect
the outcome of any PRS-AD study, possibly because different AD
GWAS capture signals that become less comparable across the wider
genome.

Individuals at higher genetic risk who also showed more atrophy
for their age in AD-sensitive features exhibited more memory decline
across adult life, compared to genetically at-risk individuals with less
atrophy. Hence, knowing one’s genetic risk was insufficient, as it was
not necessarily reflected in brain and cognitive outcomes. However,
considered together with a multivariate marker of brain change, we
found a subset of high PRS-AD individualswhosebrain status over time
was reflected in a greater drop-off in memory. Thus, our results speak
to the importance of considering overlapping risk factors rather than
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only each in isolation, as we found substantial variation in risk also
within genetically high-risk individuals—highlighting that genetic AD
risk neither determines nor sufficiently predicts cognitive and brain
outcomes. Rather, group differences in memory decline were more
driven by brain change differences than by genetic differences, as they
persisted when controlling for PRS-AD and APOE-ε4 but not atrophy.
Thus, brain change may be crucial for detecting comparatively at-risk
individuals in adult lifespan data. Further, memory decline differences
were protracted through adulthood, as they were evident in different
age subsets, including comparatively younger adults (e.g., within the
age-range 30–65; Supplementary Fig. 17). This indicates neurodegen-
eration in AD-sensitive regions tracks withmemory decline differences
that are detectable through adulthood. It also emphasizes that mem-
ory decline is a gradual phenomenon that is not confined to old age.
This perspectivemay be obscured in studies that use clinical tests that
do not capture subtle cognitive variations, and estimates of decline
relative to a group rather than one’s earlier capacity. Our findings
extend previous studies finding PRS-AD43,44,46 or APOE-ε445 relates to
memory decline across adult life, and possibly shed light on why such
genetic associations are often weak43–46 or absent49. Whether these
brain trajectory differences are relevant for later AD outcomes will
require follow-up and biomarker assessment, but our results show
these neurodegenerative changes are not benign. They also under-
score the need for follow-up data over extended age-spans for pre-
diction or prevention of AD, and suggest a continuous view on lifespan
brain health may aid understanding of AD78,79. Multivariate atrophy
measures may help assess AD risk and improve selection into clinical
trials. Future research should examine why some high PRS-AD indivi-
duals declinemore in brain andmemorywhere others remain resilient,
as well as combine multivariate change with other biomarkers (e.g.,
tau, amyloid, inflammation) as we move towards a future of indivi-
dualized risk assessment.

Our studyhas several strengths. First, our brain change estimation
circumvents the drawbacks of other approaches attempting to capture
individual differences in brain ageing—such as brain age models80—
which may not necessarily reflect change81. Second, we used all avail-
able longitudinal data to estimate brain andmemory change, each in a
single model. This likely optimized the change estimates for all,
including the relativelymodest subset with genetic data, in part due to
improved age trajectory modelling from which one can estimate the
deviation of an individual’s change trajectory. The mixed-model
change estimation is equivalent to estimating factor scores, and psy-
chometrically superior to more manual calculations of change82,83. It
should also be less influenced by outliers due to the shrinkage effect.
This limits the influence of extreme data points by estimating random
effects from a probability distribution, the parameters of which are
derived from the data. As more longitudinal measures are incorpo-
rated, the distribution becomesmore robust, reducing the influence of
extreme slopes and pulling them closer to the mean82,83. This is
exemplified in Supplementary Fig. 13, where we show that PRS-AD-
change associations in the same individuals in the BETULA study
improvedwhen their slopeswere estimated togetherwithNESDAdata,
compared to using BETULA data alone. Further, to ensure we were
capturing ageing-specific processes at some point (Supplementary
Fig. 1), we allowed the data to be increasingly comprised of only older
adults and repeatedly tested PRS-AD associations. As inferences based
on significance are affected by arbitrary analysis choices, we took
inspiration from multiverse methods to define a defensible set of
choices to perform analyses across51,52. In our case, the main arbitrary
covariate was the age-range to test the association across. Despite
accounting for age- and time-related covariates, the influence of this
choice on statistical significance is clear in Figs. 2, 4b, and 5. This
clarifies why we used multiple scores; using a single PRS could have
obscured the results, as significance fluctuated across scores, or using
the same score across age-range specifications. Adopting this

approach, we could ensure capture of ageing-specific processes,
document the stability of PRS-AD-change associations in healthy
adults, and ensure the results were independent of a single arbitrary
decision51,52.

There are also limitations. First, characteristics of lifespandatawill
affect the mixed-model change estimation. Our study had more
timepoints in the older age-ranges (Supplementary Fig. 6), likely
resulting in more accurate estimates in older adults. Hence, alongside
mean age, we corrected for timepoints and the interval between first
and last visit to ensure the results were not driven by residual age-
related variation. Similarly, normalizing change estimates by age does
not reduce variability along the age variable. Because more variability
in older age is a known phenomenon84, adjusting for mean age in all
association tests further ensured the results were not driven by higher
dispersion in older adults. Conversely, estimates in younger, less-
sampled age-ranges may be biased by the magnitude of change in
older adults. This may help explain why the memory slopes of also
younger adults were estimated as negative. Further, selection bias and
attrition vary by age-group, which alongside data density differences
may explain why adults in their 60’s were estimated with less negative
memory slopes compared to middle age (Fig. 6b). Caution is thus
advised around overinterpreting change estimates in terms of their
absolute values, hence we refer to “estimated change”. Relatedly,
scanner parameters changed over time for some samples. While we
made efforts to correct for or reduce scanner variation (Methods), this
will influence estimates. Second, our approach disregards hetero-
geneity in ageing or AD-related atrophy, treating all individualswith an
AD diagnosis as one group compared to all normal controls. This was
reasonable for our goal of identifying features with faster average
change in AD, given theremay be a predominant AD atrophy pattern85

that overlaps with the average ageing pattern5,6,42. But since there are
AD subtypes85–87, an important question is whether AD variability tra-
ces to brain change heterogeneity in adults. Third, we relied on
FreeSurfer-derived measures. While these are well-validated and
reliable88–90, somemeasuresmay be less so90. Indeed, that we observed
no PRS-AD associations with left entorhinal change was surprising.
When we quantified the proportion of individuals estimated to show
positive absolute change cortex-wide (i.e., “growth”), entorhinal mea-
sures were clear outliers, with ~16% estimated to be growing (Supple-
mentary Fig. 2). Themedian across cortical regions was 0.2%. Thismay
reflect poorer reliability of entorhinal measures, as suggested by
others89,91,92. Possibly, manual entorhinal tracing or alternative tools
may have led to different results90. Our results also point to the
advantage of multivariate change measures over univariate measures.
Fourth, while the discovery sample screened out participants with
mental disorders, the replication sample included individuals with
disorders (Methods). This decision aimed to increase power to esti-
mate change in the less-powered replication sample, but potentially
influenced the results. Fifth, the adult samples consisted mainly of
homogenous white ethnic populations from their respective coun-
tries, as did the GWAS on which PRS scores were based, possibly lim-
iting result generalizability. Sixth, alongside the more limited
longitudinal coverage which will negatively impact change estimates,
sampled or geographic differences in APOE genotypemay account for
the lack of full replication in the independent adult lifespan cohort
(Supplementary Fig. 19; Supplementary Table 8). Seventh, longitudinal
studies inevitably recruit and culminate in unrepresentatively high-
performing samples58. Our data also suggest this, as we observed a
tendency for better memory in older adults with more repeat visits
(Supplementary Fig. 18), and higher average IQ scores in those older
than 60 (Supplementary Table 2). Since even in these we find variation
in brain ageing slopes that correlates with AD-related genetic variation
andmemory decline, the population effect-sizesmay be larger. Eighth,
we used only structural measures. While these are sensitive to
detecting subtle changes in brain structure that ultimately reflect a
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continuous, lifelong process of change, other biomarkers are neces-
sary to refine detection of AD-risk in healthy adult samples. Finally, we
do not know which individuals here will be diagnosed with AD later in
life, or have other AD biomarkers suggesting a biological trajectory to
AD93. While our analyses suggest one could assign differential transi-
tion probabilities to healthy individuals, only time and follow-up data
will tell.

In conclusion, brain change trajectories in healthy adults are
accelerated by the presenceof AD risk variants, inmany brain features,
and also beyond APOE. We show that brain features most susceptible
to faster deterioration in AD are on a trajectory of accelerated change
from age ~50 in most healthy individuals, and that models trained on
AD patients can be applied to adult lifespan data and the prediction
relates to genetic AD risk. Finally, genetically at-risk individuals with
more brain change showedmorememory decline through adulthood,
compared to genetically at-risk individuals with less brain change.
Thus, tracking change in AD-sensitive regions enhanced the value of
knowing a person’s genetic risk, and atrophy predicted memory
decline more than the genetics. Our findings show that brain ageing
slopes in healthy adults correlatewith AD-related genetic variation and
memory decline through adulthood, and that neurodegeneration
occurs along a continuum from normal ageing to AD.

Methods
Studies conducted at the Center for Lifespan Changes in Brain and
Cognition (LCBC)were approvedby theRegional Ethical Committeeof
South-East Norway (2017/653). Ethical approval for the other datasets
was granted by the relevant authorities and all participants provided
informed consent. LCBC participants received compensation.

Samples
Age-relative change estimation
Adult lifespan discovery sample. After applying exclusion criteria
(see below), an exclusively longitudinal adult lifespan sample (mini-
mum two timepoints) comprising 1430 scans from 420 healthy indi-
viduals aged 30–89 years (248 females; mean age [SD] = 63.7 [14.4];
2–7 timepoints [median = 3]; follow-up range = 0.15–11.1 years) was
drawn from the Center for Lifespan Changes in Brain and Cognition
database (LCBC; Department of Psychology, University of Oslo; see
SupplementaryNote 1). Observationswere collected across3 scanners.
Prior to participation, all individuals were screened via health and
neuropsychological assessments. Generally, the LCBC sample is com-
prised of cognitively high-performing individuals (see summary of
cognitive scores in Supplementary Table 2; Supplementary Fig. 18).
The following exclusion criteria were applied across LCBC studies:
evidence of neurodegenerative or neurologic disorders, conditions or
injuries known to affect central nervous system (CNS) function (e.g.,
hypothyroidism, stroke, serious head injury), and MRI contra-
indications as assessed by a clinician. At baseline, participants were
thoroughly screened for evidence of cognitive deficits, and excluded
based on lifetime presence of psychiatric disorders and/or use of
medication known to affect the CNS (e.g., benzodiazepines, anti-
depressants or other central nervous agents). Additionally, to guard
against including participants with incipient AD in our sample, we here
excluded adults whose scores on theMiniMental State Exam (MMSE)94

suggested longitudinal cognitive deficit with no later recovery
(MMSE < 25 at their final timepoint; 2 participants; 4 scans), and adults
aged 40+ whose scores on the Beck Depression Inventory (BDI)95 or
Geriatric Depression Scale (GDS)96 suggested depression symptoms
over time with no later recovery (BDI > 21 or GDS > 10 at their final
timepoint; 7 participants; 32 scans). All LCBC studieswereapprovedby
the Norwegian Regional Committee for Medical and Health Research
Ethics, complied with ethical regulations, and all participants provided
informed consent.

Adult lifespan replication sample. To test replication, we used the
two remaining longitudinal adult cohorts from the Lifebrain con-
sortium that had up to three MRI timepoints available: the BETULA
project97 and the Netherlands Study of Depression and Anxiety
(NESDA)98. BETULA participants underwent dementia assessment by a
clinicianusing cognitive data andmedical records, and those reporting
neurological disorders (stroke, AD, other dementias, MS), or present-
ing with severe memory deficits or MRI contraindications at any
timepoint were excluded. Because it is a population-based sample,
BETULA employs no screening/inclusion criteria for mental disorders.
NESDA participants reporting neurological disorders (stroke, AD,
other dementias, MS), or presenting with severe memory deficits or
MRI contraindications were excluded. Although neurologically nor-
mal, 97 of the NESDA participants were diagnosed with a current or
remitted depressive and/or anxiety disorder, whereas 41 had no his-
tory ofmental health disorders.One extremeoutlier in the changedata
of each sample was also detected and excluded here (see Supple-
mentary Fig. 12). In all, we collated the data from 449 scans from 182
individuals aged 31–8 from BETULA (mean age = 64.3 [11.9], 2-3 time-
points, follow-up = 3.5–7.7 years; 85 females), with 331 scans from 138
individuals from NESDA aged 30–65 (mean age = 45.1 [7.9], 2-3 time-
points, follow-up = 1–10 years; 91 females), into a single adult lifespan
replication sample (Supplementary Table 1).

Polygenic risk associations
To test associations with PRS-AD we used the subset of participants
with both quality-controlled genetic data (European ancestry) and
longitudinal change estimates, as estimated from the full adult lifespan
models with all participants (also those without genetic data). For the
discovery sample, 229 participants had genetic and brain change data.
For the replication sample, 175 participants fromBETULA and 118 from
NESDA (92 diagnosed) had genetic and brain change data.

AD samples. We used exclusively longitudinal data from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI99), and the single-
timepoint ADNI diagnosis (normal controls [NC]; mild cognitive
impairment [MCI]; AD) to define two longitudinal groups based on
final-timepoint diagnosis (2–9 timepoints): NC-long consisted of sub-
jects classed as NC at every diagnosed timepoint; AD-long consisted of
all subjects where the final diagnosed timepoint was AD7. After
grouping, for subjects where scanner field strength changed over time
(from 1.5 T to 3 T), we used only the observations from the field
strength with themost timepoints (or where equal used the 3 T scans).
Thiswas to ensure the validity of change estimates in themultiscanner,
multisite ADNI data100. In all, NC-long consisted of 1680 scans from
372 subjects, and AD-long consisted of 2730 scans from 606 subjects
(Supplementary Table 3). The ADNI (PI: Michael W. Weiner, MD) was
launched in 2003, with a goal of testingwhether serialMRI canbeused
to measure the progression of MCI and early AD (see https://adni.loni.
usc.edu/about/). An independent AD-control sample consisting of
107 scans from 39 AD-long subjects and 435 scans from 128 NC-long
subjects was used for validation of ML models (AIBL dataset; data
collected by the AIBL study group101; Supplementary Fig. 8).

Genotyping and polygenic scores
In the LCBC dataset, buccal swab and saliva samples were collected for
DNA extraction, followed by genome-wide genotyping using the Glo-
bal Screening Array (Illumina, Inc., San Diego, CA). For a full descrip-
tion of genotyping, post-genotyping, and quality control and
imputation methods applied to the genetic samples here, see
refs. 2,102,103. We used the summary statistics from four previous
large-scale GWAS of AD60,74 two of which included AD-by-proxy sub-
jects based on parental status73,104. We then computed polygenic risk
scores based on the genome-wide significant SNPs reported in each
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(p < 5 × 10−8), weighted by their allelic effect sizes. Prior to this, shared
SNPs between each GWAS and our data were pruned to be nearly
independent using PLINK105 with the following parameters --clump-p1
0.9999 --clump-p2 0.9999 –clump-r2 0.1 –clump-kb 500. The linkage
disequilibrium structure was based on the European subpopulation of
the 1000Genomes Project Phase 3106. Because of the complexity of the
major histocompatibility complex region (build hg19; chr6:
25,652,429-33,368,333), we removed SNPs in this region except the
most significant one prior to pruning. We computed the four PRS-AD
both with and without SNPs from the APOE region (build hg19; chr19:
44,909,011-45,912,650). We chose a genome-wide significant SNP
threshold based on recent studies showing highest discrimination
ability between patients and controls75,76. We also reasoned PRS’ con-
structed with more relaxed p-value thresholds are more likely to
contain different sets of genetic variants, and hence would be less
comparable across the four scores. As an exploratory analysis, we
tested eleven other p-value thresholds. This confirmed the four scores
became less correlated at more liberal thresholds (see Results). Fur-
thermore, adding more SNPs was detrimental to finding PRS-AD
associations with hippocampal change in healthy adults (Supplemen-
tary Fig. 4). From the summary files, we removed SNPs not in the
reference data, with minor allele frequencies <0.05, or with low
imputation scores. Genetic ancestry factors (GAFs) were computed
using established principal components methods. For the discovery
sample analyses, we used the first 10 as covariates in genetic
analyses107. For genetic analyses in the combined Lifebrain replication
sample, the first 4 were used as covariates (NESDA data was prepared
using ENIGMA protocols requiring 4 GAFs102).

MRI acquisition and pre-processing
T1-weighted (T1w) anatomical scans from each MRI dataset (acquisi-
tion parameters in Supplementary Table 4) were processed using
FreeSurfer’s longitudinal stream108 (v.7.1 for LCBC, BETULA, ADNI and
AIBL, v6.0 for NESDA), yielding a reconstructed cortex and subcortex
for each participant and timepoint109,110. Data for the main discovery
sample comprised T1w magnetization prepared rapid gradient echo
(MPRAGE) sequences collected on 3 scanners at Oslo University Hos-
pital; a 1.5 T Avanto (599 scans), a 3 T Skyra (769 scans), and a 3 T
Prisma (62 scans; Siemens Medical Solutions, Germany).

A priori ROIs
We first analyzed subcortical and cortical volumes for a priori defined
ROI’s based on knownAD vulnerability. Thesewere based on the Braak
staging scheme, initially defined using post-mortemmeasures of tau50

and subsequently applied to in vivo imaging111. Similar to others111,112, we
usedFreeSurfer regions fromthe aseg andDesikan-Killiany (DK) atlas113

that anatomically approximate the various stages (see https://
jagustlab.neuro.berkeley.edu/s/Braak_ROI-3l2g.pdf). ROIs were con-
structed separately per hemisphere7. After initial analyses with our
main hippocampal ROI’s—corresponding to Braak Stage II50—we ana-
lyzed ROI’s corresponding to Stages I (entorhinal) and Stage III50, the
latter we subdivided into a subcortical (amygdala) and a composite
cortical ROI (parahippocampal, fusiform, lingual).

Data-driven ROIs
To empirically derive brain features with accelerated change in AD, we
used machine learning in ADNI data (below) on a total of 364 features
from the aseg and DK atlas113, comprisingmeasures of cortical volume,
area, thickness, greymatter/whitematter contrast, subcortical volume
and intensity (Fig. 3). This set of 364 features was also extracted and
modelled within the discovery and replication samples.

Statistics and reproducibility
Age-relative brain change across the adult lifespan. We used Gen-
eralized Additive Mixed Models (GAMMs, gamm4 v 0.2-6114) to

estimate age models for each of the 364 brain features, fitting a
nonlinear term for age, with covariates added for sex, scanner, and
intracranial volume (knots = 8). No statistical method was used to
predetermine sample size: we used all longitudinal MRI data from
those meeting the inclusion criteria. We specified random intercepts
and slopes for each participant. This enabled fitting an individual-
specific linear model (level and slope) across all of their timepoints,
to estimate how each person’s slope as a function of age deviates
from the average nonlinear estimation. For an age model of e.g.,
hippocampus, random slopes are interpretable as the extent of
additional (or reduced) hippocampal change an individual exhibits
relative to the predicted change given their age (taking other cov-
ariates into consideration). Hence, we refer to this as an estimate of
“age-relative change”. To partition unique variance associated with
individual-specific slope, the estimation requires that a number of
participants have three or more timepoints, although estimates are
also produced for participants with fewer, but then are drawn from a
population distribution more skewed towards the sample mean82.
This estimation is equivalent to estimating factor scores, and as such
is psychometrically superior to manual calculations of change.
Absolute change was calculated by adding the random slopes to the
first derivative of the GAMM average age trajectory.

Polygenic risk associations
Univariate associations between PRS-AD and brain change in
healthy adults. For each of our a priori ROIs, we used the random
slopes as response variable in linear models with a PRS-AD predictor
and the following covariates: mean age (across timepoints), sex, GAFs,
the number of timepoints, and the interval between first and last
timepoint. There was a tendency for older adults to have more time-
points (Supplementary Fig. 6). Hence, the latter two covariates helped
ensure the effects were not driven by an uneven timepoint distribution
across age.No statisticalmethodwasused topredetermine the genetic
sample size: we used all quality-controlled genetic data from those in
the brain change analysis. We tested the associations between PRS-AD
(4 scores; tested separately) and age-relative change with progres-
sively older age-ranges (i.e., 30-89, 35-89, 40-89… 70-89). The reasons
for this were threefold. First, because some brain features were esti-
mated to have more negative individual-specific slopes in younger
adults comparedwithmiddle-age (Supplementary Fig. 1), we could not
test the association across the entire age-range (30–89) and ensure we
were capturing only ageing-specific processes. Second, it enabled
assessing the stability of PRS-AD associations detectable in adult life-
span data (note that older age-ranges correspond to smaller sample
sizes). Third, because empirical outcomes are influenced by arbitrary
analysis decisions, we took inspiration from multiverse methods that
attempt to reduce such bias by testing associations across a set of
theoretically justified alternatives51,52. We also tested each association
with absolute change, and FDR correction was applied across all 576
PRS-AD tests (8 structures × 4 scores × 9 age-ranges × 2 change
metrics; significance considered at p[FDR] < 0.05). For surviving PRS-
AD associations, we tested whether the FDR-corrected association
including APOE remained significant at p <0.05 using PRS-ADnoAPOE,
and determined whether the number of significant hits exceeded the
5% false positive rate per structure. We also ran post-hoc tests to
confirm that the PRS-AD-change estimates became more negative as
the age subset steadily comprised only older individuals (see Fig. 1e, f).
Here, we used the pre-computed beta estimates from all PRS-AD-
change models (age-relative and absolute; all four scores) as response
variable, and the age-range as predictor (coded 0-8), and tested the
linear effect of age-range upon the PRS-AD beta estimates (main effect
across change models). The observed coefficient thus represents the
strengthening of the negative PRS-AD-change association for each
increasing age subset. Next, we permuted the empirical p-value for this
observed association, by generating a null distribution across 1000
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random permutations of the age variable (mean age) in the PRS-AD
change associations, then recalculating the effect of age-range (ran-
domized) upon the PRS-AD beta estimates.

Identifying features with faster atrophy in AD. We repeated the
procedure to estimate age-relative change in ADNI data, fitting a
GAMM of age across NC-long and AD-long groups (Fig. 3a; covariates:
sex, field strength, ICV). To guard against overfitting the age trajec-
tories and account for the roughly three-decade drop in age coverage
in theADdatasets (Supplementary Table 3), we reduced the number of
knots in the GAMM to 5. Next, we ran machine learning binary classi-
fication with XGBoost (https://xgboost.readthedocs.io115), using the
random individual-specific slopes (age-relative change) across all 364
features as input. No statistical method was used to predetermine
sample size: we used all longitudinal MRI data from those meeting our
criteria (see AD samples). Hyperparameters were chosen using 10-fold
cross validation across 500 random combinations of the following
possible parameter values: nrounds (100–600, step = 50), eta (0.01,
0.05, 0.1, 0.15, 0.2), max_depth (2–8, step = 1), gamma (0.5–1.5,
step = 0.5), min_child_weight (1–4, step = 1). To reduce the risk of
overfitting to the training data and increase generalizability, we
selected the final hyperparameters based on the mean AUC obtained
across the 500 iterations of 10-fold cross-validation, where each
iteration logged the maximum AUC achieved across folds
(mean= 0.927; final hyperparameters: nrounds = 500, eta = 0.2,
max_depth = 5, gamma = 1, min_child_weight = 1). This approach
ensures a more robust and stable estimate of model performance
across diverse data subsets while also avoiding potential overfitting to
a single hyperparameter combination. For comparison, we also com-
puted a classification model using absolute brain change as input fol-
lowing the same procedure (hyperparameters: nrounds = 600,
eta = 0.01, max_depth = 7, gamma=0.5, min_child_weight = 2). Model
performance was evaluated in AIBL data (Fig. 3; Supplementary Fig. 8).

Multivariate associations between PRS-AD and brain change in
healthy adults. First, we extracted the featurematrix to derive a list of
brain features important for classifying AD-long from NC-long indivi-
duals based on age-relative change in ADNI. Then, in the LCBC healthy
adult lifespan discovery sample, we calculated the principal compo-
nent of age-relative change (PC1relChange) across the top 50 features, not
includinghippocampal and amygdala volumes (to ensure thesedidnot
drive the effect). We then used PC1relChange to test for PRS-AD associa-
tionswith change in our healthy adult lifespan sample, at progressively
older age-ranges, for all four scores. Next, we aimed to ensure the
observedmultivariate associations were not disproportionately driven
by one or a few brain features. To do this, we first calculated the age at
which absolute brain change accelerates, reasoning analyses within
this age-range would givemaximal chance of detecting PRS-AD effects
upon individual ageing trajectories. Here, we took the principal com-
ponent of absolute change across the same set of features (PC1absChange),
plotted as a function of mean age. Then, within the 50–89 years age-
range (Fig. 4c), we ran a slidingwindow PCA, iteratively calculating PC1
across 20 features with a step size of 3, across the first ~100 features
(complete windows of 20 up to 98 features; 27 windows), and tested
PC1 associations with PRS-ADwithin eachwindow. FDR-correction was
applied across all 144 PRS-AD tests in this analysis, and surviving
associations were tested with PRS-ADnoAPOE.

As a final proof-of-principle, we applied the weights from the
binary classification procedure in AD-control data directly to the
healthy adult lifespandata (i.e., LCBC as test data). This prediction uses
information from the weights of all 364 features. Here, the dependent
variable was calculated as log[p/(1-p)], where p is the model-implied
probability of having AD (probADrelChange). The aim of this was not to
classify healthy individuals as AD or not, but rather test our hypothesis

that the learned model weights would nevertheless prove useful, and
would relate to PRS-AD in healthy adult lifespan data. We also tested
whether predictions derived from the ML model based on absolute
change were related to PRS-AD. Again, FDR-correction was applied
across all 72 PRS-AD tests in this analysis, and surviving associations
were tested with PRS-ADnoAPOE.

Replication analysis
We first ran a GAMM separately in each of the replication cohorts,
revealing a strong outlier for each in the hippocampal change data
(−7.4 SD in BETULA; +5.5 SD in NESDA; see Supplementary Fig. 12).
Then, we collated the data from the two cohorts, ran a GAMM com-
parable to the main analysis estimating the random slopes, and exclu-
ded these two outliers. Note that since each of the two cohorts
originated from a single scanner, the scanner covariate indexed study
cohort. No statisticalmethodwas used topredetermine sample size:we
used all longitudinalMRIdata from thosemeeting the inclusion criteria.
Similar to the main analysis, we expected including as many long-
itudinal observations as possible in the GAMM would optimize the
change estimates for all. Testing this assumption post-hoc, we found
that in the same individuals with genetic data from BETULA, beta esti-
mateswith left hippocampal changewere significantly lowerwhen their
random slopes were estimated together with NESDA data, relative to
only using BETULA data (p =0.009; Supplementary Fig. 13). To reduce
the number of tests, we tested PRS-AD associations with change in
hippocampus and amygdala, and with PC1relChange (top 50 AD-
accelerated features excluding hippocampal and amygdala volumes).
PRS-AD models matched the discovery sample, except for an added
cohort covariate. We tested the model at progressively older age-
ranges for all four scores (here until a lower age-bound of 60, above
which the genetic sample was comprised entirely of BETULA subjects).
Where the association was significant (p <0.05 [uncorrected]), we tes-
ted whether it remained significant with PRS-ADnoAPOE. We considered it
a replication where the number of significant tests per structure
exceeded the 5% false positive rate. Lastly, we assessed whether the
trajectory of accelerated brain ageing in AD features mirrored the dis-
covery sample (i.e., modelled PC1absChange as a function of mean age).

Memory change analysis
Finally, we tested differences in memory change between groups of
individuals defined by the conjunction of brain and genetic risk mar-
kers. We hypothesized higher PRS-AD individuals also high on a mul-
tivariate marker of brain change would show more memory decline
across the adult lifespan. This analysis proceeded in twoparts. First, we
took the principal component across the four PRS-AD scores (PC1PRS-AD;
explaining 87%), and used the partial association between PC1PRS-AD and
the principal component across the first 50 AD-accelerated features
(here including hippocampal and amygdala volumes), to divide indi-
viduals into quadrant groups (Fig. 6d; pink group depicts individuals
high on both risk factors; covariates: mean age, sex, GAFs, N time-
points, and interval between first and last timepoint). Second, from the
full adult lifespan discovery sample described above (N = 420; scans =
1430), we identified those with observations on the California Verbal
Learning Test (CVLT)116,117. Of these, we discarded individuals with non-
usable memory data (due to being part of on-off memory training
projects at LCBC; see Supplementary Note 1 for information on the
projects that comprised the LCBC sample). In the resulting data (713
observations from 267 individuals), we took the principal component
across the threemainCVLT subtests (learning, immediate, anddelayed
free recall; scaled) to index generalmemory, expressed the loadings as
a proportion of the maximum loading, and kept only those with
longitudinal memory observations (707 observations from 261 indivi-
duals). Then, we ran a GAMM of age on Memory (sex corrected,
knots = 8). Akin to the brain analysis, age-relative memory change was
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estimated via the random slopes, and absolute memory change was
calculated by adding the slopes to the first derivative of the GAMM
average age trajectory. Having estimated memory change using as
many longitudinal CVLT observations as possible—108 individuals had
both memory change and genetic data (i.e., were included in the
quadrant-groups). Finally, we tested our hypothesis that the high brain
change-high PRS-AD groupwould exhibit more adult lifespanmemory
decline, setting this group to the intercept, in linear models of
quadrant-group on memory change, correcting for group differences
in mean age, sex, N timepoints, interval between first and last time-
point, and APOE-ε4 carriership (main model). These were tested using
both age-relative and absolutememory change. For these tests—where
the intercept group was hypothesized to show the most negative
change—we corrected for multiple comparisons applying FDR-
correction across the six group comparisons in the two main change
models using one-sided tests. Alternative models correcting for
the number of APOE-ε4 alleles, baseline memory, PC1PRS-AD,
and PC1relChange1-50, were also run, and the main model was retested
using change estimates within different age subsets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data supporting the results of the current study
may be available upon request, given appropriate ethical and data
protection approvals. Different limitations on data access apply to
different samples. Participants in LCBC, BETULA and NESDA have not
consented to share their data publicly online. Requests for the rawdata
can be submitted to the relevant principal investigator of each con-
tributing study. Contact details are provided in Supplementary Note 2.
ADNI and AIBL data are available at https://adni.loni.usc.edu/data-
samples/access-data/ pending application approval and compliance
with the data usage agreement. Summary-level source data are pro-
vided with this paper. Source data are available as a source data
file. Source data are provided with this paper.

Code availability
Code for statistical analyses is available at https://github.com/
jamesmroe/ADchangeRisk (archived at https://doi.org/10.5281/
zenodo.13844701).
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