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While defects are undesirable for the reliability of electronic devices, parti-
cularly in scaled microelectronics, they have proven beneficial in numerous
quantum and energy-harvesting applications. However, their potential for new
computational paradigms, such as neuromorphic and brain-inspired com-
puting, remains largely untapped. In this study, we harness defects in
aggressively scaled field-effect transistors based on two-dimensional semi-
conductors to accelerate a stochastic inference engine that offers remarkable
noise resilience. We use atomistic imaging, density functional theory calcula-
tions, device modeling, and low-temperature transport experiments to offer
comprehensive insight into point defects in WSe2 FETs and their impact on
random telegraph noise. We then use random telegraph noise to construct a
stochastic encoder and demonstrate enhanced inference accuracy for noise-
inflicted medical-MNIST images compared to a deterministic encoder, utiliz-
ing a pre-trained spiking neural network. Our investigation underscores the
importance of leveraging intrinsic point defects in 2D materials as opportu-
nities for neuromorphic computing.

Defects have the potential to exert both beneficial and detrimental
effects on the electronic, optical,mechanical, andmagnetic properties
of materials. For example, defect engineering plays a pivotal role in
applications such as quantum computing1, energy harvesting2, and
catalysis3. In contrast, the microelectronic industry has focused on
eliminating defects due to their adverse impact on process yield,
device performance, and scalability down to smaller feature sizes. In
electronic devices, point defects cause charge trapping which pri-
marily manifests as flicker (1/f) noise4 on short time scales and as drift
in longer time scales due to bias-temperature instabilities (BTI). How-
ever, when device dimensions are aggressively scaled such that only a
handful of defects are present within the active device area, 1/f noise
gradually appears as random telegraph noise (RTN)5. RTN is observed

as stochastic temporal fluctuations in the output current or voltage,
compromising device reliability and computational accuracy6–13. As a
consequence, the incorporation of error-correcting circuits becomes
inevitable, increasing the energy and areaoverhead14.While defects are
considered undesirable and must be eliminated in traditional com-
puting, they present intriguing possibilities in the emerging field of
neuromorphic and bio-inspired computing. In this context, emerging
two-dimensional (2D) semiconductors, grown synthetically, which are
naturally inflicted with a variety of defects, provide an excellent plat-
form for both investigating and harnessing defects.

In this study,we utilize high-resolution atomistic imaging and low-
temperature spectroscopy techniques to reveal various types of point
defects present in metal-organic chemical vapor deposition (MOCVD)
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grown WSe2 films. Subsequently, using ab initio computational ana-
lysis and device-level modeling, we identify Se antisites (SeW) and W
vacancies (VW) as plausible defect candidates to contribute to the
observation of RTN in ultra-scaled WSe2 field-effect transistors (FETs),
as both defect types generate hole trapping states with charge tran-
sition levels (CTLs) near the valence band edge. Next, we utilize RTN to
develop a stochastic encoder for image encoding and show that
medical Modified National Institute of Standards and Technology
(MNIST) images, encoded into stochastic spike trains and fed into a
pre-trained spiking neural network (SNN), yield significantly higher
inference accuracy (> 85%) compared to deterministic encoding
(<55%), especially when the images were inflicted with substantial
noise. In essence,wedemonstrate that thedynamicsofpoint defects in
ultra-scaledWSe2 FETs can be exploited for noise resilient information
processing.

Results
Defects in monolayer WSe2
AnMOCVD techniquewasused togrow large-areaWSe2filmson2-inch
sapphire substrates using tungsten hexacarbonyl, W(CO)6 (99.99%,
Sigma-Aldrich) and hydrogen selenide, H2Se (99.99%, Matheson) as
the precursors (see the Methods section for details on the synthesis
procedures and parameters). Scanning transmission electron

microscopy (STEM) was used to investigate defects in the MOCVD-
grownWSe2 film. A polymethylmethacrylate (PMMA)-assisted transfer
technique was used to transfer the as-grown film from the sapphire
growth substrate to a TEM grid. Figure 1a shows the structure of WSe2
viewed down its c-axis with atomic resolution high-angle annular dark
field (HAADF)-STEM imaging at an 80 kV accelerating voltage. The film
appears to have a crystalline 2H-WSe2 structure with several point
defects that include Se vacancies (VSe), antisite defects with Se sub-
stitutingW (SeW) andW substituting Se (WSe), andW vacancies (VW) as
shown in Fig. 1b. Our observations are consistent with literature15

whereVSe, VW, SeW, andWSe havebeen identified as themost abundant
defect types in monolayer WSe2. Figure 1c, d depicts the defect con-
figuration obtained from structural optimizations with density func-
tional theory (DFT) of an SeW in the neutral and positive charge states,
respectively. The defect configuration is formed when a Se atom
substitutes for a W atom in the WSe2 lattice. More information on the
models and functions used for DFT simulations is provided in the
Methods section. The electronic wavefunctions of the localized
molecular orbitals at the defect site are drawn at an iso value of 0.05
eÅ

�3
. Here, blue bubbles represent the highest occupied molecular

orbital (HOMO) of the neutral structure, while red bubbles depict the
lowest unoccupiedmolecular orbital (LUMO) of the positively charged
system. We find that this configuration is stable when the Se atom

Fig. 1 | Defects inmonolayerWSe2. a STEM-HAADF image ofMOCVD-grown large-
area WSe2 film viewed on its c-axis. Scale bar, 2 nm. The STEM image reveals the
presence of several points defects such as VSe, SeW, WSe and VW as shown in (b).
Scale bar, 0.5 nm. Atomic structure of a selenium antisite in a WSe2 monolayer
geometry optimized with DFT (c) in the neutral charge state with the HOMO
depicted as blue bubbles at an isovalue of 0.05 e Å−3 and (d) in the positive charge
state with the localized hole (LUMO) drawn as red bubbles. Se atoms are drawn in
yellowandWatoms in pink. eRaman spectra obtained fromWSe2 filmpost transfer

onto the target substrate, showing the characteristic in-plane E12g modes at
250.06 cm-1 and the longitudinal-acoustic mode (2LA (M)) at 258.24 cm-1. The
absence of the B2g peak at 310 cm-1, which is ascribed to interlayer interactions
between the different layers of theWSe2 film, confirms themonolayer nature of the
transferred WSe2 film. f Photoluminescence (PL) spectra measured at 300K with
characteristic A-excitonic peak at 1.66 eV. g PL spectra measured at 77 K exhibiting
exciton, trion and an increased peak from defect-induced states.
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moves away from the W lattice position and stabilizes in the center of
four adjacent Se atoms near the defect site. The HOMO of the neutral
structure is localized around several W atoms of the defect site. An
added hole localizes at the W atoms around the defect site, following
small atomic relaxations. It is observed that both the VW and SeW could
act as active hole trapping sites in WSe2, thereby accounting for the
observed RTN due to hole trapping and detrapping at the defect site;
this will be discussed further in the forthcoming section. The relaxed
atomic configuration of a VW is depicted in Supplementary Fig. 1. For
theneutral VW, theHOMO isconcentrated at the Se atoms surrounding
the vacancy. When a hole is added to the system, it localizes on these
Se atoms, following atomic relaxations. To confirm our assumption of
hole trapping at SeW and VW sites as the most promising defect can-
didates, the thermodynamic CTLs for hole exchange at the defect sites
are calculated as described in Supplementary Fig. 2. Compared to the
Kohn-Sham levels of a defect from DFT calculations, which are
obtained for a fixed atomic configuration, the CTL also accounts for
the unavoidable energy change of the system upon charge trapping
due to atomic relaxations and can thus be related to experimentally
detected trap levels. TheCTL is calculated by comparing the formation
energies of the defect in the positive and neutral charge states16 and
corresponds to the intersection point of two formation energy func-
tions depending on the Fermi level. It is thus equal to the Fermi level at
which the formation energies of the neutral and charged systems
match and thus both charge states of the defect are equally stable. The
CTLs and corresponding band diagrams are shown in Supplementary
Fig. 2; relaxation energies for hole capture and release are provided in
Supplementary Table 1 along with more comprehensive details
regarding the calculations.

Next, the WSe2 film possessing native point defects was wet-
transferred to a back-gate stack that consists of 25 nm atomic layer
deposition (ALD) grown Al2O3 on sputter-deposited Pt/TiN on a p++-Si
substrate via the PMMA-assisted wet-transfer process. Following
transfer, Raman, and photoluminescence (PL) spectroscopy were
performed to gain further insights on the native defects present in
the film as well as to assess the film quality and spatial uniformity.
Figure 1e shows the Raman spectra obtained at 300K; the character-
istic in-plane E12g mode was observed at 250.06 cm−1 and the

longitudinal-acoustic mode, 2LAðMÞ, was observed at 258.24 cm−1. The
absence of the B2g peak at 310 cm−1, which is ascribed to interlayer
interactions between the different layers of the WSe2, confirms the
monolayer nature of the WSe2 film. Similarly, Fig. 1f shows the PL
spectra measured at 300K with a characteristic A-excitonic peak at
1.66 eV. However, when examining the PL spectrum obtained at 77 K,
as depicted in Fig. 1g, we observe the presence of an elevated peak
originating from defect-induced states in addition to the character-
istics excitonic and trionic peaks. Supplementary Fig. 3a, b, respec-
tively, show the PL spectrum at different temperatures and the
normalized peak intensity of the defect-induced states as a function of
temperature. The emergence of defect induced states is commonly
associated with the presence of point defects such as VSe, VW, and SeW
as evident from prior studies17–21. Hence, the STEM images and
accompanying low-temperature spectroscopy convincingly point to
the presence of native point defects in MOCVD-grown monolayer
WSe2. Supplementary Fig. 3c shows the spatial map for the defect-
inducedpeakover a 25 µm × 25 µmarea atT = 77 K, confirming that the
defects are uniformly distributed throughout the WSe2 film.

Observation of RTN in ultra-scaled WSe2 FETs
Following spectroscopic analysis of the transferredWSe2 film, electron
beam (e-beam) lithography and SF6 plasma dry etching were used to
define theWSe2 channel area. The source and drain contacts were then
defined using another set of e-beam exposures. Finally, e-beam eva-
poration was performed to deposit 20nm palladium (Pd) to serve as
contacts to the WSe2 FETs. More details on device fabrication can be
found in the Methods section and in our previous works22–27. Fig-
ure 2a, b, respectively, show the schematic and top-view scanning
electron microscope (SEM) image of a representative back-gated
monolayer WSe2 FET with 20 nm channel length (Lch) and 500nm
channel width (W ch). Supplementary Fig. 4 shows a zoomed-in SEM
image confirming Lch to be 20nm. The dual-sweep transfer char-
acteristics, i.e., IDS as a function of the back-gate voltage, VBG, of this
representativeWSe2 FET,measured at VDS = 1 V, are shown in Fig. 2c, d,
for two different temperatures, T = 300K and 15 K, respectively. Sup-
plementary Fig. 5 shows the device statistics obtained from 30 WSe2
FETs showing the transfer characteristics and corresponding
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Fig. 2 | Observation of RTN in ultra-scaled monolayer WSe2 FETs. a Schematic
and (b) scanning electronmicroscope (SEM) imageof anultra-scaledWSe2 FETwith
25 nm atomic layer deposition grown Al2O3 as the gate dielectric, Pt/TiN/p++-Si as
the back-gate electrode, Pd as the source/drain contact metal. The Lch and W ch

were defined to be 20nm and 500nm, respectively. Scale bar, 200 nm. Dual-sweep
transfer characteristics of the ultra-scaled WSe2 FET measured using VDS = 1 V at
different temperatures, c T = 300K and d T = 15 K. Corresponding IDS sampled

every τs = 2ms at e VBG = -6 V and f VBG = −3.5 V for T = 300K and T = 15K,
respectively. RTN is absent at T = 300K while distinct RTN signals are observed at
T = 15 K. Power spectral density (PSD) obtained using the fast Fourier transform
(FFT) of themeasured IDS at g T = 300K and hT = 15 K. The presence of RTN results
in a Lorentzian profile in the frequency domain, i.e., slope = 1/f2, whereas the
superposition of many RTN results in flicker noise in the frequency domain with a
slope = 1/f.
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distributions for the field-effect mobility (μFE, p), subthreshold slope,
maximum ON-current, threshold voltage and interface trap density.
Figure 2e, f illustrate the IDS traces acquired at T = 300K and 15 K for
VBG = −6 V and −3.5 V, respectively, with a sampling interval of
τs = 2ms. It is important to note that the selection of different VBG

biases was deliberate to ensure similar IDS values. Notably, at
T = 300K, there are no observable RTNs. However, at T = 15 K distinct
RTN patterns become clearly evident because the majority of defects
that contribute to the 1/f noise have frozen out28.

To explain the above observation, we must note that RTN traces
are seen in FETs primarily when a single dominant defect is engaged in
the charge carrier trapping anddetrappingprocesses, thus leading to a
finite and discrete shift in the threshold voltage (VTH) of the device,
that manifests as discrete fluctuations in IDS

29,30. RTN traces are,
therefore, more easily observable in scaled FETs since the number of
defects scales with the channel area31. In addition, the impact of a
single defect scales with the channel area, making the impact of
dominant defects more pronounced in scaled FETs. It must be noted
that the impact of single defects on RTN follows an exponential dis-
tribution. The single defect regime typically consists of a few defects
(~10), with the defects in the tail of the distribution affecting the
observed RTN. Supplementary Fig. 6 shows the RTN traces obtained
from several WSe2 FETs at T = 15 K with increasing channel area (Ach)
ranging from 0.01 μm2 to 3 μm2. As Ach increases, the discrete nature
of the RTN traces disappears because multiple RTN traces associated
with different defects start to superimpose, underscoring the impor-
tance of fabricating ultra-scaled devices to observe and investigate the
RTN phenomenon.

Temperature also plays a significant role in the observation of
RTN as it supplies the required energy for phonons to overcome the
barriers imposed by structural relaxation. At high temperatures,
charge carriers surmount large trapping barriers. Conversely, at lower
temperatures these barriers are too large, making transitions only
possible via nuclear tunneling between the configurations. This is
typically much less likely than over-the-barrier-reactions at higher
temperatures, resulting in freezing out of oxide traps32. Thus, access is
limited to defects with smaller relaxation energies, e.g., those in the
crystalline semiconducting channel or defects at the dielectric/semi-
conductor interface with energy levels close to the band edges33.
According to the standard non-radiative multi phonon model, the
capture and emission of carriers by defect states involves both a tun-
neling event as well as a structural relaxation at the defect site, which
determines the barriers and results in the characteristic time constants
of the corresponding defect28,32,34. These discrete tunneling events
manifest as RTN in the time domain and as a Lorentzian spectrum
(slope =1/f2) in the frequency domain. If the barriers are uniformly
distributed in energy5, the summation of all RTN events, each with
different characteristic time constants, gives rise to the universally
observed 1/f noise spectra in most electronic devices (see Supple-
mentary Fig. 7). This is evident from Fig. 2g, h, which show the power
spectral density (PSD) plots obtained by taking the fast Fourier trans-
form of the IDS data shown in Fig. 2e, f. The Lorentzian frequency
spectrum obtained for the RTN trace corresponding to T = 15 K indi-
cates that only one defect state is dominant in our ultra-scaled WSe2
FETs at low temperature; at higher temperature, i.e., for T = 300K,
more defects are accessible, thus resulting in a distinct 1/f spectra.
Given the relatively large width of 500 nm, we therefore need to
operate our devices at 15 K to access a single dominant defect. Sup-
plementary Fig. 8a, b, respectively, show the IDS traces and corre-
sponding PSDplots obtained atT = 15 K, 50K, 100K, 200K, and 300K.
While RTN is observed at temperatures as high as T = 200K, short-
lived, spike-like transitions between the two states are specifically
observed at T = 15 K. As we will discuss next, spike-like RTN is critical
for the design of biomimetic afferent neurons and this distinctive
signal pattern can only be achieved when there is a significant

difference between the average capture and emission time constants,
i.e., �τc and �τe, associated with the defect state35.

RTN dynamics and defect correlation
In this section, our objective is to establish a correlation between the
observed RTN in ultra-scaled WSe2 FETs with various point defects
through experimental analysis and device modeling using technology
computer aided design (TCAD). It is noteworthy to mention that RTN
traces are typically measured at room temperature where the noise is
dominated by oxide defects. Channel defects, on the other hand, have
much faster time constants, typically ranging from picoseconds to
microseconds, and therefore do not contribute significantly to the
observed RTN. At lower temperatures, as employed in our study, oxide
traps freeze out and defects in the channel are slowed down enough
tomove into ourmeasurementwindow. Therefore, our initial task is to
confirm that the RTN traces we observe at 15 K are indeed related to
the WSe2 channel rather than the gate oxide. To achieve this, we
acquired RTN traces at different gate biases (VBG = -3.2, -3.4, -3.6, -3.8
and -4 V) at T = 15 K as shown in Fig. 3a. Figure 3b, c, respectively, show
the normalized histogram plots for capture and emission time, i.e., τc
and τe, which denote the time spent in the two distinct IDS states at
T = 15 K. As expected, both τc and τe are found to be distributed
exponentially. From the exponential fits, �τc and �τe can be extracted.
Notably, Fig. 3d, e reveal that �τc and �τe are independent of VBG, sug-
gesting that the origin of the observed single defects is within the
monolayer WSe2 channel31. This assertion is substantiated by TCAD
modeling where a qualitatively similar trend of gate bias independent
capture and emission times is observed for charge traps within the
WSe2 channel. Our modeling analysis further indicates that the defect
possesses a trap energy (ET) of approximately 100meV above the
valence band maximum (EV) and a relaxation energy (Erelax) smaller
than 150meV. It should be noted that these CTLs, and relaxation
energies agree well with the values calculated for hole trapping at SeW
and VW using DFT calculations, (see Supplementary Fig. 2 and Sup-
plementary Table 1). Additionally, the defect is found to be located
near the drain contact within the channel. These findings provide
robust evidence that the observed RTN results from defects present in
the WSe2 channel. We also fabricated monolayer WSe2 FETs on 20nm
ALD-grown HZO, which acts as the back-gate dielectric. Supplemen-
taryFig. 9 shows thepresenceof RTN in the IDS traceatT = 15 K in these
devices as well, further supporting the notion that the single defects
contributing to the observation of RTNs in WSe2 FETs are associated
with the channel material rather than the gate oxide.

Next, we conduct ab initio investigations to gain insights into the
possible types of point defects responsible for the transient, spike-like
RTN observed in our devices. We theoretically analyze the hole trap-
ping properties of VSe, VW and SeW, by employing DFT in conjunction
with a hybrid functional. While VSe are abundant inWSe2

15, they do not
offer a possible state for hole trapping, as a hole cannot localize at the
VSe defect but rather creates a delocalized state inside the valence
band36. VSe will therefore not be considered as a potential hole trap
that leads to the observed RTNs. On the other hand, VW and SeW were
experimentally detected in sufficiently high concentrations in WSe2
monolayers15 to be possible candidates for causing the detected RTN
signal via hole trapping and detrapping at the defect site. Our calcu-
lations reveal that for both VW and SeW, the hole trap level lies closely
above the valence band maximum of pristine bulk WSe2, with only
small relaxation energies (23 – 196meV) for both hole capture and
release. Hence these defect types can therefore be classified as hole
traps and are probable defect candidates to explain the RTN signal
measured in our devices.

Next, we confirm the high yield and reproducibility of the RTN
dynamics obtained from ultra-scaled WSe2 FETs at low temperatures,
which is critical for their practical implementation in neuromorphic
applications. Supplementary Fig. 10a showcases RTN traces obtained
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from ten representative ultra-scaled WSe2 FETs that are located in
different physical locations of the fabricated chip,measured atT = 15 K
with Lch = 20 nm and W ch = 500 nm corresponding to an Ach of
0.01 μm2. Additionally, we captured RTN traces from these devices at
higher temperatures of T = 50, 100, 200 and 300K. Supplementary
Fig. 10b depicts the relationship between the yield of spike-like RTNs
and temperature. To calculate yield, we only consider devices showing
spike-like RTNwith �τc/ �τe > 100. As expected, the yield steadily declines
with temperature, transitioning from 100% at 15 K to 0% at 300K. This
observation strongly suggests that for the relatively large devices used
here, low-temperature measurements are essential for the reliable
observation of RTNswith a high yield. Supplementary Fig. 11 shows the
transfer characteristics of the ten representative ultra-scaled WSe2
FETs that yielded RTN, measured at 300K and 15 K. In addition, Sup-
plementary Fig. 12 illustrates the RTN traces corresponding to three
cooling cycles for five devices, confirming the reproducibility of the
phenomenon.

Realization of biomimetic afferent neurons
Afferent neurons are a fundamental component of the brain’s infor-
mation processing system, facilitating the transformation of external
stimuli received by sensory organs into stochastic electrical spikes.

Supplementary Fig. 13a provides a schematic representation of a bio-
logical neural network (BNN); wherein input stimuli, such as images,
are translated by visual afferent neurons into stochastic spike trains.
These spike trains, with the average interspike interval (�τspike) reflect-
ing the corresponding intensity of light in each pixel, are then used for
subsequent higher-order processing and inference within the brain.
Stochastic spike encoding is a fundamental and essential element of
neural information processing, empowering the brain to manage
fluctuations and uncertainties in the environment, thereby enhancing
the reliability of information processing37. This is highlighted using an
example in Supplementary Fig. 13b, c. Although deterministic encod-
ing provides a more precise representation of an image in noise-free
conditions, stochastic encoding surpasses it in the presence of noise,
allowing for the detection of finer features that deterministic methods
struggle to discern. This emphasizes the importance of stochastic
encoding for pattern identification amid background noise, without
requiring extensive noise filtering. As a result, stochastic encoding
finds valuable application in the domains of bio-medical imaging and
information processing, where noise poses significant challenges.
Furthermore, Supplementary Fig. 14 shows the noise-resilience of
stochastic encoding over deterministic encoding for MNIST hand-
written digits, thus illustrating the robustness of our approach.

-4   -3.5    -3  
VBG (V)

101

100

10-1

10-2

10-3

a

d

= −3.4 = −4= −3.2 = −3.6 = −3.8

C
ou

nt
s

(a
rb

.u
ni

ts
)

C
ou

nt
s

(a
rb

.u
ni

ts
)

e

b

c

Fig. 3 | Gate-bias independent RTN dynamics and defect correlation. a RTN
traces obtained for VBG = -3.2, -3.4, -3.6, -3.8 and -4 V at T = 15 K. Normalized his-
togramplots for b τc and c τe. Insets show the exponential fits for extracting �τe and
�τc. d �τe and �τc as a function of VBG obtained through exponential fits to the
experimental data. e �τe and �τc as a function of VBG obtained using a Canny step

detection algorithm. The dots represent the median values, while the whiskers
show themaximumandminimumvalues, providing a range for eachmeasurement.
The purple lines indicate the sampling interval (τs = 2ms) and ten times the sam-
pling interval, respectively. For accurate extraction of time constants, they must
exceed approximately ten times the sampling time.
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To mimic the functioning of afferent neurons, it is important to
first realize a mechanism to generate a stochastic spike train wherein
�τspike conveys information about the intensity or strength of the input
stimuli. In other words, larger �τspike encodes stronger inputs and vice
versa. Note that the gate voltage independence of �τc and �τe do not
allow for the use of VBG as the input stimulus. However, when we use
IDS as the input variable at a constant VBG, RTN is observed in the
output voltage, VDS. Here, �τspike is found to be exponentially depen-
dent on the magnitude of IDS as illustrated in Fig. 4a for different IDS
ranging from 50nA to 130nA in steps of 20 nA. Figure 4b shows the
corresponding normalized histogram plots for τspike, defined as the
time elapsed between the occurrence of two consecutive spikes, for
different IDS. From these distributions, �τspike can be extracted using an
exponential fit. Figure 4c shows �τspike as a function of IDS that enables
the construction of biomimetic afferent neurons. We have formulated

an empirical model using Eq. 1 to replicate the relationship between
�τspike and IDS.

�τspike = τ0exp � I0
IDS

� �
ð1Þ

where I0 and τ0 are fitting parameters. This model serves as a bridge
between experiments to obtain stochastic spike trains and simulation
that will be discussed in the following section for accurate inference of
noise-inflicted medical MNIST images using an SNN.

To confirm whether the spike trains are truly random, their
autocorrelation function (ACF) was calculated for different IDS, as
shown in Supplementary Fig. 15. The ACF lies in the interval [-1,1] where
a value of -1 and 1 indicate anti-correlation and correlation, respec-
tively, and a value of 0 suggests no-correlation in the spike train.

Fig. 4 | Biomimetic afferent neuron and stochastic spike encoding. a Voltage
RTN traces obtained from our biomimetic afferent neuron for different input IDS
ranging from 50nA to 130 nA in steps of 20nA. b Normalized histogram plots for
τspike, defined as the time elapsed between the occurrence of two consecutive
spikes, for different IDS. From these distributions, �τspike can be extracted using an
exponential fit. c)�τspike as a function of IDS revealing a monotonic dependence that
can serve the purpose of constructing biomimetic afferent neurons. d Schematic
and e optical image of the resistive capacitive (RC) differentiator for spike digiti-
zation mounted on a printed circuit board. The differentiator consists of a resistor
with R= 1MΩ in series with a capacitor having C =0:01μF. The voltage spikes from
the afferent neuron (VDS) obtain by inputting different valuesof IDS atVBG = -6 V are

applied to the capacitor while the other end of the resistor is grounded by applying
VGND =0 V. The output from the RC differentiator (Vdiff ) is then provided as input
to an op-amp that serves as the comparator. A supply voltage (+VCC) of 2 V is
applied to the comparator while a reference voltage (�VCC) of 0 V is established to
eliminate the negative voltage spikes generated at the differentiator’s output.
Digital stochastic spikes (VC) are obtained at the output of the comparator. f Vdiff

for the different voltage inputs shown in (a). g VC obtained on passing the spike
train obtained in (f) through a comparator. The spike digitization peripheral circuit
enables the seamless generation of digital stochastic spike trains with constant
output voltage levels for the hardware implementation of afferent neurons.
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Clearly, the RTN traces do not show any long-term correlation vali-
dating our claim that the encoded spike trains are truly random in
nature. Therefore, the current-controlled RTN traces obtained due to
single defects in our scaled monolayer WSe2 FETs atT = 15 K can be
used as a biomimetic afferent neuron for rate-based stochastic infor-
mation encoding and thereby accelerate the development of noise-
immune stochastic spiking neural networks (SSNNs). While this work
focuses on harnessing the dynamics of inherent growth defects in
large-area grownWSe2, other forms of stochasticity in ultra-scaled 2D
FETs such as the defect dynamics of oxide traps could also be har-
nessed for the construction of afferent neurons.

A key observation from the RTN traces in VDS is that both �τspike
and the output voltage levels change with IDS. However, in the context
of inference applications, it is preferable to maintain constant output
voltage levelswhile allowing �τspike to varywith the strength of the input
stimulus. To accomplish this, a simpleperipheral circuit composedof a
differentiator followed by a comparator was prepared as shown in
Fig. 4d, e. Figure 4f, g show the respective outputs from the differ-
entiator and the comparator for five representative voltage RTN traces
obtained from the WSe2-FET-based afferent neuron. As expected, fol-
lowing differentiation, the output voltage waveform encompasses
both positive and negative values, which are subsequently rectified by
the comparator. Additionally, the comparator shapes the waveform
into spike trains with a constant output voltage level aligned with the

comparator’s supply voltage, in this case 2 V. The reference voltage for
the comparator was established at 0 V to eliminate the negative vol-
tage spikes generated at the differentiator’s output.

Application of stochastic encoding in biomedical imaging
Finally, we demonstrate the importance of stochastic encoding in the
context of biomedical imaging by utilizing the stochastic spike trains
obtained fromourWSe2-FET-based afferent neuron to classifymedical
MNIST images with and without the presence of noise as shown in
Fig. 5a, b, respectively, using an SSNN. It is essential to acknowledge
that data generated by biomedical applications are particularly sus-
ceptible to external noise. This susceptibility can arise from limitations
in instrument resolution, calibrationerrors,movements of the subjects
being studied, etc. Consequently, extensive post-processing of the
acquired biomedical data is often required, which may potentially
obscure vital information necessary for accurate diagnosis. This
inherent challenge served as motivation for selecting the medical
MNIST dataset38 as the ideal testbed for our demonstration. The
medical MNIST dataset consists of 48,000 images, each 64 × 64 pixels,
split among 6 different image classes corresponding to abdominal,
breast, chest CT, chest X-ray, hand X-ray, and head CT as shown
in Fig. 5a.

Since SNNs require spike trains as inputs, all pixel intensities are
converted into spike trains where the mean time between spikes
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Fig. 5 | Noise-resilient inference of medical MNIST data set using
stochastic SNN. a Representative image from each class in the medical MNIST
dataset corresponding to abdomen, breast, chest CT, chest X-ray, hand X-ray, and
head CT. The dataset contains a total of 48,000 images, with each class containing
8,000 images of size 64×64 pixel. bGaussian noise with standard deviations, σ = 0,
0.2, 0.4, and 0.6, added to an example image from the chest X-ray class. c A fully
connected, two-layered neural networkwith 4,096, 300 and 6 neurons in the input,
hidden and output layers, respectively, was used to classify the medical MNIST
dataset. The network was trained on 40,000 images using gradient descent

algorithm with the learning rate of 0.0001 and batch size of 1 for 150 epochs.
d Training accuracy as a function of epoch. A training accuracy of ~90% was
achieved. The ANN was subsequently converted to an SNN to test the inference
accuracy using the remaining 8,000 images from the medical MNIST dataset. We
obtained a testing accuracy of ~91%. e Inference accuracy as a function of σ for both
deterministic and stochastic encoding. We found that the inference accuracy
dropped from ~91% to 86.3% for stochastic spike encoding and from87.3% to 53.4 %
for deterministic encoding.
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(�τspike) is inversely related to pixel brightness; brighter pixels result in
shorter times between spikes, and darker ones longer. We employed
the empirical model from Eq. 1 to mimic the functionalities of the
afferent neuron by utilizing the stochastic spike trains generated from
our devices. Given the extensive task of generating spike trains for the
entire set of 64 × 64 × 48,000-pixel intensities across all images, we
used Eq. 1 to encode the pixel intensities. First, an artificial neural net-
work (ANN)was trained to classify themedicalMNIST images as shown
in Fig. 5c. We adopted the approach proposed by Sengupta et al. 39,40.
where a trained ANN is converted into an SNN. This approach yields
higher inference accuracy owing to near-lossless ANN-SNN
conversion39. The ANN network has 4096 input neurons, 300 hidden
layer neurons, and6output neurons corresponding to eachclass in the
medical-MNIST dataset. The 64 × 64-pixel medicalMNIST images were
converted to one-dimensional vectors of size 4096 × 1 and fed to the
input layer. The network was trained using a gradient descent algo-
rithm for high convergence accuracy using a learning rate of 0.0001
for 150 epochs. Since the rectified linear unit (ReLU) function operates
similarly to an integrate and fire neuron (IF), it was employed as the
activation function for the neurons in the hidden layer. 40,000 images
from themedicalMNIST data set were used to train the ANN. Figure 5d
shows the evolution of training accuracy to ~90% as a function of the
training epoch. After training, the ANN was converted to an SNN, and
the remaining 8000 images from the medical MNIST data set were
used to test the inference accuracy: a final testing accuracy of ~91%was
obtained.

Next, we purposefully injected gaussian noise with standard
deviation (σ) up to 0.6 into the medical MNIST dataset to evaluate the
robustness of an SSNN to noise. Figure 5b shows examples of noise-
afflicted medical MNIST images and Fig. 5e shows the inference
accuracy as a function of σ for both deterministic and stochastic
encoding. In deterministic spike encoding, each pixel intensity of the
image is translated directly into a spike train, where the timing
between each spike is precisely determined by the pixel intensity. This
method employs a linear mapping of the intensity values to the
interspike interval ensuring that higher intensities result in the spikes
occurring more frequently. In other words, more spikes occur for
higher intensity values within a predefined time window. This elim-
inates any variability in the spike interval or number of spikes that
represents a specific intensity value. In stochastic spike encoding,
however, a pixel with higher intensity will, on average, generate spikes
at a higher rate than a pixel with lower intensity, but the precise
moments at which these spikes occur can vary. This stochasticity
introduces a level of randomness that canmimic the natural variability
observed in biological neural systems.

We ultimately found that the inference accuracy only dropped
from ~91% to 86.3% for stochastic spike encoding in the presence of
noise, whereas the inference accuracy dropped from 87.3% to 53.4 %
for deterministic encoding under the same conditions. Supplementary
Fig. 16 shows similar results for theMNIST handwritten digits dataset41.
Here, the inference accuracy dropped from 92.1% to 87.5% for sto-
chastic spike encoding and from 87.8% to 66.7 % for deterministic
encoding. For practical applications, it is important to ensure the
reproducibility of the spiking dynamics, keeping inmind non-idealities
such as cycle-to-cycle and device-to-device variation. To this end, we
also performed simulations considering these variations and to
understand their impact on inference accuracy. These results are
shown in Supplementary Fig. 17. Notably, our results indicate that the
performance of our model remains unaffected by cycle-to-cycle and
device-to-device variations. The intrinsic noise tolerance of SNNs may
be responsible for this stability, underscoring the potential of SNNs for
deployment in real-world scenarios where variability is a given. Our
findings demonstrate that WSe2-based stochastic spike encoders can
effectively accelerate noise-tolerant inference using SNNs.While some
recent studies have explored RTN for the generation of true random

numbers (TRNs)42–45 and physically unclonable functions (PUFs)46,47, its
utilization for neuromorphic applications appears to be a pioneering
endeavor.

Discussion
In conclusion, this study emphasizes the dual role of defects in elec-
tronic devices, particularly in emerging nanomaterials such as 2D
semiconductors. We have used a comprehensive approach including
high resolution atomistic imaging, DFT calculations, device modeling,
low-temperature spectroscopy, and transport measurements to
explore the impact of point-defects on RTN dynamics. Notably, while
defects have historically posed challenges, our research reveals a
surprising and promising facet, demonstrating that defects in
aggressively scaled 2D transistors can be harnessed for hardware
acceleration of inference engines based on SSNNs with exceptional
noise resilience. This underlines the untapped potential of defects for
computationalpurposes. In essence, our investigationunderscores the
importance of understanding and leveraging intrinsic point defects in
2D materials.

Methods
Growth of WSe2 film
The growth of WSe2 thin films on c-plane sapphire substrates was
carried out in a metal-organic chemical vapor deposition (MOCVD)
system (https://doi.org/10.60551/znh3-mj13) equippedwith a cold-wall
horizontal reactor with an inductively heated graphite susceptor with
gas-foil wafer rotation. The tungsten hexacarbonyl (W(CO)6) (99.99%,
Sigma-Aldrich) was used as themetal precursor while hydrogen sulfide
(H2Se)was the chalcogen sourcewithH2 as the carrier gas. TheW(CO)6
powder was maintained inside stainless-steel bubbler where the tem-
perature and pressure of the bubbler were held at 30 °C and 400Torr,
respectively. The synthesis of WSe2 film is based on a multi-step pro-
cess, consisting of nucleation, ripening, and lateral growth steps. In
general, the WSe2 sample was nucleated for 30 sec at 850 oC, then
ripened for 5min at 850 oC and 5min at 1000 oC, and then grown for
20min at 1000 °C. During the lateral growth, the tungsten flow rate
was set as 3.8×10-3 sccm and the chalcogen flow rate was set as 75 sccm
while the reactor pressure was kept at 200Torr. After growth, the
substratewas cooled inH2Se to 300 °C to inhibit the decomposition of
the obtained WSe2 films.

WSe2 film transfer to target substrates
To fabricate the WSe2 field-effect transistors, the WSe2 film was first
transferred from the sapphire growth substrate to the global back-
gatedAl2O3/Pt/TiN/p

++-Si substrate using a PMMA-assistedwet transfer
process. First, theWSe2 film on the sapphire substrate was spin-coated
with PMMA and baked at 150 °C for 2min to ensure good PMMA/WSe2
adhesion. The corners of the spin-coated film were scratched using a
razor blade and immersed inside a 2M NaOH solution kept at 90 °C.
Capillary action caused the NaOH to be preferentially drawn into the
substrate/film interface due to the hydrophilic nature of sapphire
and the hydrophobic nature of WSe2 and PMMA, separating the
PMMA/WSe2 film from the sapphire substrate. The separated film was
then fished from theNaOH solution using a clean glass slide and rinsed
in three separate water baths for 15min each before finally being
transferred onto the target substrate. Subsequently, the substrate was
baked at 50 °C and 70 °C for 10min each to remove moisture and
promote film adhesion, thus ensuring a pristine interface, before the
PMMA was removed using acetone immersion overnight and the film
was cleaned with IPA.

WSe2 etching and channel definition
To define the channel regions for the WSe2 FETs, the substrate was
spin-coated with PMMA and baked at 180 °C for 90 s. The resist was
then exposed via e-beam and developed using a 1:1 mixture of 4-
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methyl-2-pentanone (MIBK) and IPA. The WSe2 film was subsequently
etched using a sulfur hexafluoride (SF6) reactive ion etch chemistry at
5 °C for 12 s. Next, the sample was immersed in acetone overnight and
cleaned with IPA to thoroughly remove the photoresist.

WSe2 ultra-scaled device fabrication
The ultra-scaled devices were fabricated using a two-step e-beam
lithography process, where the scaled source-drain contact terminals
were patterned, evaporated, and lifted-off in the first step using a
single layer e-beam photoresist, followed by the second step which
involved patterning, evaporation, and lift-off of large contact pads
shorted to the scaled source/drain terminals for access and measure-
ments. ZEP 520A 1:1 is used as the photoresist in the first step. Prior to
resist spinning, the sample is dipped in Surpass 4 K for 60 s, rinsed in
DI water, and baked at 100 °C for 1min. This is done to improve the
adhesion of the photoresist to the substrate that contains exposed
metal alignmentmarkers. The sample is then spin-coated at 5000RPM
for 45 s and baked at 180 °C for 3min. The sample is then exposed
using e-beam lithography. The ultra-scaled patterns exposed in the
first step aredevelopedusing a cold-developprocess involvingorganic
solvent n-amyl acetate chilled to -10 °C (3min) and then rinsed in IPA
for 60 s. Post the develop process, 20 nm of palladium is evaporated
using e-beam evaporation, which now serves as contacts to the WSe2.
The remaining metal on the photoresist is lifted-off with immersion in
acetone for 30min. The sample is then immersed in Photo Resist
Stripper 3000 (PRS 3000) heated at 60 °C on a hotplate for 15mins to
completely remove the resist. Higher adhesion of the resist to the
substrate canmake it difficult to strip the resist, thus requiring the use
of a pipette or a purge bottle to purge with acetone or PRS 3000
depending on the solvent used. Following the resist removal, the
sample is rinsed with IPA for 10min. For the second step, contact pads
are again defined using e-beam lithography. Now, the sample is spin
coatedwithMMAfollowedbyA3 PMMA. E-beam lithography is used to
pattern the large access pads that overlap with the ultra-scaled source
and drain contacts on the WSe2 channel. The sample is developed
using a 1:1 mixture of MIBK/IPA for 60 s and pure IPA for 45 s. Next,
40 nm of palladium and 30 nm of gold are deposited using e-beam
evaporation. Finally, a lift-off process is performed to remove the
evaporated palladium/gold except from the source/drain patterns by
immersing the sample in acetone for 30min followed by IPA rinse for
another 10min.

Metal evaporation process
Metal evaporationwasdone in a Ferrotec Temescal F-2000 evaporator
with a standard fixture that allows for a substrate to source crucible
distance of at least 50 cm. Radiative damage is prevented during ramp-
up process by closing both the substrate and crucible shutters until a
stable deposition rate is achieved. It is important to note that the
shutters cannot fully protect the substrate, and the metal atoms can
still find alternative pathways to get to the substrate from the open
sides. For our scaled device fabrication, we limit the metal contact
thickness to 20 nm.

Electrical characterization
Electrical characterization of the fabricated devices at room tem-
perature and at low temperature was performed using a Lake Shore
CRX-VF probe station with a Keysight B1500A parameter analyzer.

Raman and PL characterization
Raman and PL spectra were collected using a Horiba LabRAM HR
Evolution confocal Raman microscope with an excitation wavelength
of 532 nm. The objective lens had a magnification of 100× and a
numerical aperture of 0.9. A grating with a groove spacing of 1800 gr
mm-1 was used for Raman and a grating with 300 gr mm-1 was used for
PL. The low-temperature PL measurements were measured using the

Linkam stage temperature control system. The stage was cooled to
77 K using liquid nitrogen.

Transmission electron microscopy
PMMA-assisted wet transfer process was used to transfer the mono-
layer WSe2 film onto the Quantifoil® TEM Substrate (658-200-CU-100,
Ted Pella) for TEM characterization. HAADF-STEM was performed
using an aberration-corrected ThermoFisher Titan3 G2 60–300 with
monochromator and X-field emission gun source at an accelerating
voltage of 80 kV. The convergence semi-angle used for STEM imaging
was 30mrad and the collection angle range of theHAADFdetectorwas
42–244mrad.

TCAD modeling
We describe the electrostatics and the current flow in the thin 2D FETs
with dimensions on the micrometer scale using a drift-diffusion based
TCADmodel, namely the commercial version of the software package
Minimos-NT48 by GTS. The electrostatics were calibrated to the mea-
sured transfer characteristics of the devices and subsequently we used
the non-radiative multi-phonon (NMP) model to describe charge
transfer of electrons from the channel to defects located at the inter-
face of the channel to the gate oxide. In the on-state of 2D FETs the 2D
channel is in accumulation and the surface potential shows negligible
gate bias dependence. In turn, the trap levels of channel-related
defects also become gate-bias independent in the on-state which leads
to gate-bias independent capture and emission time constants in the
NMP model.

Computational details
The Gaussian plane wave (GPW)method as implemented in the CP2K
code49 was employed for all DFT calculations. Defect calculations
were carried out in amonolayerWSe2 supercell containing 432 atoms
with 40 Å of vacuum perpendicular to the monolayer to minimize
spurious interactions with periodic images of the monolayer. We use
the PBE0_TC_LRC hybrid functional50 with the default mixing para-
meter of 0.25 to accurately describe the localization of charge and
the electronic interactions, including exchange and correlation
effects. The electronic wave functions were described with double-
zeta valence-polarized Goedecker–Teter–Hutter basis sets and aux-
iliary basis sets of type cFIT for calculations of the Hartree-Fock
exchange. The systems were self-consistently relaxed down to a
residual maximum force of 20meVÅ-1 for each atom with a con-
vergence criterion for the total energy of 13.6 μeV. Cell parameters
were relaxed with the hybrid functional to reduce the internal stress
to <0.01 GPa. Finite size corrections of the total energy compensat-
ing for electrostatic potential offsets and spurious interactions due
to periodic boundary conditions in charged supercells were carried
out using the CoFFEE code51, which implements the FNV correction
scheme52 for 2D systems.

Data availability
Data on samples produced in the 2DCC-MIP facility, including growth
recipes and characterization data, are available at https://doi.org/10.
26207/p9fd-qf11. Other data generated during and/or analyzed during
the current study are available from the corresponding author on
request.

Code availability
The code used for plotting the data is available from the correspond-
ing authors on request.
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