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Deep learning-based aberration
compensation improves contrast and
resolution in fluorescence microscopy

Min Guo 1,2 , Yicong Wu 2,3,14, Chad M. Hobson 4, Yijun Su2,3,4,
Shuhao Qian 1, Eric Krueger2,4, Ryan Christensen2,4, Grant Kroeschell 2,4,
Johnny Bui2,4, Matthew Chaw2,4, Lixia Zhang3, Jiamin Liu 3, Xuekai Hou1,
Xiaofei Han 2, Zhiye Lu5, Xuefei Ma5, Alexander Zhovmer 6, Christian Combs7,
Mark Moyle8, Eviatar Yemini 9, Huafeng Liu1, Zhiyi Liu 1,
Alexandre Benedetto 10, Patrick La Riviere 11,12, Daniel Colón-Ramos 12,13 &
Hari Shroff 2,3,4,12

Optical aberrations hinder fluorescencemicroscopy of thick samples, reducing
image signal, contrast, and resolution. Herewe introduce a deep learning-based
strategy for aberration compensation, improving image qualitywithout slowing
image acquisition, applying additional dose, or introducing more optics. Our
method (i) introduces synthetic aberrations to images acquired on the shallow
side of image stacks, making them resemble those acquired deeper into the
volume and (ii) trains neural networks to reverse the effect of these aberrations.
We use simulations and experiments to show that applying the trained ‘de-
aberration’ networks outperforms alternative methods, providing restoration
onparwith adaptive optics techniques; and subsequently apply the networks to
diverse datasets captured with confocal, light-sheet, multi-photon, and super-
resolution microscopy. In all cases, the improved quality of the restored data
facilitates qualitative image inspection and improves downstream image
quantitation, including orientational analysis of blood vessels in mouse tissue
and improved membrane and nuclear segmentation in C. elegans embryos.

Fluorescencemicroscopes offer diffraction-limited imaging only when
optical aberrations are absent. Such aberrations can arise due to
optical path length differences introduced anywhere in the imaging
path, including from instrument misalignment, optical imperfections,

or differences in refractive index between the heterogenous and
refractile sample, immersion media, or objective immersion oil.
Sample-induced optical aberrations usually dominate and are often
the reason that three-dimensional (3D) fluorescence image volumes
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show obvious deterioration in image signal-to-noise ratio (SNR), con-
trast, and resolution deeper into the image volume.

Onemethod of compensating for these aberrations is via adaptive
optics (AO1,2), a broad class of techniques that measure the aberrated
wavefront and subsequently apply an equal and opposite ‘corrective’
wavefront, restoring diffraction-limited3 or even super-resolution4

imaging throughout the image volume. Once the aberrated wavefront
is determined, an adaptive element such as a deformable mirror or
spatial light modulator is used to apply the correction. Although these
methods are effective, the process of determining the wavefront
typically slows acquisition and/or applies more illumination dose than
imagingwithout AO. From a practical perspective, implementing AO is
nontrivial and adds considerable expense to the underlying micro-
scope. Thus, AO remains the province of relatively few labs, and there
is a need for new methods that can reverse the effects of optical
aberrations without sacrificing temporal resolution, imparting more
dose to the sample, or adding additional hardware to the microscope.

Deep learning approaches can computationally reverse image
degradation, and have been used successfully in denoising5,6,
deconvolution7,8, and super-resolution applications9,10. By incorporat-
ing information about the underlying object, such methods can also
learn to predict the wavefront associated with aberrated images11–13.
With sufficient training data (matched pairs of diffraction-limited and
aberrated data), we reasoned that a neural network ought to be able to
directly predict the diffraction-limited image from the aberrated
image. The challenge thenbecomes accumulating appropriate training
data, which would ideally be obtained without relying on AO.

Here we address this problem by (i) introducing synthetic aber-
rations to easily obtained near-diffraction limited data so that they
resemble aberrated data and (ii) training neural networks to reverse
the effect of these aberrations. We use simulations to show that
application of our ‘content-aware’ approach outperforms other image
restoration methods, including deconvolution with the known aber-
rated point spread function (PSF). We also show that our method
provides performanceonparwithdirectwavefront sensing-basedAO3,
by comparing its output to experimental ground truth. We then apply
our techniques to diverse volumetric data captured with confocal,
light-sheet, multi-photon, and super-resolution microscopes, finding
that in all cases, resolution and contrast are substantially improved
over the raw data. In addition to facilitating biological inspection, the
restored data also enhanced quantitative investigation, including
orientational analysis of blood vessels in mouse tissue and improved
accuracy of membrane and nuclear segmentation in C. elegans
embryos.

Results
Compensating for aberrations with deep learning
First, we intentionally synthetically aberrate the images acquired by
fluorescence microscopes given knowledge of the physics of image
formation14,15 (Fig. 1, Methods, Supplementary Note 1). Aberrations are
chosen so that the aberrated images resemble those acquired deeper
into the sample, where aberrations are more pronounced. The key
insight of our approach is that the ‘shallow’ images on the ‘near side’ of
the three-dimensional fluorescence volume are usually near-
diffraction-limited and thus provide ground truth data that can be
used to train a network to reverse the effect of the synthetically
introduced aberrations. The trained neural network model (termed
‘DeAbe’) can then be used to reverse depth-dependent blurring on
data unseen by the network, effectively mitigating the effect of aber-
rations without recourse to AO.

To benchmark ourmethod, we began by simulating 3D phantoms
consisting of randomly oriented and positioned dots, lines, spheres,
circles, and spherical shells. We then degraded these structures by
adding random aberrations and noise and evaluated the extent to
which DeAbe could reverse the degradation (Fig. 1b, Supplementary

Figs. 1–7). Visual assessments in lateral (Fig. 1c, d, Supplementary
Movie 1) and axial (Fig. 1e, Supplementary Movie 2) views, as well as
quantitative comparisons (Fig. 1f) demonstrated that theDeAbemodel
outperformed blind deconvolution16, Richardson-Lucy deconvolution
with an ideal point spread function (PSF), Richardson-Lucy deconvo-
lution with the aberrated PSF (known in these simulations, but
unknown in general), and denoising methods (Supplementary Figs. 6,
7). We attribute the superior performance of DeAbe to its ability to
learn a sample-specific prior, thereby better conditioning its solution
relative to Richardson-Lucy deconvolution.

Importantly, simulations allowed us to further characterize
DeAbe, offering insight into the regimes in which the method excels
and where performance suffers. First, we found optimal performance
when aberration magnitudes in the training data match the aberration
magnitude in the test data (Supplementary Fig. 1). Over the conditions
we tested, the model improved images contaminated with root mean
square (RMS)wavefront distortion exceeding four radians (the highest
value we tested), although performance degrades as wavefront dis-
tortion increases. Second, although we performed tests with training
data containing up to the 7th Zernike order, the improvement offered
past order four (the value used in this work) is negligible (Supple-
mentary Fig. 2). Third, DeAbe trained on a mixture of Zernike basis
functions also provides notable improvement on images corrupted
solely by individual Zernike functions (Supplementary Fig. 3), although
dedicatedmodels trained to correct specific Zernike modes are better
if these modes are known in advance (Supplementary Fig. 4). Fourth,
although DeAbe’s performance suffers in the presence of noise, it still
offers noticeable visual and quantitative improvements in image
quality for SNR above ~5 (Supplementary Fig. 5). Finally, we explored
different networks for implementing DeAbe, finding that our previous
3D RCAN9 offered better performance than CARE5, RLN7, or
BasicVSR + +17 architectures (Supplementary Figs. 8, 9).

Comparing DeAbe predictions to experimental ground truth
We next benchmarked DeAbe against experimental datasets acquired
with a lattice light sheet microscope18 equipped with adaptive optics
for inducing and correcting aberrations (AO-LLSM19, Fig. 2, Supple-
mentary Table 1). When imaging phalloidin-stained PtK2 cells
(Fig. 2a–f), we induced aberrations that obscured thefine actinmeshat
the cell periphery, filamentous actin, and stress fibers (Fig. 2b–d).
Training a DeAbe model with a mixture of random aberrations
restored these structures, improving contrast and resolution to a level
approaching the aberration-free ground truth (Fig. 2e, f) or AO result
(Supplementary Fig. 10). As for the simulations (Supplementary Fig. 4,
6, 7), we confirmed that training DeAbe with Zernike modes matching
the underlying aberration enhanced performance compared to a ran-
dom mixture of modes (Supplementary Fig. 11) and that DeAbe out-
performed deconvolution (Supplementary Fig. 12) and denoising
(Supplementary Fig. 13).

We compared the performance of DeAbe to AO on a more
challenging sample, fixed 5dpf zebrafish embryos expressing a GFP
membranemarker labeling glutamatergic neurons (Fig. 2g–m),When
acquiring image volumes 40-140μm from the surface of the fish, AO
correction and the DeAbe prediction improved lateral (Fig. 2i–k) and
axial (Fig. 2l) views of the raw data, enhancing spatial resolution
(Fig. 2m). Again, DeAbe performance compared favorably to AO
correction, even on densely labeled structures (Supplementary
Fig. 14). Intriguingly, we also found examples in which the visual
clarity of the DeAbe prediction appeared better than the AO cor-
rection (Supplementary Fig. 14d, e), perhaps reflecting imperfect AO
correction. The cell and fish samples also allowed us to investigate
whethermodels trained on one sample type generalized to the other.
As we20 and others21 have reported, we obtained superior results
when training models specific to each sample type (Supplemen-
tary Fig. 15).
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Computational aberration compensation improves image
quality on diverse volumetric data
We subsequently applied DeAbe to diverse datasets acquired with
different microscope modalities, in each case training models on
images derived from the shallow side of image volumes (Figs. 3, Sup-
plementary Fig. 16–17, Supplementary Table 1). First, we imaged live C.
elegans embryos expressing a pan-nuclear GFP-histone marker with
inverted selective plane illumination microscopy (iSPIM)22,23, finding
that the raw image data displayed progressive loss of contrast and

resolution as a function of increasing depth, making it difficult or
impossible to discern subnuclear structure (or even individual nuclei)
at deeper imaging planes (Fig. 3a, i, Supplementary Movie 3). By con-
trast, the DeAbe prediction restored these structures, also improving
axial views (Fig. 3a, iii). Richardson-Lucy deconvolution also offered
some improvement in image quality, albeit not to the extent of the
DeAbe prediction, while also undesirably amplifying noise (Fig. 3a, ii).
Second, we used spinning-disk confocal microscopy to image thicker
adult C. elegans expressing themulticolor NeuroPAL transgene24, used
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for resolving neuronal identities. Depth-dependent image degradation
produced raw images with dim or diffuse nuclear signal in each color
channel. The DeAbe prediction improved SNR dramatically (Supple-
mentary Fig. 18, SupplementaryMovie 4), whichwe suspectmay prove
useful in improving the accuracy of neuronal identification. Third, we
applied DeAbe to images of NK-92 cells stained with Alexa Fluor 555
wheat germ agglutinin and embedded in collagen matrices, acquired
with instant SIM25, a super-resolution imaging technique (Fig. 3b–d,
Supplementary Fig. 19, Supplementary Movie 5). Post deconvolution,
the DeAbe prediction better resolved clusters of membrane-bound
glycoproteins, intracellular vesicles, and membranes (‘DeAbe + ’,
Fig. 3c, d) than the raw (or deconvolved raw, Supplementary Fig. 19)
data, especially near the limits of the 45μm thick imaging volume.
Fifth, we verified that the DeAbe prediction restored the shapes of
neuronal nuclei located on the ‘far side’ of anesthetized adult C. ele-
gans imaged with instant SIM, matching ground truth experiments in
which we flipped the worm over (Supplementary Fig. 20). Sixth, we
used two-photon microscopy to image live murine cardiac tissue
expressing Tomm20-GFP, marking the outer mitochondrial mem-
brane (Fig. 3e).Althoughmitochondrial boundarieswere evident in the
raw data 20μm into the volume, aberrations caused a progressive loss
in resolution that hindered visualization of subcellular structure at
greater depths (Fig. 3e, f). The DeAbe prediction restored resolution
throughout the 150μm thick volume (Fig. 3f, Supplementary Fig. 21,
Supplementary Movie 6), unlike Richardson-Lucy deconvolution
(Fig. 3f) whichamplifiednoisewithout restoring themitochondria. The
DeAbe prediction similarly improved contrast and resolution when
applied to volumes of fixed mouse liver stained with membrane
labeled tdTomato, imaged with two-photon microscopy (Supple-
mentary Movie 7). Quantitative contrast metrics (Methods, Supple-
mentary Fig. 22) confirmed our visual impressions of contrast
improvement provided by DeAbe.

Next, we applied DeAbe to samples ~10,000-fold larger in volu-
metric extent (Fig. 4a, SupplementaryMovie 8).Wefixed and iDISCO26-
cleared E11.5 mouse embryos immunostained for neurons (Alexa Fluor
TuJ1) and blood vessels (Alexa Fluor 594) and imaged them with low
magnification confocal microscopy. Although tissue clearing nomin-
ally produces a sample with the same refractive index everywhere, we
still observed pronounced depth-dependent degradation from the
‘near’ to ‘far’ side of the embryo, including in intensity (likely due to
photobleaching during the acquisition) and resolution. We were able
to largely reverse this deterioration by digitally compensating for
photobleaching27 (Methods), applying DeAbe, and finally deconvol-
ving the data (Fig. 4b, Supplementary Fig. 23). We also confirmed that
applying DeAbe prior to deconvolution proved superior to directly
deconvolving the raw data (Supplementary Fig. 24). While the
improvement in image quality was particularly striking in axial views
(Fig. 4b), restorations also improved the appearance of fibrillar

structures in lateral views, in both channels, throughout the volume
(e.g., the vicinity of the vagus nerve and its associated nerve roots,
Fig. 4c, d).

We further investigated this qualitative impression by using
automated tools28,29 to quantitatively assess the mean 3D orientation
and directional variance (a measure of the spread in angular orienta-
tion) at each voxel in the blood vessel channel (Fig. 4e–g, Supple-
mentary Figs. 25, 26, Supplementary Movie 9). The DeAbe restoration
resulted in cleaner separation between vessels, which aided voxel-wise
quantification of thesemetrics even in dense regions containing many
crisscrossing vessels (Fig. 4e, Supplementary Movie 9). In deeper
regions of the volume (Fig. 4f), the DeAbe results produced narrower
angular histogram distributions of vessels than the noisy raw data
(Fig. 4f). The improvement in quantification was also reflected in
directional variance analysis. For example, when visually inspecting
different regions of interest (ROI) with differential vessel alignment
(Fig. 4g, comparing vicinity of aortic arches, (ROI 1), to diencephalon,
(ROI 2)) we observed a greater difference inmean directional variance
when using the DeAbe reconstruction vs. the raw data (Supplemen-
tary Fig. 25).

Incorporating DeAbe inmulti-step restoration further enhances
resolution and contrast in 4D imaging applications
Given the performance of DeAbe thus far, we wondered if we could
further boost image quality by combining DeAbe with additional net-
works designed to enhance spatial resolution. To test this possibility,
we acquired dual-view light sheet microscopy (diSPIM30,31) volumetric
time-lapse (‘4D’) recordings of C. elegans embryos expressing labels
marking cell membranes and nuclei, and then passed the raw single-
view data through three networks designed to sequentially compen-
sate for aberrations (i.e., DeAbe), deconvolve the resulting predictions
(‘DL Decon’), and improve resolution isotropy5 (‘DL Iso’, Fig. 5a–d,
Supplementary Figs. 27–30). As expected, (Fig. 5a), the raw data
showed increasing depth-dependent degradation in resolution and
contrast, which confounded our ability to discern distinct nuclei or cell
boundaries on the ‘far’ side of the volume. In comparison, the multi-
step procedure offered striking improvements in resolution and con-
trast in both nuclear and membrane channels, largely alleviating the
degradation (Fig. 5a, b, Supplementary Figs. 28, 29, Supplementary
Movie 10). Ablation experiments in which one ormore of the networks
were removed produced inferior results, further substantiating our
hypothesis that the gains in image quality benefited from applying
DeAbe (Supplementary Fig. 31). In the membrane channel, the multi-
step restoration enabled us to automatically segment cell boundaries
more accurately than in the raw data and further refine the segmen-
tations manually up to 421 cells (Fig. 5c, Supplementary Fig. 30, Sup-
plementary Movie 11), exceeding previous efforts limited to the 350-
cell stage32. Automated segmentation by successively applying DeAbe

Fig. 1 | Concept and simulations illustrating deep learning-based aberration
compensation. a Schematic. Left: Fluorescencemicroscopy volumes are collected
and near-diffraction-limited images from the shallow side of each stack are syn-
thetically degraded to resemble aberrated images deeper into the stack. A neural
network (e.g., 3D RCAN) is trained to reverse this degradation given the ground
truth on the shallow side of the stack, and the trained neural network (DeAbe
model) subsequently applied to images throughout the stack, improving contrast
and resolution.Right: Moredetailed view of synthetic degradation process. Zernike
basis functions and associated coefficients (coeffs) are used to add random aber-
rations by modifying the ideal point spread function (iPSF) to generate an aber-
rated PSF (aPSF). Ground truth images (GT) are Fourier transformed (FT) and
multiplied by the ratio of the Fourier transformed aberrated and ideal PSFs
(essentially a modified optical transfer function, mOTF). Inverse Fourier trans-
forming (IFT) the result and adding noise generates the synthetically aberrated
images. See “Methods” for further details. OBJ: objective lens. b Simulated three-
dimensional phantoms comparing maximum intensity projections of aberrated

input image (left, random aberration with root mean square (RMS) wavefront dis-
tortion of 2 radians and Poisson noise added for an SNR of ~16, corresponding PSF
in inset), network prediction (DeAbe) given aberrated input (middle), and ground
truth (GT, right). Higher magnification views of dashed rectangular region are
shown in (c) (maximum intensity projection) and (d) (single plane), additionally
showing restoration given blind deconvolution (Blind Decon), Richardson-Lucy
deconvolution with diffraction-limited PSF (RL Decon 1), Richardson-Lucy decon-
volution with aberrated PSF (RL Decon 2). Yellow arrows indicate a reference
structure for visual comparison. Twenty iterations were used for RL deconvolution
and ten for blind deconvolution. eAs in (c, d) but showing axial plane along dashed
blue line in (b). f Quantitative comparisons for the restorations shown in (b–e)
using structural similarity index (SSIM, top) and peak signal-to-noise ratio (PSNR,
bottom). Means and standard deviations are shown for 100 simulations (10 inde-
pendent phantom volumes, each aberrated with 10 randomly chosen aberrations).
Scale bars: 5 μm (b) and 2.5μm (c–e). See also Supplementary Figs. 1–5.
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and DL Decon additionally provided a cell count closer to manual
ground truth33 than the raw data (Fig. 5d) or DL Decon alone, with DL
Iso providing no benefit to automated segmentation (Supplemen-
tary Fig. 32).

Next, we explored replacing the final network (DL Iso) with a
network designed to further enhance resolution based on ground
truth acquired with expansion microscopy9,34 (‘DL Expan’, Supple-
mentary Fig. 27b). After verifying that DL Expan improved resolution
more than 2-fold on data unseen by the model (Supplementary
Fig. 33), we applied the new multi-step restoration method to C. ele-
gans embryos expressing a GFP-membrane marker labeling head
neurons and gut cells (Fig. 5e). Compared to the raw data, the

enhanced resolution offered by the deep learning prediction better
resolved closely spaced membranes within and between cells
(Fig. 5f–h, Supplementary Figs. 34, 35). This capability proved espe-
cially useful when tracking the development of neurites projecting in
the nerve ring, a neuropil that constitutes the brain of the animal, and
which is composed of hundreds of tightly packed interwoven neurites.
While the position of the neurites within the neuropil determines cir-
cuit identity and connectivity, the sequence of events leading to its
innervation has not been described because of limitations in resolving
these structures. We focused our analyzes on the closely positioned
neurons AIY and SMDD, which we identified based on morphology by
comparison to labeled images in ref. 35 and ref. 36. SMDD is a central
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pioneering neuron in the nematode brain36–38, while its sister cell AIY35

is a first layer interneuron39 involved in thermotaxis and locomotion40.
Observing both neurons over our 120-minute recording, we found that
SMDD’s neurites grew out first, followed by AIY’s neurite. AIY’s neurite
entered the nerve ring after SMDD, consistent with the SMDD’s role as
a pioneer neuron (Fig. 5i, Supplementary Movie 12). Such develop-
mental dynamics were difficult or impossible to observe in the raw
data (Supplementary Fig. 36), or joint deconvolutions of the dual-view
data due to artifacts resulting from motion between the two views
(Supplementary Fig. 37). To illustrate that these gains in image quality
can be extended to a different label imaged in a different microscope,
we also restored images of nuclei labeled with a GFP histone marker
and acquired with high NA diSPIM23, finding similarly dramatic
improvements in contrast and resolution (Supplementary Fig. 38,
Supplementary Movies 13, 14).

In these neuronal (Fig. 5e–i, Supplementary Movies 12) and
nuclear (Supplementary Figs. 38, Supplementary Movies 13, 14)
recordings, although the inter-volume recording time spanned several
minutes, the volumeacquisition timewas 1 s and 1.2 s (10msand 20ms
per plane, respectively), necessary to ameliorate motion blur in these
rapidly repositioning30 embryo samples. As DeAbe is applied after data
acquisition, there is no loss in temporal resolution relative to raw
image capture. This capability is advantageous over AO, which always
entails additional temporal cost due to the need for wavefront sensing
and correction (e.g., several seconds for a single loop of correcting
aberrations in the AO-LLSM experiments presented in Fig. 2). While
this cost may be acceptable for correcting aberrations in static or
slowly moving samples prior to image acquisition (by far the most
common use case in AO enabled microscopy), it is too slow for the
highly dynamic embryos imaged here, which would ideally benefit
from rapid AO correction at each plane, at each time point.

To further underscore this point, we used the iSIM to image adult
worms with a GCaMP6 marker targeted to neurons. On anesthetized
(Supplementary Fig. 39) or partially immobilized (Supplementary
Fig. 40) worms, DeAbe restored fine structure otherwise masked by
aberrations. When performing continuous volumetric recordings at
1.5 Hz, necessary to followcalcium transients in themovingwormhead
and pharynx, DeAbe improved quality sufficiently that we could
recover the intensity of dim structures and resolve structural details in
the nerve ring that was obscured in the raw data, while faithfully
reproducing large intensity transients in the raw data (Supplementary
Movies 15–17, Supplementary Fig. 40). As for the embryos, such
restoration is currently infeasible with AO, due to its slow speed.

Discussion
As we show on diverse microscopes and samples spanning multiple
spatial and temporal scales, DeAbe can compensate for optical aber-
rations without recourse to AO: improving SNR, contrast, and resolu-
tion in fluorescence microscopy volumes without compromising the
temporal resolution of data acquisition (although we note the time

required for training a DeAbe model currently exceeds the time for
AO). We anticipate this capability will be useful for most labs, which
lack access to sophisticated AO setups but still need to improve the
quality of imaging volumes acquired using existing hardware. Besides
improving the qualitative appearance of images (Figs. 1–5), which
facilitates inspection of biological features deep within imaging
volumes, DeAbe also quantitatively improves downstream image
analysis.We highlight this capability by refining vessel segmentation in
large, cleared tissue samples (Fig. 4e–g) and in enhancing the seg-
mentation of densely packed nuclei and membranes in C. elegans
embryos (Fig. 5). The latter capability may prove particularly useful in
the creation or extension of 4Dmorphological atlases32, which depend
on high quality image data.

Several caveats are worth noting in the context of current lim-
itations and with an eye towards future applications. First, as for any
deep learningmethod, DeAbe provides a prediction at best and cannot
fully recover lost information that is not present in the raw data. Sec-
ond, the performance of DeAbe depends critically on the quality of the
training data, and specifically on the assumption that fluorescently
labeled structures are similar throughout the image volume.While this
assumption was met for the samples in this work, we encourage cau-
tion when applying DeAbe on highly heterogenous specimens (or
when applying DeAbe trained on one sample type to another, Sup-
plementary Fig. 15), lest hallucinations arise. Along the same lines, the
improvement afforded by DeAbe is sample- and aberration- depen-
dent. Third, although here we mainly trained on semi-synthetic data
(Figs. 2–5), it would also be worth investigating how well the training
derived from fully synthetic data7 (Fig. 1) generalizes to experimental
data. Such an approach might prove useful in ameliorating system
aberrations introduced by microscope hardware. Fourth, we focused
here on correcting depth-dependent aberrations, in which the training
data was corrupted by a constant aberration in each image plane. A
useful future direction would be to extend our approach to explicitly
account for laterally varying aberrations, as such aberrations are pro-
blematic particularly for large specimens. Finally, although we used a
mixture of random low-order aberrations to train our model,
enhanced performance is likely if aberrations specific to the sample (or
instrument) can be inferred and used in the training procedure (Sup-
plementary Fig. 4, 11, 15).

Methods
This research complies with all relevant ethical regulations. All animal
studies were performed in a manner consistent with the recommen-
dations established by the Guide for the Care and Use of Laboratory
Animals (National Institutes of Health), and all animal protocols were
approved by the Animal Care and Use Committees in NCI or NHLBI.

Deep learning-based de-aberration model
Building a de-aberration model (DeAbe) requires appropriate training
data and the use of a neural network. First, based on the physics of

Fig. 2 | Benchmarking DeAbe against experimental ground truth and adaptive
optics (AO) correction. a Phalloidin-stained PtK2 cells: aberrated (i), DeAbe pre-
diction (ii), and ground truth (GT, iii) images are shown. Inset in (i) shows applied
aberration; right hand insets in i)-iii) show Fourier transforms, blue ellipse with 1/
500 nm−1 horizontal extent and 1/400nm−1 vertical extent. Note images have been
rotated so viewing is normal to the coverslip surface, which results in anisotropic
resolution in the lateral plane. b Higher magnification insets of green rectangular
region in (a). c Higher magnification views of the yellow rectangular region in (b).
d Higher magnification view of blue rectangular region in (a). e Line profiles along
red arrowheads in (d) comparing aberrated image (blue), DeAbe prediction (red),
and ground truth (GT, black). f Decorrelation resolution analysis of images in (a).
Means, standard deviations and individual data points from 12 images are shown.
Arrows in (b) and (d) highlight details, facilitating comparison. XY: lateral views of
sample (singleplanes). See also Supplementary Figs. 10–13. 5 dpf zebrafish embryos

expressing a GFP membrane marker were fixed and imaged, with image volumes
restored via DeAbe or corrected via AO. g Depth coded lateral (XY) maximum
intensity projection of volume after DeAbe compensation. Volume spans 20 μm.
h Single lateral plane 13μm into imaging volume. DeAbe prediction is shown. Note
images are displayed in the native view, resulting in isotropic resolution in the
lateral plane. i–kHighermagnification views of green, orange, and blue rectangular
regions in (h), comparing raw (iv), DeAbe prediction (v), or AO correction (vi).
l Axial cross section along dashed white line in (g). Arrows in (i–l) highlight mem-
brane regions for comparisons. m Lateral resolution estimates from decorrelation
analysis. Means, standard deviations, and individual data points derived from 15
volumes are shown. See also Supplementary Fig. 14. Scale bars: 10 μmand 0.4 μm−1

vertical/ 0.5 μm−1 horizontal (insets) (a); 5 μm (b, d, g, h); 2 μm (c, i, j, k, l). Data
shown are representative samples from N= 12 experiments for (a–d) and N = 15
for (g–l).
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image formation, we derived forward imaging models that allowed us
to synthetically aberrate the data produced for multiple systems,
including wide field, light sheet, confocal, two photon, and super-
resolution structured illumination microscopes (Supplementary
Note 1). Second, we extracted subvolumes from the shallow side of the
experimentally acquired image stacks, using these data as ground
truth; alternatively, when we could obtain whole aberration-free

volumes, we used them as ground truth (e.g., aberration-free images
of synthetic phantoms in Fig. 1b, Supplementary Figs. 1–9, and stacks
of cells in Fig. 2a and Supplementary Figs. 10–13,where the aberrations
are negligible due to the thickness of the sample). Third, based on the
forward imaging models, we synthetically added aberrations to the
ground truth images so that they resembled aberrated data present
deeperwithin the image stacks. Together, thepairedground truthdata
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and associated synthetically degraded data constitute training pairs.
Fourth, we used these training pairs in conjunction with our 3D RCAN
network9 to train a DeAbe model to reverse the effect of synthetic
aberration. Finally, we applied the trained network to reduce the
effects of aberrations in experimentally acquired image volumes
unseen by the network.

We define the ‘shallow side’ of an image stack by the planes
nearest to the detection objective, which are typically contaminated
with least aberration and thus offer the best image quality. We then
selected subvolumes on the shallow side (‘shallow subvolumes’) by
visually inspecting image quality in real and Fourier space. We also
examined quantitative metrics for this choice, finding that our visual
impression usually coincided with a resolution degradation of ~20%
(Supplementary Fig. 16, 17, Supplementary Table 1). We extracted
shallow subvolumes from image stacks by manually cropping with
ImageJ when image size and content differed substantially across a
given specimen type, or automatically with customized ImageJmacros
when considering specimens with more stereotyped image size and
content (e.g., as for time-lapse image volumes). For the clearedmouse
embryo images (Fig. 4), the shallow subvolumes were further divided
into smaller subvolumes ( ~ 80 MB/volume) due to their large volume
size in raw data (Supplementary Table 1).

As described in Supplementary Note 1, we expressed the aber-
rated wavefront ϕ r,θð Þ at the back focal plane of the objective using
Zernike basis functionsϕm r, θð Þ and associated Zernike coefficients cm

ϕ r, θð Þ=
XM
m=0

cmϕm r,θð Þ, ð1Þ

with M the maximum Zernike index chosen in our aberration.
We generated synthetic aberrations by using semi-randomly

generated Zernike coefficients (Fig. 1a). We used the ANSI
convention41 when indexing the Zernike coefficients, customizing
aberrations by using different Zernike coefficients for different data-
sets acquired from different microscopes. For all experimental data-
sets, we added aberrations up to the 4th Zernike order (i.e., M = 14),
except for piston and tilt components (Z = 0, 1, 2). The amplitudes of
the Zernike coefficients were randomly generated, but subject to pre-
defined bounds. We initially set an upper bound of 0.5 rad for all
Zernike coefficients, then added an additional 1 rad for defocus (Z = 4)
and spherical (Z = 12) components to mimic the more severe con-
tamination caused by defocus and spherical aberrations commonly
encountered in experimental datasets, i.e:

cz =0, f or Z =0, 1, 2

jcz j≤ 1:5, f or Z =4, 12

jcz j≤0:5, otherwise f or Z ≤M,

8><
>: ð2Þ

with M = 14 for all experimental datasets.

For each shallow side subvolume, 10 independent sets of aber-
rations were generated and used for synthetic degradation, thereby
augmenting the data 10-fold. Processing was performed with custom
MATLAB code (MathWorks, R2022b), with further details provided in
the Code availability section.

We employed 3D RCAN, appropriate for 3D image volumes, for
generating the DeAbe model based on the training data pairs. We
trained individualDeAbemodels for eachmicroscope andeach sample
type. For training, we set the number of epochs to 200; the number of
steps per epoch to 400; the training patch size to 64 × 64 × 64; the
number of residual blocks to 5; the number of residual groups to 5; and
the number of channels to 32.When applying themodel, the patch size
was set to 256× 256 × 256. Image volumes larger than this patch size
were divided into patches, the network applied to each patch, and the
patches stitched together via linear blinding to minimize boundary
artifacts8 (unless specified otherwise, we used this setting for appli-
cations of 3D RCAN). Training and model application was performed
within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon,
Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce
RTX 3090 with 24 GB memory). More details on datasets and training
parameters are listed in Supplementary Table 1.

Multi-step image restoration with deep learning
The multi-step image restoration pipeline combines the DeAbe model
with two additional networks to progressively improve image resolu-
tion and contrast: (1) the DeAbe model to reverse degradation from
aberrations (“DL DeAbe”); (2) a deconvolution network designed to
mimic the image quality improvement afforded by multiview imaging
(“DLDecon”, see the sectionDeep learning-based deconvolution); (3) an
axial resolution enhancement network to improve resolution isotropy
(“DL Iso”, see the section Deep learning-based axial resolution
enhancement); or a network designed to predict the improved reso-
lution provided by expanded samples (“DL Expan”, see the section
Deep learning-based expansion).

Deep learning-based deconvolution
As for our previous attempts at deep-learning based multiview
deconvolution8, we used a single-view image volume as input, and
attempted to restore image resolution and contrast that approximated
the result from multiview joint deconvolution. The training data were
acquired by dual-view light sheet microscopy30, either a ‘symmetric’
diSPIM equipped with 0.8/0.8 NA objectives31 (Fig. 5e–i, Supplemen-
tary Figs. 31, 33–37) or a higher NA ‘asymmetric’ diSPIM equipped with
1.1 / 0.67 NA objectives23 (Fig. 5a–d, Supplementary Figs. 28–30, 38).
First, raw images were de-aberrated with the DeAbe model. Then de-
aberrated images from the two views were jointly deconvolved to
achieve reconstructions with near isotropic spatial resolution and
good image quality throughout the reconstruction. With training data
consisting of the single-view de-aberrated images as input and the

Fig. 3 | Computational aberration compensation on variety of fluorescence
microscopy image volumes. a Live C. elegans embryos expressing a pan-nuclear
GFP histone marker were imaged with light sheet microscopy (i, left column) and
the raw data processed with Richardson-Lucy deconvolution (ii, 10 iterations,
middle column) or with a trained DeAbe model (iii, right column). First two rows
show single planes 20.0 and 27.7μm into the sample, third row shows axial view.
Comparative line profiles through blue, yellow, and green lines are shown in insets,
comparing ability to discriminate nuclei. Red arrow highlights nuclei for visual
comparison. See also Supplementary Movie 3. b NK-92 cells stained with Alexa
Fluor 555wheat germagglutinin and embedded in collagenmatriceswere fixed and
imaged with instant SIM, a super-resolution imaging technique. Left: raw data,
right: after application of DeAbe and deconvolution (DeAbe + , 20 iterations
Richardson-Lucy). Lateral maximum intensity projections (MIP, top) or single axial
planes (bottom) are shown in (b), and (c, d) show higher magnification views

corresponding to green (c) or blue (d) dashed rectangular regions in (b). Colored
arrows in (c, d) highlight fine features obscured in the raw data and better revealed
in the DeAbe+ reconstructions. See also Supplementary Movie 5, Supplementary
Fig. 19. e Live cardiac tissue containing cardiomyocytes expressing Tomm20-GFP
was imagedwith two photonmicroscopy. Rawdata (left) are comparedwith DeAbe
prediction (right) at indicated depths, with insets showing corresponding Fourier
transform magnitudes. Blue circles in Fourier insets in (e) indicate 1/300nm−1

spatial frequency just beyond resolution limit. See also Supplementary Movie 6.
fHighermagnification views ofwhite dashed rectangular region in (e), emphasizing
recovery of mitochondrial boundaries by DeAbe model. See also Supplementary
Fig. 21, Supplementary Movie 7. Scale bars: 10μm (a, e); 5 μm (b, f); 2μm (c, d); (e)
diameter of Fourier circle: 300nm−1. Data shown are representative samples from
N= 3 experiments.
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jointly deconvolved images as ground truth, we then used another 3D
RCAN for the deconvolution model (DL Decon). For all datasets, the
number of epochs for trainingwas 200; the number of steps per epoch
was 400; the training patch size was 64 × 64 × 64; the number of resi-
dual blocks was 5; the number of residual groups was 5; and the
number of channels was 32. Training and model application was per-
formed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel
Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia
QuadroRTX6000with 24GBmemory).Wenote that although training
DL Decon required dual-view image volumes, applying DL Decon

needs only single-view image volumes acquired from single-view light
sheet microscopy (iSPIM)22.

Deep learning-based axial resolution enhancement
The images predicted by the DL Decon model were not perfectly iso-
tropic, i.e., the axial resolution (although improved over the raw input
images) is worse than the lateral resolution. Thus, for some experi-
ments we used an additional network to enhance axial resolution (DL
Iso, Fig. 5a, b, Supplementary Figs. 28-31, Supplementary Movies 10,
11). CARE5 software (https://github.com/CSBDeep/CSBDeep) was
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Fig. 4 | Computational aberration compensation on mm-scale cleared mouse
embryo volumes. a Fixed and iDISCO-cleared E11.5-day mouse embryos were
immunostained for neurons (TuJ1, cyan) and blood vessels (CD31, magenta),
imaged with confocal microscopy and processed with a trained DeAbe model. See
also Supplementary Movie 8. b Axial view corresponding to dotted rectangular
region in (a), comparing raw data and depth-compensated, de-aberrated, and
deconvolved data (DeAbe + ). See also Supplementary Figs. 23, 24. c Higher mag-
nification lateral view at axial depth of 1689μm indicated by the orange double
headed arrowheads in (b). d Higher magnification views of white dotted region in
(c), comparing raw (left) and DeAbe+ processing (right) for neuronal (top) and
blood vessel (bottom) stains. e Orientation (θ, transverse angle) analysis on blood
vessel channel of DeAbe+ data, here shown on single lateral plane at indicated axial
depth. See also Supplementary Fig. 25, Supplementary Movie 9. f Higher

magnification lateral view of white dotted region in (e) (note that axial plane is
different), comparing intensity (left) andorientation (right) views between raw (top
row) and DeAbe+ prediction (middle row). Righthand insets show higher magnifi-
cation views of vessel and surrounding region highlighted by dotted lines. Bottom
row indicates histogram of all orientations in the vessel highlighted with dotted
ellipse, full-width-at-half maximum (FWHM) in peak region of histogram is also
shown. g Directional variance of blood vessel stain within the indicated plane, with
higher magnification region of interest (ROI) views at right. Histogram of direc-
tional variance in both regions also shown. See also Supplementary Fig. 26. Scale
bars: 500μm (a, b, c, e); 100μm(d), 50μm inset; 300μm(f), 50μm inset;
300μm(g), 50μm inset. Data shown are representative samples from N= 3
experiments for (a–d) and N = 1 for(e–g).
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employed to train the a ‘DL Iso’ model based on the predictions
derived from serially applying the DeAbe and Decon models to raw
input images.Weused 1003Dvolumes, each spanning 360×480× 310
voxels, for training data. Training was performed on the xy planes
(lateral views), using a 2D PSF (consisting of a point blurred with a 1D
Gaussian function, sigma = 2.5 pixels along the y dimension) an axial
downsampling factor of 6, and a patch sizeof 64 × 64 to create training

pairs. The trainingwasperformedwithin Python3.7.0onaWindows 10
workstation (CPU: Intel Xeon, Platinum8168, twoprocessors; RAM: 512
GB; GPU: Nvidia Quadro RTX6000 with 24 GB memory).

Deep learning-based expansion
As an alternative to DL Iso, we also trained a model to improve the
resolution based on data acquired with expansion microscopy (DL
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Expan). First, physically expanded samples (Supplementary Fig. 33)
were imaged on the symmetric 0.8 NA diSPIM. Second, dual-view raw
images were jointly deconvolved and used as ground truth images.
Third, the ground truth images were synthetically degraded to
resemble low-resolution conventional images acquired on the diSPIM,
following our previous procedure9. Last, the 3D RCAN network was
employed to train the DL Expanmodel based on the training data (i.e.,
synthetically degraded and ground truth pairs).

For thewormembryodatawithDAPI labelednuclei (Supplementary
Fig. 38), dual-view raw image volumes from 15 expandedworm embryos
were acquired and jointly deconvolved to produce 15 high-resolution
image volumes. These 15 volumes were then synthetically degraded to
generate low-resolution images. For the worm embryo data with TTX3B
neurites labeled (Fig. 5e–i, Supplementary Figs. 33–36), dual view image
volumes from 71 expanded worm embryos were acquired andmanually
cropped to select regions containing TTX3B neurites (this was necessary
given the sparsely labeled neurites present in the raw images). Cropped
images were jointly deconvolved to produce 71 high-resolution image
volumes. These 71 volumeswere then synthetically degraded togenerate
synthetic low-resolution imagedata. For eachdataset, the low-resolution
andhigh-resolutionpaired volumeswere thenused to train the 3DRCAN
based DL Expan model. The number of epochs for training was set to
300; the number of steps per epoch to 400; the training patch size to
64×64×64; the number of residual blocks to 5; the number of residual
groups to 5; and the number of channels to 32. The training was per-
formed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel
Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA
GeForce RTX 3090 with 24 GB memory).

Simulations on phantom objects
To evaluate the quality and performance of our DeAbe model, we
generated 3D phantom objects consisting of five types of structures
in MATLAB (Mathworks, R2022b, with the Image Processing Tool-
box): dots, lines, circles, spheres, and spherical shells27. Phantoms
were randomly oriented and located in a volume of 256 × 256 × 256
voxels, with voxel size 0.13 × 0.13 × 0.13 μm3. We simulated the blur-
ring introduced by light sheetmicroscopy (SupplementaryNote 1) by
convolving the phantomwith an ideal, noise-free PSF resembling that
of our light sheet system (with 1.1 NA water dipping objective,
detection wavelength of 0.532 μm and an illumination light sheet
thickness of 2 μm). Aberrated data was generated by altering the
ideal PSF according to the synthetic aberration procedure
described above.

To create synthetic aberrations, we adopted Eq. (1) and generated
Zernike coefficients semi-randomly in MATLAB, with each Zernike
coefficient cm subject to a pre-defined upper bound Tm:

jcmj≤Tm, f or m≤M, ð3Þ

with m the Zernike index following the ANSI convention and M the
maximum Zernike index.

We omitted piston and tilt components (m = 0, 1, 2) and weighted
lower order Zernike components (Defocusm = 4, astigmatismm = 3,5,
and spherical m = 12) more as these aberrations are commonly
observed in real samples:

Tm =

0, f or m=0, 1, 2

1:5, f or m=3, 4, 5, 12

0:5, otherwise f or m≤M

8><
>: ð4Þ

with M defined based on the desired Zernike order:

M =

9, f or Zernike order of 3

14, f or Zernike order of 4

20, f or Zernike order of 5

27, f or Zernike order of 6

35, f or Zernike order of 7

8>>>>>><
>>>>>>:

ð5Þ

For Supplementary Fig. 2, we varied M to explore the effect of
different Zernike orders on de-aberration performance by setting
M =9, 14, 20, 27, and 35 corresponding to Zernike orders 3–7. For all
other simulations, we set M = 14.

The Root Mean Square (RMS) wavefront distortion of an aberra-
tion with Zernike coefficients cm (m= 3, 4, 5, . . . ,M) is:

RMSc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m= 3

cm2

vuut ð6Þ

The RMS wavefront distortion for aberrations defined by upper
bounds Tm (m= 3, 4, 5, . . . ,M) is:

RMST =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m= 3

Tm
2

vuut ð7Þ

To create training data, we synthetically aberrated phantomswith
two types of aberrations:

1) a random mixture of aberrations containing different Zernike
components, with the amplitude of the aberrations subject to upper
bounds. This type of aberrations was first generatedwith a set of initial
Zernike coefficients cm based on Eqs. (3–5), and then rescaled to a
maximum RMS of Ω wavefront distortion (e.g., Ω= 1, 2, or 4 rad) to

Fig. 5 | Incorporating aberration compensation into multi-step restoration
dramatically improves image quality in volumetric time-lapse imaging. a C.
elegans embryos expressing GFP-labeled membrane marker (green) and mCherry-
labeled nuclear marker (magenta) were imaged with dual-view light-sheet micro-
scopy (diSPIM) and the raw data (left) from single-view recordings processed
through neural networks that progressively de-aberrated, deconvolved, and iso-
tropized spatial resolution (3-step DL, right). Single planes from lateral (top) and
axial (bottom) perspectives are shown (b) Higher magnification axial views deep
into embryo, corresponding to dashed rectangle in (a). c Examples of automatic
segmentation on raw (left, 319 cells), 3-step deep learning (DL) prediction (middle,
421 cells), and manually corrected segmentation based on DL prediction (right,
421 cells). Single planes corresponding to upper planes in (a) are shown. Red, blue
ellipses highlight regions for visual comparison. See also Supplementary Figs. 28,
29, Supplementary Movies 10, 11. d Number of cells detected by automatic seg-
mentation of membrane marker vs. time for raw data (purple) and after applying

first twoDL steps (Steps 1, 2; blue, green curves).Means and standarddeviations are
derived from 3 embryos and manually derived ground truth (black) is also pro-
vided. See also Supplementary Fig. 32. e Maximum intensity projection (MIP)
images ofC. elegans embryos expressingmembrane-localizedGFPunder control of
the ttx3−3b promoter, imaged with diSPIM, comparing raw single-view recordings
(left) andmulti-step restoration that progressively de-aberrated, deconvolved, and
super-resolved the data (right, 3-step DL). Embryo boundary outlined in light blue
for clarity. See also Supplementary Figs. 34, 35, Supplementary Movie 12. Higher
magnificationMIP (f) or lateral (g) or axial (h) planes corresponding todashed lines,
rectangle in (e) are also shown. i Time series based on 3-step DL MIP predictions
highlight developmental progressionof AIY (blue) and SMDD (magenta) neurites as
they enter the nerve ring region. Top, bottomparts of each panel at each timepoint
showMIP (neurites highlighted as dotted lines) vs. neurite model, respectively. See
also Supplementary Fig. 36. Scale bars: 5μm(a, c, e, f, h); 2μm(b, d, g). Data shown
are representative samples from N= 3 experiments.
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obtain the final Zernike coefficients cm�f inal :

cm�f inal =
Ω

RMST
cm, f or m≤M ð8Þ

These aberrated training data were used to train the general
DeAbe models (i.e., all but the model trained to counter the defocus
mode specifically) used in all figures and Movies showing simulated
phantoms.

2) a single aberration mode of defocus with amplitude subject to
upper bounds, i.e., the upper bounds of each Zernike coefficient were
zeros except for the defocus mode (m = 4):

Tm =
1:5, f or m=4

0, otherwise f or m≤M

�
ð9Þ

By replacing Eq. (4) with Eq. (9), we could generate the defocus
aberration the same way as for the first aberration type (1). These
training data were only used to train the specific defocusDeAbemodel
used in Supplementary Fig. 4.

For each training session, we created 50 phantoms, each con-
sisting of different random objects. For each phantom, we generated
10 independent aberrated images with each image containing random
mixtures of aberrations (Fig. 1, Supplementary Figs. 1–9, Supplemen-
tary Movies 1–2) or only defocus aberrations (Supplementary Fig. 4),
for a total of 500 training data pairs per session.Wealso addedPoisson
noise to the aberrated images by defining the SNR as

SNR =
ffiffiffi
S

p
, ð10Þ

where S is the signal defined by the average of all pixels with intensity
above a threshold (here set as 1% of the maximum intensity of the
blurred objects in the noise-free image).

We employed 3D RCAN to train the DeAbe model based on
simulated training data. We set the number of epochs to 200; the
number of steps per epoch to 400; the training patch size to
64 × 64 × 64; the number of residual blocks to 5; the number of resi-
dual groups to 5; and the number of channels to 32. Training was
performed with Python 3.7.0 on aWindows 10 workstation (CPU: Intel
Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA
GeForce RTX 3090 with 24 GB memory).

To benchmark the performance of the DeAbe model, we created
synthetic phantoms with three types of aberrations:

1) a random mixture of aberrations containing different Zernike
components, with the amplitude of the aberrations subject to upper
bounds. This type of aberration is the same used for training the
general DeAbemodels and was generated following Eqs. (3–5) and (8).
This aberration mixture was used in Supplementary Fig. 2.

2) a random mixture of aberrations containing different Zernike
components, with the amplitude of the aberrations fixed at a certain
RMS value. This aberration mixture was first generated with a set of
initial Zernike coefficients cz basedonEqs. (3–5), and then rescaled to a
fixed amplitude with RMS ϒ (e.g., ϒ= 1, 2, or 4 rad) wavefront distor-
tion to obtain the final Zernike coefficients cm�f inal :

cm�f inal =
ϒ

RMSc
cm, f or m≤M ð11Þ

This aberrationmixture was used for Fig. 1, Supplementary Figs. 1,
3, 5, and Supplementary Movies 1–2.

3) single aberration modes with a fixed RMS value, i.e., Zernike
coefficients were set to zero except for the desired aberration mode.
The single aberration modes tested in the paper include defocus
(m = 4), astigmatism (m = 3,5), coma (m = 7,8), trefoil (m=6,9), and

spherical (m = 12). If the RMS wavefront distortion is defined as ϒ
(e.g., ϒ = 1, 2, or 4 rad), each single aberration mode’s Zernike
coefficients are:

Defocus: c4 =ϒ,otherwise cm =0 f or m≤M
Astigmatism:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c32 + c52

p
=ϒ, otherwise cm =0 f or m ≤M

Coma:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c72 + c82

p
=ϒ,otherwise cm =0 f or m ≤M

Trefoil:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c62 + c92

p
=ϒ, otherwise cm =0 f or m ≤M

Spherical: c12 =ϒ,otherwise cm =0 f or m ≤M
These aberrations were used to test the DeAbe performance on

single aberration modes (Supplementary Figs. 3,4).
For quantitative analysis, we used structural similarity index

(SSIM) and peak signal-to-noise ratio (PSNR) referenced to the simu-
lated ground truth to evaluate the restored images provided by deep
learning as well as by traditional deconvolution. The SSIM and PSNR
were calculated based on image volumes with MATLAB (Mathworks,
R2022b). Their mean value and standard deviation were computed
from 100 simulations, each with random object structures and input
aberrations.

To benchmark the performance of DeAbe using different neu-
ronal networks, we compared our default 3D-RCAN choice with three
other state-of-the-art 3D networks including CARE, RLN, and
BasicVSR + +. For a fair comparison, the training data pairs of phan-
tom objects for Fig. 1 (generated with random mixtures of aberra-
tions) were used to train the CARE, RLN, and BasicVSR + + in addition
to 3D-RCAN. Then models trained using different networks were
applied to aberrated images and the prediction results compared in
Supplementary Figs. 8, 9. 1) TheCAREpackagewas downloaded from
https://github.com/CSBDeep/CSBDeep. The patch size was set to a
3D shape of 64 × 64 × 64 and the patch number was set to 32; the
training epoch was 50 and the training steps per epoch was 30; and
all other parameters were set to default values. 2) The RLN package
was downloaded from https://github.com/MeatyPlus/Richardson-
Lucy-Net. The training files and folders were reorganized to fit the
input format as required by RLN. All training parameters were set to
default values. 3) The BasicVSR + + package was downloaded from
https://github.com/XPixelGroup/BasicSR. The batch size was set as 2
and the patch size of the 3D shape was 10 × 256 × 256; the learning
rate for all modules was set to 1 × 10−4; and all other parameters were
set at default values.

To distinguish de-aberration from denoising (Supplementary
Figs. 6, 7, 13), we compared DeAbe performance with nonlocal means
(NLM) and an unsupervised deep learning network, Noise2Void (N2V).
The NLM denoising algorithm was implemented using the OpenCV
library (https://docs.opencv.org/3.4/d5/d69/tutorial_py_non_local_
means.html). We used the function fastNlMeansDenoising with the
parameters h as 5, templateWindowSize as 7, and searchWindowSize
as 21. The N2V package was downloaded from https://github.com/
hanyoseob/pytorch-noise2void. The training files and folders were
reorganized to fit the input format as required by N2V. The training
epoch was 5000 and the batch size was 4; and all other parameters
were set to default values.

Preprocessing, attenuation correction, traditional deconvolu-
tion, and multiview fusion
Raw images acquired with iSIM and light sheet imaging were pre-
processed by subtracting a uniform background with intensity
equivalent to the average of 100 dark (no excitation light) background
images. When diSPIM was operated in stage scan mode, the images
were also deskewed to correct the distortion induced by stage-scan
acquisition before further processing.

For the clearedmouse embryos imagedwith confocalmicroscopy
(Fig. 4, Supplementary Figs. 23, 24, Supplementary Movie 8) and
nematodes imaged with iSIM (Supplementary Fig. 20), raw data was
additionally preprocessed with intensity attenuation correction. The
attenuation correctionwas performed bymultiplying the raw intensity
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values with an exponential compensation factor:

IðzÞ= I0ðzÞeαz ð12Þ

with I0ðzÞ the raw intensity, z the depth and α the attenuation factor.
We set α =0:01 for all datasets.

For the comparison of DeAbe with traditional deconvolution, we
implemented both Richardson-Lucy (RL) deconvolution42,43 (Fig. 1c–f,
Fig. 3, Supplementary Figs. 12, 19, 21, 23, 24) and blind deconvolution16

(Fig. 1c–f, Supplementary Fig. 12) on the raw aberrated images. For
blind deconvolution, we used the MATLAB function deconvblind with
default settings (https://www.mathworks.com/help/images/ref/
deconvblind.html). For RL deconvolution, we adopted our previously
developed deconvolution package8 (https://github.com/eguom/
regDeconProject). In one synthetic dataset (‘RL Decon 2’, Fig. 1c–f),
we used an aberrated PSF that was generated as described in Supple-
mentary Note 1 and matched the aberrations in the synthetic dataset;
otherwise, we used an aberration-free ideal PSF for all other datasets
(Fig. 1c–f, Fig. 3 and Supplementary Figs. 19, 21, 23, 24). Additionally,
we also performed RL deconvolution on several datasets after DeAbe
processing (Fig. 3b–d, Supplementary Fig. 19, 23, 24), setting the
number of iterations to 20 unless specified otherwise. All deconvolu-
tion was performed in MATLAB (MathWorks, R2022b) on a Windows
10 workstation (CPU: Intel Xeon, Platinum 8369B, two processors;
RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

For data acquired by diSPIM, we performed multiview fusion on
several datasets either for generating DL training data (Fig. 5, Supple-
mentary Figs. 28, 29, 34–36, 38) or for comparisons to the DL Decon
model (Supplementary Figs. 31, 37). The diSPIM data typically contain
two view volumes, referred to as View A and View B volumes. The
multiview fusionprocess involves registration and joint deconvolution
to combine two views into a single volumetric image stack with
improved resolution. The registration first rotates View B by 90
degrees along the Y-axis to align View B’s orientation with View A
and then maximizes the cross-correlation function between View A
and View B with affine transformations. After registration, View A and
registered View B were deconvolved jointly using a modified
Richardson–Lucy deconvolution algorithm as previously described30.
Multiview fusion was achieved using custom software (https://github.
com/eguom/diSPIMFusion) on a Windows 10 workstation (CPU: Intel
Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA
GeForce RTX 3090 with 24 GB memory).

Sample preparation and imaging
Live nematode embryos imaged with light sheet microscopy.
Nematode strains were kept at 20 °C, and grown on NGM media
plates seeded with E. coli OP50. Strains used in this paper included
BV514 (ujIS113 [pi-1p::mCherry::H2B + unc-119(+); Pnhr-82::mCherry::
histone + unc-119( + )]), OD58 (ltIs38 [pie1p::GFP::PH(PLC1delta1) +
unc-119( + )]), DCR6268 (olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’
UTR + pelt-7::mCh::NLS::unc-54 3’ UTR]), and SLS164 (ltIS138[pi-
1p::GFP::PH(PLC1delta1) + unc-119(+)]; ujIS113 [pi-1p::mCherry::H2B +
unc-119(+); Pnhr-82::mCherry::histone + unc-119( + )]). SLS164 was
made by crossing together strains BV514 and OD58 and may have
unc-119(ed3) III in the background. Strains BV514 andOD58were gifts
from Dr. Zhirong Bao.

Nematode samples were prepared for diSPIM imaging as pre-
viously described22,31,44: gravid adult hermaphrodites were picked into
a watch glass with M9 buffer, adults were cut in half to liberate
embryos, and embryos were transferred onto a poly-L-lysine coated
coverslip in a diSPIM imaging chamber. For strain DCR6268
((olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-
7::mCh::NLS::unc-54 3’ UTR]), labeling neuron and gut cells), embryos
were imaged once they reached the bean stage of development using a
fiber-coupled symmetric diSPIM (with 0.8NA/0.8NA objectives)31.

Volumes were captured once per minute over two hours in light sheet
scanmode. Each volume comprised 50 slices, with a 1μmstep size and
a total acquisition time per volume of ~1 second. For strain SLS164
(labeling cellmembrane and nuclei), embryoswere imaged from the 2-
or 4-cell stage using a fiber-coupled asymmetric diSPIM (with 1.1NA/
0.67NA objectives)23. Volumes were captured once every 3minutes
over 450-minute duration in stage scanmode. Each volume comprised
70 slices, with a 1.1μm stage step size and a total acquisition time of
~1.4 s per volume. For strain BV514 (labeling cell nuclei), embryos were
imaged from the bean stage to hatching using the asymmetric diSPIM.
Volumes were captured every 5minutes in stage scan mode. Each
volume comprised 60 slices, with a 1.4μm stage step size and a total
acquisition time per volume of ~1.2 seconds. For strain OD58 (labeling
cell membranes), embryos were imaged from the 4- or 8-cell stage
using a symmetric diSPIM. Volumes were captured once every 3min-
utes over a 450-minute period in light sheet scan mode. Each volume
comprised 45 slices, with a 1μm step size and a total acquisition time
per volume of ~0.9 seconds. For all imaging, images were acquired
using 488 nm excitation (for GFP labels) or 561 nm excitation (for
mCherry labels).

Expanded nematode embryos. C. elegans embryos from strain
DCR6268 (labeling neurites and gut cells) were immobilized on Poly-L-
Lysine (PLL) coated glass bottom dishes, bleached, digested by yata-
lase, fixed, and expanded. The procedure takes ~2 days, and is adapted
from our published method27.

First, glass bottom dishes were coated with PLL. PLL (Sigma, Cat#
P5899) powder was reconstituted in distilled water to 1mg/mL, ali-
quoted, and stored at −20 °C. Prior to experiments, 30–50 μL of PLL
was placed on the glass bottom dish (MatTek, Cat# P35G-1.5-14-C) and
air dried at room temperature (RT). Coated coverslips were usually
prepared up to 1 day before pre-treatment of C. elegans for expansion
microscopy.

Second, embryos were digested, fixed, and stained with DAPI.
Gravid adult C. elegans worms were deposited in a petri dish in PBS
buffer and cut with a surgical blade to release eggs. Eggs were immo-
bilized on a PLL coated glass bottom dish in PBS and could be pro-
cessed immediately or stored at 25 °C in M9 buffer until the embryos
developed to the desired stage. Embryoswere treatedwith a bleaching
mixture containing 1% sodium hypochlorite (Sigma, Cat# 425044) in
0.1M NaOH/water for 2–3minutes, rinsed 3 times in PBS, digested in
50mg/mLYatalase in PBS (Takara Bio, Cat# T017) for 40minutes at RT
and rinsed 3 times with PBS. It was important to treat eggs with bleach
only after immobilization on the PLL surface, otherwise embryos ten-
ded to detach from the glass at later steps. Digested embryos were
fixed in 4% paraformaldehyde/PBS (Electron Microscopy Sciences,
Cat# RT15710) for 1 hour, then rinsed 3 times with PBS to remove
fixative. Fixed embryos were permeabilized in 0.1% Triton X-100/PBS
(Sigma, Cat# 93443) for 1 hour at RT with 1 μL/mL of DAPI (Thermo
Fisher Scientific, Cat# D1306).

Optionally, GFP signal can be boosted by immunolabeling.
Yatalase digested embryos were permeabilized with staining buffer
(0.1% Triton X-100/PBS) for 1 hour before immunolabeling. Embryos
were stained by an anti-GFP primary antibody (Abcam, Cat# ab290)
in the staining buffer at 4 °C overnight at 1 μg/mL. After primary
antibody labeling, embryos were washed 3 times (30min intervals
between washes) in the staining buffer and labeled using donkey-
anti-rabbit-biotin secondary antibody (Jackson ImmunoResearch,
Cat# 711-067-003) in the staining buffer at 4 °C overnight at 1 μg/mL.
After secondary antibody labeling, the embryos were washed 3 times
in the staining buffer (30mins intervals between washes) and labeled
with Alexa Fluor 488 Streptavidin in the staining buffer at 4 °C
overnight at 2 μg/mL (Jackson ImmunoResearch, Cat# 016-540-084).
Labeled embryos were washed 3 times in the staining buffer
(30minutes between washes) before being processed for expansion
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microscopy. Immunolabeling was only performed on the data shown
in Supplementary Fig. 33a.

Finally, embryoswere expanded. Embryoswere treatedwith 1mM
MA-NHS (Sigma, Cat# 730300) in PBS for 1 hour at RT. Samples were
rinsed 3 times in PBS, and treated with monomer solution, which was
made up of acrylamide (Sigma, Cat# A9099), sodium acrylate (Santa
Cruz Biotechnology, Cat# 7446-81-3), N, N’-methylenebis(acrylamide)
(Sigma, Cat# 146072) and 4-Hydroxy-TEMPO (Sigma, Cat# 176141),
diluted with PBS, with a final concentration of 10%, 19%, 0.1%, and
0.01%, respectively. After the treatment for 1 hour at RT, themonomer
solution was replaced by gelation solution. The gelation solution
shared the same reagents and concentrations as monomer solution,
with the addition of tetramethylethylenediamine (TEMED, Thermo
Fisher Scientific, Cat# 17919, reaching a final concentration of 0.2%)
and ammonium persulfate (APS, Thermo Fisher Scientific, Cat# 17874,
reaching a final concentration of 0.2%). APS was added at last, and the
fresh gelation solution was immediately applied to the embryos
sandwiched between the glass bottom dish and another coverslip
surface for 2 hours at RT. It was important to control the gelation
speed with 4-hydroxy-TEMPO as premature gelation can distort
embryos and result in poor expansion quality. The polymerized
embryo-hydrogel hybrid was cut out by a razor blade and digested
with 0.2mg/mL Proteinase K (Thermo Fisher Scientific, Cat# AM2548)
in digestion buffer (0.5M sodium chloride (Quality Biological, Cat #
351-036-101); 0.8Mguanidine hydrochloride (Sigma, Cat#G9284); and
0.5% Triton X-100) at 45 °C overnight. Digested embryos were
expanded ~3.3–3.7 fold in distilled water, exchanging the water every
30min until expansion was complete. Expanded samples were flipped
over so that embryos were ‘on top’ (suitable for diSPIM imaging),
mounted on PLL coated #1.5 coverslips (VWR, Cat# 48393-241) and
secured in an imaging chamber filled with distilled water. Finally,
samples were imaged using the symmetric 0.8/0.8 NA diSPIM in stage
scan mode. Depending on the orientation of embryos, ~200-300
planes were acquired for each embryo, with 1.414μm stage step size
and 20ms per-plane exposure time.

PtK2 cells imaged with adaptive optical lattice light-sheet micro-
scopy (AO-LLSM). PtK2 cell samples were prepared by placing one
25mm round coverslip (Warner Instruments, CS-25R17) into a 35mm
culture dish (Corning, 430165) and seeding cells at 100k cells per dish
the day before fixation. Cells were washed quickly 3 times with pre-
warmed PBS before fixing in 4% formaldehyde for 5minutes at room
temperature. 3 additional PBS washes were performed, and cells were
permeabilized in 0.1% IGEPAL (Sigma-Aldrich, I8896) for 5minutes at
room temperature. Cells were washed with PBS 3 times, after which
250 µl of a primary antibody solution of 0.1% iGf-free BSA (Jackson
ImmunoResearch, 001-000-162) and 1:400 Phalloidin Alexa Fluor 488
(ThermoFisher Scientific, A12379) in PBS was added to each coverslip.
Cells were incubated at 37 C for 1 hour, and a final wash of PBS with
0.05% Tween-20 (Sigma-Aldrich, P1379) and 2 additional PBS washes
were performed.

Cells were imaged in PBS on a modified adaptive optical lattice
light-sheetmicroscope18,19. First, a system correctionwas performed
as previously described19. Lattice light sheet excitation was per-
formed using a 488 nm laser line, a Thorlabs TL20x-MPS 0.6 NA
objective lens, and a square lattice pattern (Outer NA: 0.4, Inner NA:
0.3, Cropping: 10, Envelope: 5). Image stacks (256 × 1500 pixel field
of view (FOV) with 401 z steps) were acquired by scanning the
sample stage horizontally at an angle of 32.45° relative to the optical
axis of the detection objective (Zeiss Plan-Apo 20x, NA 1.0 DIC M27
75mm) with a step size of 0.4 µm and an exposure time of 20ms.
Emission light was filtered through a Semrock BrightLine 523/40-25
emission filter and reflected onto a Hamamatsu Orca Flash
4.0 sCMOS camera via a Semrock Di03-R561-t3-32 × 40 dichroic.
After data collection, images were deskewed using a custom

analysis pipeline (https://github.com/aicjanelia/LLSM). The final
voxel size after deskewing was 0.108 × 0.108 × 0.215 nm.

For training data, 40 random FOVs were selected and imaged as
described above. For aberration experiments (Fig. 2a–f, Supplemen-
tary Figs. 10–12), a random FOV was selected and a ground truth data
set was acquired. Next, an aberration was applied to the deformable
mirror (DM; ALPAO DM69). These aberrations were either random,
wherein each actuator on themirrorwas pushedor pulled by a random
amount with a fixed maximum amplitude, or a predefined Zernike
mode (astigmatism, coma, or spherical). For each type of aberration, 3
different magnitudes were used, and for each magnitude 3 different
FOVs were selected, yielding a total of 36 experiments. After the
aberration was applied to the DM, a stack was collected. The micro-
scope configuration was then changed to the adaptive optics (AO)
configuration.

Themethods for AO correction have been described previously19.
A focused two photon (Coherent 1335240 Chameleon) spot was
directed through the detection objective and scanned through the
same FOV to be imaged. The collected emission was passed through a
microlens array and imaged to the same camera used for image col-
lection to function as a Shack-Hartmann (SH) wavefront sensor. The
distance each spot in the SH image moves is calculated relative to a
reference image, after which the DM is updated to correct the mea-
sured aberration. This process is repeated 2 additional times as the AO
correction will iteratively improve until it converges. The microscope
is then switched back to LLSM mode, and a final stack is acquired.

For comparative denoising experiments (Supplementary Fig. 13),
a random FOV was selected and a ground truth stack was acquired.
Then, aberrations (random, astigmatism, and coma) were applied to
the DM at a single magnitude; 3 separate FOVs were examined per
aberration. Once the aberration was applied to the DM, stacks were
acquired with the original laser power (high SNR, Supplementary
Fig. 13c) as well as 1/5 laser power (low SNR, Supplementary Fig. 13b).

Zebrafish embryos imaged with adaptive optical lattice light-sheet
microscopy. Transgenic Zebrafish Tg(vGlut2a:Gal4); (UAS:CoChR-
eGFP), featuring eGFP localized in the membrane of glutamatergic
neurons, were fixed overnight at 5 dpf in 4% PFA at 4 C and subse-
quently washed with and stored in PBS. A total of n = 6 fish were used
for experiments. To mount the fish onto 25mm round coverslips, the
coverslips were first treated with Poly-l-lysine, after which a thin layer
of 1.5% agarose (ThermoFisher Scientific, 16520050) was cured onto
the coverslip. A small channel was carved into the center of the agar-
ose, and the fishwasplaced ventral side down into the channel. Finally,
a small drop of 1.5% agarose was placed on top of the fish.

Fish were imaged in milliQ water on the modified AO-LLSM
described above. In this case, a square lattice pattern (Outer NA: 0.4,
Inner NA: 0.34, Cropping: 10, Envelope: 10) was used for excitation.
Image stacks (256 × 512 pixel FOV with 101 z steps) were acquired by
scanning the sample stages horizontally and vertically simultaneously
such that the sample moved directly along the optical axis of the
detection objective with a step size of 0.2 µm and an exposure time of
100ms. Emission light was captured as described above. In this
instance, deskewing of the data was not necessary and the final voxel
size was 108 × 108 × 200nm.

For training data, 42 FOVs were selected near the surface
( ~ 0–20 µm) of the fish and imaged as described above. Next, 15 FOVs
deeper within the fish ( ~ 40–120 µm) were imaged first without AO
correction, and next with an identical AO correction procedure as
described above (Fig. 2g–m, Supplementary Fig. 14).

Live nematode adults imaged with spinning disk confocal micro-
scopy. C. elegans strain OH15500 (otIs669[NeuroPAL]; otIs672[-
panneuronal::GCaMP6s]) were raised at 20 °C and grown on NGM
media plates seeded with OP50 E. coli. Young adult worms (with 2 or
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less visible eggs in their uterus) were picked and immobilized inside a
microfluidic chip as previously described24. Worms were imaged by a
spinning disk confocal microscope (Nikon, Ti-e) equipped with a 60×/
1.2 NA water objective (Nikon, CFI Plan Apochromat VC 60XC WI), a
confocal scan unit (Yokagawa, CSU-X1) and an electron multiplying
CCD (EM-CCD, Andor, iXon Ultra 897). Four excitation lasers (405 nm,
488 nm, 561 nm, and 640nm) were used for illumination, in conjunc-
tion with emission filters spanning 420–470nm, 500–545 nm,
570–650nm, and 660–800 nm bandwidths, respectively. The pixel
size was 0.27μm in the XY dimension and each Z-stack volume com-
prised 21 slices for each color, with 1.5μm step size. Each multicolor
Z-stack volume was captured at a rate of just over 1minute.

Fixed WGA-labeled NK-92 samples imaged with instant structured
illumination microscopy. NK-92 cells (ATCC®, CRL-2407™) were
rinsed with 1× PBS, and fixed with 1ml of 4% paraformaldehyde in 1×
PBS for 30min at room temperature, rinsed in 1ml of 1x PBS, and
permeabilized in 0.1% Triton X-100 in 1× PBS for 15min. Next, samples
were rinsed with 1× PBS, and blocked with buffer containing 1% BSA
(Fisher, Cat# BP9700100) in 1× PBS for 1 hour. Blocking buffer was
removed, and the samples were stained with 500μl of 1x PBS with a
1:100 dilution of Alexa Fluor 555 labeled WGA (Invitrogen, Cat#
W32464), 10U/mL phalloidin-ATTO 647N conjugate (Millipore-Sigma,
Cat #65906), and 1:1000 dilution of Hoechst solution (Tocris,
Cat#5117) for 1 h. Cells werewashed in 1× PBS three times.Wemounted
samples using 90% Glycerol (Sigma, Cat# G5516) in 1x PBS.

In preparation for imaging, cells were cultured in collagen-I gels
in the ImmunoCult-XF T Cell Expansion Medium (STEMCELL Tech-
nologies, Cat# 10981) with the addition of Human Recombinant
Interleukin 2 (STEMCELL Technologies, Cat# 78036.3). To prepare
3mg/ml collagen-I gel, we assembled a gel premix on ice in a pre-
chilled Eppendorf tube. Briefly, to 1 volume of CellAdhere™ type I
bovine (STEMCELL Technologies, Cat# 07001) we added 8/10
volume of DMEM, 1/10 volume of 10x PBS, 1/20 volume of 1M HEPES,
and 1/20 volume of 1M (in DMSO) Alexa Fluor 488 ester (Molecular
Probes, Cat# A20000). A drop of premixed gel (∼50 µL) was spread
immediately on a glass surface of a plasma-treated glass-bottom
35mm Petri dish (MatTek Corp., Cat# P35G-1.5-14-C) with a pipette
tip. During polymerization (room temperature, for overnight), gels
were coveredwith 1mL ofmineral oil (Sigma-Aldrich, Cat#M8410) to
prevent evaporation of water. Before adding NK-92 cells, poly-
merized gels were rinsed with PBS to remove the unpolymerized gel
components.

Instant structured illumination microscopy (iSIM) was performed
using the commercial instant structured illumination microscope
system (VisiTech Intl, Sunderland, UK) equipped with an Olympus
UPlanSAapo 60×/1.3NA Sil objective, two Flash-4 scientific CMOS
cameras (Hamamatsu, Corp., Tokyo, Japan), an iSIM scan head (Visi-
Tech Intl, Sunderland, UK), and a Nano-Drive piezo Z stage (Mad City
Laboratories, Madison, WI). The iSIM scan head included the VT-
Ingwaz optical destriping unit. The exposure time was set to 250ms
per image frame. The voxel size was 64 × 64 × 250nm, in x, y, and z,
respectively.

Nerve ring calcium imaging of trapped C. elegans with instant
structured illumination microscopy. Strain ABA0001 ((lite-1(xu7);
goeIs247 [ceh-24p::GCaMP6s::mKate2::unc-54 3’UTR + unc-119(+)]) was
generated by crossing TQ110145 and HBR107746. Adult day 1 (24 hours
after late L4 stage) ABA0001 worms were raised at 20C on standard 6
cm-diameterNGMplates seededwith E. coliOP50bacteria47. Individual
worms were picked for imaging using BIO-133 (MY Polymers) as sticky
glue (in lieu of bacterial paste) into another drop of BIO-13348 set on a
high-precision 50× 24 mm2 #1.5 glass coverslip (Thorlabs, CG15KH1)
between two 18 × 18 mm2 #1 glass coverslips (Brand, 470045) used as
spacers. Another high precision 50× 24 mm2 #1.5 glass coverslip was

carefully laid on top and gently pressed downwards. The assemblywas
cooled on ice to ensureminimal wormmovement, then flood-exposed
on an aluminum sheet to 365 nm light dispensed by a LED array for
1–2min until BIO-133 had cured48. The “coverslip-sandwiched” worms
were then imaged with a qCMOS Orca Quest (Hamamatsu, C15550-
22UP) through a 40x/1.15NA water objective (Olympus, UAPON-340)
on a VisiTech iSIM imaging platform driven by Micro-Manager 2.049,
equipped with a 300μm-range Z-piezo (ASI, PZ-2300FT) and 405 nm,
488 nm, and 561 nm lasers.

Image volumes of Pceh-24::GCaMP6s expression in theworm head
were then acquired using the single-channel fast-sequencemode, with
1.2μmaxial spacing, yielding a volume acquisition rate of ~1.5 Hz (voxel
dimensions: 0.115 × 0.115 × 1.2μm3). The exposure time was 14ms.
GCaMP6s fluorescence was filtered through a ET525/50m emission
filter (Chroma).

Imaging anesthetized adult C. elegans with instant structured
illumination microscopy. Adult day 1 ZIM1997 (mzmIs52; lite-
1(ce314);otIs670)50 or ABA001 worms were raised at 20C on standard
6 cm-diameter NGM plates seeded with E. coli OP50 bacteria47 and
subsequently exposed to unseeded NMG plates containing 0.02%
levamisole prepared in M9 buffer for 10min. Worms were next
mounted in BIO-133 as previously described, and imaged with the
aforementioned VisiTech iSIM imaging platform. 3D volumes were
acquired with 300nm Z-steps at full XY-resolution (voxel dimen-
sions: 0.115 × 0.115 × 0.300μm3) sequentially (XY-Z-C) for each
channel (starting with the longest excitation wavelength).

For ZIM1997, imaging was performed twice per worm (before and
after flipping) so that both sides of the worm were imaged with the
more favorable ‘near-side’ configuration (Supplementary Fig. 20). The
imaging parameters for each label were as follows: 1) mTagBFP2 with
405 nm excitation, 40ms exposure time, and an ET460/50m emission
filter; 2)GCaMP6fwith 488 nmexcitation, 20msexposure time, and an
emission filter of ET525/50m; 3) CYO1FP with 488 nm excitation,
30msexposure time, and an emissionfilter of ET600/50m; 4)TagRFP-
T with 561 nm excitation, 40ms exposure time, and an emission filter
of ET600/50m; 5) mNeptune2.5 with 561 nm excitation, 60ms expo-
sure time, and an emission filter of ET690/50m. All emission filters
were purchased from Chroma.

For ABA001, imaging parameters were: 1) GCaMP6s with 488nm
excitation, 30ms exposure time, and an emission filter of ET525/50m;
2) mKate2 with 561 nm excitation, 30ms exposure time, and an emis-
sion filter of ET600/50m. All emission filters were purchased from
Chroma.

Two-photon microscopy on live and fixed mouse tissue. Fixed
mouse liver samples and fresh ex-vivomouse heart muscle strips were
imaged with two-photon microscopy using a Leica SP8 two photon
DIVE upright microscope (Mannheim, Germany), a pulsed dual beam
Insight X3Ti-Sapphire laser (MKS Spectra-Physics,MilpitasCA), a Leica
25x 1.0 NA (HC PL IRAPO) water dipping lens, and emission bandwidth
tunable Leica HyD detectors in the non-descanned emission pathway.
Liver samples wereprepared from freshly excised liver froma 10week-
old mouse expressing a membrane-targeted peptide fused with
tdTomato51. After excision, the mouse liver was washed in cold saline
three times, fixed with 4% formaldehyde in PBS for 2 hours, and stored
in PBS. Tissue harvesting procedures were approved by the NCI (for
mouse liver) and NHLBI (for mouse heart) Animal Care User Com-
mittees (ACUC) respectively. Freshly excised heart muscle strips from
transgenic mice expressing mitochondrial TOMM20-mNeonGreen
were prepared for imaging as described52. tdTomato and mNeon-
Green were excited using 1045 nm and 960 nm excitation with emis-
sion bandwidths of 550–700 nm and 500–600 nm, respectively. Laser
excitation (ramped as a function of depth in some experiments and
optimized by adjusting the objective motorized correction collar)
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were in the range of 1% for tdTomato and less than 20% for mNeon-
Green. HyD detector gains were kept at 100% for tdTomato and 150%
for mNeonGreen. Tiled images volumes of liver membrane expressing
tdTomato were collected with voxels sizes set to 400 nm in the XY
dimension and 500nm in the z dimension. Z-stack volumes of
mNeonGreen expressing heart strip were collected with voxels sizes
set to 120 nm in the XY dimension and 500nm in the z dimension. All
imaging was conducted at an imaging speed of 600Hz with a pinhole
size of 1 A.U.

Cleared mouse embryos imaged with confocal microscopy. E11.5-
daymouse embryos were collected in phosphate-buffered saline (PBS)
anddirectly immersed in4%paraformaldehyde (PFA) in PBS (pH7.4) at
4 °C overnight. Following fixation, the samples were washed with PBS
and stored in PBS at 4 °C for further analyzes. Wholemount immuno-
fluorescence stainingwas performed at4 °C. Themouse embryoswere
permeabilized with 0.2% Triton/PBS overnight and blocked with 10%
normal goat serum and 1% BSA in 0.2% Triton/PBS overnight. The
embryos were then stainedwithmonoclonal antibody against PECAM1
(CD31, clone MEC 13.3, Cat# 553700, BD Pharmingen, 1:200 dilution)
and monoclonal anti-β-tubulin III (TuJ1)) antibody (clone 2G10, Cat#
T8578, Sigma-Aldrich, 1:500 dilution) in blocking buffer overnight.
After washing with 0.2% Triton/PBS, the embryos were stained with
secondary antibodies with Alexa 488 goat anti-rat IgG and Alexa 594
goat-anti-mouse IgG (1:250, Invitrogen, Carlsbad, CA) in blocking
buffer overnight. The embryos were cleared with iDISCO26 and imaged
using a Zeiss LSM 880 Confocal microscope with a 10X, 0.5NA air
objective. To compensate for focal shift effects due to the refractive
index difference between air and iDISCO we scaled the axial voxel size
of images by 1.56 before processing for DeAbe.

Quantitative image quality analysis
Decorrelation resolution metric. Decorrelation analysis53 was used to
estimate image resolution (Fig. 2f, m, Supplementary Fig. 13f, Sup-
plementary Fig. 16). Code was downloaded from https://github.com/
Ades91/ImDecorr, and the MATLAB version of the code was used. For
statistical analysis, the resolution of each image was estimated first,
then means and standard deviations were calculated from N= 12
(Fig. 2f) or N = 15 (Fig. 2m) images.

Normalized discrete cosine transform shannon entropy. The Nor-
malized Discrete Cosine Transform Shannon Entropy (DCTS) is a
helpful metric for quantifying image sharpness in the frequency
domain. We used it to analyze image quality degradation vs. imaging
depth (Supplementary Fig. 17). The definition of DCTS has been
described in ref. 54, and we implemented it via customized
MATLAB code.

Image contrast metric. We adopted a commonly used contrast
metric – the root mean square (RMS) contrast (RMSC55) to quantify
image contrast (Supplementary Fig. 22). The RMSC of an image is
defined as:

RMSC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i= 1

ðxi � �xÞ2
vuut ð13Þ

where xi is the intensity of each pixel i, �x is the mean intensity of the
image, and N is the total pixel number. To compare across different
images, we first divide each image by its mean intensity and bin 3-fold
to reduce noise before computing the RMSC.

Image intensity correction for time-lapse images. When applying the
DeAbe model to predict images, the 3D-RCAN network automatically
normalizes the input raw images to an intensity range of 0–1 by default.

For time lapse images, this normalizationwasperformed independently
at each time point, resulting in additional intensity fluctuations. To
compensate for thesefluctuations, we applied corrections to theDeAbe
predictions for the GCaMP calcium signal in the live worm experiments
(Supplementary Fig. 40, Supplementary Movies 15–17).

We first calculated the normalization ratio at each time point:

rk =
Rawk,pre�norm

Rawk,post�norm
ð14Þ

where rk is the normalization ratio of time point k; Rawk,pre�norm is the
average intensity of the raw image volume before normalization and
Rawk,post�norm is the average intensity of the raw image volume after
normalization.

Next, we rescaled the image intensity of the DeAbe images based
on the normalization ratios bymatching all time points to the first time
point:

Predictionk, f inal =
rk
r1

Predictionk ð15Þ

where r1 is the normalization ratio of the first time point; Predictionk is
the images predicted by DeAbe model; Predictionk, f inal is the final
imageswith intensity fluctuation compensation for quantitative analysis.

Statistical significance analysis. We used t-tests and Kolmogorov-
Smirnov tests to assess statistical differences between DeAbe and
denoising approaches (Supplementary Figs. 7, 13). For the t-tests, we
used the MATLAB function ‘ttest’ to calculate p values; for the
Kolmogorov-Smirnov tests, we used the MATLAB function ‘kstest2’ to
calculate p values.

Calculation of vessel orientation and alignment. Orientations were
estimated in 3D using a weighted vector summation algorithm28,
adapting it for the volumetric images of fiber-like structures corre-
sponding to the CD31 channel (i.e., blood vessel images) in iDISCO-
cleared mouse embryos (Fig. 4).

For a given voxel within the 3D image, an n×n ×n voxel window
was generated surrounding the voxel under assessment. To segment
the effective voxels, six-level Otsu intensity thresholding was applied
to the image, with five thresholds dividing the intensity into six levels.
The lowest level was designated as background noise, and regions
assigned to the upper five levels defined the vessel signals. Thewindow
size n was typically set as two to three times the vessel thickness. All
vectors passing through the center voxel were defined and weighted
by their length and intensity variations, and the direction of the sumof
all theweighted vectorswasdesignated as the orientationof the center
voxel28, with associated azimuthal angle θ (ranging from 0° to 180°)
and polar angle φ (ranging from 0° to 180°). However, since the cal-
culation of the polar angle φ was not straightforward, we defined two
additional azimuthal angles, β and γ (Supplementary Fig. 25a), which
were symmetrical to the azimuthal angle θ. β was defined as the angle
between the projection of the vessel in the zx plane and the x axis, and
γ was the angle between the projection in the yz plane and the�y axis.
These two angles were related to the polar angle φ via:

tan2φ=
1

tan2β
+

1
tan2γ

ð16Þ

We also derived the 3D directional variance (DV) metric, quanti-
fying the spread in orientations29,56. The value of DV ranges from0 to 1,
with 0 corresponding to perfectly parallel alignment, and 1 corre-
sponding to complete disorder (Supplementary Fig. 25b). The
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directional variance �D3D was defined as:

�D3D = 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C
2
3D + �S

2
3D + �Z

2
3D

� �r
ð17Þ

where:

�C3D =
1
k

Xk
j = 1

f jffiffiffiffiffiffiffiffiffiffiffi
1 + f 2j

q cos 2θj

� �
ð18Þ

�S3D =
1
k

Xk
j = 1

f jffiffiffiffiffiffiffiffiffiffiffi
1 + f 2j

q sin 2θj
� �

ð19Þ

�Z3D =
1
k

Xk
j = 1

SIffiffiffiffiffiffiffiffiffiffiffi
1 + f 2j

q ð20Þ

with f j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
tan2ð2βj Þ

+ 1
tan2ð2γj Þ

q
, and SI = � φ�90

φ�90j j, where φ was acquired

from the determination of β and γ as described above, k was the
number of fiber voxels in the region, and θ, β and γ were calculated
azimuthal angles as described above.

Membrane segmentation. For the images of live worm embryos dual-
labeled with nuclear and membrane markers (Fig. 5c, d, Supplemen-
tary Fig. 30), raw data was restored using our multiple-step deep
learning pipeline (Steps 1–3 in Supplementary Fig. 27a) prior to cell
membrane segmentation. We performed automatic membrane seg-
mentation using segmented nuclei as seeds:

First we used the Keras and Tensorflow-based implementations
of Mask RCNN57 (https://github.com/matterport/Mask_RCNN) to
perform nuclear segmentation (Supplementary Fig. 30d). We then
manually segmented 8 volumes (3 acquired with diSPIM, 3 with
iSPIM, and 2 frommultiview confocal microscopy27 for a total of 1963
nuclei) for training. Of these 8 volumes, 6 volumes with a total of
1688 nuclei were used for training a segmentation network and 2
volumes with a total of 275 nuclei were used for validation.We used a
ResNet-50 model as the backbone for our network, initialized the
model using weights obtained from pretraining on the MS COCO
dataset58, and proceeded to train all layers in three stages. Training
took ~10 hours and applying the model took ~3minutes per volume
on aWindowsworkstation equipped with an Intel(R) Xeon(R)W-2145
CPUoperating at 3.70 GHz, anNvidiaQuadro P6000GPU, and 128GB
of RAM. After Mask RCNN segmentation, we applied a marker-
controlled watershed operation (https://www.mathworks.com/help/
images/marker-controlled-watershed-segmentation.html) to the
nuclear segmentations to separate touching nuclei.

Second, we applied the vascular structure enhancement filter59

(https://github.com/timjerman/JermanEnhancementFilter) to the
membrane data to enhance boundaries (Supplementary Fig. 30c).
Scales were set to [2.0, 2.25, 2.5] and all other parameters were set to
the default.

Third, the centroids of segmented nuclei were used as seeds, and
we used the seeded watershed algorithm (https://github.com/
danielsnider/Simple-Matlab-Watershed-Cell-Segmentation) for mem-
brane segmentation (Supplementary Fig. 30f).

This workflow was applied both to the raw image data and
restored images after each step in our multi-step pipeline to demon-
strate the benefit of segmentation enhancement from DL processing.

For selected volumes (Fig. 5c, Supplementary Movie 11), we also
performed manual editing on the automatic segmentations produced
by the multi-step deep learning pipeline. Manual editing was per-
formed within the ImageJ plugin Labkit (https://imagej.net/plugins/

labkit/). After automatic segmentations were imported to Labkit, seg-
mentation labelsweremanually edited interactively in lateral views (XY
planes), and then were edited in axial views (YZ planes). Since the
manual editing was conducted in 2D views and initial editing in either
view was not sufficient to ensure smoothness in 3D, we iterated twice
to further improve our results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are included in
Figs. 1–5, Supplementary Figs. 1–40 and Supplementary Movies 1–17,
accompanied with a Source Data file. Some representative data from
thefigures (Fig. 2a, Supplementary Figs. 16, 30) arepublicly available at
https://doi.org/10.5281/zenodo.8424245. Other datasets (training data
and intermediate data for deep learning) are available from the cor-
responding author upon request due to their large file size. Source
data are provided with this paper.

Code availability
Training and applying deep learning models were achieved using
Python 3.7.0. Generation of synthetic aberrated data and quantitative
image analysis was performed in MATLAB (Mathworks, R2022b).
Customized code and software are available at https://github.com/
eguomin/DeAbePlus/. RCAN and CARE software were installed from
https://github.com/AiviaCommunity/3D-RCAN and https://github.
com/CSBDeep/CSBDeep, and code for RL deconvolution and multi-
view fusion is available at https://github.com/eguomin/diSPIMFusion/.
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