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Incomplete human reference genomes can
drive false sex biases and expose patient-
identifying information in
metagenomic data
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Daniel McDonald3, Antonio Gonzalez3, Gregory D. Sepich-Poore 8,9,
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Rob Knight3,8,12,17,22,24

As next-generation sequencing technologies produce deeper genome cov-
erages at lower costs, there is a critical need for reliable computational host
DNA removal in metagenomic data. We find that insufficient host filtration
using prior human genome references can introduce false sex biases and
inadvertently permit flow-through of host-specific DNA during bioinformatic
analyses, which could be exploited for individual identification. To address
these issues, we introduce and benchmark three host filtration methods of
varying throughput, with concomitant applications across low biomass sam-
ples such as skin and highmicrobial biomass datasets including fecal samples.
We find that thesemethods are important for obtaining accurate results in low
biomass samples (e.g., tissue, skin). Overall, we demonstrate that rigorous host
filtration is a key component of privacy-minded analyses of patient micro-
biomes and provide computationally efficient pipelines for accomplishing this
task on large-scale datasets.

Metagenomic next-generation sequencing (mNGS) encompasses var-
ious high-throughput DNA profiling techniques that enable
environment-agnostic taxonomic profiling of microorganisms, includ-
ing bacteria, archaea, fungi, and viruses1. mNGS has shown increasing
adoption in clinical contexts for diagnosing infectious diseases, surveil-
ling microbial pathogens, and predicting antibiotic efficacy2,3 across
fecal, skin, and tissue samples. Utilizing mNGS in these settings is
attractive due to its untargeted and high-throughput characteristics;
however, its untargetednature can result in substantial andconfounding
amounts of non-microbial DNA (e.g., humanDNA)when processing low-
microbial biomass samples, especially at higher sequencing depths.

To mitigate the influence of non-microbial DNA on metagenomic
studies, diverse host depletion techniques have been developed, ran-
ging from experimental modification of DNA extraction steps (e.g.,
differential lysis)4 to real-time sorting of reads during sequencing5.
Computational host filtration, or simply host filtration, refers to com-
putational approaches for removing host DNA from sequenced sam-
ples, regardless of whether prior host depletion stepswereperformed.
Separating host genetic information from microbial counterparts is a
crucial step in mNGS workflows, especially in the analysis of low
microbial biomass samples, such as those derived from skin, saliva, or
tumors6,7. Additionally, these methodologies are imperative to
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increase the rigor with which debated microbial communities, like
putative blood-borne microbiota, can be assayed.

When human DNA reads from mNGS are not correctly identified
during the host filtration step, they may be incorrectly classified as
microbial reads, creating potentially misidentified taxonomic classifi-
cations and biased effect sizes (inflation or deflation of mismapped
taxa)7. These misclassifications can manifest as false positive taxo-
nomic classifications, and in this work we further demonstrate these
false positives can alter biological conclusions. Further, failure to
remove human DNA from metagenomic sequencing samples can leak
private genetic information about the host into putatively microbial
data, enabling re-identification of study participants8.

Although host filtration is generally a common preprocessing
step9, the algorithmic choice for host filtration and employed human
reference database(s) can result in substantially different biological
results7. Tools differ between pipelines, but most host filtration
approaches map reads to a host reference genome followed by
sequence-based computational subtraction of host reads to obtain
human-filtered data10.

Most host filtration tools10 and recommended host filtration
workflows11,12 exclusively use a single human reference, which fails to
capture the diversity of human genomes and cannot remove
population-specific variation. Portions of the human genome that are
incomplete in these references, such as the Y chromosome in GRCh38
or earlier versions of T2T-CHM13 (v1.0), can permit flow-through of
human reads from those regions to microbial mapping steps, leading
to the mismapping of taxa during classification and artifactual data
distributions (e.g., false sex differences in the low biomass microbial
profiles). Moreover, regions of population-specific genome variation
or haplotypes not well covered in singular reference genomes can
allow leakage of patient-identifying information inmicrobial reads8. To
date, previous work13 has either failed to incorporate pangenome
references14 or to provide computationally efficient methods capable
of host filtering across dozens of human genomes7, and both are
needed to protect patient privacy and improve output quality.
Therefore, we were motivated to explore more efficient methods for
host filtration using the most comprehensive human references
available to protect the privacy of disseminated metagenomics data-
sets and mitigate artifactual biases associated with missing genome
regions.

In this work, we identify and resolve an artifactual technical effect
caused by insufficient host filtration in quantifying the microbial pro-
files associatedwith tumor tissue frommNGS.We then implement and
benchmark three improved host filtration approaches that leverage
two complementary algorithmic approaches and a wide variety of
human reference genomes to maximize host read removal. We apply
these novel methodologies towardsmultiple sample types in both low
and high biomass conditions. Finally, we show that improved host
filtration prevents host re-identification from mNGS datasets with
matched genotyping information. These efforts support utilization of
comprehensive host filtration preprocessing for current and future
mNGS studies to increase data robustness and protect patient privacy.

Results
Artifactual sex splitting across metastatic cancers
We initially and incidentally discovered detrimental effects from
improper host filtration when exploring sequencing data from a
cohort of metastatic human tumor tissues (Hartwig Medical
Foundation15 hereafter “HMF”). These data were originally processed
and published before the release of T2T-CHM13v2.016, which added a
complete human Y chromosome, and have since been independently
analyzed for microbiomes17. After isolating non-human reads from
deep, whole-genome sequenced samples of 4902 metastatic tumors
(Supplementary Data 1), we applied quality and length filtering, fol-
lowed by re-alignment against GRCh38.p7. Surprisingly, our initial

analysis of putative metastatic tumor low biomass microbial profiles
revealed significant differences between male and female-labeled
samples (Fig. 1a; p =0.00025, RPCA18-PERMANOVA). Subsequent re-
analysis of the same data using T2T-CHM13v2.016, which included the
first complete Y chromosome, abolished the male-female sex separa-
tion in our data (Fig. 1b; p = 0.29, RPCA18-PERMANOVA). These results
suggested thatmissing regions of human reference chromosomes can
directly cause related artifactual biases in downstream micro-
biome data.

To validate that this result was not unique to RPCA, we
re-calculated results with Weighted and Unweighted UniFrac19, Bray-
Curtis20 dissimilarity, and Jaccard21 similarity index. We also tested
another microbial database, Web of Life release 222, all with and with-
out rarefaction. Notably, neither the choice of rarefaction level nor
microbial database affected the identification of artifactual sex dif-
ferences. The results were less affected by filtration against T2T-
CHM13v2.0 when qualitative distance metrics were used (i.e.,
Unweighted UniFrac and Jaccard similarity index). However, quanti-
tative metrics (i.e., Weighted UniFrac and Bray-Curtis) reproduced our
original findings that additional filtration against T2T-CHM13v2.0
abolished sex differences (Supplementary Data 2).

Fig. 1 | Sex biases identified in inadequately host-filtered human tumor
tissue data. a RPCA of microbial relative abundance quantification from tumor
samples in the Hartwig Medical Foundation Database, which was originally subject
to GRCh38.p7 filtration exclusively. Statistically significant differences were found
between male and female groups (PERMANOVA; pseudo-F = 65.4, p =0.00025).
b Identical dataset and pre-processing steps done in a but with the addition of the
T2T-CHM13v2.0 reference genome in host filtration. Differences were not statisti-
cally significant between male and female groups (PERMANOVA; pseudo-
F = 1.23, p =0.29).
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To investigate why quantitative metrics were affected but quali-
tative metrics were not, we examined a subset of 100 samples from
HMF. We randomly selected metastatic tissue samples across various
body sites, all of which had metastasized from a primary colorectal
tumor.We isolated reads from these samples that were removedwhen
filtered with T2T-CHM13v2.0 but retained when filtered with
GRCh38.p7.We refer to these reads as “T2T-filtered”. UsingWoltka and
RefSeq release 200, we mapped the T2T-filtered reads to their corre-
sponding operational genomic units (OGUs)23 (Supplementary Data 3).
Notably, 99.895% of the reads (5,590,189/5,596,038) matched only
four taxa: Toxoplasma gondii (G000006565), Bifidobacterium tibii-
granuli (G009371885),Alcanivorax hongdengensis (G000300995), and
Tetrasphaera japonica (G001046855). When reads we observed as
being mistakenly mapped to microbial taxa are removed with T2T-
CHM13v2.0filtering, thequantitative diversitymetricsmore accurately
reflect the per-sample microbial diversity (Fig. 1b). However, qualita-
tive metrics relying on presence-absence (and not abundance) are less
affected, and thereby more robust to, falsely inflated abundances of
T.gondii, B. tibiigranuli, A. hongdengensis, and T. japonica. These
results demonstrate the importance of validating conclusions with
qualitative metagenomic methods when using older or incomplete
genome references—although the human references are now essen-
tially complete, the same is not true for other species, so this category
of validation will continue to be important into the future.

To test whether these four taxa shared regions of sequence
similaritywith thehumangenome,we took the sameT2T-filtered reads
from the subset of 100 HMF samples described above, and mapped
those sequences against RS210-clean, a version of RefSeq release 210
(2022-01-01) in which regions of microbial genomes shared with
human genomes based on Exhaustive1 and Conterminator24 were
masked. We found that using a human-scrubbed microbial database
eliminated some of the T2T-filtered reads from mapping to microbes
(Supplementary Data 4). 5,596,038 T2T-filtered reads mapped to
microbes using RefSeq release 200, but only 53 mapped to microbes
using RS210-clean. This result suggested that a cleaned microbial
database may alone abolish the false male-female sex difference.
However, a strong human-filtration pipeline that uses T2T-CHM13v2.0
would have removed all these T2T-filtered reads, so that none of them
would map to microbes regardless of which database was used.

To confirm that a cleaned microbial database would abolish the
sex differencewithout any additional filtration, we then applied RS210-
cleanon a larger subset of 477metastatic tissue samples across various
body sites, all of which had metastasized from the colon using
GRCh38.p7 filtration alone. Importantly, we found that the sex differ-
ences were eliminated (p = 0.14, RPCA18-PERMANOVA). These results
indeed demonstrate that host filtration of either the reads (prior to
mapping) or the microbial database is sufficient to prevent sex biases.

To verify that the T2T-filtered reads from the subset of 100 HMF
samples described above was in fact derived from the human Y chro-
mosome, we aligned the T2T-filtered reads using minimap225 (v. 2.26)
and an index based only on the Y chromosome portion of T2T-
CHM13v2.0, and observed an overall alignment of 88.99% to the Y
chromosome. We speculate that the remaining 11.01% are likely due to
additions of regions in other chromosomes with the T2T-CHM13v2.0
release. We spot-checked alignments of a subset of Y chromosome
mapped reads using the BLAST26 web portal. For example, a read that
aligns with 100% identity to the Y chromosome is also identified as T.
gondii at 98.67% identity when using Nucleotide BLAST26. To confirm
the T2T-filtered reads were likely mismapped to microbial genomes,
we calculated the depth and breadth for the top ten multi-mapped
organisms (Supplementary Fig. 1a). We observe a large coverage peak
within each genome with low mean coverage depth, suggesting an
artifactual signal. We extracted the genomic regions corresponding to
the coverage peak for each organism and confirmed they correspond
to low complexity regions of each respective microbial reference

genome (Supplementary Data 5). Finally we include coverage depth
and breadth assessments for these same reads against the Y chromo-
some from the T2T-CHM13v2.0 and note a more uniform distribution,
suggesting the true origin of the reads corresponds to the more
complete Y chromosome in T2T-CHM13v2.0 rather than anymicrobial
genome (Supplementary Fig. 1b). Overall, these data suggest that the
sex differences identified in theHMFdataset are attributable to human
Y chromosome sequences leaking through theGRCh38.p7 filter, which
were subsequently mapped to microbial taxa containing genomic
regions common to the human genome.

Inspired by this resolution to the problem of artifactual sex-
specific differences, we sought to create and evaluate pipelines for
thorough host filtration in a computationally efficient manner
(described below). These pipelines can be conservatively combined
with microbial database cleaning/masking approaches, as we and
others have described elsewhere7,24. However, we caution that micro-
bial database masking alone may not adequately address patient re-
identification concerns, because human reads remain mixed with
microbial reads, as addressed later in this work.

Improved host filtration approach and validation
We thusproposed andbenchmarked threemethods for improvedhost
filtration that utilizes traditional sequence alignment25 and a novel
indexing-based approach called Movi27. We evaluate multiple human
references, including the most updated versions of GRCh38.p14, T2T-
CHM13v2.016, and HPRC-2023 release14, to maximize captured human
genomic diversity. Our methods are as follows: 1) Alignment with
minimap2 to GRCh38.p14 and T2T-CHM13v2.0, and indexing with
Movi to GRCh38.p14, T2T-CHM13v2.0, and HPRC, 2) Alignment with
minimap2 to GRCh38.p14, T2T-CHM13v2.0, and HPRC, and indexing
withMovi toGRCh38.p14, T2T-CHM13v2.0, andHPRC, 3) Indexingwith
Movi to GRCh38.p14, T2T-CHM13v2.0, andHPRC (Fig. 2a; seeMethods
for details). Additionally, we compared our methods to the only other
publication using HPRC for host filtration, which used all three human
genome reference sets with minimap225 in both paired-end and single-
end mode. We also benchmarked our methods against the strict host
filtration method described by Sepich-Poore et al.7 (Supplemen-
tary Fig. 2a).

To compare the run time of host filtration methods, we simulated
data of 50%humanand50%microbial reads using ten sampledgenomes
from HPRC and over 800 complete bacterial assemblies from the FDA-
ARGOS database28. Using these ten simulated datasets, we subsampled
them at ten thousand, 1 million, and 10 million reads, followed by
applying allfiltrationmethodsoneach to assess their scalability (Fig. 2b).
Methods 1 and 3 had comparable runtimes: 11.13min and 11.15min at 1
million reads, respectively. In comparison, Method 2’s use of HPRC
alignment with minimap2 created exponentially increasing run times
(46min, 55min, and2.5 h at ten thousand, 1million, and 10million reads,
respectively) as the dataset size increased. The strict host filtering
method described by Sepich-Poore et al.7 also took the longest to
complete, or 1.59 h for 1 million reads (Supplementary Fig. 2b).

We next applied the three host filtration methods to assess sen-
sitivity on the aforementioned ten samples of 1 million reads each,
excluding the ten pangenomes we used to simulate the human data
during filtration. An ideal host filtration method would result in zero
remaining human reads (Fig. 3a, Supplementary Data 6) and aminimal
number of lostmicrobial reads (Fig. 3b, SupplementaryData 6). For the
remaining human reads (Fig. 3a), we found significant differences
between Method 1 and Method 3, as well as Method 2 and Method 3
(Wilcoxon signed-rank test, p = 0.0020), indicating that the combina-
tion of alignment and indexing-based approaches for host filtration
outperforms indexing based approaches alone. For microbial reads
lost (Fig. 3b), we found significant differences across all threemethods
(Wilcoxon signed-rank test, p =0.0020 for all comparisons). We find
that the indexing-based host filtration approach alone (Method 3)

Article https://doi.org/10.1038/s41467-025-56077-5

Nature Communications |          (2025) 16:825 3

www.nature.com/naturecommunications


retains the greatest number of microbial reads, while alignment-based
steps, as in the initial steps of Method 1 and Method 2, inadvertently
discard an increasing number of microbial reads proportional to the
number of human references used for alignment. Although Method 2
was most effective at removing human reads, it also removed 242.5
and 288.5 more microbial reads on average compared with Method 1
and 3, respectively. In contrast, Method 3 maximized the number of
microbial reads kept, losing only 43.5 microbial reads on average, but
also allowed an average of 4.5 human reads through.Method 1 struck a
balance, losing 89.5 microbial reads on average and eliminating all the
human reads in 8 out of the 10 cases. We found that the prior Sepich-
Poore et al. 7 method performed identically to Method 2 regarding the

number of human reads removed (Supplementary Fig. 3a) and unne-
cessarily removed an additional ten microbial reads (Supplementary
Fig. 3b). Because host filtration is used in a wide range of applications,
it is crucial to allow users to choose between methods and determine
if, for a given application and regulatory environment, it is acceptable
to lose more microbial reads while ensuring maximum human read
removal; conversely, one may want to maximize the number of
microbial reads retained while still removing the majority of host
reads. We note that microbial reads may be lost inadvertently due to
sequence similarity between microbial input reads and human refer-
ence databases when using both alignment and indexing-based
approaches (see Fig. 3 and Supplementary Fig. 4).

Fig. 2 | Host filtration pipeline and runtime evaluation. a Pipeline of host fil-
tration methods. b Using simulated data with a 50/50 mix of human data from
HPRC and microbial data from FDA-ARGOS, we applied the 3 host filtration

methods with 3 different sample sizes. Runtimes were averaged across 10 runs per
sample size. HG38: GRCH38.p14, T2T: T2T-CHM13v2.0, HPRC: Human Pangenome
Reference Consortium 2024 release.
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Application of host filtrationmethods to low and highmicrobial
biomass samples
To determine the robustness of these three methods across a range of
microbial biomasses, we evaluated each method on human exome data
aswell as tissue, skin, and fecalmetagenomic samples. First, weobtained
30 International Genome Sample Resource (IGSR) phase 3 human
exome sequencing samples29, which are putatively human. After sam-
pling 1 million reads each, we examined the number of human reads
remaining, with an ideal host filteringmethod having zero reads left. We
found Method 2 left the smallest amount of human exome reads fol-
lowed byMethod 1, thenMethod 3 (average reads remaining; Method 1:
32.66, Method 2: 24, Method 3: 351.53). There were significant differ-
ences between Method 1 and Method 2 (Wilcoxon signed-rank test,
p=2.6e−05), between Method 2 and Method 3 (Wilcoxon signed-rank

test, p=8.2e−06), and between Method 1 and Method 3 (Wilcoxon
signed-rank test, p=3.8e−05) (Fig. 4a, Supplementary Data 6). Mirroring
the distributions seen in human simulated data benchmarks (Fig. 3a),
Method2 removed the largest numberofhuman sequences, followedby
Method 1, then Method 3. Interestingly, we found nearly ten times as
many human exome reads remained compared to the simulated human
data (Fig. 3a). However, without access to the samples, it is not possible
to determine whether the increased number of reads in the human
exome data compared to the simulated human data is due to real
microbial presence (contamination or biological) in the exome sample,
imperfect amplification or selection chemistry, and/or reduced perfor-
mance of the host filtration procedure.

Using these three host filtration methods, we re-analyzed the
aforementioned 100colorectal tissue tumor samples fromHMF,finding

Fig. 3 | Host filtrationpipeline simulated data validation.Using the 10 simulated
datasets of 1 million reads as described in Fig. 2b, we a calculated the number of
human reads remaining, and b number of microbial reads remaining, for host
filtration Methods 1–3 (HPRC host filtration performed excluding the 10 genomes
used for data simulation). HG38: GRCH38.p14, T2T: T2T-CHM13v2.0, HPRC:Human

Pangenome Reference Consortium 2024 release. Box plots show the median
(center line), interquartile range (IQR; Q1–Q3; box), whiskers extending to Q1 −
1.5 × IQR and Q3 + 1.5 × IQR, minimum and maximum values at whisker ends, and
points representing individual observations both within and beyond the
whisker range.
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additional human reads removed compared to T2T-CHM13v2.0 alone
(Fig. 4b, Supplementary Data 6). For HMF total read count following
host filtration, we found significant differences between Method 1 and
Method 2 (Wilcoxon signed-rank test, p = 3.9e−18), between Method 2
and Method 3 (Wilcoxon signed-rank test, p= 1.2e−17), and between
Method 1 andMethod 3 (Wilcoxon signed-rank test, p = 3.9e−18). Again,
Method 2 has the least reads followed by Method 1 and then Method 3
(average reads remaining; Method 1: 84,663.12, Method 2: 84,009.03,
Method 3: 84,692.71). Although we cannot verify if the remaining reads
are all microbial, we can conclude, based on the simulations, that

Method 2 likely has lower read counts due to removal of true micro-
bial reads.

Next, we applied our host filtration methods to mNGS data from
skin samples, where microbial and human DNA would be expected in
varying proportions. Specifically, we analyzed 77 skin swab samples
from pediatric healthy controls and subjects with atopic dermatitis
(Fig. 5a, Supplementary Fig. 5, Supplementary Data 6). The percentage
of non-human reads remaining across skin samples varied, consistent
with distinct levels of host background within each sample, with
Method 2 providing the lowest percentage of reads remaining,

Fig. 4 | Comparing human exome and tumor tissue samples across host fil-
tration methods. a The number of reads remaining after host-filtering 30 human
exomes subset to 1 million reads across methods. b 100 metastatic colorectal
cancer tissue samples were selected from HMF and read counts were calculated
following application of improved host filtrationmethods. HG38GRCH38.p14, T2T

T2T-CHM13v2.0, HPRC Human Pangenome Reference Consortium 2024 release.
Box plots show the median (center line), interquartile range (IQR; Q1–Q3; box),
whiskers extending to Q1− 1.5 × IQR and Q3+ 1.5 × IQR, minimum and maximum
values atwhisker ends, andpoints representing individual observations bothwithin
and beyond the whisker range.

Article https://doi.org/10.1038/s41467-025-56077-5

Nature Communications |          (2025) 16:825 6

www.nature.com/naturecommunications


followedbyMethod 1, thenMethod3. For the totalpercentageof reads
remaining of these skin samples following host filtration, we found
significant differences across all threemethods (Wilcoxon signed-rank
p = 2.5e−14 for all comparisons).

Lastly, we evaluated a high microbial biomass dataset of 50 fecal
samples from older adults consisting of healthy controls and subjects

with Alzheimer’s disease30 (Fig. 5b, Supplementary Data 6). As expec-
ted, we observed nominal reductions in the percentage of total reads,
although still greater than 1%of reads. For the total percentageof reads
remaining in these fecal samples following host filtration, we found
significant differences between all three methods (Wilcoxon signed-
rank test, p = 7.6e−10 for all comparisons), and the same pattern of

Fig. 5 | Comparing human skin and fecal samples across host filtration meth-
ods. a 87 human skin samples were host-filtered with the improved methods, we
then calculated the percentage of reads remaining. bWecalculated the percentage
of reads remaining on a per-sample basis for each of the 50 human fecal samples
examined. HG38: GRCH38.p14, T2T: T2T-CHM13v2.0, HPRC: Human Pangenome
Reference Consortium 2024 release. Box plots show the median (center line),

interquartile range (IQR; Q1–Q3; box), and whiskers extending to Q1− 1.5 × IQR and
Q3+ 1.5 × IQR. Box plots show the median (center line), interquartile range (IQR;
Q1–Q3; box), whiskers extending to Q1− 1.5 × IQR andQ3+ 1.5 × IQR, minimum and
maximum values at whisker ends, and points representing individual observations
both within and beyond the whisker range.

Article https://doi.org/10.1038/s41467-025-56077-5

Nature Communications |          (2025) 16:825 7

www.nature.com/naturecommunications


Method2having the lowestpercentageof reads remaining followedby
Method 1, then Method 3.

Proper host filtration protects against private genomic data
leakage
Improper host filtration of metagenomic samples can leak sensitive
genomic information. In a recent study, Tomofuji et al.8 re-identified
patients from human reads that leaked through fecal metagenomic
data, matching them to blood-derived genotype data from the same
individuals (Supplementary Data 1). Their study initially used host fil-
tration steps derived from traditional filtration methods8. To test the
effectiveness of our approaches to disrupt a host re-identification
signal, we applied the above methods to the 343 fecal samples from
Tomofuji et al.8 re-filtering host data with steps outlined in Methods 1
and 2. Using the 343 paired genotype samples to test whether re-
identification (from the fecal samples) was still possible (see Methods
for details), we found that filtration with any combination of two
human references (GRCh38.p14, T2T-CHM13v2.0,HPRC)was sufficient
to prevent patient re-identification, haplotype reconstruction, and
phenotype prediction (Fig. 6). Thesedata demonstrate the importance
of thorough host filtration prior to public upload of mNGS data while
providing computationally efficient tools to do so.

Discussion
While host filtration and host depletion are important steps of careful
mNGS analyses, only host filtration has relevant use cases for thou-
sands of already-generated human datasets, especially those initially
generated without the original intent of microbial analysis. Through
processing whole genome sequencing (WGS) data from metastatic

tumor samples, we incidentally identified the impact of insufficient
host filtration through artifactual sex biases that human DNA intro-
duced in downstream analyses. These biases had larger impacts on
abundance-based metrics and can be mitigated by using qualitative
approaches. Nonetheless, such biases introduced by insufficient host
filtration likely persist for other metagenomic sequencing datasets,
particularly thosegeneratedprior to the release of the T2T-CHM13v2.0
reference genome containing the full Y chromosome. Thus, it remains
prudent to continuedeveloping and refining techniques to easily scrub
human DNA from pre-existing and future mNGS datasets.

Beyond biasing microbial data, an additional consequence of
insufficient host filtration in human studies is the retention of
personally-identifying humanDNA sequences inmNGS datasets.Many
mNGS data generation and usage agreements dictate that metage-
nomic applications of whole genome sequencing will be used to gen-
erate and analyze microbial DNA, not human DNA: this is particularly
relevant in clinical environments where patients may consent to
microbial analysis viamNGSof samples derived fromahumanhost but
may not consent to their host genomic content analysis31. Moreover,
patients are often unaware that untargeted sequencing approaches
intended for microbial study will also sequence some amount of host
DNA, and failure to comprehensively remove host DNA from meta-
genomic sequencing data may violate data usage and patient consent
agreements by inadvertently enabling deanonymization and reidenti-
fication. This is particularly important when depositing microbiome
datasets in public repositories, which typically do not require restric-
ted/controlled access8. Even when efforts are devoted to preventing
re-identification of individuals (for example, by only sharing summary-
level data), others have shown that re-identification of participants

Fig. 6 | Re-identification froma set of genotype data based on the human reads
in fecal samples preventedwith improved host filtration. The 343 fecal samples
fromTomofuji et al. NatureMicrobiology 2023,with paired genotype data,were re-
analyzed with various combinations of updated host filtration methods
(GRCh38.p14, T2T-CHM13v2.0, Human Pangenome Reference Consortium 2024
release) resolving host data leakage. The x-axis of the plots indicates the number of
bases used for the calculation of the likelihood scores. The y-axis of the plot indi-
cates the two-sided P values calculated using a standard normal distribution based

on the standardized likelihood scores. The red and blue dashed lines indicate
p = 4.3 × 10−7 (0.05/117,649 tests) and p = 1.5 × 10−4 (0.05/343 tests), respectively.
The results of the 117,649 tests (343 genotype data × 343 metagenome data) are
indicated as the colors of the points. Some samples could not be used for the
re-identification analysis because too few reads remained after filtering, hence the
fewerdots shown across host filtrationmethods. Full descriptionon the calculation
of P values can be found in the Methods.
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from specific GWAS is still possible, or even in DNAmixtures where an
individual contributes less than 0.1% of the total genomic material32.
Therefore, as sequencing methods continue to provide higher mNGS
throughput, it is imperative that computationally efficient techniques
countering their unintendedprivacy consequences aremade available.

To address this need, we have proposed an efficient, customizable,
and effective host filtering pipeline that accurately separates human and
microbial reads from mNGS datasets, with demonstrated applications
across real samples of varying biomass.We recommendusingMethod 1,
which is time efficient (Fig. 2b) while leaving a majority of the microbial
reads (Fig. 3b), but removes enough human reads to disrupt subject
reidentification. In cases where the maximum amount of human reads
must be removed, even at the cost of losing microbial reads, then
Method 2 would be more appropriate. Finally, if a user wants to max-
imize the remaining microbial reads, then Method 3 would be best.
Given the scalability of Movi27, we anticipate that additional human
references can be easily incorporated as they are releasedwithoutmajor
impacts on runtime, making the approach future proof.

Tomofuji et al. describe the process of performing patient rei-
dentification using relatively few human DNA sequences retained in
fecal sequencing data by combining paired genotype data8. Using their
data, we demonstrated how our methods can prevent patient rei-
dentification, thereby protecting patient privacy. As interest in meta-
genomic studies of human biological processes grows, increased
emphasis should be placed on applying end-to-end privacy-protecting
methodologies, inclusive of computational workflows. Sequencing
human DNA is a byproduct of mNGS, even in fecal samples, and may
persist despite molecular host depletion protocols. Thus, applying
computational host filtration techniques remains imperative when
performing (or uploading) human-associated microbiome studies.

All host filtration methods remain imperfect due to the under-
explored genomic diversity of the human population and the con-
comitant lack of complete and individualized human reference gen-
omes. Our proposed workflows incorporate more genetic diversity
than any computational host filtration approach to date while
remaining computationally efficient. Since existing reference data-
bases do not account for the complete set of human genetic variation
or non-germline sequence variants frequently found in cancer and
other diseases, read-based host filtration approachesmay leave a small
number of human reads in the data while performing a negative
selection for human DNA.

Although removing human reads is an important part of down-
stream microbial analysis data, this is just one part of the puzzle in
properly detecting the true microbial profiles of low biomass human
samples. Many other factors, including various ways the sample may
become contaminated from the collection process through sequen-
cing, require other tools and strategies beyond our host filtration
pipeline to be accounted for.

If researchers desire extra protections to ensure no human reads
are inadvertently mapped, a positive selection for microbial reads can
be performed using reference databases confirmed to be fully micro-
bial. We conducted this type of analysis using a microbial database
scrubbed of human reads derived from Sepich-Poore et al.7 and simi-
larly noted a resolution of the artifactual sex-difference effect with the
cleaned database alone. Additionally, researchers may choose to use a
broader range ofmicrobial reference databases beyond RefSeq, which
may have more low-complexity regions masked, potentially eliminat-
ing some of the mismapping issues leading to sex differences. Addi-
tionally, we provide a list to the community of ‘false positive taxa’ we
identified with the addition of T2T-CHM-13v2.0 filtering across com-
mon microbial databases (RefSeq release 200 and 21033, Web of Life
version 223, Genome Taxonomy Database release 22034) as a resource
to the community (Supplementary Data 7). However, we caution that
cleaning microbial reference databases or using alternative microbial
databases in principle cannot address the retention of human reads in

metagenomics datasets due to bias from incomplete representation of
variation in the human genome.

Nevertheless, this work highlights the importance of and provides
appropriate tools for thorough host filtration to mitigate false align-
ments and erroneous conclusions. The methods here provide an
important starting point for conducting host filtration using state-of-
the-art methods while being readily expandable for future improve-
ments and reference databases.

Methods
All participants from which fecal and skin samples were derived pro-
vided informed consent, and protocols were approved by the Institu-
tional Review Boards at the University of Wisconsin-Madison (#2015-
0030) and the University of California San Diego (#200844)
respectively.

Human references
Human reference genomes GRCh38.p7, GRCh38.p14, and T2T-CHM-
13v2.0 were retrieved from NCBI (Supplementary Data 1). All 94 cur-
rently published reference assemblies from the Human Pangenome
Reference Consortium website. More information on downloading
each reference can be found in Supplementary Data 1.

HMF data processing
TheHartwigMedical Foundation15 (HMF) performedDNA sequencing of
tumor tissue (n=9973 samples) andmapped reads to reference genome
GRCh37.p13 using BWA-MEM35 (v. 0.7.x) to create BAM files. Pre-aligned
BAM files were downloaded fromHMF in October 2021, and unmapped
reads were extracted from the BAM files. The files were then filtered
through fastp36 (v. 0.20.1) with a length cutoff of 45bp minimum and
default adapter removal, then usingminimap2 (v. 2.17)mapped to either
GRCh38.p737 or GRCh38.p7 +T2T-CHM13v2.016 human databases.
Finally, samtools38 (v. 1.11) was used to extract reads which did not align
to the human reference. The full command used is: fastp -l 45 -i $R1 -I $R2
-w 16 --stdout |minimap2 -ax sr -t 16 $human_database - -a | samtools fastq
-@16 -f 12 -F 256 -1 $R1_out -2 $R2_out. Followinghostfiltration, readswere
aligned to the RefSeq release 200 database using the SHOGUN39 pro-
tocol withWoltka23 in theQiita40 platform. RefSeq33 release 200 includes
the NCBI representative and reference microbial genomes correspond-
ing to release date 2020-05-14. Dimensionality reduction of the corre-
sponding BIOM table41 was then performed through Gemelli’s RPCA
function (v. 0.0.6)18 to create a distancematrix on which PERMANOVA42

differences across sex and a Robust Aitchison PCA plot were created,
both using QIIME243 (v. 2022.2.0).

Parameters used in alignment and indexing host filtration
For all three methods, raw FASTQ files are quality filtered using fastp36

(v. 0.23.4) with a length cutoff of 45 bp minimum and subject to
adapter removal using the full list of adapters hardcoded in fastp (as
opposed to relyingon fastp’s automateddetectionwhich is limited to a
subset of sequences).

For host filtration methods that utilize sequence alignment, we
generated individual minimap225 (v. 2.26) indexes using default para-
meters for each individual human reference genomes. Sequence
alignmentwas then performedwith parameters: -2 -ax sr. To hostfilter,
sequences were aligned sequentially to each genome discarding reads
which mapped. We used samtools38 (v. 1.19) to reverse unmapped
sequences from SAM back into FASTQ format (with arguments -f 12 -F
256 -N for paired-end data and -f 4 -F 256 for single-end data) after each
consecutive alignment. Finally, for paired-enddataweused fastq-pair44

(v. 0.4) to sort and match filtered read pairs into individual files.
For host filtrationmethods that utilize indexing, we generated a full

index over all 94 published pangenome references from HPRC release
2023, along with GRCh38.p14 and T2T-CHM-13v2.0 using Movi27

(unversioned; git commit hash 76d5a6da1ec0aeb0121b5ac7c59b2959
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36e23cc1). Movi generates pseudo-matching lengths (PMLs) which are
approximations of sequence similarity between the query and the index.
We used movi-default to generate PML distributions for each queried
read andexplored several differentmathematical transformations of the
resulting PML distributions into singular per-read scores. The PML dis-
tributions produced by Movi roughly approximate matching statistics
previously validated for sequence classification tasks27. Thus, we rea-
soned that reads with larger PML distribution values had higher simi-
larity to human genomic regions within the index than those with lower
values. We tested several transformations of PML distributions into
summative scores anddevised approach-specific threshold values based
on a theoretical human read of length 150 with a singular contiguous
matching run of length 31. First, we utilized the maximum PML score
within thedistributionas the test valueand thuscomputed the threshold
for the maximum approach as 31. Next, we calculated the average PML
score within the distribution as the test value and thus computed the
threshold for the average approach as 3.306. To maximally distinguish
PML distributions that feature discontinuous runs of matching nucleo-
tides, we devised a custom metric that magnifies the summative score
for read distributions with long stretches of matches above a minimum
run-length threshold (denoted w). In concordance with the previous
maximum and average metrics, we computed the threshold for the
custom approach as 0.175 with a minimum run-length value of 5.
Throughexperimental validationonmixedhuman/microbedatasets,we
found that our custommetric had the best discriminative performance.
To verify this approach, we ran a grid search over various thresholds for
the custom metric (thresholds: 0.145 to 0.200 by increments of 0.005;
minimum run-length: 2 to 12 by increments of 1) on our simulated data
for which we had labeled ground truth (see “Simulated data”). The
results showed strong recall for our use cases at the default threshold,
but we acknowledge that some users may prefer higher stringency on
human DNA removal even at the cost of inadvertent microbial DNA
removal. Thus,we implementedboth themetric (“maximum”, “average”,
or “custom”) and the numerical threshold as configurable options in our
host filtration pipeline to meet the needs of all users. The equation for
the custom metric is denoted below:

1
2L

maxðPML distributionð Þ

+
X
rϵR

r

 !
� logð Rj j+ 1ÞÞ

 !
where rϵR if len rð Þ>w

ð1Þ

Host filtration benchmarking data processing
We benchmarked three methods to compare different combinations
of the aforementioned alignment-based and indexing-based host fil-
tration approaches. We use minimap2 for alignment based on its
support for this application in prior work11.

Method 1. Step i (filled circle): aligned reads to human reference
GRCh38.p14 with minimap2 (v. 2.26), then used samtools (v. 1.19) to
extract reads that did not align to the human reference. Step ii (filled
square): aligned remaining reads from step i to human reference T2T-
CHM13v2.0 with minimap2 (v. 2.26), then used samtools (v. 1.19) to
extract reads that did not align to the human reference. Step iii (star):
matched remaining reads fromstep ii to an aggregatedhuman reference
set consisting of GRCh38.p14, T2T-CHM13v2.0, and the 94 HPRC pan-
genomes using indexing-based filtration with Movi, as described above.

Method 2. Step i (filled star): aligned reads sequentially to
GRCh38.p14, T2T-CHM13v2.0, and the 94 HPRC pangenomes with
minimap2 (v. 2.26), then used samtools (v. 1.19) to extract reads that
did not align with each iteration. Step ii (star): matched remaining
reads from step i to an aggregated human reference set consisting of

GRCh38.p14, T2T-CHM13v2.0, and the 94 HPRC pangenomes using
indexing-based filtration with Movi, as described above.

Method 3. Step i (star): matched reads to an aggregated human
reference set consisting of GRCh38.p14, T2T-CHM13v2.0, and the 94
HPRC pangenomes using indexing-based filtration with Movi, as
described above.

Although all Methods use GRCh38.p14, T2T-CHM13v2.0, and
HPRC as part of the Movi indexing approach, we want to emphasize
that only Method 2 also uses them for minimap2-based alignment.
Although minimap2 and Movi are both useful tools for linking short
reads to reference genomes, their underlying algorithms are distinct
and thus the two tools produce differing results (Fig. 3) and runtimes
(Fig. 2b). Minimap2 uses a traditional seed-chain-align approach to
identify exact matches to a reference, while Movi uses the Move
structure introduced by Nishimoto and Tabei in 2021 to compute
pseudo-matching lengths to a reference45. Combining minimap2 and
Movi utilizes the respective strengths of each of their implementa-
tions, and appears to result in the highest number of reads removed.

We calculated the number ofmicrobial, bacterial, eukaryota, viral,
and archaea genome frequencies listed in Supplementary Data 6 using
the SHOGUN39 protocol via theQiita40 platformwith theRefSeq release
210 (2022-01-01) database. We listed forward and reverse read counts
separately in Supplementary Data 6 to directly report the number of
reads mapped to microbial taxa. Read counts listed throughout all
other portions of themanuscript count forward and reverse reads as a
single count. Additionally, in the case of the Tissue Samples from
Various Metastatic Cancer, the ‘Before host filtration number’ is fol-
lowingGRCh38.p7 host filtration and not the purely raw reads as in the
other cases.

As a resource to the community, we calculate microbial alignments
from reads retained following GRCh38.p14 filtration, but removed with
the addition of T2T-CHM-13v2.0 filtration. We do this by tabulating the
additional reads removed from the aforementioned 100 colorectal tis-
sue tumor samples from HMF when incorporating T2T-CHM-13v2.0 for
hostfiltration (Method 1 step ii) referred to as “T2T-filtered” reads above.
We aligned these removed reads to a diverse set of microbial reference
databases – RefSeq release 20033, RefSeq release 21033, Web of Life
release 223, andGTDB release 22022 – and reported the resulting spurious
microbial alignments (Supplementary Data 7).

Statistics and reproducibility
We used two-sided Wilcoxon signed-rank tests using SciPy46 (v. 1.8.0)
to assess differences in medians between reads retained or removed
across differing methods. Because this test involves ranking the
absolute differences between pairs, and since reads retained or reads
removed tend to either decrease or increase respectively across pairs,
the resulting test statistic reported is 0 for all comparisons. For all
boxplots, throughout the figures, the box represents the interquartile
range (IQR), with the centerline being the median and the top and
bottom of the box representing Q1 and Q3. Boxplots were generated
using matplotlib47 (v. 3.8.0), and the whiskers of the plot were left at
matplotlib defaults, making them +/−1.5 from the IQR. Outliers were
removed from the boxplots since a scatter plot with all dots was
overlaid. To facilitate computationally efficient benchmarking of the
host filtration methods, we analyzed a subset of n = 100 samples from
the HMF dataset, and n = 50 samples from the Alzheimer’s disease
fecal dataset while using complete datasets for all other sample
types. All p values are rounded two decimal places, and all test
statistics are reported with three significant figures unless
otherwise specified.

Simulated data
Datawas simulated usingART Illumina46,48 (v. 2.5.8). Human readswere
simulated using HPRC genomes, and microbial reads were simulated
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from FDA-ARGOS28. Supplementary Data 1 further describes simulated
dataset accession.

Re-identification analysis with updated host filtration methods
For the re-identification analysis, we utilized human reads extracted
from mNGS data and imputed SNP array data in the previous study8.
The main steps in the human read extraction were as follows: (i)
trimming of low-quality bases, (ii) identification of candidate human
reads, (iii) removal of duplicated reads, and (iv) removal of the
potential bacterial reads. We trimmed the raw reads to clip Illumina
adapters and cut off low-quality bases using the Trimmomatic49 (v.
0.39; parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true
TRAILING:20 MINLEN:60). We discarded reads less than 60bp in
length after trimming. Then, we mapped the trimmed reads to the
human reference genome (GRCh37, human_g1k_v37_decoy) using
bowtie250 (v. 2.3.5.1) with the ‘—no-discordant’ option and retained
only the properly mapped reads. Next, we performed duplicate
removal by Picard MarkDuplicates (v. 2.22.8) with ‘VALIDATION_-
STRINGENCY= LENIENT’ option. Finally, we mapped the duplicate
removed reads to the bacterial reference genome set constructed in
Kishikawa et al.51. This reference was composed of the 7881 genomes
including those derived from Nishijima et al.52 and those identified in
the cultivated human gut bacteria projects53–55. We kept only reads of
which both paired ends failed to align. The resulting reads were
defined as human reads and used in the subsequent analyses. Then,
extracted human reads were subjected to the host filtration methods,
namely the first steps two steps of Method 1: GRCh38.p14 alignment,
and GRCh38.p14/T2T-CHM13v2.0 alignment, along with the first step
of Method 2: GRCh38.p14/T2T-CHM13v2.0/HPRC alignment.

For the re-identification analysis, we utilized likelihood score-based
method introduced in the previous study8. We calculated the likelihood
that each sample in the genotypedataset produced theobservedhuman
reads in the fecal samples from two input data; (i) human reads in the
gut-derived mNGS data which were mapped to the human reference
genome and (ii) genotype dataset of themultiple samples. We extracted
the SNP sites which were covered by at least a read and included in the
reference panel by ‘bcftools mpileup’56 with the ‘-T’ option. To get
independent SNP sites,we applied clumping to the list of the SNPswhich
were covered by at least a read. We used ‘–indep-pairwise 100 30 0.1’
option in PLINK for clumping at Rsq =0.1. Then, we calculated the like-
lihood according to the model proposed in Li et al.57. Suppose an SNP
site i was covered by ni reads in the gut-derived mNGS data, ki reads
were from the reference allele, and ni � ki reads were from the alter-
native allele. bcftools56 (v. 1.10.2)was used to calculate the read coverage
with ‘-q 40 -Q 20’ options. The error probability of the read bases was ε
and error independency was assumed. In this study, ε was set at 1 × 10−6

following the assumption in Li et al.57. At the SNP site i, the number of the
alternative allele of an individual j (gi, j) couldbe0 (Ref / Ref), 1 (Ref / Alt),
or 2 (Alt / Alt). Then, the likelihood that the sample with a gi alternative
alleles at SNP site i produced the observed human reads in the gut-
derived mNGS data was expressed as

Li, jðgi, j,ni, kiÞ=
1
2ni

½ð2� gi, jÞε+ gi, jð1� εÞ�ni�ki ½ðgi, jε+ ð2� gi, jÞð1� εÞ�ki

ð2Þ

When the clumping procedure retained N independent SNP sites,
a log-transformed likelihood (likelihood score; LS) that a genotype
data produced the observed human reads in the gut-derived mNGS
data was expressed as

LSj =
XN
i = 1

log Li, j gi, j,ni, ki

� �� �
ð3Þ

Next, we drew the background distribution of the likelihood score
from (i) human reads in the gut-derived mNGS data which were map-
ped to the human reference genome, and (ii) allele frequency data for
the SNP sites used for calculating the likelihood score. In this study,
Japanese subjects in the combined reference panel of 1KG Project
Phase 358 version 5 genotype (n = 104) and Japanese WGS data
(n = 1037) were used to calculate the allele frequency59. When an
alternative allele frequency at SNP site i was pi and the number of the
alternative allele was gi,pop (=0, 1, or 2), theoretical genotype fre-
quencies at SNP site i were expressed as

P gi,pop,pi

� �
=

ð1� piÞ2, ðgi,pop =0Þ
2pi 1� pi

� �
, ðgi,pop = 1Þ

pi
2, ðgi,pop =2Þ

8>><
>>:

ð4Þ

Then, the expected log transformed likelihood that a genotype
data randomly drawn from the specified population produced the
observed human reads in the mNGS data was expressed as

E LSpop
� �

=
XN
i= 1

E LSi,pop
� �

=
XN
i= 1

X2
gi,pop =0

P gi,pop,pi

� �
logðLiðgi,pop,ni, kiÞÞ ð5Þ

Given that SNP sites were independent, the variance of the like-
lihood score in a specific population was expressed as

V LSpop
� �

=
XN
i = 1

V LSi,pop
� �

=
XN
i= 1

X2
gi,pop =0

P gi,pop,pi

� ��
logðLi gi,pop,ni, ki

� �
Þ � E LSi,pop

� ��2 ð6Þ

Using E LSpop
� �

and V LSpop
� �

, we calculated the standardized

likelihood score of the individual j as
ðLSj�E LSpopð ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V LSpopð Þ
p . We transformed

standardized likelihood scores to P values based on the normal dis-
tribution. We identified the pair of the gut-derived mNGS and geno-
type data (imputed SNP arraydatawas used in this study) derived from
the same individuals based on the P values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw HMF data used in this study is under the purview of the
Hartwig Medical Foundation and contains patient-protected informa-
tion that cannot be sharedpublicly (see https://hartwigmedical.github.
io/documentation/data-access-request-methods.html for data access
guidelines for access request details). The FDA-ARGOS database used
in this study is publicly available from the official website (https://
argos.igs.umaryland.edu) as well as NCBI BioProject PRJNA231221
(https://www.ncbi.nlm.nih.gov/bioproject/231221). The human
exome data used in this study is derived from the IGSR phase 3
data, which is available via the official EMBL-EBI portal (https://
www.internationalgenome.org/data). The atopic dermatitis skin
sample data and the Alzheimer’s disease fecal sample data used in
this study are available from ENA under accession PRJEB83637.
The fecal sample data from Tomofuji et al. are publicly available
from JGA under accessions JGAS000260, JGAS000316, and
JGAS000531 (https://www.ddbj.nig.ac.jp/jga/index-e.html). The
blood sample data from Tomofuji et al. are publicly available
from EGA under accession EGAS00001007027.
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Code availability
Code and instructions to implement themethods of host filtration can
be found on GitHub (https://github.com/cguccione/human_host_
filtration). Code used to create simulated data, run host filtration
metrics and create figures can be found on GitHub (https://github.
com/cguccione/host-filtration-notebooks).
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