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Systematic representation and optimization
enable the inverse design of cross-species
regulatory sequences in bacteria

Pengcheng Zhang 1,3, Qixiu Du 1,3, Ye Wang1,2,3, Lei Wei 1 &
Xiaowo Wang 1

Regulatory sequences encode crucial gene expression signals, yet the
sequence characteristics that determine their functionality across species
remain obscure. Deep generative models have demonstrated considerable
potential in various inverse design applications, especially in engineering
genetic elements. Here, we introduce DeepCROSS, a generative artificial
intelligence framework for the inverse design of cross-species and species-
preferred 5’ regulatory sequences in bacteria. DeepCROSS constructs a meta-
representation using 1.8 million regulatory sequences from thousands of
bacterial genomes to depict the general constraints of regulatory sequences,
employs artificial intelligence-guided massively parallel reporter assay
experiments in E. coli and P. aeruginosa to explore the potential sequence
space, and performs multi-task optimization to obtain de novo regulatory
sequences. The optimized regulatory sequences achieve similar or better
performance to functional natural regulatory sequences, with high success
rates and low sequence similarities with the natural genome. Collectively,
DeepCROSS efficiently navigates the sequence-function landscape and
enables the inverse design of cross-species and species-preferred 5’ regulatory
sequences.

The evolution process fundamentally shapes the genomes of different
organisms. The naturally-existing regulatory sequences (RSs) in dif-
ferent hosts thus generally adhere to related but different biophysical
constraints. For example, despite the commonality of sigma factors
between bacteria, each species exhibits specific sigma factors and
transcription factor binding sites (TFBSs)1,2. Therefore, it is an inter-
esting question whether one can break down the barriers between
organisms to inverse design RSs that are species-preferred or func-
tional across multiple species. Such RSs can help construct novel
synthetic circuits in awide range ofmicrobial species for industrial and
therapeutic applications3–5. Although a few natural RSs have been
reported to be functional cross-species6,7, they generally exhibit low

activities in heterologous species8–10. An effective strategy to obtain
cross-species RSs with the desired function is still lacking.

Previous studies showed the existence of cross-species 5’ RSs in
nature. For example, a recent work by Johns et al.7 randomly selected
natural RSs from 180 bacteria species and tested their activities using
massively parallel reporter assays (MPRA) in both E. coli and P. aeru-
ginosa and identified several cross-species and species-preferred RSs
(denoted as “Johns-Dataset”). The Johns-Dataset provided the paired
information about the ‘sequence-activity’ landscape of a set of RSs
across species7. However, the dataset has a limited number of func-
tional cross-species RSs, and the activity and diversity of these RSs
were severely restricted. These challenges restrict the understanding
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of sequence characteristics and impede efficient virtual exploration
within the sequence space.

Here, we proposed DeepCROSS, a deep learning-empowered
framework to inverse design cross-species and species-preferred 5’RSs
(Fig. 1a). The inverse design begins with defining desired functional
characteristics, such as cross-species activity or species-preferred
preferences, and works backward to create new RSs that meet these
criteria. We demonstrated its effectiveness for designing gene pro-
moters in E. coli and P. aeruginosa. DeepCROSS stands for Deep
learning-empowered Cross-species regulatory sequence design based
on Representation and Optimization in Sequence Space. By con-
structing a large-scale meta-representation of potential 5’ RSs derived
from thousands of bacterial genomes and fine-tuning the model to
target species using an adversarial autoencoder (AAE)11, DeepCROSS
extracts the fundamental features of regulatory sequences into a
compact deep statistical embedding. This representation, combined
with a Dense-LSTM-based prediction model that predicts promoter
activity of RSs, enables DeepCROSS to explore sequence space and
generate cross-species RSs with high accuracy and sequence diversity.
To address the issue of the limited number of functional cross-species
RSs, we carried out an active exploration strategy, using DeepCROSS
to guide in vivo MPRA experiments to fill the long-tail-distributed
“sequence-activity” landscape. The DeepCROSS model refined by this
strategy demonstrated a significant improvement in predicting RS
activity. The experimental validation confirmed that the final Deep-
CROSS model achieved 90.0% and 93.3% accuracy in designing
species-preferred and cross-species RSs respectively. These synthetic
RSs exhibited high diversity and low sequence similarity to their nat-
ural counterparts within bacterial genomes. Our work provides a de
novo strategy for effectively portraying the functional landscape
within the vast DNA sequence space, positioning DeepCROSS as a
valuable computational framework for the inverse design of cross-
species and species-preferred RSs.

Results
Inverse design of cross-species and species-preferred 5’ RSs by
DeepCROSS
As reported in the Johns-Dataset which randomly selected natural RSs
from broad species, though several sequences showed cross-species
activities at some level, most of the randomly selected natural RSs are
non-functional in target species7. Therefore, using randomly sampled
5’ RSs from other species to represent the functional subspace of the
target species is ineffective12. Training a model directly on this kind of
dataset tends to be ineffective in generating high-activity cross-species
RSs. This ineffectiveness stems from two primary challenges: a limited
number of functional samples with insufficient diversity13, and the
long-tail distribution observed in the sequence activities of randomly
selected samples12. Both of these challenges are prevalent issues in
inverse design tasks across both biomolecular and material
domains14–16.

To address these challenges, DeepCROSS was structured into
three main steps (Fig. 1a): meta-representation, AI-guided experi-
mental quantification by MPRA, and multi-task optimization. We
demonstrated DeepCROSS with the inverse design task of cross-
species and species-preferred 5’ RSs as promoters in E. coli and
P. aeruginosa. The two widely used bacteria are both gram-negative
proteobacteria but inhabit distinct environments and are equipped
with diverse RSs.

Formeta-representation,DeepCROSS employs anAAE11 to encode
5’ RSs into a lower-dimensional continuous vector, providing a com-
pact and informative representation for the sequences. The AAE fra-
mework consists of one encoder, one decoder, and two adversarial
discriminators (Fig. 1b). These two discriminators enforce constraints
on the sequence representation, associating it with expression activity
and aligning it with a Gaussian distribution. During training,

DeepCROSS was first trained on 1.8 million 5’ RSs derived from 2621
bacteria genomes17 (Fig. 1a,Methods, Supplementary Fig. 1), effectively
capturing critical sequence patterns. These RSs, sourced from diverse
bacterial strains, endowed DeepCROSS with a broad understanding of
the physicochemical constraints that are shared across different bac-
teria. This extensive training helped in framing a meta-representation
of thepotential functional sequence space.DeepCROSSwasfine-tuned
on a few bacteria species of the same genus as E. coli and P. aeruginosa
(Enterobacterales and Pseudomonadales respectively). The pre-
training and fine-tuning process can combine the sequence features
of general constraints and the specific preferences of target hosts. We
also built a quantitative prediction model (“Dense-LSTM” model),
which aims to predict the transcriptional activity of the RSs based on
their sequences, to guide the exploration of functional RSs based on
the Johns-Dataset7 (Supplementary Methods).

To deal with the long-tail distribution observed in the sequence
activities of randomly selected samples, we then used DeepCROSS to
sample from the subspace of interest to generate candidate RSs and
performed MPRA experiments18 to quantify the activities of these RSs
(Methods, Supplementary Data 2). To guide the exploration of the
potential sequence space, these quantified RSs were appended to the
training dataset to refine both the Dense-LSTM prediction and repre-
sentation models. To achieve multi-task optimization for the cross-
species in both E. coli and P. aeruginosa and species-preferred RSs, the
refined prediction model was applied to guide the optimization
direction in the representation space. These optimized RSs were the
final inversely designed products, and their activities in both E. coli and
P. aeruginosa were verified using sfgfp gene as a reporter.

Meta-representation captures essential constraints of RSs
Toevaluatewhether theDeepCROSS-generatedRSs captured essential
constraints of RSs, we examined the representation of RSs from var-
ious bacteria genomes to assess DeepCROSS’s ability to derive mean-
ingful features. As shown in Fig. 2a, although the edit distance between
RSs within the same taxonomic class is indistinguishable from that
between different taxonomic classes (Supplementary Fig. 2a), the two-
dimensional principal component analysis (PCA) projection of the
large-scale representation of DeepCROSS distinctly clusters RSs from
different organisms based on their phylogenetic levels. Specifically,
RSs from the target species E. coli and P. aeruginosa positioned
themselves within their species-preferred territories. We found that
the previously reported cross-species RSs between E. coli and P.
aeruginosa7 are predominantly located between the two species-
preferred subspace, suggesting that the cross-species RSs are con-
strained by the sequence features of both species. We assumed that
cross-species RSs and species-preferred RSs could be generated by
sampling from the intersectant region and the corresponding non-
overlapping region, respectively (Supplementary Methods). In addi-
tion, we investigated whether the similarity between two RSs corre-
sponded to the Euclidean distance between their embeddings in the
representation space (Supplementary Methods). We analyzed the
averaged embedding of the generated RSs at each step and found a
gradual decline in sequence similarity to the starting sequence (Sup-
plementary Fig. 2b). These results suggest that the representations
generated by the AAE model preserve the inherent similarities within
sequences, enabling clustering for the functional properties of
sequences and thereby improving the efficiency of sampling and
optimization.

Considering the diversity in GC content and k-mer preferences of
RSs across different organisms19,20, and the importance of conserved
−10 and −35 elements across bacteria for promoter function21, we
computationally evaluated the feature extraction ability of AAEmodel
from three perspectives: 6-mer frequencies, GC-contents, sigma70
factor match score (Fig. 2b and Supplementary Fig. 3). Besides Deep-
CROSS trained with meta-representation which has been described
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Fig. 1 | An overview of the DeepCROSS approach. a In the meta-representation
stage, tens of thousands of natural 5’ RSs were collected from the NCBI genome.
The semi-supervised adversarial auto-encoder and Dense-LSTM predictor model,
DeepCROSS, was applied to generate synthetic cross-species and species-
preferred RSs. Then the AI-guided experimental quantification by MPRA experi-
ments in E. coli and P. aeruginosa were conducted to measure the transcription
activity of synthetic RSs. In the multi-task optimization stage, DeepCROSS-

designedRSswere optimized, validated, and characterized.bTheAAEmodelmaps
the one-hot encoded RSs to a 64-dimensional continuous vector. The encoder
network (E-net) and two decoder networks (D-net-Gaussian and D-net-exp) are all
basedongroups of residual blocks (Supplementary Fig. 1). The three input datasets
were ‘E. coli & P. aeruginosa’ (the RSs in the Johns-Dataset), ‘Enterobacterales and
Pseudomonadales’ (RSs from Enterobacterales and Pseudomonadales bacteria),
and RSs from more than 2000 broad species of bacteria.
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above (meta-DeepCROSS in short), we also considered two versions of
DeepCROSS trained using only the Johns-Dataset (Johns-DeepCROSS
in short), or using both the Johns-Dataset and RSs of representative
Enterobacterales and Pseudomonadales bacteriawhich are in the same
genus of E. coli and P. aeruginosa, respectively (genus-DeepCROSS in
short). Regarding the 6-mer frequency, we calculated the Pearson’s

Correlation Coefficient (PCC) for 6-mer base frequencies between the
generated RSs and previously reported functional RSs. We found that
in comparison with Johns-DeepCROSS and genus-DeepCROSS, RSs
generated bymeta-DeepCROSS exhibited a significantly higher PCC in
both cross-species and E. coli-preferred generation tasks (Fig. 2b, two-
tailed t-test). Hence, the model appears to more accurately mimic the
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6-mer base frequency preference when utilizing the meta-
representation. We examined the Jensen–Shannon (JS) divergence
between theGCdistribution of natural RSs in the training set and those
generated by DeepCROSS. The GC content distribution of RSs gener-
ated by meta-DeepCROSS showed the lowest JS divergence with nat-
ural distribution (Fig. 2b, two-tailed t-test), which demonstrated that
meta-representation can well learn the constraints of broad bacteria
species and thus provides crucial sequence constraint information for
DeepCROSS. To evaluate whether DeepCROSS-generated RSs contain
sigma70 factor recognition sites, we calculated the cumulative match
score of these RSs (Supplementary Methods and Supplementary
Fig. 3).We observed that someDeepCROSS-generated RSs have higher
sigma70 factor matching scores, which play a crucial role in initiating
transcription by guiding RNA polymerase to specific promoter
regions22. However, this feature has no significant difference in RSs
designed by Johns-DeepCROSS, genus-DeepCROSS and meta-
DeepCROSS methods, indicating that the model might have
identified more specific features that dominate the regulatory effects
of RSs.

We further experimentally measured the in vivo transcriptional
activities of the DeepCROSS-generated RSs by MPRA experiment18

(Fig. 2c). The MPRA library contains a total of 24,000 candidate RSs,
mainly including 6 groups of RSs: random RSs group, Motif group,
Johns-Dataset group, Johns-DeepCROSS group, genus-DeepCROSS
group, meta-DeepCROSS group, etc (see Supplementary Data 2 and
Supplementary Methods for details). We used the DeepCROSS fra-
mework to generate cross-species, E. coli-preferred, and P. aeruginosa-
preferred RSs as promoters and measured their in vivo activities
(Methods). The measurements across three replicates within a given
condition were highly correlated (average PCC stood at 0.9969 for
E. coli and 0.9958 for P. aeruginosa, Supplementary Fig. 4a). As to the
cross-species design task, the RSs designed by meta-DeepCROSS
showed higher transcriptional activity than all the other aforemen-
tioned RS generation methods (Fig. 2c). Specifically, regarding the
total transcriptional activity of RSs in both E. coli and P. aeruginosa, the
meta-DeepCROSS group exhibited an average relative activity of 0.71,
while other groups showed average relative activities ranging from
0.23 to 0.67.

Overall, both experimental and computational results demon-
strated that meta-representation can serve as an efficient method to
help the generative model better learn semantically rich repre-
sentations, capture the essential constraints of RSs, and generate
functional RSs with key sequence features. In addition to expanding
the training dataset, incorporating a broader array of relevant sam-
ples and employing unsupervised learning steers the search away
from non-functional sequences23, thereby effectively enabling
inverse design.

DeepCROSS-guided exploration efficiently fills the sparse
sequence-activity landscape
The performance of a prediction model is heavily influenced by the
quality of its training dataset. A large proportion of low-activity
sequences in the long tail can introduce noise, severely biasing the

model and limiting its generalization ability. This issue was evident in
the Johns-Dataset, which consists of RSs randomly selected from nat-
ural bacterial genomes. Inour study,MPRA results included a subset of
RSs from the Johns-Dataset, and experimental results from two studies
showed a high correlation (PCC=0.85 for E. coli and 0.71 for P. aeru-
ginosa, Supplementary Fig. 5). We used this subset to correct the
activity values of the remaining sequences in the Johns-Dataset. As
shown in Fig. 3a, b, randomly selected natural RSs in the Johns-Dataset
are over-abundant with zeros or near-zero activity values. In contrast,
the activity distribution of the DeepCROSS-generated RSs mitigated
the long tail effect and showed a significantly heavier tail. The ratio of
functional RSs (normalized activities > 0.1) generated by DeepCROSS
in E. coli and P. aeruginosawas 5.63 and 3.28 times higher, respectively,
compared to that in the Johns-Dataset (Fig. 3a, b). These results sug-
gest that DeepCROSS-generated RSs can effectively reshape the
unbalanced activity distribution, providing a more diverse and func-
tional dataset for model training.

We then investigated whether the measurement of these
DeepCROSS-generated RSs can enhance the accuracy of RS activity
prediction models. We used RSs from the Johns-Dataset and
DeepCROSS-generated RSs from ourMPRA experiment as the training
data to train seven state-of-the-art prediction models24–28. These
models were then used to predict the activities of RSs in an indepen-
dent test dataset (Methods). As shown in Supplementary Fig. 6,
training on DeepCROSS-generated RSs can significantly improve PCCs
between predicted and real activities and decrease root mean square
errors (RMSEs) in all prediction models. The average PCC in the seven
predictionmodels has been improved by 13.7% in E. coli and 46.5% in P.
aeruginosa respectively. We finally adopted the Dense-LSTM model
which was proved to show the highest accuracy as the prediction
model in the following analysis.

After filling the sparse sequence-activity landscape with
DeepCROSS-generated RSs validated by MPRA experiments, we
obtained a more informative ‘RS-activity’ mapping landscape. To
improve the designs of promising candidates, we employed transfer
learning to integrate features from different datasets by pretraining
the Dense-LSTM model on the Johns-Dataset and fine-tuning it on
DeepCROSS-generated RSs. Given that sample sizes of functional and
non-functional RSs were still unbalanced, which may dampen the
generality of the model. We thus further investigated how the pre-
diction accuracy of the Dense-LSTM model was affected by removing
non-functional RSs. Since the goal of inverse design is to find func-
tional RSs with high activity, the candidate sequences with high
activities should rank at the top of the list and the non-functional RSs
should rank at the bottom. We carried out three evaluation metrics,
inspired by previous work in protein design13: the max and mean
activity of the 100-highest-ranked RSs (“max activity achieved” and
“mean activity achieved” in short) and the Normalized Discounted
Cumulative Gain (NDCG). NDCG, a commonly used metric in infor-
mation retrieval, evaluates the ranking accuracy of RSs with high
activities29 (SupplementaryMethods). All fourmodels, eachemploying
different performance enhancement strategies, were evaluated on an
independent test dataset (Fig. 3c, Methods). The results showed that

Fig. 2 | Meta-representation captures essential constraints of RSs. a The PCA
result of the statistic representation of natural cross-species RSs (the host-
preferred genera are annotated by color. E.g., the RSs from Actinobacteria are in
color red). The enlarged part is the local territory of RSs from our targeted species
E. coli and P. aeruginosa in the testing dataset of the Johns-Dataset. b Left: com-
parison of PCC of 6-mer base frequency between DeepCROSS-generated RSs and
reported functional RSs under different representation approaches (Supplemen-
tary Methods). Right: comparison of JS divergence of GC content between
DeepCROSS-generated RSs and reported functional RSs under different repre-
sentation approaches. Bar height represents the mean of n = 3 independent
experiments per group, with black dots indicating individual experiment results.

The p-values were determined by a two-tailed t-test, where ns represents not sig-
nificant. c Comparison of the measured MPRA activity of cross-species RSs gen-
erated by the full DeepCROSS framework (AAE & Dense-LSTM model) under
different representation approaches. The relative MPRA activity of RSs was calcu-
lated using the BBa_J23119 as the control sequence. Johns-DeepCROSS (n = 491),
genus-DeepCROSS (n = 492), Motif (n = 395), Random RSs (n = 391), Johns-Dataset
(n = 1470), Meta-DeepCROSS (n = 485). n represents the number of RSs. Box plots
depict themedian (center line), interquartile range (box limits), whiskers (1.5×IQR),
and outliers (points beyond whiskers). Source data are provided as a Source
Data file.
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training on DeepCROSS-generated RSs, compared to Johns-Dataset,
significantly improved the mean activity achieved and NDCG, sug-
gesting DeepCROSS-generated RSs abundantly contain key functional
features. Furthermore, fine-tuning on DeepCROSS-generated RSs and
strategically removing non-functional RSs both significantly improved
the prediction accuracy across E. coli-preferred, P. aeruginosa-

preferred, and cross-species situations (Fig. 3c). These observations
suggest that the abundance of non-functional sequences hampers
the prediction model’s ability to learn functional features. By strate-
gically employing transfer learning and removing these non-functional
sequences, themodel was able to better capture the sequence-activity
landscape and more efficiently explore promising candidates.
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DeepCROSS efficiently designs novel species-preferred and
cross-species RSs
To design synthetic species-preferred RSs and cross-species RSs with
higher activities, we applied a genetic algorithm (GA) to navigate in the
representation space with the guidance of the prediction model
(Methods). The Dense-LSTMpredictionmodel was initially pre-trained
on Johns-Dataset after removing non-functional RSs, and then fine-
tuned using all DeepCROSS-generated RSs from our MPRA experi-
ments. For the optimization task of species-preferred 5’ RSs, the
objective function was set to maximize the fold-change of predicted
activities between E. coli and P. aeruginosa. Each optimized RS was
supposed to satisfy two properties at the same time: high activity in

E. coli and low activity in P. aeruginosa, and vice versa. Similarly, the
objective function of cross-species RSs wasmaximizing the product of
the predicted activities of E. coli and P. aeruginosa (Methods). The GA-
optimized RS group showed significantly higher predicted scores than
that of the natural RS group in both species-preferred and cross-
species situations (Fig. 4a–c).

We selected in total 45 GA-optimized RSs with top predicted
activity scores for E. coli-preferred, P. aeruginosa-preferred, and cross-
species tasks. Additionally, we selected 6RSswith high scores from the
Johns-Dataset for each task after removing abnormal values, resulting
in 18 RSs in total as positive controls (Supplementary Data 3). We
measured the promoter activities of these RSs in both E. coli and

Fig. 3 | DeepCROSS-designed RSs filled the sparse sequence-activity landscape
efficiently. a The distribution of RSs’ MPRA activity in E. coli. The activity of ran-
domly selected natural RSs in the Johns-Dataset is shown in shallow red. TheMPRA
activity distribution of all RSs designed by DeepCROSS (AAE&Dense-LSTMmodel)
is shown in dark red. b The distribution of RSs’ MPRA activity P. aeruginosa. The
activity of randomly selected natural RSs in the Johns-Dataset is shown in shallow
blue. The MPRA activity distribution of all RSs designed by DeepCROSS (AAE &
Dense-LSTM model) is shown in dark blue. c The max activity achieved, mean
activity achieved and NDCG are three evaluation metrics of inverse design effi-
ciency. The design efficiency is evaluated under three expression situations: E. coli,

P. aeruginosa, and cross-species expression. The cross-species expression activity
in both E. coli and P. aeruginosa is calculated by the sum of MPRA activity (log2) in
both species. n = 100 independent simulation experiments per group. The p-values
were determined by a two-tailed t-test, where ns represents not significant. The
outer violin curves represent the kernel density estimate of the data distribution. A
box plot is embedded at the center, where the white dot indicates the median, the
bounds of the box correspond to the 25th and 75th percentiles, and the whiskers
extend to values within 1.5 times the interquartile range (IQR). Source data are
provided as a Source Data file.
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Fig. 4 | Evaluation of DeepCROSS-generated cross-species and species-
preferred RSs. a The natural RSs’ activities and the optimized RSs’ activities were
scored by the prediction model in an cross-species RS design situation (EC and PA
are short for E. coli and P. aeruginosa respectively).b The natural RSs’ activities and
the optimized RSs’ activities were scored by the prediction model in the P. aeru-
ginosa-preferred RS design situations. c The natural RSs’ activities and the opti-
mized RSs’ activities were scored by the prediction model in E. coli-preferred RS
design situations. Box plots depict the median (center line), interquartile range

(box limits), whiskers (1.5×IQR), and outliers (points beyond whiskers). n = 2000
per group in a–c and n represents the number of RSs. d The relative activity of
optimized cross-species and control 5’ RSs measured by sfGFP (BBa_J23119 as the
control sequence). e The relative activity of optimized P. aeruginosa-preferred and
control 5’ RSs. f The relative activity of optimized E. coli-preferred and control 5’
RSs. Bar height represents the mean of n = 3 biological replicates per group in d to
f, with black dots indicating individual experiment results. Source data are pro-
vided as a Source Data file.
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P. aeruginosa by an sfgfp reporter gene (Supplementary Methods). In
total, all GA-optimized RSs designed as cross-species RSs were vali-
dated to show significantly higher activities than negative control RSs
in both species (P-value < 0.001, two-tailed t-test, Fig. 4d). Further-
more, 93.3% of these GA-optimized RSs exhibited higher activity levels
than the native functional RS BBa_J23119 in both E. coli and P. aerugi-
nosa. Besides, 90.0% of the GA-optimized RSs designed as species-
preferred RSs showed activity fold-changes between the two species
higher than 1.5 (Fig. 4e, f). Using the functional RS BBa_J23119 as con-
trol, theDeepCROSS-designed E. coli-preferred RSs showed an average
fold-change of 4.14 and a maximum of 9.6 between E. coli and P. aer-
uginosa. Meanwhile, the DeepCROSS-designed P. aeruginosa -pre-
ferred RSs showed an average fold-change of 15.3 and a maximum of
51.0 between P. aeruginosa and E. coli. The PCCs of predicted and
measured activities in E. coli and P. aeruginosa were 0.84 and 0.82,
respectively (Supplementary Fig. 7). We also compared DeepCROSS
with the promoter design methods proposed by Hossain et al.30. We
experimentally characterized the top 6 promoters of their designs.
DeepCROSS-generated RSs showed equivalent or superior promoter
activity in both E. coli and P. aeruginosa (Supplementary Fig. 8). We
further assessed the robustness of the DeepCROSS-generated RSs by
testing them in two additional types of culture medium: M9 and EZ-
rich (Methods). These RSs showed a very high correlation in promoter
activity under diverse culture conditions in both E. coli and P. aerugi-
nosa (Supplementary Fig. 9, Supplementary Data 3).

We also evaluated the sequence diversity of DeepCROSS-
generated RSs. The average similarity of these optimized RSs calcu-
lated by multiple sequence alignments in ClustalW231 is 11.5, com-
parable to the similarity of random sequences with the same GC
content (Supplementary Fig. 10a, Supplementary Methods). We also
compared the similarity of DeepCROSS-generated RSs with func-
tional natural RSs collected by Kosuri et al. (Supplementary Data 3)32.
The average similarity calculated by ClustalW2 betweenDeepCROSS-
generated RSs and functional natural RSs is 24.0, which is at a similar
level of 24.3 observed between random sequences and functional
natural RSs (Supplementary Methods). Furthermore, using BLAST33

to compare DeepCROSS-generated RSs against the bacterial

genomes (E. coli and P. aeruginosa), we found that all e-values are
higher than 0.25 (Supplementary Fig. 10b), indicating that
DeepCROSS-generated RSs exhibit a strong dissimilarity to natural
bacterial genomes.

Characteristics of DeepCROSS-generated cross-species and
species-preferred 5’ RSs
To explore the characteristics of DeepCROSS-generated RSs, we gen-
erated 1 billion RSs from the representation space and used the pre-
dictionmodel to filter out the top 2000 sequences as E. coli-preferred,
P. aeruginosa-preferred, and cross-species RSs, respectively. These
DeepCROSS-generated RSs were characterized by three aspects: GC
contents, k-mer frequencies, and DNA rigidity properties.

The top 2000 E. coli-preferred and P. aeruginosa-preferred RSs
showed an average GC content of 62.2% and 66.7% respectively. The
GC content distribution of cross-species RSs showed an average of
64.7%, lying between those of E. coli-preferred and P. aeruginosa-pre-
ferred RSs (Fig. 5a). Meanwhile, RS activities showed a weak negative
correlation with GC contents for all three kinds of RSs (Supplementary
Fig. 11). We then calculated the k-mer (k from 4 to 8) base frequencies
of E. coli-preferred, P. aeruginosa-preferred, and cross-species RSs
(Fig. 5b, Supplementary Fig. 12). Taking the 6-mer base frequency as an
example, we found that about one-quarter of the 6-mers showed dif-
ferential frequencies among the three kinds of RSs, forming six dif-
ferentially occurred groups (Fig. 5b, Supplementary Methods). The
P. aeruginosa-preferred RSs showed significantly higher frequencies of
GC-rich 6-mers, such as GCCGCC and CCCGCC. The E. coli-preferred
RSs showed significantly higher frequencies of some AT-rich 6-mers,
such as TTTTTA and AATAAT. The cross-species RSs showed sig-
nificantly higher frequencies of TATAAT and TTGACA, which are the
conserved −10 and −35 elements in bacterial promoters, essential for
RNA polymerase binding and transcription initiation. The results also
showed similar k-mer frequencies between cross-species and E. coli-
preferred RSs indicating that designing E. coli-preferred RSs is more
challenging compared to P. aeruginosa-preferred RSs. This observa-
tion is consistent with the experimental results in multi-task optimi-
zation (Fig. 4e, f).
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RSs. The different preferred base 6-mer frequency encoding in host species.

Differentially enriched groups are annotated above the heatmap with color bars.
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cross-species RSs. Source data are provided as a Source Data file.
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We further investigated the DNA strand shape properties of these
RSs. DNA shape plays an important role in transcription factor (TF)
binding and is determined by local DNA sequences and some shape
motifs, which could be missed by typical motif-finding approaches34.
We calculated four crucial DNA shape property parameters, including
Minor groove width (MGW), Helix twist (HelT), Propeller twist (ProT),
and Roll reported by Zhou et al.35 through recently developed
DeepDNAshape toolkit36. As shown in Fig. 5c, the HelT and Roll dis-
tributions of cross-species RSs were similar to those of P. aeruginosa-
preferred RSs, and showed significant distribution differences com-
pared to E. coli-preferred RSs. In contrast, the MGW distribution of
cross-species RSs was similar to that of E. coli-preferred RSs and dif-
fered from P. aeruginosa-preferred RSs. For ProT, and the distributions
of cross-species RSs located between the two distributions of E. coli-
preferred and P. aeruginosa-preferred RSs (Fig. 5c). These results
demonstrated that efficiently navigating the functional subspace in the
representation space can help enrich and reveal transcription regula-
tion constraints of these elements in both DNA sequence and DNA
shape levels.

Discussion
The inverse design of cross-species and species-preferred RSs37,38 has
the potential for building sophisticated gene circuits39,40 in metabolic
engineering4,41 and biomedicine42. However, the limited number of
functional samples with insufficient diversity and the long-tail dis-
tribution of sequence activities bring difficulty in extracting the func-
tional features and exploring the sequence space efficiently.

Here, we presented DeepCROSS to achieve de novo cross-species
and species-preferred regulatory element inverse design. DeepCROSS
is trained on the characteristics of natural RSs from a broad range of
bacteria and the DeepCROSS-designed 5’ RSs’ activities were validated
in vivo. The inclusion of a wide variety of bacterial species enabled the
generative model to learn general biophysical constraints and avoid
the non-functional sequence features efficiently. The deep learning
model distilled the fundamental features ofRSs into a semantically rich
representation and fine-tuned it to target species to form species-
preferred subspace. The AI-guided MPRA experiments quantified the
activities of DeepCROSS-designed RSs and filled the long-tail-
distributed “sequence-activity” landscape. This AI-guided exploration
strategy significantly improved the accuracy of RS activity predictions
and enabled DeepCROSS to perform multi-task optimization within
the representation space to generate cross-species RSs and species-
preferred RSs.

Long-tail distribution is a common challenge in inverse design
and engineering tasks14–16. A large number of sequences with low
activities form the ‘hole’ in the sequence-activity landscape and often
mislead the deep network-based model into learning inaccurate
sequence patterns13. A small number of functional sequences (for
example, cross-species and species-preferred RSs) exists in nature7,
but they often show insufficient performance due to the lack of
pressure to enhance activity or adapt to synthetic system. The
combination of exploration procedures guided by AI and massive
quantification experiments efficiently fills in the sequence-activity
landscape and significantly improves the performance of predictive
and generative models to inverse design functional sequence can-
didates. Furthermore, the strategy of meta-representation guided
high-throughput exploration may have the potential to overcome
data scarcity which is a common problem in inverse design and
engineering tasks. In addition, researchers have been using machine
learning (ML) algorithms to predict activities of eukaryotic RSs43,44.
DeepCROSS has the potential to be applied to eukaryotic systems for
designing cross-species RSs between eukaryotes, or even between
prokaryotes and eukaryotes. This advancement represents a step
toward constructing complex circuits for the synthetic biology
community45.

Methods
Ethical statement
This research does not involve human participants, animals, or other
ethical concerns requiring formal approval.

Overview of the inverse design procedure
From the perspective of statistical modeling, we used X to denote the
regulatory sequences and Y to denote the target activities. The general
sequence inverse design problem can be formulated to maximize the
joint probability:

max
X

P X ,Y = yð Þ ð1Þ

According to the chain rule, the following is obtained:

P X ,Y = yð Þ= P Y = yjXð Þ � P Xð Þ ð2Þ

Supposing all the possible base combinations are in the set L,
there are in total L=4N possibilities with sequence length N. Directly
analyzing mappings from one-hot encoded DNA sequences remains
challenging. One key issue is the difficulty in inferring property simi-
larity from sequence space, as sequences that are similar in their one-
hot encodingsmay exhibit distinct functional properties. Additionally,
the vastness of the sequence space further complicates this analysis.
To address these challenges andmap discrete candidate sequences to
points in a representation space, DeepCROSS was used to map the
one-hot encodedDNA sequences X into a low-dimensional continuous
sequence representation Z (Fig. 1b). The training process of Deep-
CROSS is aimed at maximizing the reconstruction accuracy (Supple-
mentary Methods), thus the sequences with highly similar
transcriptional activities or the same species labels will be auto-
matically clustered closely in the representation space. Therefore,
after a well-established training process, DeepCROSS can better
characterize the sequence properties in a low-dimensional repre-
sentation, enabling visualization and statistical modelings. Thus, the
objective can be rewritten as follows46:

P X ,Y = y,Zð Þ=P Y = yjX ,Zð Þ � P X jZð Þ � P Zð Þ ð3Þ

To learn the species-preferred constraints, the sequence repre-
sentation Z is divided into different sub-groups for each species:
Z =ZEC ∪ZPA ∪Zspecies …, etc. The terms ZEC and ZPA denote the sub-
group of sequence representation Z that prefers to be functional in
E. coli and P. aeruginosa respectively. Each sub-group has its own
constraints, making its RSs form a functional subspace in the whole
sequence space. Using the E. coli sub-group as an example, the
objective of designing E. coli-preferred RSs can be rewritten as follows:

PEC X ,Y = y,ZEC

� �
=PEC Y = yjXð Þ � P X jZEC

� � � P ZEC

� � ð4Þ

Sampling the vectors from ZEC instead of the other sequence
space, can help avoid nonfunctional regions and provide better gen-
eralization conditions. The large-scale representation helps the model
to capture general biophysical constraints which helps to better cap-
ture the sequence features like GC content distribution and k-mer
frequency (See the section ‘Meta-representation captures essential
constraints of RSs’). Similarly, the sub-group of ZPA was calculated to
design P. aeruginosa. The cross-species situation is not natural in the
wild. However, using the sequence representation by generative
model, one can sample from the cross-species subregion
Zcross = zjz 2 ZEC

V
z 2 ZPA

� �
and optimize the product of activities in

two species, and generate novel cross-species sequences.

P X , Y = y,Zcross

� �
= P Y = yjX ,ZEC\PA

� � � P X jZEC\PA
� � � P ZEC\PA

� � ð5Þ
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TheDeepCROSS strategywasdesignedbasedon this formulation,
which contained three main steps (Fig. 1a): meta-representation and
generation, MPRA quantification, and multi-task optimization. Meta-
genomicmining offered 1.8million putative 5’ RSs as a training dataset
to estimate PðxÞ, where x is a one-hot-coded DNA sequence. Then the
deep representation and sampling by DeepCROSS used the training
dataset to learn the continuous representation space PðzÞ and gener-
ated novel 5’ RSs, which corresponds to the term Pðx, zÞ. The
DeepCROSS-guided quantification by MPRA experiments provides
RSs’ activity to fill the long-tail-distributed ‘sequence-activity’ dis-
tribution and refines thepredictionmodel by improving theprediction
accuracy. The optimization procedure under the guidance of the
prediction model navigates the continuous representation space PðzÞ
to maximize the term Pðy, x, zÞ and inverse design synthetic cross-
species and species-preferred RSs.

Meta-representaiton of RS space
DeepCROSS was built to map the 165nt RSs to low-dimensional
representation space and sample novel cross-species and species-
preferred RSs from the corresponding subspace. DeepCROSS contains
four sub-networks: the encoder, decoder, discriminator for Gaussian
distribution in representation space, and discriminator for expression
bin distribution. The input 5’ RSs were one-hot encoded and passed
through a 64-dimensional embedding. The encoder network (E-net)
and decoder network (D-net) are based on groups of residual blocks
(Fig. 1b, Supplementary Fig. 1).

The DeepCROSS was trained by the following four steps:
1. Large-scale unsupervised training on 1.8 million 5’ RSs from 2621

representative bacteria genomes, to learn the general constraints
of functional RSs.

2. Unsupervised fine-tuning of the DeepCROSS model on represen-
tative Enterobacterales and Pseudomonadales bacteria species to
learn the features of E. coli and P. aeruginosa respectively. The
closely related species of E. coli selected in this study are E. coli str.
K-12 substr. DH10B, Salmonella typhimurium LT2, Erwinia
amylovora ATCC 49946, Klebsiella pneumoniae subsp. pneumo-
niae MGH 78578 and Enterobacter sp. 63847. The closely related
species of P. aeruginosa selected in this study are Pseudomonas
entomophila L48, Pseudomonas putida KT2440, Pseudomonas
syringae pv. tomato str. DC3000, Pseudomonas fluorescens Pf-547.
DeepCROSS would combine features from both the large-scale
species and closely related sequence landscape.

3. Supervised learning on functional 5’ RSs characterized byMPRA7.
The paired ‘RS-activity’ data was provided to model every 5
iterations.

For robust prediction in the generative model, the RSs’ tran-
scription activity is coded into threebins to represent the high,middle,
and low expression levels48. Each RS was in total encoded in 6 bins for
the two target species.

Prediction of RSs’ expression activity
The prediction models were trained to predict the transcription
activity of input RSs. The sequences were encoded in one-hot format
and the output transcription activity was normalized after taking the
logarithm (log2). To systematically compare the natural training set
and the training set after AI-based sampling, these two datasets were
compared under seven state-of-the-art model structures for repre-
sentation and prediction: DeepGOPlus24, ResNet25, Basset-based
network26, CNN connected with attention layers27, DenseNet28,
Dense-connected LSTM, Dense-LSTM. The independent test dataset
used in Fig. 3c and Supplementary Fig. 6 was derived from the Lib-1
MPRA experiment results, containing 10,311 unique RSs. The Lib-2
MPRA experiment results, which contained 10,282 unique RSs, were
used for training models in Supplementary Fig. 6. Additionally, the

9400 DeepCROSS-generated RSs from Lib-2 results were used to train
the models in Fig. 3c. Finally, the Dense-LSTM model was initially pre-
trained on Johns-Dataset after removing non-functional RSs, and then
fine-tuned using all DeepCROSS-generated RSs from our MPRA
experiments and was used as the scoring model in the genetic
algorithm.

Optimization in continuous representation space
The genetic algorithm (GA)49 is used to optimize the AI-generated
sequences to become species-preferred or cross-species RSs. The
Dense-LSTM model as the scoring model in GA. The transcriptional
activity of RSs in E. coli and P. aeruginosawere trained in two different
prediction models respectively. For the E. coli-preferred RSs, the
optimization target is the difference in the predicted activity between
E. coli (described as PEC) and P. aeruginosa (described as PPA):

ScoreE:coli�preferred = log2ðPEC + εÞ � log2ðPPA + εÞ ð6Þ

The optimization target of P. aeruginosa-preferred is the differ-
ence in the predicted activity between P. aeruginosa and E. coli:

ScoreP:aeruginosa�preferred = log2ðPPA + εÞ � log2ðPEC + εÞ ð7Þ

The optimization target of cross-species RSs is the sum of the
predicted activity of E. coli and P. aeruginosa:

Scorecross�species = log2ðPPA + εÞ+ log2ðPEC + εÞ ð8Þ

Based on theMPRA results, we set ε = 2−5 tomitigate the impact of
small values in the prediction model. Moreover, to prevent potential
overfitting in the predictive models, we filtered out RSs with predicted
values that significantly exceed the upper bound achievable within the
training data when designing species-preferred RSs.

Thepool size in GAwas set to 2000 and selected half ordinary and
half high-scored representation vectors for the next epoch in each
optimization epoch. The decoder (D-net) then mapped the repre-
sentation vector into RSs. The maximum epoch of GA optimization
was set to 5000 for each task and the optimization stopped when the
target objective converged. To contain sequence diversity, the
sequences were ordered by hamming distance, and the adjacent
sequences with lower than 25nt hamming distance (whole
length=165nt) were deleted. After approximately 2000 epochs, fitness
scores plateaued, confirming the robustness of the optimized RSs
against overfitting (Supplementary Fig. 13). The GA process for the
cross-species task is shown in Supplementary Fig. 13a, and the species-
preferred tasks are shown in Supplementary Fig. 13b, c. Considering
the challenge of designing E. coli-preferred RSs, we also selected some
from the early epochs for experimental validation.

Characterization of DeepCROSS-designed 5’ RSs
The AI-designed 5’ RSs were evaluated in the following four aspects: 1)
GC content distribution; 2) k-mer frequency; 3) DNA rigidity; 4) The
similarity of sequences within designed ones, and the similarity
between the designed ones and natural 5’ RSs.

Measuring the 5’ RSs activity by massive parallel reporter assay
Oligo synthesis and cloning. The library was synthesized by TWIST
Bioscience (www.twistbioscience.com) and then resuspended in
100μL of elution buffer before cloning into plasmid pMPRA2 (Sup-
plementary Fig. 14). Our MPRA experiment procedure referred to
Yu et al.50 and Tewhey et al.18. The replicon of the pMPRA1 plasmid
(Addgene ID no. 49349) was replaced with pBBR1 to generate the
plasmid pMPRA2, which has a broad host range and is compatible for
replication in both E. coli and P. aeruginosa. A total of 24,000 oligos
were synthesized as 195 bp sequences containing 165 bp of designed 5’
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RSs and 15 bp of adapter sequence at both 5’ and 3’ end (5’ [165 bp
oligo] 3’). These oligos were synthesized as two separate libraries
named Lib-1 and Lib-2 (Supplementary Data 2).

The 20bp barcodes were added by performing 6 emulsion PCR
reactions by DNA emulsion and purification Kit (EURX, E3600). Each
reaction was a 50μL water phase in the volume containing approxi-
mately 109 copies of oligo, 25μl NEBNext® Ultra™ II Q5® Master Mix
(NEB, M0544S), 0.2μM Library_F and Barcode_R primers, and 0.5 ng
acetylated BSA. The oil surfactant phase was prepared following the
manufacturer’s protocol (EURX, E3600). The 50μl precooled PCR
Water Phase was added to the 300μl precooled oil surfactantmixture,
and then vortexed in a cold room using a vortexer for 5min. The
350μL of Emulsion mixture was equally divided into 4 PCR tubes and
cycled with the following conditions; 95 °C for 30 sec, 20 cycles (95 °C
for 20 sec, 67 °C for 10 sec, 72 °C for 15 sec), 72 °C for 5min. Amplified
emulsion mixture was broken and purified by adding 1mL of butanol
followed by vortexing at room temperature. The broken emulsion/
butanol mixture was conducted by adding orange DX buffer in the
DNA emulsion and purification Kit and gently agitating the mixture on
a rotator for 2min. The mixture was centrifuged at 16,000 g for 2min
for phase separation. Most of the yellow-colored organic phase was
removed and the water phase and interphase were used for spin col-
umn purification. In total 100μl of Elution buffer was added to elute
the final bound DNA. The product was then cleaned with Zymo Clean
and Concentrator Kit (Zymo Research, D4014), eluting into 10μL of
Ultra-pure H2O.

To clone the RiboJ-RBS-sfGFP sequence into the plasmid, the
sfGFPwasfirst amplifiedwithNEBNext®Ultra™ II Q5®MasterMix (NEB,
M0544S) for35 cycles usingprimers sfGFP_Fand sfGFP_Rat 10μM.The
plasmid was digested with AsiSI (NEB, R0630S) for 3.5 h at 37 °C. The
digested plasmid and PCR product were run on a 1% agarose gel and
thenpurifiedby aMultifunctionalDNApurificationKit (AidlabBiotech,
DR0303). Both the purified plasmid and sfGFP PCR product were
concentrated by Zymo Clean and Concentrator Kit (Zymo Research,
D4014) and the final concentration is 148ng/μL and 222 ng/μL
respectively. The sfGFP PCR product was inserted into the digested
pMPRA2 plasmid by Gibson assembly (NEB, E2611L) using 3μg of oli-
gos and 0.8μg of digested vector in a 40μl reaction incubated for
60min at 50 °C. The Gibson assembly product was concentrated by
Zymo Clean and Concentrator Kit and eluted into 40μL of Ultra-pure
H2O. To remove the remaining uncut plasmids, the 20Uof AsiSI, 5 U of
RecBCD (NEB, M0345), 5μL 1mM ATP, and 5μL 1x NEB Buffer 4 were
incubated in a 50μl reaction for 4 hours at 37 °C. The product was
concentrated by Zymo Clean and Concentrator Kit and eluted into
6μL of Ultra-pureH2O. The productwas next transformed into 10-beta
electrocompetent E. coli cells and competent P. aeruginosa cells.

Transformation into E. coli and P. aeruginosa. The ligated plasmid
was transformed into 10-beta electrocompetent E. coli cells (DH10B)
and competent P. aeruginosa cells (PAO1). The ~500 ng ligation pro-
duct was transferred into 100ml competent cells by electronic trans-
formation at 2.1 kV with a Bio-Rad Micropulser. The transfected cells
were recovered in 1mL of SOC for 1 hour at 37 °C. The serial dilutions
(10−1, 10−2, 10−3, and 10−4) of 100μl cell culture were plated after SOC
recovery and counted ~102 CFUs in 10−4 plate. The estimated trans-
formation efficiency is >107 CFU. The 1ml cell culture in 5mL of Luria
−Bertani (LB) was inoculated with Ampicillin (50μg/mL) and 107 cells
were grown overnight.

Barcodemapping. TheRSs andbarcode region frompMPRA2plasmid
were extracted and purified by QIAGEN Plasmid Maxi Kit (QIAGEN,
12162) for sequencing and downstream mapping of the barcodes to
their respective 5’ RSs.

The library was amplified by two PCR reactions. The library was
amplified with NEBNext® Ultra™ II Q5®Master Mix (NEB, M0544S) at 6

cycles using primers MPRA_v3_Amp2Sa_Illumina_F and Illumina_Uni-
versal_Adapter_R at 5μM as well in triplicate. Replicates were pooled,
and then cleaned with Zymo Clean and Concentrator Kit (Zymo
Research, D4014), eluting into 10μL of Ultra-pure H2O.

For the second PCR, primers with Illumina adapters P7, P5, and a
unique sample index were used. The product was amplified with
NEBNext® Ultra™ II Q5® Master Mix (NEB, M0544S) at 5 cycles using
primers Illumina_Multiplex and Illumina_Universal_Adapter_R at 5μM.

Ultimately, the PCR product was cleaned with Zymo Clean and
Concentrator Kit (Zymo Research, D4014) and ran on a 1.0% agarose
gel for final confirmation. After quality assessment, samples were
sequenced on an Illumina 2 × 150bp chemistry on Illumina NovaSeq
instruments through the sequencing service by Azenta company.
Barcodes were mapped to their respective 5’ RSs using the pipeline
fromMPRAflow51. Paired-end reads are merged into a 239nt sequence.
Then the first 150 bp of each readwas extracted, which encodes the RS
variant, aswell as the last 20 bp encoding the barcode, and generated a
list of barcode-5’ RSs associations. The statistical distribution of bar-
codes corresponding to each sequence in Lib-1 and Lib-2 is shown in
Supplementary Fig. 15a, d. Finally, the additional filtering steps were
performed for quality control purposes.

Library growth, final plasmids, and cDNA synthesis. Bacteria in
glycerol stocks (20% glycerol) were picked out and inoculated in
100mL of LB + Carbenicillin (50 µg/mL for E. coli and 150 µg/ml for
P. aeruginosa) at 37 °C for 16 h overnight. The overnight culture was
diluted into approximately OD 0.01, inoculated into 200mL of LB +
Carbenicillin, and grown at 37 °C to OD 0.3–0.4 (~2.5 h).

To harvest the final plasmids library, which consists of plasmids
with the RiboJ-RBS-sfGFP sequence inserted, we extracted separately
the plasmids from 50ml culture medium of E. coli and P. aeruginosa
using the QIAGEN Plasmid Maxi Kit (QIAGEN, 12162).

To harvest RNA pellets, the culture was first cooled for two min-
utes in an ice slurry while periodically swirling. For each sample, three
50mL aliquots of culture were poured into pre-chilled tubes and spun
for two minutes at 13,000 g at 4 °C. The supernatant was carefully
poured off. RNA was extracted from P. aeruginosa and E. coli pellets
using a Qiagen RNEasy Midiprep kit (QIAGEN, 75142). The technical
replicates of this extraction in biological was performed. Subsequent
wash steps concentrated isolated RNA with Qiagen Minelute Cleanup
Kit (QIAGEN, 74204). Next, isolated RNA was converted to cDNA with
Transcript II one-step gDNA Removal and cDNA Synthesis SuperMix
(TransGen biotech, AH311) following the supplementary protocol. The
cDNA reaction mixture was cleaned with Zymo Clean and Con-
centrator Kit (Zymo research, D4014).

The final plasmid library was amplified by two PCR reactions,
following the sameprocedure as the Barcodemapping, except that the
primer MPRA_v3_Amp2Sa_Illumina_F was replaced with MPRA_v3_Illu-
mina_GFP_F. The statistical distribution of barcodes corresponding to
the sequence of the final plasmid library in Lib-1 and Lib-2 is shown in
Supplementary Fig. 15b, c, and e, f. The barcoded cDNA was amplified
with NEBNext® Ultra™ II Q5® Master Mix (NEB, M0544S) by perfectly
matched primer MPRA_v3_Amp2Sc_R at 5μM for 10 cycles. The pro-
duct was cleaned with Zymo Clean and Concentrator Kit (Zymo
Research, D4014). Then the product was amplified with primers
MPRA_v3_Illumina_GFP_F and Illumina_Universal_Adapter_R at 5μM for
6 cycles. Both preparedDNA andRNA library sampleswerepooled and
sequenced using 2 × 150 bp chemistry on Illumina NovaSeq instru-
ments through the sequencing service by Azenta company. A detailed
list of all primers and plasmids used in this paper can be found in
Supplementary Data 1.

Measuring the activity of 5’ RSs by sfgfp gene expression
The strains containing the targeted plasmid were stored as 20% gly-
cerol stocks in sterile centrifuge tubes (1.5ml). E. coli and P. aeruginosa
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with target plasmidwerepicked out using a sterilizedmetal pinner and
grown on plates containing 5ml of LB medium with 50μg/ml and
150μg/ml carbenicillin respectively. Monoclonal selections were per-
formedovernight (16 hours) in a 5mL shaker tubeat 37 °Cwith shaking
on an orbital shaker. Then the overnight cultures were diluted 1:100
into a final volume of 1ml of fresh LB medium with the appropriate
carbenicillin concentration and grown for another 6~8 h. Then, the
150μl of culture was added to each well of clear bottom black plates,
and repeatedmeasurements of the optical density at 600nm (OD600)
and fluorescence (relative fluorescence units [RFU]; excitation at
485 nm and emission at 520 nm) were performed with a microplate
reader (EnVision 2105). 96 well microplates were analyzed using
EnVision Workstation (version 1.14.3049.1534). The process of evalu-
ating promoter activity in the M9 (Coolaber, SL0060) and EZ-rich
(Coolaber, MK0100) culture medium was performed in the same way
as in the LB medium. All experiments were conducted in three biolo-
gical replicates.

Quantifying RSs’ transcription activity levels
For the transcription activity measured by the MPRA experiment, the
overall data processing method is mainly divided into two steps
according to the MPRAflow processing protocol51. The first step is to
calculate the correspondence between the RSs and the barcodes. The
upstream sequencing result information was compared with the input
sequence library and the corresponding barcode in the downstream
file through the unique tags in the paired file. Since a sequence often
contains multiple barcodes, a sequence-barcode dictionary can be
obtained by comparing and splicing reads. The second step is to cal-
culate the activity of RSs. The RNA amount corresponding to each
piece of cDNA was calculated. The final splicing result is a 239 bp
sequence, of which the last 20bp is a barcode sequence. Finally, the
first 20 bp of the “sequence barcode” dictionary was used in the first
step, and the reverse complementation sequence to obtain a positive
chain barcode as the barcode identifier. After this filtering step, the
transcription activity of each regulatory element was calculated using
the following formula:

Ap = log2

P
j2p RNAj + 1

� �
= Nbc nonzero + 1ð Þ �CRNA

P
j2pDNAj + 1

� �
= Nbc nonzero + 1ð Þ �CDNA

2
4

3
5 ð9Þ

where each barcode is represented by j, ∑j∊p RNAj is the sum of the
number of reads of each cDNA barcode sequence combined with the
regulatory element p in the cDNA library sequencing results. The
term ∑j∊p DNAj is the sum of the number of reads of each DNA bar-
code sequence combined with the regulatory element p in the final
plasmids library sequencing results. The term Nbc_nonzero is the non-
zero barcode number corresponding to the RNA expression of the
regulatory element p. The CRNA and CDNA are normalization
coefficients for the size of the cDNA library and RNA library,
respectively. RNA libraries and DNA libraries were normalized to
the size of 106, eliminating the impact of sequencing depth on the
transcription activity results.

The activity of RSs optimized by the GA was measured based on
the expression of the sfgfp gene. The activities of RSs are calculated as
follows52:

S=
F=OD600ð Þclone� F=OD600ð Þblank

F=OD600ð ÞBBa J23119
� F=OD600ð Þblank ð10Þ

where F refers to the fluorescence (relative fluorescence units [RFU];
excitation at 485 nm and emission at 520 nm) and the control plasmid
used the BBa_J23119 RS from Biobrick53. The blank control refers to a
plasmid without a promoter sequence. The final RSs’ activities were
calculated by taking the average of three independent biological

repeated experiments. The activity of sequence measured by MPRA
and the sfgfp gene showed a highly correlation, wth Pearson r2 values
of 0.765 for E. coli and 0.840 for P. aeruginosa (Supplementary Fig. 4b,
Supplementary Data 3).

Statistical analysis
Comparisons between two groups of data in this study were analyzed
by two-tailed t-test. Multiple comparisons among three or more
groups were analyzed by pairwise comparison and were corrected for
multiple comparisons. All statistical analyses were performed using
SciPy package in Python. GraphPad Prism (version 9.0.0) and Adobe
Illustrator (version 25.0.1) were used to generate and prepare all
figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The primers and plasmids used in this study are available in Supple-
mentary Data 1. The Lib-1 and Lib-2 MPRA data generated in this study
are available in Supplementary Data 2. The RSs tested using the sfgfp
gene, as well as the natural sequences and random sequences used for
ClustalW2 analysis in this study, are available in Supplementary Data 3.
The validated natural 5’RSs in bacteria proposed by Johns et al. used in
this study are available at https://static-content.springer.com/esm/art
%3A10.1038%2Fnmeth.4633/MediaObjects/41592_2018_BFnmeth4633_
MOESM4_ESM.xlsx. The metagenome species proposed by Fahimi-
pour et al. used in this study are available at https://figshare.com/
articles/software/Diffusion_mapping_bacterial_metabolic_traits/
12864011/4. The datasets used for pretraining and fine-tuning in this
study are available in the Zenodo repository under accession code
1459856754. The raw sequence data in this study have been deposited
in the Genome Sequence Archive (GSA)55 in National Genomics Data
Center56, China National Center for Bioinformation / Beijing Institute of
Genomics, Chinese Academy of Sciences under accession codes:
CRA018904. Source data are provided with this paper.

Code availability
The source code used to develop the DeepCROSS in this study is
publicly available and has been deposited in GitHub repository at
https://github.com/WangLabTHU/DeepCROSS, under an MIT license.
The specific version of the code associated with this publication is
archived in Zenodo repository and is accessible via https://doi.org/10.
5281/zenodo.1460029557.
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