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We introduce NeuroSA, a neuromorphic architecture specifically designed to
ensure asymptotic convergence to the ground state of an Ising problem using
a Fowler-Nordheim quantummechanical tunneling based threshold-annealing
process. The core component of NeuroSA consists of a pair of asynchronous
ON-OFF neurons, which effectively map classical simulated annealing
dynamics onto a network of integrate-and-fire neurons. The threshold of each
ON-OFF neuron pair is adaptively adjusted by an FN annealer and the resulting
spiking dynamics replicates the optimal escape mechanism and convergence
of SA, particularly at low-temperatures. To validate the effectiveness of our
neuromorphic Ising machine, we systematically solved benchmark combina-
torial optimization problems such as MAX-CUT and Max Independent Set.
Acrossmultiple runs, NeuroSA consistently generates distribution of solutions
that are concentrated around the state-of-the-art results (within 99%) or sur-
pass the current state-of-the-art solutions for Max Independent Set bench-
marks. Furthermore, NeuroSA is able to achieve these superior distributions
without any graph-specific hyperparameter tuning. For practical illustration,
we present results from an implementation of NeuroSA on the SpiNNaker2
platform, highlighting the feasibility of mapping our proposed architecture
onto a standard neuromorphic accelerator platform.

Quadratic unconstrained binary optimization (QUBO) and Ising mod-
els are considered fundamental to solving many combinatorial opti-
mization problems1–3 and in literature, both classical and quantum
hardware accelerators have been proposed to efficiently solve QUBO/
Ising problems4,5. These accelerators use some form of annealing to
guide the collective dynamics of the underlying optimization variables
(e.g. spins) toward the global optima of the COP, which correspond to
a specific system’s ground energy states. Examples of such accel-
erators include superconducting qubit-based quantum annealers6,
optical and digital coherent Ising machines (CIM) on7,8, CMOS-based

oscillator networks9,10, memristor-based Hopfield Network11–13, and
digital circuit-based simulated annealing (SA)14–17. Quantum Ising
machines that use quantum annealing can theoretically guarantee
finding the optimal solution to the QUBO/Ising problem, however, the
approach cannot yet be physically scaled to solve large-scale
problems18–21. On the other hand, classical QUBO/Ising solvers
exploit nonlinear dynamics of the system to explore the solution space
and avoid local minima. Simulated bifurcation machine (SBM)22 and
probabilistic bit (p-bit)-based stochastic solvers relax the binary con-
straints and exploit the thermal noise inherent in magnetic tunnel
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junctions (MTJs) hardware23,24. Memristor-based Hopfield Networks11

also harness device-intrinsic noise and can achieve low energy-to-
solution and time-to-solution metrics. However, if the objective is to
produce solutions that consistently approach the state-of-the-art
(SOTA) optimization metric or even exceed the SOTA (discover bet-
ter solutions), then the precision of computation and the dynamic
range of peripheral read-out circuits limit the performance of analog
Ising machines. This is highlighted in Fig. 1a for three classes of COPs:
low-complexity (L), medium-complexity (M), and high-complexity (H).
Here, the complexity of the problems is characterized based on var-
ious metrics such as number of variables, graph density, and graph
transitivity. For low-complexity problems, most solvers can find the

SOTA (or the ground state) for every run. This results in a distribution
that is concentrated around SOTA, as highlighted in Fig. 1a. However,
for COPs with higher complexity, the distribution of solutions can
exhibit a large variance, because: (a) the ground state could be sig-
nificantly separated from the SOTA (shown in Fig. 1a) and (b) even
finding an approximate solution could be NP-hard (or requires expo-
nential time or high precision). Scaling analog Ising machines archi-
tecturally to larger problems would also require tiling small-sized
memristor/analog crossbars with additional communication infra-
structure (using spikes or digital encoding). Digital Ising architectures
do not suffer from the precision and scaling challenges. Furthermore,
in memristor-based Ising machines, the statistics of the device noise

Fig. 1 | NeuroSAmotivation formapping of optimal simulated annealing into a
neuromorphic architecture. a Illustration of the distribution of solutions gener-
ated by optimal and non-optimal Isingmachines for different COP complexity: Low
(L),Medium (M), andHigh (H). An ideal Ising/QUBO solver produces distribution of
solutions that is concentrated near the SOTA and has the potential to produce
novel, previously unknown solution that is closer to the Ising ground state; A MAX-
CUT problem defined over a b graph with weights Qij which is decomposed into
c pairs of ON–OFFneurons by NeuroSA. d EachON–OFF integrate-and-fire neurons
are coupled to each other by an excitatory synapse with weight A and the pair is
connected differentially to other ON–OFF neuron pairs through the synaptic
weights Qij, −Qij. The thresholds for both ON–OFF neurons are dynamically

adjusted by an e FN annealer which comprises an FN integrator, an exponentially
distributed noise source N E

n and a Bernoulli noise source N B
n; Illustration of Neu-

roSAdynamics for aMAX-CUT graphwith 10 vertices connected by aweightmatrix
Q shown in (f). g Evolution of the distance between the solutions generated by
NeuroSA to the two known ground state solutions at a given time-instant which
highlights the escape mechanisms in the high- and low-temperature regimes.
h Raster plot of aggregated spiking activity generated by the ON and OFF neuron
pairs, and i visualization of the NeuroSA trapping and escape dynamics using a
principal component analysis (PCA)-based projection of the network spiking
activity estimated within a moving time-window.
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and its modulation have to be experimentally tuned/calibrated such
that the results approach the state-of-the-art (SOTA) solution quality.
There is no theoretical guarantee that such a machine would improve
upon the SOTA or asymptotically converge to the ground state.

Advances in neuromorphic hardware have now reached a point
where the platform can simulate networks comprising billions of
spiking neurons and trillions of synapses. Implementations of these
neuromorphic supercomputers range from commercial-off-the-shelf
CPU-, and GPU-based platforms25,26 to custom FPGA-, multi-core-, and
ASIC-based platforms27–29. As an example, the SpiNNaker2microchip30,
which has been used for some experiments in this paper, can integrate
more than 152,000 programmable neurons withmore than 152million
synapses in total. Although the primary motivation for developing
these platforms has been to emulate/study neurobiological
functions31,32 and to implement artificial intelligence (AI) tasks33–35 with
much needed energy efficiency36, it has been argued that the neuro-
morphic advantage can be demonstrated for tasks that can exploit
noise and nonlinear dynamics inherent in current neuromorphic sys-
tems. These approaches exploit the emergent properties of an energy
or entropyminimization process37,38, phase transitions and criticality39,
chaos40, and stochasticity41–43, both at the level of an individual
neurons22,44,45 and at the system level such as the Hopfield Network11,37

and Boltzmann machines46,47. Recently, neuromorphic advantages in
energy efficiency have been demonstrated for solving optimization
problems34,48 and for simulating stochastic systems like random
walks49. These specific implementations exploit the high degree of
parallelism inherent in neuromorphic architectures for efficientMonte
Carlo sampling, and for implementingMarkovprocessesbothofwhich
are important for solving Ising problems. Other promising approach
has been to use neuromorphic architectures to solve semi-definite
programming (SDP), which is an approximation method to solve
many COPs50. In fact, under the correctness assumption of the unique
games conjecture51, SDPs have been employed to produce optimal
solutions amongst all polynomial-time algorithms50. Examples of such
implementations include themapping of the Goemans–Williams (GW)
SDP onto Intel Loihi52,53 for MAX-CUT COPs. However, GW and other
SDP algorithms only provide lower bounds on the solution quality and
not on the variance of distribution of solutions. Furthermore, the
precision required to solve the SDP algorithm could be high to be able
to achieve the SOTA. As a result, even achieving the SDP approxima-
tion quality bound precisely or exceeding the bound (for specific
graphs and runs) still requires a brute-force (exponential or sub-
exponential) search around the SOTA. Also note that for COPs like
MAX-CUT, even an improvement by a single cut could represent a
significant step, as the improvement could only be achieved by finding
a novel solution.

Simulated Annealing (SA) algorithms, on the other hand, can
provide guarantees of finding the QUBO/Ising ground state, provided
the annealing schedule follows specific dynamics54–56. Previous
attempts to solve Ising problems using neuromorphic hardware12,13

emulated SA dynamics, which did not guarantee asymptotic con-
vergence to the Ising ground state. Hence, a neuromorphic archi-
tecture that is functionally isomorphic to the SA algorithm with an
optimal annealing schedule should produce high-quality solutions
across different runs. This feature is highlighted in Fig. 1a by the
desired (or optimal) distribution that is concentrated near the SOTA.
Furthermore, as shown in Fig. 1a, having an asymptotic optimality
guarantee will also ensure that a long run-time might produce a solu-
tion that is at least better than the current SOTA, if the current SOTA is
not already the ground state of the COP. However, the dynamics of the
SA algorithm can be very slow which motivates its mapping onto a
neuromorphic architecture and accelerator.

Howcanoptimal simulated annealing algorithmsbemappedonto
large-scale neuromorphic architectures? The key underpinnings of any
neuromorphic architecture are: (a) asynchronous (or Poisson)

dynamics that are generated by a network of spiking neurons; and (b)
efficient and parallel routing of spikes/events between neurons across
large networks. Both these features are essential for solving the Ising
problem and efficientmapping of SA onto neuromorphic architecture.
In its general form Ising problem minimizes a function (or a Hamilto-
nian) H(s) of the spin state vector s according to

min
s2f�1, + 1gD

HðsÞ= 1
2
s⊺Qs+bTs ð1Þ

where b 2 RD represents an external field or bias vector and can also
be used to introduce additional constraints into the Ising problem57.
In SI Sections S1, 2, and 3 we consider these specific cases, but for the
ease of exposition, our focus will be on problems where b =0. In such
cases the Ising problem becomes equivalent to theMAX-CUT problem
(shown in SI Sections S1 and S2), which is easy to visualize and
analyze58. For a simple MAX-CUT graph depicted in Fig. 1b, each of
the spin variables, denoted as si∈ { −1, +1}, where i = 1, . . , D, is
associated with one of the D vertices in the graph G. The graph’s
edges are represented by a matrixQ 2 RD×D, wherein Qij signifies the
weight associated with the edge connecting vertices i and j. Given the
graph G, the objective of the MAX-CUT problem is to partition the
vertices into two classes, maximizing the number of edges between
them. If an ideal asynchronous operation is assumed (see “Methods”
subsection “ Asynchronous ising machine model”), then at any time
instant n, only one spin (say the pth spin) changes its state by
Δsp,n∈ { −1, 0, +1}. In this case, the function H decreases or ΔHn <0, if
and only if the condition

Δsp,n
XD
j = 1

Qpjsj,n�1

" #
< 0 ð2Þ

is satisfied. The inherent parallelism of neuromorphic hardware ensures
that the pseudo-gradient

PD
j = 1 Qpjsj,n�1 is computed at a rate faster

than the rate at which events Δsp,n are generated. The condition
described in Eq. (2), when combined with the simulated annealing’s
probabilistic acceptance criterion54, leads to a neuromorphic mapping
based on coupled ON–OFF integrate-and-fire neurons where the
pth ON–OFF pair is shown in Fig. 1d. Please refer to the Methods
section 4 for the derivation of the ON–OFF neuron model. The pth
ON–OFF neuron pair is differentially connected to the jth neuron pair
through the synaptic weights Qpj, −Qpj. The spikes generated by this
pth post-synapticON–OFFneuronpairΔs +p,n,Δs

�
p,n 2 f0, 1g differentially

encode the change in the pth spin state, and the cumulative state sj,n
of the pre-synaptic neuron is estimated by continuously integrating
the input spikesΔs +j,n,Δs

�
j,n received from the jth neuron. To ensure that

the spiking activity of the ON–OFF neuronal network is functionally
isomorphic to the acceptance/rejection dynamics of an SA algorithm,
the firing threshold μp,n of the pth neuron adjusted over time by a
Fowler–Nordheim (FN) annealer, shown in Fig. 1d.

We employ a Fowler–Nordheim dynamical system that can pro-
duce dynamic thresholds that correspond to the SA optimal annealing
schedule. One of the key results from the SA literature55,56 is the pro-
position that a temperature cooling schedule that follows� c

logð1 +nÞ can
guarantee asymptotic convergence to the QUBO/Ising ground
state, where c denotes the largest depth of any local minimum of
Ising Hamiltonian H(s) and n denotes the discrete time step. A
dynamical systems model in Fig. 1e comprising of a time-varying
Fowler–Nordheim (FN) current element Jn59 can generate the optimal
Tn =

T0
logð1 +n=CÞ according to60, where T0 and C are Fowler–Nordheim

annealing hyperparameters (see the “Methods” subsection “Dynamical
systemsmodel implementing the FN Annealer”). The FN dynamics can
either be generated using a physical FN-tunneling device60 or can be
emulated by implementing an FN-tunneling dynamical systems model
on digital hardware. Here, we chose the digital emulation because of
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the precision required for SA in the low-temperature regime. The FN
dynamics can then be combined with the independent identically
distributed (i.i.d.) random variables N E

p,n and N B
p,n to determine the

dynamic firing threshold μn,p for each ON–OFF integrate-and-fire
neuron pair p.N E

p,n is drawn from an exponential distribution whereas
N B

p,n is drawn from a Bernoulli distribution with values {0, 1}. The
choice of the two distributions ensures that every neuron has a finite
probability of firing, which is equivalent to satisfying the irreducibility
and aperiodicity conditions in SA.

The ON–OFF neuron pair and the integrated FN annealer, shown
in Fig. 1c form the basic computational unit of NeuroSA which can be
used to solve Ising problems on different neuromorphic hardware
platforms. Due to the functional isomorphism between NeuroSA and
the optimal SA algorithm, the hardware could accelerate and asymp-
totically approach the Ising ground state, as highlighted in Fig. 1a. We
show in the results that even when NeuroSA solves a COP for a finite
duration, the machine produces the distribution of solutions that are
concentrated around the SOTA, as shown in Fig. 1a, and this is achieved
without significant tuning of hyperparameters.

Results
We first demonstrate the dynamics of the NeuroSA architecture for a
small MAX-CUT problem, where the optimization landscape and the
search dynamics can be easily visualized and where the Ising ground
states can be determined using brute-force search. We then evaluate
NeuroSA on larger-scale benchmark COPs forwhich the SOTA solution
quality is well documented in the literature61,62.

Experiments using small-scale graphs
NeuroSA is first applied to a 10-nodeMAX-CUT graph described by the
interconnection matrix Q shown in Fig. 1f. For this graph, the two
degenerate ground states exist (due to the gauge symmetry where
s↔ −s) and can be found by an exhaustive search over all possible spin
state configurations. Fig. 1g plots the Manhattan distance measured
with respect to one of the ground states. For this specific example,
there exist two ground states (due to gauge symmetry) which are
labeled as global optimum 1 and 2 in Fig. 1g. It is evident from Fig. 1g
that, like SA, the dynamics of NeuroSA can be categorized into two
phases: the high-temperature regime and the low-temperature regime.
These regimes are determined by the firing threshold μ(t) in Fig. 1d.
To visualize the network dynamics, the aggregated spiking rate
for each of the ON–OFF neurons is calculated using a moving window
as shown in Fig. 1h. The population firing dynamics are projected
onto a reduced 3-D space spanned by its three most dominant
principal component vectors, as shown in Fig. 1i. This principal com-
ponent analysis (PCA)-based approach is a standard practice in ana-
lyzing spiking data63 and details of the approach are described in the
“Methods” subsection “Generation of network PCA trajectories”. In the
high-temperature phase, the network dynamics evolve along the net-
work gradient, resulting in faster convergence along a smooth trajec-
tory as depicted in Fig. 1i. As the temperature cools down, NeuroSA
exploration is trapped in the neighborhood of one of the two global
optima, as depicted in Fig. 1g, i. In the neighborhood, the dynamics
follow a random walk; however, the dynamics can periodically escape
one of the global optima for further exploration andpossibly converge
to the second global optimum. This is highlighted in Fig. 1i by the
continuous trajectory connecting the two optima/attractors. Even-
tually, as shown in Fig. 1g, due to the annealing process the dwell-time
of dynamics in the neighborhood of the optima increases over time.
Note that state-space exploration in the low-temperature regime is a
significant problem in SA algorithms, and heuristics such as hybrid
quantum-classical methods64 have been proposed to accelerate
this process. In NeuroSA, the Fowler–Nordheim dynamical process
allows for a finite probability of escape even in the low-temperature
regime.

Experiments using medium-scale graph
We next apply NeuroSA to a MAX-CUT problem on a graph where the
ground state is not known, but the SOTA solution is well documented.
We chose the G15, an 800-node, binary weighted, planar graph65 for
which the SOTA is 3050 cuts22. The NeuroSA architecture was simu-
lated on a CPU-based platform and the hardware mapping procedure
is described in the “Methods” subsection “Estimation of empirical
probability density function” and the pseudo-code for the imple-
mentation is presented in SI Section S4. Figure 2a shows the solution
found by NeuroSA over time converging to the SOTA states.

The dynamics of the noisy firing threshold μn is shown in Fig. 2b
and is bounded by Tn � 1

logðnÞ (depicted in the figure as the dotted line),
produced by the FN annealer. As the envelope of the threshold
decreases, it inhibits the firing probability of neurons as shown by the
histogram inFig. 2c. During the initial phases of convergence, there is a
gap between the 1

logðnÞ envelope and the number of active neurons (or
the neurons whose membrane potential exceeds the firing threshold).
Thus, in this phase, the dynamics of the network seem to be governed
by thenetwork gradient. However, the tails of thehistogramfit the 1

logðnÞ
dynamics reasonably well, highlighting the influence of the FN-based
escapemechanism on the network dynamics. The network population
dynamics are depicted by the PCA trajectory of the aggregated spiking
rate and are plotted in Fig. 2d. Similar to the results for the small-scale
graph in Fig. 1i, the trajectory reflects the evolution of the NeuroSA
system as it explores the solution space. The exploration in the high-
temperature regime follows a more confined trajectory in the PCA
space, indicating that the network dynamics evolve in the direction of
the Ising energy gradient. As the temperature cools down near con-
vergence, the NeuroSA dynamics are dominated by the random walk
and sporadic escape mechanisms with no specific direction, as shown
in Fig. 2d.

Figure 2eplots the distribution of the solution quality (normalized
with respect to SOTA) when different cooling schedules are chosen
and the r.v. NE are chosen from different statistical distributions. In
particular, previous neuromorphic Isingmodels and stochasticmodels
have used Gaussian noise as a mechanism for asymptotic exploration
and for escaping localminima.However, the results in Fig. 2e show that
this approach produces distributions with longer tails and in some
cases solutions that are significantly worse than the SOTA. Only for an
FN annealer and an exponentially distributed noiseNE, the distribution
of solutions obtained by NeuroSA is more concentrated around
the SOTA.

Benchmarking NeuroSA for different MAX-CUT graphs
Next, the NeuroSA architecture was benchmarked for solving MAX-
CUT problems on different Gset graphs. Figure 3 provides a detailed
evaluation of the NeuroSA algorithm’s performance on the Gset
benchmarks, with results generated using both traditional CPU-based
and the SpiNNaker2 platform. The architecture is configured similarly
for both hardware platforms and across all benchmark tests. This
uniformity is important, as it demonstrates that NeuroSA’s perfor-
mance is robust across and agnostic to different MAX-CUT graph
complexities. Also, it obviates painstaking hyperparameter tuning for
each set of graphs or problems.

Figure 3a–d reports the distribution of solutions obtained by
NeuroSA for different Gset MAX-CUT benchmarks. For each NeuroSA
run, the solution (number of cuts) is normalized with respect to the
SOTA solution which is highlighted in Fig. 3a–d as the unity marker.
Note that for MAX-CUT problems, the SOTA is from previously
reported results in literature22,61. The probability density function is
empirically obtained as described in the “Methods” subsection “Esti-
mation of empirical probability density function”. While determining
the complexity of COPs is in itself a difficult task in itself, to gain more
insight, the distributions are organized based on commonly used
graph complexity metrics. Figure 3a–d organizes the results by: (a) the
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graph size, namely the number of vertices; (b) the average fan-out per
node; (c) the graph entropy, measuring the randomness in
connectivity66; and (d) the network transitivity, focusing on node
connectivity density, indicating clustering within the network67. The
average fan-out per node measures the typical number of direct con-
nections (outgoing edges) each node has, providing a basic indication
of the graph’s overall connectivity and potential for information
spread. Graph entropy, on the other hand, quantifies the randomness
or disorder in the graph by analyzing the distribution of these con-
nections across all nodes. It offers insights into howevenly or unevenly
the connections are distributed, with higher entropy indicating amore
complex or disordered network structure. The global clustering
coefficient, also known as transitivity, measures the degree to which
nodes in a graph tend to cluster together. This coefficient assesses the
overall tendency of nodes to create tightly knit groups, with higher
values suggesting a greater prevalence of interconnected triples of
nodes, which can indicate a robust local structure within the network.
While the average fan-out per node provides a simple measure of
connectivity, it does not capture the nuances of how these connec-
tions are configured, which is where graph entropy and the global
clustering coefficient come into play. Graph entropy complements the
average fan-out by assessing the variability in node connectivity,
highlighting potential inequalities or irregularities in how nodes are
linked. In contrast, the global clustering coefficient focuses on the
tendency to form local groups, offering a view of the graph’s com-
pactness and the likelihood of forming tightly connected

communities. Together, these metrics provide a multi-dimensional
view of a graph’s complexity, indicating not only how many connec-
tions exist, but also how they are organized and how they foster
community structure and network resilience.

The results show that the NeuroSA solutions consistently reach
within 99% of the SOTA, despite of the complexity of the graph.
However, as expected, the variance of the distribution does increase
with complexity which indicates that one can also speculate on the
general complexity of the COP itself. In Fig. 3e we show that there
exists an algorithmic advantage in mapping NeuroSA onto a parallel
architecture, like the SpiNNaker2 platform. We compare the results
obtained by five NeuroSA instances launched in parallel, where each
instance executes for 108 iterations against a singleton NeuroSA
instance that runs for 5 × 108 iterations. We then aggregate the results
from the five parallel instances by taking the average, and plot the
probability distribution of the quality of solution for both parallel and
singleton instances. As shown in Fig. 3e, the parallel search results in a
more concentrated distribution around the SOTA solution than the
long-running singleton approach. Effectively, the parallel NeuroSA
instances take different trajectories to the solution and the aggrega-
tion of multiple searches results in amplifying the probability of
reaching the neighborhood of the SOTA/ground state solution within
a finite time constraint. However, we would like to point out that
the optimal annealing schedule promises global optimality only in the
asymptotic (exponential) time limit. Therefore, improvements on the
current solution to reach the ground state using a parallel approach

Fig. 2 | NeuroSA dynamics for the G15 MAX-CUT graph with 800 vertices and
4661 edges. a Convergence plot showing steady increase in the solution quality
with the inset showing fluctuations near 3050 cuts which is the current SOTA for
this graph. b Dynamics of the firing threshold with inset showing sparse but large
fluctuations that trigger escape mechanisms. c Plot showing the number of active
neurons decaying following� 1

log t without the contribution of the Bernoulli r.v.N B.

d PCA trajectory of the NeuroSA dynamics where the initial (high temperature)
regime follows a path defined by the network gradient and the trajectory near
convergence (or low-temperature path) exhibits expanding exploration of the
solution space. e Distribution of the G15 solutions obtained for different annealing
schedules (e�t , ðlog tÞ�1, t�1) and noise statistics (exponential—denoted by N E,
Gaussian—denoted by N G, and Uniform—denoted by N U).
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would still rely on long run-time of one of many singleton NeuroSA
instances. We extended the execution time by 1000×, to 1011 iterations
to see if NeuroSA could find a novel solution for a few sets ofMAX-CUT
problems. Unfortunately, within finite run-time (both on CPU and
SpiNNaker2), NeuroSAwas unable to discover solutions that exceeded
the SOTA for the Gset/MAX-CUT benchmarks.

To understand the difficulty in finding new solutions, Fig. 3f pre-
sents an analysis of the time required per unit gain in the solution
for three distinct Gset benchmarks. The plots reveal an increasing
cost (computational time) to achieve marginal improvement in the
quality of the solution. The key metric in the plot Fig. 3f is the ratio
between the time needed to obtain a unit improvement to the total
run time. As it becomes harder to find better solutions, the ratio
tends to unity (run-time becomes exponential or sub-exponential)
This is shown by the extrapolation curve and the transition point A,
which might highlight the point of diminishing returns. This could be

taken as a hardware-agnostic stopping criterion (polynomial run-time)
for a COP.

Figure 3g shows the results when NeuroSA is implemented on the
SpiNNaker2platform (details provided in SI Section S5) for someof the
Gset benchmarks. The results show similar or better solutions than
the CPU/software implementation of NeuroSA. Note that NeuroSA is
a randomized algorithm so each hardware implementation will
exhibit different variance basedon the quality of noisegenerator in the
FN-annealer. The performance advantage achieved by mapping
NeuroSA onto SpiNNaker2 is summarized in SI Section S5.2 and in
Fig. 3h which show the energy-to-solution comparison with respect
to the CPU-based implementation. The comparison is shown for
three different 800-node MAX-CUT problem, and we compare the
energy dissipated by the system (board-level) and by the processing-
element-level (PE). Due to the distributed and multi-core nature of
the SpiNNaker2 system, the PE energy also accounts for the inter-core

Fig. 3 | NeuroSA results for MAX-CUT and MIS benchmarks. a–d Empirical
probability density functions (pdf) of the solutions on Gset benchmarks61. The
solutions obtained after 108 iterations fall within the interval (0.989, 1.00) of SOTA,
indicated by the red and blue dotted lines. The results are ordered with increasing
complexity: Low (L), Medium-Low (M-L), Medium (M), Medium-High (M-H), High
(H). For complexity metric: (a) the number of graph vertices, L = {800, 1000},
M = {2000, 3000}, and H = {5000, 10,000}. b the average fan-out, where L = 2.0,M-
L = 6.0, M-H = 10.0, H = 24.0. c The graph entropy, where L = [0, 2), M = (2, 4) and

H = (4, 5). d The graph transitivity, where L = [0, 0.001],M-L = (0.001, 0.05], M-
H = (0.05, 0.14),H = [0.14,0.16).eParallel search comprising of 5NeuroSA instances
yields more consistent results that a single search running for 5 times the duration
of the parallel search. f Instantaneous time per unit gain in solution for three
different Gset benchmarks approaches an exponential/sub-exponential run-time.
g Results from NeuroSA implemented on the SpiNNaker2 neuromorphic platform.
h The energy-to-solution results on both CPU and SpiNNaker2 platforms.
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communication consumption over the NoC. As shown in Fig. 3h, in
either case, the SpiNNaker2 implementation outperforms the CPU-
based implementation in terms of energy-to-solution for the same
workload. Furthermore, this performance advantage is evident even if
the current SpiNNaker2 implementation of NeuroSA is not fully
optimized.

Benchmarking NeuroSA for MIS problems
For the next set of experiments, the performance of NeuroSA archi-
tecturewas evaluated for solving themaximum-independent-set (MIS)
COPs. The problem involves searching for the largest set of vertices in
a graph such that no two vertices in that set share an edge. Since the
solutions to theMIS problem are subject to constraints, the problem is
inherently harder than MAX-CUT where every state configuration is
considered a valid solution. Details of mapping MIS COP onto an Ising
formulationwhichcan thenbe solvedusingNeuroSAareprovided in SI
Section S3. We evaluated NeuroSA on various MIS graphs from the
NeuroBench benchmark suite62 and we characterized the distribution
of the solutions generated for different graph sizes and graph den-
sities, as shown in Fig. 4. Graph density represents the density of
connections among vertices which controls the dimensionality of the
system’s state space and the effective dimensionality of the Ising
energy landscape. Furthermore, higher density also alters the eigen-
value spectrumof theHamiltonian, broadening it, and creating a richer
set of critical points on the Ising energy surface. Similar to the MAX-
CUT results, the MIS results also produce distributions are con-
centrated, without any hyperparameter tuning. However, unlike the
MAX-CUT benchmarks, NeuroSA consistently finds solutions that are
better than the current SOTA for MIS benchmarks. Also, note that the
distributions in Fig. 4 are bounded below by 95% of the SOTA, and this
deviation occurs when the optimal set size just changes by 1. Even
though the variance of the distribution becomes larger with increasing
complexity, a significant portion of the solutions surpasses the current
SOTA, which validates the objective of the NeuroSA in Fig. 1a.

Discussion
In this paper, we proposed a neuromorphic architecture called Neu-
roSA that is functionally isomorphic to a simulated annealing optimi-
zation engine. The isomorphism allows mapping optimal SA
algorithms to neuromorphic architectures, providing theoretical
guarantees of asymptotic convergence to the Ising ground state. The
core computational element of NeuroSA is formed by an ON–OFF
integrate-and-fire neuron pair that can be implemented on any stan-
dard neuromorphic hardware. Hence, NeuroSA can exploit the com-
putational power of both existing and upcoming large-scale
neuromorphic platforms, such as SpiNNaker2 and HiAER-Spike. Inside
each ON–OFF neuron pair is an annealer whose stochastic properties
are dictated by a Fowler–Nordheim (FN) dynamical system. Collec-
tively, the neuron model and the FN annealer generate population
activity that emulates the sequential acceptance and rejection
dynamics of the SA algorithm.

The functional isomorphism between NeuroSA and the optimal
SA algorithm also enables us to draw insights from SA dynamics to
understand the emergent neurodynamics of NeuroSA and its con-
vergence properties to a steady-state solution. For instance, the Ber-
noulli r.v. N B

n within the FN annealer ensures the asynchronous firing
such that only one of the neurons in NeuroSA fires at any given
moment. From the perspective of SA, this asynchronous decomposi-
tion ensures that each combinatorial step of the COP is tractable, as
describedby themathematical condition in Eq. (9). Also, the useof i.i.d
Bernoulli r.vs in each ON–OFF neuron pair ensures that any pair can
potentially fire (if its firing criterion is met), which in turn ensures that
NeuroSA satisfies a key ergodic convergence criterion similar to that of
SA algorithms. According to this criterion, every potential Ising state is
reachable54. The exponentially distributed r.v. N E

n in the FN annealer
upholds that an equivalent detailed balance criterion in SA54 is satis-
fied, thereby ensuring that the NeuroSA network attains an asymptotic
steady-state firing pattern. This steady-state pattern corresponds to
different mechanisms of exploring the Ising energy states, as depicted
by the PCA network trajectories in Figs. 1i and 2d, with the assumption
that the exploration will asymptotically terminate near the Ising
ground state. This asymptotic convergence is guaranteed by mod-
ulating the dynamic threshold μn in the ON–OFF neuron pair,
mimicking the optimalOð1= logÞ temperature schedule in SA proposed
by55,56. Any choice of distribution other than the exponential distribu-
tion for the r.v. N E

n will violate the SA’s detailed balance criterion and
hence the network might not encode a steady-state distribution.

In this work, two families of COPs, MAX-CUT and MIS, have been
selected as COP benchmarks because they are well-studied COPs and
the SOTA results for different MAX-CUT graphs are well documented
in literature68. As shown in the “Results” subsection “Benchmarking
NeuroSA for different MAX-CUT graphs”, the NeuroSA architecture
can consistently find solutions that are closer than 99% SOTA metrics
for differentMAX-CUT benchmarks and for the recently proposedMIS
benchmark suite, NeuroSA improves on the current SOTA. Note that
the ground state solution formost of these graphs is still not known. In
this regard, the asymptotic convergence to the ground state offeredby
the NeuroSA architecture is important as it can ensure good quality
solutions across different runs, as highlighted in Fig. 3a–d. It is
important to note that the Oð1= logÞ annealing schedule could make
the convergence significantly slow which can be mitigated by sheer
hardware acceleration offered by current and next-generation neuro-
morphic platforms. Also note that in Fig. 3a–d, the solutions obtained
for some MAX-CUT graphs are inferior (percentage relative to the
SOTA) compared to others, irrespective of the problem size (number
of spin variables or ON–OFF neurons). This is because the problem
complexity of some of theMAX-CUT problems is higher which implies
that the NeuroSA architecture has to explore different regions of the
energy landscape. By increasing the simulation run time and choosing
a larger value of the hyperparameter T0, the quality of the solution can
be improved for all MAX-CUT graphs. The NeuroSA Ising machine can
be used to solve other COP-likeHamiltonianpath problems or Boolean

Fig. 4 | NeuroSA results for MIS benchmarks showing that all solutions fall
within the interval (0.944, 1.11) of the SOTA (marked by dotted lines). Solutions
are ordered according to complexity metrics: a number of graph vertices, with

L = {10, 25, 50}, M = {100, 250, 500} and H = {1000, 2500, 5000}, and b graph den-
sity, with L =0.01, M-L =0.05, M-H =0.1, H =0.25.
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satisfiability problems aswell by optimizing a similar formofH(s) in Eq.
(3) but with real-valued Qij

5. However, the energy landscape of the
resulting H(s) is more complex and hence would require different
choices of T0 and the simulation time to achieve SOTA solutions.

The NeuroSA architecture relies on the asynchronous nature of
the SA acceptance dynamics which is directly encoded by spikes. The
underlying assumption is that the spike from the neuron is propagated
to all its synaptic neighbors before any other neuron in the network
spikes. As shown by Eqs. (15) and (16), spike propagation from the
ON–OFF neuron pair is equivalent to propagating pseudo-gradients in
an SA algorithm. Most large-scale neuromorphic platforms rely on
event routing mechanisms like Address event routing to transmit
spikes across the network which incurs latency. As a result, if the
spiking rate (equivalently the rate of the number of acceptances) is
high, the asynchronous criterion specified in Eq. (9) might not be
satisfied. Furthermore, in practice, spikes (or event packets) might not
be properly routed to the neurons or dropped. Due to the stochastic
nature of the NeuroSA algorithm, these artifacts or errors can be tol-
erated during the initial phases of the convergence process. Asymp-
totically, as the network spiking rates decrease or the inter-spike
interval increases, there would be enough time between events for the
pseudo-gradient information to be correctly routed and hence Eq. (9)
is satisfied. This region of convergence corresponds to the low-
temperature regimewhere it is important to explore distant states and
at the same time accept proposals (or produce spikes) only when the
network energy decreases.

The tolerance of the NeuroSA architecture to communication
errors provides a mechanism to accelerate its convergence using a
hybrid approach as mentioned previously. In the initial phase of hybrid
approach, the optimization endeavor follows the steepest gradient
descent and performs parallel updates on neuron states resembling
SDP. The expected value of a solution found in the initial phase can be
characterized by the GW-like bounds58. Then, the search follows the
brute-force approach where NeuroSA can asymptotically approach the
ground state and in the process exploring novel solutions that are better
than the SOTA. As shown in SI Fig. S5, when NeuroSA is initialized at a
low temperature (less noisy threshold) initially, the architecture con-
verges to a solution that is >95% of SOTA. The convergence in this case
is 104 times faster than the case when NeuroSA is initialized at a warmer
temperature (more noisy threshold). To avoid getting trapped in the
neighborhood of a local attractor, the system temperature is increased
and annealed according to the optimal cooling schedule, as depicted
in SI Fig. S5. Note that the asymptotic performance is still determined by
the Oð1=logÞ decay and the cold–warm acceleration does not improve
the quality of the solution. Furthermore, as highlighted in Fig. 3f, as the
optimization proceeds, the time needed to achieve a unit gain in the
quality of the solution increases with time, with the last gain consuming
the majority of the entire simulation duration. Consequently, accel-
erating NeuroSA’s initial convergence using a low-temperature start
might not significantly reduce the overall time-to-solutionwhen the goal
is to approach the asymptotic ground state. However, the approach
does enhance the efficiency of theNeuroSA to approach SOTA solutions
under real-time constraints.

One of the attractive features of the NeuroSA mapping is that the
architecture can be readily implemented and scaled up on existing
neuromorphic platforms like SpiNNaker2, especially given the availability
of large-scale systems such as the 5-million cores supercomputer in
Dresden30 with more than 35K SpiNNaker2 chips interconnected in a
single system. The algorithmic advantage of mapping NeuroSA on a
parallel architecture was demonstrated in the small-scale experiment
shown in Fig. 3e. Effectively, a parallel search amplifies the chance of
approaching the SOTA/ground state within finite time-interval, because
of the inherent independence of the brute-force search in the low-
temperature regime. This implies thatmultiple copies of NeuroSA can be
instantiated simultaneously on SpiNNaker2 without incurring little to no

overhead, as long as local memory overflow is avoided. As the problem
scales, memory mapping and encoding in neuromorphic architectures
like SpiNNaker2 becomes the main challenge and bottleneck. However,
the inherent sparsity in the COPs (defined by the matrix Q can be
leveraged for trade-off. In addition to the algorithmic advantage of
NeuroSA mapping on parallel architecture, neuromorphic hardware like
SpiNNaker2 also exhibits energy-to-solution and time-to-solution
advantage over CPU as described in the SI Section S5.2, where the
near-PE local memory and on-chip random number generator facilitates
the acceleration of NeuroSA. The key bottleneck in NeuroSA and other
neuromorphic architectures executing random-walk type algorithms is
the process of generating the i.i.d. random variables within each neuron.
It has been reported that69, generating high-quality random noise con-
sumes significant energy andmany neuromorphic architectures resort to
physical noise (noise intrinsic in devices) as an efficient source of ran-
domness. In our previous works48,60,70 we have reported a silicon-
compatible device that is capable of producingOð1= logÞ decay required
by the FN annealer. The device directly implemented the equivalent
circuit shown in Fig. 1e using Fowler–Nordheim tunneling barrier where
the current J is determined by single electrons tunneling through the
barrier. Futureworkwill investigate how to leverage thesediscrete single-
electron events to produce the other random variables N B

n and N E
n.

Note that the Oð1= logÞ dynamics can either be generated using a
physical FN-tunneling device or can be emulated by implementing an
FN-tunneling dynamical systems model on digital hardware. In this
work, we chose the digital emulation for better scalability. However, a
physical FN-tunneling device could also be used as an extrinsic or
intrinsic device60. The sampling and scaling of the FN-decay can be
chosen arbitrarily and is only limited by the resolution of the single-
electron tunneling process (quantum uncertainty). This can be miti-
gated by choosing a larger size device or by modulating the voltage of
the device. The time scale of the Oð1= logÞ decay can therefore be
adjusted to fit the scheduling presented in the algorithm. Note that
even with the optimal noise schedule, higher precision sampling and
annealing (threshold adjustment) would be required. In SI Fig. S4 we
show the degradation in the quality of the solution when a lower
precision computation is use for NeuroSA computation. Due to the
requirement of higher precision sampling of the FN device, we have
resorted to a digital emulation of the FN-tunneling device on the
SpiNNaker2 platform. Note that our previously reported FN-devices60

could have been used for this purpose, but only in conjunction with
analog-to-digital converterswithmore than 16 bit precision. The scope
of this work is to present the algorithmic advancement in developing
an asynchronous neuromorphic architecture that can utilize the FN-
annealing dynamics.

The NeuroSA architecture opens the possibility of using neuro-
morphic hardware platforms to find novel solutions by sampling pre-
viously unexplored regions of the COP landscape. Given the
combinatorial nature of the problem, even a minor improvement in
the quality of the solution over the SOTA solution signifies discovering
a previously unknown configuration. However, our results suggest that
finding such a solution requires a significant number of compute
cycles or equivalently a significant expenditureofphysical energy. This
is evident in Fig. 3f, which plots the number of compute cycles for a
unit increase in the solution metric. The trend shows an exponential/
sub-exponential growth which highlights the challenge in uncovering
new solutions. Because the SA algorithm itself can be slow, the benefits
of NeuroSA compared to other polynomial-time COP solvers (like the
GW algorithm) lie in the regimewhereminimal gradient information is
available to guide the optimization process, and the algorithm has to
resort to a brute force random search. In this region, the search
becomes sub-exponential-time or exponential-time and finding the
next best solution consumes all of the run-time as was shown in Fig. 3f.
However, for NeuroSA, the asymptotic improvement in solution
quality is guaranteed due to the FN-tunneling dynamics. This feature
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makes NeuroSA stand out among other COP solvers like CIM and SBM.
We acknowledge that the proposed ideal neuromorphic ISING
machine is a superordinate concept that can use mechanisms other
than FN tunneling to achieve annealing and the desired asymptotic
convergence properties. This is because there are other stochastic
global optimization methods52,53 than just simulated annealing which
can be used for the neuromorphic ISING architecture. However, when
using simulated annealing, according to the results by Hajek56 and
Geman55, the annealing schedule should follow a schedule that is
slower than c/log(t) (or FN tunneling) dynamics to inherit the asymp-
totic global optimization convergence properties. In fact, the scaling
parameter c needs to be selected to achieve the best trade-off between
faster convergence and the quality of the solution for a given optimi-
zation problem. Also, a schedule that follows c=log1=2ðtÞ or c= log logðtÞ
dynamics would also guarantee asymptotic convergence to the
ground state, however, at a much slower rate. Furthermore, we would
also point out that NeuroSA, like most COP solvers, is one-shot solver
unlike AI/ML inference engines, where the overhead of physical
instantiation can be amortized over repetitive runs. Since one of the
focus of NeuroSA is to explore new solutions as it asymptotically
converges to the ground state, it is expected that NeuroSA imple-
mentations would require long run-times. As new/better solutions are
produced by the solver they can be read out and used in other
applications.

Methods
Asynchronous Ising machine model
QUBO and Ising formulations are interchangeable through a variable
transform s$ 1 + s

2 , and hence, without any loss of generality, we con-
sider the following optimization problem

min
s2f�1, + 1gD

HðsÞ= 1
2
s⊺Qs ð3Þ

where s = s1, s2, ::, sD
� �

denotes a spin vector comprising of binary
optimization variables. Because s2j = 1, 8j = 1:::D, Eq. (3) is equivalent to

min
s2f�1, + 1gD

HðsÞ= 1
2
s⊺Qs withQii = 0 ð4Þ

Note the matrix Q can be symmetrized by Q 1
2 ðQ +Q⊺Þ without

changing the solution to Eq. (3). Let the vector s at time instant n be
denoted by sn and the change in s be denoted as Δsn, then

ΔHn =Hðsn�1 + 2ΔsnÞ � Hðsn�1Þ, ð5Þ

whereΔsn = {−1, 0, +1}D andΔsj,n sj,n−1 = −1, 0,∀ j = 1. . .D ensures that the
spin either flips or remains unchanged. Then,

ΔHn =Δs
⊺
nQðsn�1 + 2ΔsnÞ+ s⊺n�1QΔsn ð6Þ

Using Qij = Qji,

ΔHn =2Δs
⊺
nQðsn�1 +ΔsnÞ ð7Þ

and applying sp,n−1Δsp,n = −1, ∀n, p leads to

ΔHn =2
X
p2C

Δsp,n
X
j=2C

Qpjsj,n

2
4

3
5, ð8Þ

where the set C = fi : Δsi,n ≠0g denotes the neurons that do not fire
at time-instant n. Solving Eq. (3) involves solving the sequentially sub-
problem: ∀ n, find Δsp,n∈ {−1, 0, +1}D such that

P
p2CΔsp,n½

P
j=2C

Qpjsj,n�<0, which in itself is a combinatorial problem. By adopting
asynchronous firing dynamics, the problem of searching for the set of
firing neurons canbe simplified. For an asynchronous spiking network,
only one of the neurons can emit a spike at any time instant n (due to
Poisson statistics), which leads to

ΔHn =2Δsp,n
XD
j = 1

Qpjsj,n�1

" #
ð9Þ

where we have used Qpp = 0. Hence, ΔHn <0, if and only if

Δsp,n
XD
j = 1

Qpjsj,n�1

" #
<0: ð10Þ

Derivation of NeuroSA’s neuron model
In its most general form54, a simulated annealing algorithm solves Eq.
(3) by accepting or rejecting choices of Δsp,n according to

Accept Δsp,n : if B exp
�ΔHn

Tn

� �
>un, ð11Þ

where un is a uniformly distributed r.v. between 0, 1½ �, and B > 1 is a
hyper-parameter, Tn > 0 denotes the temperature at time-instant n. Eq.
(11) is equivalent to

Accept Δsp,n : if ΔHn < � Tn log
un

B
+ ϵ

� �
ð12Þ

or

Δsp,n
XD
j = 1

Qpjsj,n�1

" #
< � TnN E

n ð13Þ

where N E
n = log un

B + ϵ
� 	

is an exponentially distributed r.v. We have
introduced a small additive term ϵ >0 to ensure numerical stability
when drawing samples with values close to zero. In practice, ϵ is
determined by the precision of the hardware platform and hence will
be considered a hyperparameter for NeuroSA. Eq. (13) can be written
case-by-case as

Δsp,n =

+ 1 if sp,n�1 = � 1 and�PD
j = 1

Qpjsj,n�1>TnN E
n

�1 if sp,n�1 = + 1 and
PD
j = 1

Qpjsj,n�1>TnN E
n

0 otherwise

8>>>>>><
>>>>>>:

ð14Þ

Decomposing the variables differentially as Δsp,n =Δs
+
p,n � Δs�p,n,

sp,n = s
+
p,n � s�p,n, Δs +p,n, Δs�p,n, s +p,n, s�p,n>0 leads to

s +p,n =
Pn

k = 1½Δs +p, k � Δs�p, k �, s�p,n =
Pn

k = 1½�Δs +p, k +Δs�p, k �. Eq. (14) is
therefore equivalent to

Δs +p,n =
1 if s +p,n�1 = 0 and

Pn�1
k = 1

PD
j = 1

Qpj �Δs +j, k +Δs�j, k
� �

>TnN E
n

0 otherwise

8><
>: ð15Þ

which corresponds to the spiking criterion for an ON neuron and

Δs�p,n =
1 if s�p,n�1 = 0 and

Pn�1
k = 1

PD
j = 1

Qpj Δs +j, k � Δs�j, k
� �

>TnN E
n

0 otherwise

8><
>: ð16Þ
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which corresponds to the spiking criterion for an OFF neuron. Intro-
ducing a RESET parameter A≫jTn log

un
B + ϵ

� 	j, Eqs. (15) and (16) are
equivalent to the ON neuron model

Δs +p,n =

1 if v+
p,n >TnN E

n,

where v+
p,n = v

+
p,n�1 +

PD
j = 1

QpjðΔs�j,n�1 � Δs +j,n�1Þ

+AΔs�p,n�1 � AΔs +p,n�1
0 otherwise

8>>>>>>><
>>>>>>>:

ð17Þ

and the OFF neuron model

Δs�p,n =

1 if v�p,n >TnN E
n,

where v�p,n = v
�
p,n�1 +

PD
j = 1

QpjðΔs +j,n�1 � Δs�j,n�1Þ

+AΔs +p,n�1 � AΔs�p,n�1
0 otherwise

8>>>>>>><
>>>>>>>:

ð18Þ

The variables v+
p,n, v

�
p,n represent the membrane potentials of the

ON–OFF integrate-and-fire neurons at the time instant n. To ensure that
all neurons are equally likely to be selected (to satisfy the ergodicity
property of SA), we introduce a Bernoulli r.v. for every neuron p as

N B
p =

1 withprobability 1� η

0 withprobabilityη



ð19Þ

which leads to the ON neuron model

Δs +p,n =
1 ifv+

p,n >μp,n,

0 otherwise

(
ð20Þ

and the OFF neuron model

Δs�p,n =
1 if v�p,n ><manualbreakhskipp= 12>μp,n,

0 otherwise,

(
ð21Þ

where μn,p =TnN E
n +AN B

p,n denotes the shared noisy threshold
between the pth pair of ON–OFF neurons at time instance n. The
ON–OFF construction ensures thatΔs +p,nΔs

�
p,n =0, 8p,n, which leads to

the following fundamental ON–OFF integrate-and-fire neuron model
of NeuroSAwhich is summarized as: TheON–OFF neuron’s membrane
potentials v+

p,n, v
�
p,n 2 R evolve as

v+
p,n  v+

p,n�1 +
XD
j = 1

QpjðΔs�j,n�1 � Δs +j,n�1Þ+AΔs�p,n�1 ð22Þ

v�p,n  v�p,n�1 +
XD
j = 1

QpjðΔs +j,n�1 � Δs�j,n�1Þ+AΔs +p,n�1 ð23Þ

where A > 0 is a constant that represents an excitatory synaptic cou-
plingbetween theONand theOFFneurons, as shown inFig. 1d. TheON
and OFF neurons generate a spike when their respective membrane
potential exceeds a time-varying noisy threshold μp,n according to

Δs +p,n =
1 if v+

p,n>TnN E
p,n +AN B

p,n,

0 otherwise

(
ð24Þ

and

Δs�p,n =
1 if v�p,n>TnN E

p,n +AN B
p,n,

0 otherwise

(
ð25Þ

after which the membrane potentials are RESET by subtraction
according to

v+
p,n  v+

p,n � AΔs +p,n ð26Þ

v�p,n  v�p,n � AΔs�p,n: ð27Þ

Note that the RESET by subtraction is a commonly usedmechanism in
spiking neural networks and neuromorphic hardware71. Also, note that
the asynchronous RESET of the membrane potential is instantaneous
and the spike is represented by a (0,1) binary event.

Dynamical systems model implementing the FN annealer
In ref. 56 it was shown that a temperature annealing schedule of the
form

Tn ≥
c

log 1 +nð Þ : ð28Þ

can ensure that the simulated annealing will asymptotically converge
to the ground state of the underlying COP. The parameter c in Eq. (28)
is chosen to be larger than the depths of all the local minima of COP.
The equivalent continuous-timemodel for the lower-bound in Eq. (28)
that produces T(t) is given by

TðtÞ= T0

log 1 + t
C

� 	 ð29Þ

where C is a normalizing constant. Differentiating Eq. (29) one obtains
the dynamical systems model

C
dT
dt

= � T2

T0
exp
�T0

T
ð30Þ

that generates T(t).
The R.H.S. of Eq. (30) has the form of the current flowing across a

Fowler–Nordheim quantum-mechanical tunneling junction and Eq.
(30) describes a FN integrator60 with a capacitance C. Combining with
the expressions of the dynamical threshold in Eqs. (20) and (21), which
includes the exponentially distributed and Bernoulli distributed ran-
dom variablesN E

n andN B
n , leads to the equivalent circuit model of the

FN annealer shown in Fig. 1d, e. A discrete-time equation approx-
imating the continuous-time dynamical systems model in Eq. (30) was
implemented on the CPU or the SpiNNaker2 platform. The sampling
period in the discrete-timemodel was chosen by adjusting C and to fit
the optimal scheduling requirements of the NeuroSA algorithm. For all
experiments, C = 8 × 104, and T0 = 0.3125. The mean of the random
variable N E

p,n was chosen to be −0.916.

Acceleration of NeuroSA on synchronous and clocked systems
While the ideal implementation of NeuroSA architecture requires a
fully asynchronous architecture, most neuromorphic accelerators are
either fully clocked and use address-event-routing-based packet
switching, such as HiAER-spike, or employ globally asynchronous
interrupt-driven units that are locally clocked (synchronous), such as
SpiNNaker2. For these clocked systems, NeuroSA can be efficiently
implemented by exploiting the mutual independence and i.i.d. prop-
erties of the r.vs.N E andN B. The SI Section S4 describes the pseudo-
code for CPU and SpiNNaker2 implementations. In the NeuroSA
architecture, each neuron determines its spiking behavior solely from
its internal parameters, i.e. the membrane potential, neuron state, etc.
Therefore, N E

p,n needs to be distinct and local to each neuron in the
system. On the other hand, the ergodicity of the optimization process
can be enforced through a global arbiter. We decouple the Bernoulli
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noise from the noisy threshold such that only the decision threshold
μ*
p,n =TnN E

p,n is applied to each neuron. In this case, multiple spikes
may occur at each simulation step. All the neurons that emit spikes
synchronously are referred to as active neurons. Out of all active
neurons, only one gets selected by the global arbiter and propagated
to other neurons, while the remaining spikes are discarded. This inhi-
bitivefiring dynamics ensures that atmostone spike is transmitted and
processed, which satisfies the asynchronous firing requirement as
shown in Eq. (9). The global arbiter is implemented differently across
the neuromorphic hardware that we have tested on, with the detailed
implementation documented in SI Section S4 for CPU (software)
implementation, and Section S5 for SpiNNaker2 implementation.

Generation of network PCA trajectories
To demonstrate and visualize the evolution of the network dynamics
for a large problem, we used Principal component analysis (PCA) to
perform dimensionality reduction on the population dynamics similar
to a procedure reported in literature63,72,73. In NeuroSA, the population
spiking activity indicates changes in the neuronal states, the attractor
dynamics in proximity to a local/global minimum, and the escape
mechanisms for exploring the state space. As shown in Fig. 1h, the
spikes across the neuronal ensembles are binned within a predefined
timewindow to produce a real-valued vector. The time window is then
shifted with some pre-defined overlap to produce a sequence of real-
valued vectors. PCA is then performed over all the real-valued vectors
and only the principal vectors with largest eigenvalues are chosen. The
real-valued vector sequence is then projected onto the three principal
components resulting in 3D trajectories shown in Figs. 1i and 2d.

Estimation of empirical probability density function
For the MAX-CUT and MIS experiments, NeuroSA was run on each
graph for 5 times. The results in each runwere normalizedwith respect
to the SOTA and then grouped as a histogram. The probability density
function (pdf) was generated using ksdensity, the built-in MATLAB
function.

Data availability
The COP solutions, the algorithm execution time, the power and the
energy data for the CPU and SpiNNaker2 imeplementation of NeuroSA
generated in this study are available at https://github.com/aimlab-
wustl/neuroSA.

Code availability
The specific MATLAB and Python codes used in simulation/emulation
studies on the CPU platform are available at https://github.com/
aimlab-wustl/neuroSA. Since the SpiNNaker2 stack is still under
development, and the system is proprietary, the software imple-
mentation on SpiNNaker2 will not be made available publicly but will
be available upon requests.
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