
Article https://doi.org/10.1038/s41467-025-58234-2

Machine learning shows a limit to rain-snow
partitioning accuracy when using near-
surface meteorology

Keith S. Jennings 1,2 , Meghan Collins3, Benjamin J. Hatchett3,4, Anne Heggli3,
Nayoung Hur2, Sonia Tonino3, Anne W. Nolin 5, Guo Yu3, Wei Zhang 6 &
Monica M. Arienzo 3

Partitioning precipitation into rain and snow with near-surface meteorology is
a well-known challenge. However, whether a limit exists to its potential per-
formance remains unknown. Here, we evaluate this possibility by applying a
set of benchmark precipitation phase partitioning methods plus three
machine learning (ML)models (an artificial neural network, random forest, and
XGBoost) to two independent datasets: 38.5 thousand crowdsourced obser-
vations and 17.8 million synoptic meteorology reports. The ML methods
provide negligible improvements over the best benchmarks, increasing
accuracy only by up to 0.6% and reducing rain and snow biases by up to -4.7%.
ML methods fail to identify mixed precipitation and sub-freezing rainfall
events, while expressing their worst accuracy values from 1.0 °C–2.5 °C. A
potential cause of these shortcomings is the air temperature overlap in rain
and snow distributions (peaking between 1.0 °C–1.6 °C), which expresses a
significant negative relationship (p <0.0005) with partitioning accuracy. Thus,
the meteorological characteristics of rain and snow are similar at air tem-
peratures slightly above freezing with increasing overlap associated with
decreasing performance. We suggest researchers switch their focus from
marginally improving inherently limited precipitation phase partitioning
methods using near-surface meteorology to creating new methods that
assimilate novel data sources—e.g., crowdsourced precipitation phase
observations.

Direct observations of precipitation phase are rare, necessitating the
use of ancillary meteorological data—air temperature usually—to
determine whether rain, snow, or mixed precipitation is falling at the
land surface1,2. Precipitation phase partitioning should be relatively
simple. The transition temperature between water’s solid and liquid
phases is 0 °C, suggesting a physically based threshold for partitioning
precipitation into rain and snow. Warmer than 0 °C? Liquid. Cooler

than0 °C? Solid. Unfortunately, this simple assumption is oftenwrong.
In fact, precipitation at the land surface is predominantly snowfall at
0 °C, with rainfall only increasing in prominence as the air temperature
warms towards 1 °C–3 °C3–6. Moreover, the air temperature threshold
at which rain and snow fall with equal probability varies regionally,
from near 0 °C in maritime locations to over 4 °C in some upland,
continental areas6.
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As a result of this variability, there are many methods that parti-
tion precipitation into rain and snowwith near-surfacemeteorological
data such as air temperature, humidity, and pressure. These methods
include thresholds, ranges, and statistical models1,2, and comprise an
important component of land surface and hydrologic models. Large-
scale reanalysis products, such as the Global Precipitation Measure-
ment (GPM) mission’s Integrated Multi-satellitE Retrievals for GPM
(IMERG) and Phase 2 of the North American Land Data Assimilation
System (NLDAS-2), combine gridded meteorological data with an
empirical phase partitioningmethod7. Most of thesemethods that use
near-surfacemeteorology performwell at cold air temperatures below
−5 °C and warm air temperatures above 10 °C when snow and rain,
respectively, are consistently predictable. However, at air tempera-
tures slightly above freezing (0 °C–4 °C), the best these methods can
do is to properly identify precipitation phase ~65% of the time6,8.
Model-based errors and uncertainties in rain-snow partitioning9 then
propagate into inaccurate and uncertain simulations of snow accu-
mulation, snowmelt, and streamflow10–12.

These challenges have motivated researchers to improve the
techniques that use near-surface meteorology to partition the pre-
cipitation phase. We refer readers to the relevant review papers1,2 for a
full discussion of this work, but we cover somemajor themes here. The
1956USArmyCorps of Engineers3 SnowHydrology reportwas the first
documentweknowof to show theprevalenceof snowfall above 0 °C, a
finding confirmed by Auer4. Subsequent studies over larger study
domains demonstrated the spatial variability of the optimal air tem-
perature threshold for partitioning rain and snow13–15. Other research-
ers have noted that the use of air temperature ranges16,17 may improve
partitioning performance relative to single-threshold methods, parti-
cularly over longer time scales18. The potential advantage here is that
range-based methods use a lower threshold for snow and a higher
threshold for rain, with mixed precipitation occurring between. Sub-
sequent work at shorter time scales, however, has called this finding
into question9. More recently, several papers have shown that includ-
ing humidity in somemanner—typically in the form of wet bulb or dew
point temperature—aids in the correct identification of precipitation
phase18–20.

Comparative studies6,9,12,21,22, meanwhile, have arrived at some
general conclusions on partitioning rain, snow, and mixed precipita-
tion using near-surface meteorology. For one, the inclusion of
humidity improves predictive performance relative to methods that
use only air temperature, with wet bulb temperature thresholds typi-
cally outperforming dew point temperature thresholds. Similarly,
statistical models that use both air temperature and relative humidity,
when optimized on observed data, can provide highly accurate esti-
mates of precipitation phase. However, evenwhen studies use the best
available data and methods, shortcomings remain. While some meth-
ods exhibit low seasonal rain and snow biases, all methods present
their worst accuracies between approximately 0 °C and 4 °C8. As of
now, all studied methods relying on near-surface meteorology pro-
duce this dip in performance.

The lack of a skillful approach to estimating the precipitation
phase worsens our representations of hydrologic processes in cold
regions, which affects the populations and ecosystems dependent on
snow-derived water resources23–25. These regions must balance mana-
ging snow as a resource (water supply) and as a source of hazards
(flooding and mass movements) largely through investments in
infrastructure23,26. The stress on natural resource managers to balance
the risks to life, property, and ecosystem function between drought
and flood will intensify as the climate continues to change27 with
projected increases in rain-on-snow magnitude and frequency28

occurring prior to the ultimate warming-induced loss of snow25. This
transition will be driven in part by increasingly warm temperatures on
more frequent dry days29 and a rise in snow levels during storms as
precipitation increasingly falls as rain26,30,31.

This produces an unsatisfying scenario where a seemingly simple
problem has myriad societal implications yet no straightforward
solution. Why is that? In previous work, we noted a concerning phe-
nomenon: whether we were evaluating air, wet bulb, or dew point
temperature, we found a 43.8–52.8% overlap in the distributions of
rain, snow, and mixed precipitation9. We suggested that this overlap
may act as a limiting factor in the performance of precipitation phase
partitioning methods that use near-surface meteorology. Similar to
other comparative studies, we only explored methods that used sim-
ple thresholds and ranges along with an optimized statistical model.
Recent advances in machine learning in the hydrologic32,33 and atmo-
spheric sciences34,35, however, have demonstrated the power of using
data-driven approaches instead of prescribing a priori assumptions
and techniques.

A few researchers have deployedmachine learningmethods, such
as random forest36 and artificial neural networks (ANN), to see if such
techniques can improve precipitation phase partitioning performance.
For example, Campozano et al. 37 showed that random forestmodels of
the precipitation phase better predict rain and snow than a logistic
regression model according to some metrics and data availability
scenarios. They also found the tree-based random forestmethodoften
outperformed the more complex ANN. In addition, they noted that a
relatively parsimonious set of predictors—air temperature, dew point
temperature, and specific humidity—account for much of the
improved performance37. Similarly, Filipiak et al. 35 found that air and
dew point temperature were the two most important variables in
predicting the precipitation phase with a random forest model. Both
studies, however, focused on small, relatively climatologically homo-
genous regions, and neither study showed performance by air tem-
perature to evaluate whether machine learning can avoid or mitigate
the dip in performance that all othermethods displaywhen using near-
surface meteorology. Thus, there is a need to explore more climato-
logically diverse study domains with large ranges in rain-snow air
temperature thresholds and to evaluate machine learning perfor-
mance by air temperature relative to benchmarkpartitioningmethods.

There is a bigger, more worrying concern past those two con-
siderations, though. What if machine learning techniques do not
markedly improve precipitation phase prediction accuracy while
minimizing rain and snow biases, particularly at air temperatures near
freezing? Or,more simply put, is there a limit to rain-snow partitioning
performance using near-surface meteorology? To answer these ques-
tions we employ two unique, independent datasets of precipitation
phase and near-surface meteorology: crowdsourced observations of
rain, snow, and mixed precipitation9,38,39 and synoptic meteorology
reports of rain and snow5,6, whichwe refer to as the crowdsourced and
synoptic datasets, respectively. We apply a selection of the highest
performing rain-snow partitioning algorithms6 as benchmark meth-
ods, towhichwe compare two tree-basedmachine learning techniques
—random forest36 and XGBoost40—as well as an ANN with one hidden
layer. We also evaluate two more advanced machine learning
approaches—an ANN with two hidden layers and a stacked ensemble
model—on the crowdsourced dataset to determine if increasing com-
plexity produces better outcomes. We close by evaluating the
meteorological properties of rain and snow in the two datasets and
relating these characteristics to the accuracy of the benchmark and
machine learning phase partitioning methods.

Results
Benchmark precipitation phase partitioning performance
The benchmark methods (Table 1) exhibited variable performance in
predicting rain and snow in the crowdsourced and synoptic datasets
(Table 2). Themethods incorporatinghumidity (e.g., the binary logistic
regression model and the wet bulb and dew point temperature
thresholds) generally performed better than the methods using only
air temperature, with a median accuracy value across both datasets of
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87.5% for the former compared to 81.8% for the latter. With a median
rain bias value of 0.6%, the humidity-based methods performed
markedly better in both datasets than the air-temperature-only
methods (38.1%). The air-temperature-only methods also had a
slightly worse median snow bias in both datasets than the humidity
methods at -8.8% versus 5.9%.

When examining the two datasets separately, we found a few key
differences (Table 2). Accuracy was generally lower in the crowd-
sourced dataset, ranging from 80.5% to 88.7%, a total spread of 8.2%.
That is larger than the accuracy spread of the synoptic dataset (2.4%),
which had a minimum value of 90.7% and a maximum of 93.1%. In the
crowdsourced dataset, the top six methods, ranked by accuracy, all
used humidity, while the bottom two relied on air temperature alone.
The case was slightly different for the synoptic dataset where the two
dew point temperature thresholds performed worse than the two
static air temperature thresholds. Snow and rain biases had larger
ranges than accuracy in both datasets. Snow bias varied by 28.5% and

16.8%, while rain bias varied by 64.4% and 14.8% in the crowdsourced
and synoptic datasets, respectively. In general, the benchmarks per-
formed better and with less variability when applied to the synoptic
dataset, and methods with better accuracy values typically had lower
rain and snow biases.

All of the benchmark methods performed worse at air tempera-
tures near and slightly above the freezing point in terms of accuracy,
with most of them reaching their minimum accuracy values between
1.5 °C and 2.0 °C in the crowdsourced dataset and between 0.5 °C and
1.5 °C in the synoptic dataset (Fig. 1). The best-performing benchmarks
in terms of accuracy were Tw1.0 and Tw0.5 in the crowdsourced and
synoptic datasets, respectively. For the former, Tw1.0 hit a minimum
accuracyof 66.3% at 2 °C, while the latter reached aminimumaccuracy
of 68.7% at 1°C (Fig. 1a). In both datasets, most methods had slightly
positive snow biases and markedly negative rain biases at air tem-
peratures less than 1.0 °C (Fig. 1b,c). This is consistent with their lim-
ited, or complete lack of, ability to predict rain at sub-freezing
temperatures. Conversely, most methods, with the exception of the
dew point temperature thresholds, had largely negative snow biases
and slightly positive rain biases at air temperatures above 2°C
(Fig. 1b,c). Notably, the crowdsourced dataset expressed larger posi-
tive rain biases at higher temperatures (Fig. 1c), indicating the bench-
mark methods failed to capture snowfall occurring during warm near-
surface conditions.

Machine learning precipitation phase partitioning performance
The three machine learning methods, an ANN with one hidden layer,
random forest, and XGBoost, generally provided small performance
gains relative to the best benchmark methods and larger, more con-
sistent improvements relative to the average benchmark results
(Table 3). In the crowdsourced dataset, ANN (89.2%) and XGBoost
(88.8%) had slightly higher accuracy values than Tw1.0 (88.7%), while
random forest had a slightly lower accuracy (88.3%) than the Tw1.0
threshold, which was the best-performing method from the bench-
mark exercise. Both XGBoost (93.3%) and random forest (93.7%) pro-
vided marginal improvements relative to Tw0.5 (93.1%), the best
benchmark in the synoptic dataset as measured by the accuracy
metric. ANN, however, expressed a slightly worse accuracy value
(92.8%) than the best benchmark.

The three machine learning methods exhibited similar accuracy
patterns by air temperature as the best benchmark and the average
benchmark results, with performance degrading at air temperatures
slightly above freezing (Supplementary Fig. 1). Both random forest and
XGBoost achieved their minimum success rates of 66% and 68.6%,
respectively, at 2 °C in the crowdsourced dataset. Meanwhile, ANNhad
its worst accuracy value of 70% at 2.5°C. Performancewas higher in the
synoptic dataset for random forest and XGBoost with minimum
accuracy values of 74.2% and 70%, respectively. ANN, conversely,
expressed slightly worse performance than in the crowdsourced
dataset with aminimum accuracy of 67.1%. All minima occurred at 1 °C
in the synoptic dataset. Relative improvements in accuracy compared
to the best and average benchmarks varied by temperature for the
machine learning methods (Fig. 2). In the crowdsourced dataset,
relative improvements reached amaximum of 7.9% at 7.5°C compared
to the best benchmark and amaximumof 19% at 1.5°C compared to the
average benchmark values. In the synoptic dataset, relative improve-
ments were similar for the best benchmark comparison, with a max-
imum increase of 8% at 1°C, and smaller for the average benchmark
values, with a maximum increase of 14.7% at 1°C. Notably, ANN did not
provide an accuracy improvement at any air temperature relative to
the best benchmark in the synoptic dataset.

When compared to the snow and rain biases produced by the best
benchmarks and average benchmark values, the machine learning
methods generally provided larger absolute improvements than those
recorded for accuracy (Table 3). While accuracy improvements were

Table 2 | Performance metrics for the benchmark precipita-
tionpartitioningmethods (PPMs)using thecrowdsourcedand
synoptic datasets

Dataset PPM Accuracy (%) Snow
bias (%)

Rain
bias (%)

Crowdsourced Tw1.0 88.7 4.5 −10.2

Tw0.5 88.5 −3.3 7.4

Td0.5 87.7 7.9 −17.9

Td0.0 87.3 0.5 −1.1

Binlog 86.3 −8.6 19.5

Tw0.0 86.1 −11.4 25.7

Ta1.5 83 −13.2 29.7

Ta1.0 80.5 −20.6 46.5

Synoptic Tw0.5 93.1 6.2 −5.5

Binlog 93.1 5.6 −5

Tw0.0 92.2 −2.7 2.3

Ta1.0 92.1 4.5 −4

Ta1.5 91.9 8.2 −7.2

Tw1.0 91.8 14.1 −12.5

Td0.0 90.9 9.8 −8.7

Td0.5 90.7 13.5 −11.9

The rows are ordered by accuracy—from high to low—for each dataset. For more details on the
PPMs, please refer to Table 1.

Table 1 | Information on the temperature thresholds and the
binary logistic regression model that we use as benchmark
methods in this study

Method Type Met.
Data

Value (°C) Symbol Note or Source

Threshold Ta 1.0 Ta1.0 Performant values
from large-scale
study6

1.5 Ta1.5

Tw 0.0 Tw0.0

0.5 Tw0.5

1.0 Tw1.0

Td 0.0 Td0.0

0.5 Td0.5

Binary Logistic
Regression

Ta
and RH

NA Binlog Model form21 with
optimized
coefficients6

Meteorological (met.) data include air (Ta), wet bulb (Tw), and dew point (Td) temperature and
relative humidity (RH).
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all less than or equal to 3.2%, the reduction in snow bias maxed out at
−2% and −5.9% in the crowdsourced and synoptic datasets, respec-
tively. Random forest, XGBoost, and ANN also provided consistent
improvements in rain bias, with a maximum reduction of −4.5% in the
crowdsourced dataset and -5.2% in the synoptic dataset. These results
show that while accuracy improvements from the machine learning
methods may be small, random forest, XGBoost, and ANN typically
predict rain and snowwith lower biases than the benchmarkmethods.

Mixed-phase precipitation partitioning performance
Until this point, we have only considered precipitation in its solid
and liquid forms. While the synoptic dataset does not include any
mixed precipitation observations, the testing split of the crowd-
sourced dataset includes 1140 mixed phase observations, com-
prising 11.8% of the total. As noted in the methods section, we do
not include any dual-threshold benchmark methods because of
their poor historical performance. The machine learning methods
analyzed here fared a little better. Including the mixed observa-
tions caused overall accuracy to markedly decline, going from
88.3% (rain and snow only) to 77.5% (rain, snow, and mixed) for
random forest, from 88.8% (rain and snow only) to 79.2% (rain,
snow, and mixed) for XGBoost, and from 89.2% (rain and snow
only) to 79.2% (rain, snow, and mixed) for ANN.

Although XGBoost and ANN had higher accuracy values than
random forest when we included mixed precipitation, they achieved
this result at the expense of bias. The random forestmethod predicted
that 4.3% of the observations were mixed, which was well short of the
observed value of 11.8%, giving it a mixed bias of −63.9%. XGBoost and
ANN fared even worse, predicting 0% of the observations to bemixed,
giving them both a mixed bias of −100%. When including mixed pre-
cipitation, random forest had a lower snow bias (12.2%) than XGBoost
(16.1%) and ANN (17.1%). It was the same story for rain bias with
XGBoost (7.3%) and ANN (5.1%) having worse biases than random
forest (0.4%). These findings appear even worse when viewing the
confusion matrix (Fig. 3), which shows that random forest correctly
predicted only 9.3% of the observed mixed precipitation and incor-
rectly predicted the mixed observations as rain 32.9% of the time and
as snow the remaining 57.8%. XGBoost and ANN failed completely
here, correctly predicting none of the mixed precipitation observa-
tions, identifying them as snow over 60% of the time.

More complex machine learning methods
We found that applyingmore complexmachine learningmethods to the
crowdsourced data did not consistently improve performance (Sup-
plementary Table 1). Specifically, we evaluated an ANN with two hidden
layers (ANN-2) and a stacked ensemble that combines the outcomes of
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Fig. 1 | Performance metrics for each benchmark phase partitioning
method (PPM). These metrics include accuracy (a), snow bias (b), and rain bias (c)
plotted by air temperature for the crowdsourced and synoptic datasets. The ver-
tical dashed line in each panel represents the 0 °C isotherm. Note: the −100% snow

and rain bias values in (b) and (c), respectively, correspond to air temperatures
where the method does not predict the given phase. For example, Ta1.0 predicts
only rain above 1.0°C and thus presents a −100% bias for all observed snowfall
above that threshold. Source data are provided as a Source Data file.
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the three previously analyzed methods (ANN, random forest, and
XGBoost) and predicts the precipitation phase with a regularized linear
model. ANN-2 (88.8%) and the ensemble (88.9%) both had slightly lower
accuracies than the ANN with only one hidden layer (89.2%), when
evaluated on the crowdsourced data with rain and snow only. However,
they were both 0.1% more accurate than the ANN with one hidden layer
(79.2%)when evaluated against the crowdsourced rain, snow, andmixed
data. Similar to the previously analyzedmethods, the accuracy of ANN-2
and the stacked ensemble came at the expense of mixed bias in this
dataset, with the former predicting nomixed precipitation and the latter
predicting just 0.05% of the data to be mixed.

Relationship between meteorology and patterns of rain
and snow
In this section, we return our focus to the predictions of only rain and
snow given the poor mixed-phase results. The first consideration is

whether the benchmark and machine learning methods match
observed snowfall frequency curves (Supplementary Fig. 2). Two pat-
terns emerge here. One, all phase partitioning methods fail to capture
the sub-freezing rainfall events observed in both datasets. Although
rainfall comprises a small proportion of total precipitation below 0 °C
in the crowdsourced (2.5%) and synoptic (5.7%) datasets, these
observations explain the rain biases approaching −100% shown in Fig. 1
to the left of the 0 °C isotherm. Two, the spreads between the mini-
mum and maximum snowfall frequencies predicted by all of the
benchmark and machine learning phase partitioning methods (pink
shading in Supplementary Fig. 2) approach their largest values at air
temperatures slightly above0 °C. The largest difference (93.2%) occurs
at 1.5°C in the crowdsourced dataset, which is the same temperature at
which the synoptic dataset expresses its largest difference (66.9%).

Investigating the observed air temperature distributions of rain
and snow, we find that the largest ranges in snowfall frequency

Table 3 | Accuracy, rain bias, and snow bias for the three machine learning phase partitioning methods (PPMs): the artificial
neural network (ANN), random forest (RF), and XGBoost (XG) applied to the two datasets

Performance Metric for Machine Learning
Models

Absolute Difference of Performance Metric to
Benchmark Values

Dataset PPM Benchmark
Comparison

Accuracy (%) Snow Bias (%) Rain Bias (%) Accuracy (%) Snow Bias (%) Rain Bias (%)

Crowdsourced ANN Best 89.2 3.8 −8.6 0.5 −0.7 −1.6

RF Best 88.3 3.5 −7.9 −0.4 −1 −2.3

XG Best 88.8 4.7 −10.6 0.1 0.2 0.4

ANN Average 89.2 3.8 −8.6 3.2 −1.7 −3.9

RF Average 88.3 3.5 −7.9 2.3 −2 −4.5

XG Average 88.8 4.7 −10.6 2.8 −0.8 −1.8

Synoptic ANN Best 92.8 1.5 −1.4 -0.3 −4.7 −4.1

RF Best 93.7 3.6 −3.2 0.6 -2.6 −2.3

XG Best 93.3 5.4 −4.8 0.1 -0.8 −0.7

ANN Average 92.8 1.5 −1.4 0.8 −5.9 −5.2

RF Average 93.7 3.6 −3.2 1.7 −3.8 −3.3

XG Average 93.3 5.4 −4.8 1.3 −2 −1.7

This table also presents the absolute differences between themachine learning method accuracy, rain bias, and snow bias values and the best-performing benchmark and the average benchmark
values. Note: a positive value for the accuracy absolute difference indicates the machine learningmethod provided an improvement relative to the benchmark, while a negative value for the snow
and rain bias absolute differences corresponds to an improvement.
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Fig. 2 | Relative accuracy differences by air temperature for the machine
learning methods compared to the benchmarks. Dashed lines show the com-
parison relative to the best benchmark and the solid lines are relative to the average
benchmark value. The three machine learning phase partitioning methods (PPM)

are the artificial neural network (ANN), random forest (RF) and XGBoost (XG)
applied to the crowdsourced (left panel) and synopticdatasets (right panel). Source
data are provided as a Source Data file.
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predictedby the differentmethods (Supplementary Fig. 2) correspond
roughly to the air temperatures with the greatest degree of overlap in
rain and snow occurrence. Specifically, there is a 33.7% overlap in the
distributions of rain and snow as plotted by air temperature in the
crowdsourced dataset and a 16% overlap in the synoptic dataset
(Fig. 4). The maximum overlaps of the rain and snow distributions
occur at 1.6 °C and 1 °C in the crowdsourced and synoptic datasets,
respectively. What is more, if we only examine the 0 °C–4 °C range of
poor performance, we find a 66.7% overlap in the crowdsourced
dataset and 39.7% in the synoptic dataset. In other words, the near-
surface air temperature characteristics of the two phases in both
datasets are nearly indistinguishable between 0 °C and 4 °C.

The limits of using near-surface meteorology to partition rain
and snow
This lack of differentiability at temperatures from 0° to 4°C reveals an
issue with using near-surface meteorology to partition rain and snow.
The left panels of Fig. 5 below present the average accuracy of the
benchmark andmachine learning phase partitioningmethods plus the
overlap in rain and snow distributions from the two datasets. We plot
both variables against air temperature to demonstrate how the dip in
performance corresponds to the increase in overlap. The right panel
then shows that there is a statistically significant (p <0.0005) negative
relationship between the distribution overlap and average accuracy,
where accuracy decreases as overlap increases. Using ordinary least
squares regression,wecompute an r2 of 0.79 for this relationship in the
crowdsourced dataset and 0.73 in the synoptic.

This relationship (Fig. 5) provides information on the limits of
using near-surface meteorology to partition rain and snow. Recall that
the benchmark and machine learning methods, when applied to the
synoptic dataset, expressed higher accuracy values than in the
crowdsourced dataset (Tables 2 and 3). Consistent with the findings in
this section, the higher accuracy in the synoptic dataset is com-
plementedbya lower percentage of rain and snowdistribution overlap
(16%) than in the crowdsourced dataset (33.7%). This, plus the fact that
the air temperature distribution overlap between rain and snow
explains at least 73% of the variance in precipitation phase partitioning
accuracy, indicates that the key limiting factor to performance is the

overlap of the air temperature distributions of the different phases.
The higher the overlap, the worse the performance. Even the machine
learning methods are beholden to this phenomenon (Fig. 2, Table 3).
Thus, as of now, regions with a high degree of rain-snow air tem-
perature distribution overlap (i.e., those with characteristics of the
crowdsourced dataset) are likely to seeminimumbenchmark accuracy
values approaching 66.3%, while regions with less overlap (i.e., those
with characteristics of the synoptic dataset) may see improved mini-
mum accuracies, approaching 68.7%. Although the machine learning
methods may moderately improve this performance dip in the
crowdsourced (up to 70%) and synoptic datasets (up to 74.2%), they do
not eliminate it, demonstrating a limit to precipitation phase parti-
tioning accuracy using near-surface meteorology.

Discussion
What is the take-home message of this work? In brief, we suggest that
researchers stop investing time and money into making new or ana-
lyzing old precipitation phase partitioning methods that rely solely on
near-surface meteorology. Previous research has already shown that
threshold-based and statistical methods using near-surface meteorol-
ogy to partition precipitation into rain and snow exhibit worse per-
formance at air temperatures slightly above freezing6,8,41. We originally
assumed that machine learning techniques could erase the perfor-
mance dip, yet the ANN, random forest, and XGBoost methods only
marginally improved accuracy and bias relative to the benchmarks.
These modest performance increases fall well short of the revolutions
brought about by machine learning in hydrologic modeling32.

We consider two aspects of this issue before moving on to addi-
tional discussion points. The first is the complexity of the techniques
weused.Many recent advances in hydrologicmodel performancehave
come through the application of Long Short Term Memory (LSTM), a
type of recurrent neural network. Unlike the ANN tested here, an LSTM
has amemory of previous states, produced by time series forcing, that
facilitate improved predictions of streamflow42 and snow water
equivalent43. We did not apply an LSTM in this work primarily because
it would require serially complete, continuous predictor data that are
not available in either the crowdsourced or synoptic dataset. We did,
however, evaluate benchmark and machine learning methods that
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spana range of complexity. The threshold benchmarks,which useonly
one near-surface meteorological variable apiece, performed nearly as
well as the machine learning methods that used four or five predictor
variables. Similarly, we did not find consistent improvement when
applying the more complex ANN-2 and stacked ensemble approaches.
This is in line with prior research that has shown a binary logistic
regression model with three predictor variables does not outperform
one with two predictor variables6 and that an ANN does not always
outperform a random forest37 when predicting precipitation phase.
While we found that increasing method complexity does not produce
better performance, we do not suggest that there will be no future
advancements in machine learning predictions of the precipitation
phase. Rather, these advances are likely to result from the incorpora-
tion of different types and spatiotemporal dimensions of data.

This gets to the second—and the likely more important—con-
sideration: the similar near-surface meteorological properties of rain
and snow at air temperatures near 0 °C. The overlapping air tem-
perature distributions of rain and snow in this work and others9 sug-
gest it will be practically impossible to effectively distinguish between
solid and liquid precipitation using methods relying solely on near-
surfacemeteorology between0 °C and4 °C. At best, suchmethodswill
return seasonally non-biased responses while still miscategorizing 25%
or more of precipitation between 0.5 °C and 2.0 °C. Given the per-
formance improvements produced by machine learning in other
hydrologic science subdisciplines, we note here that this shortcoming
is likely not an inherent issue of the techniques themselves, but rather
of the near-surface meteorological predictor data at a single point in
time and space. Previous work using LSTMs has shown that in addition
to continuous time series forcing and hidden memory states, the
addition of ancillary spatial information improves performance44. We
therefore suggest that researchers stop trying to marginally improve
the rain-snow partitioning accuracy of methods that use near-surface
meteorology alone and instead focus on developing methods that
integrate additional data sources.

These alternatives include networks and initiatives that provide
precipitation phase observations, such as the Mountain Rain or Snow
project presented in this manuscript or the Meteorological Phenom-
ena Identification Near the Ground (mPING) program45—another citi-
zen science effort—from the National Oceanic and Atmospheric
Administration’s (NOAA) National Severe Storms Laboratory. There is
also NOAA’s Local Climatological Dataset (LCD), which consists of
visual observations, automated sensor reports, and combinations
thereof from larger airports46. Some states also have road weather
information systems (RWIS) that can infer precipitation types using
automated present weather sensors47.

Such point-based observational data can be complemented by
weather radars that produce operational, real-time information over
large spatial extents. These instruments provide publicly accessible
data on rain, snow, and other precipitation types in both the horizontal
and vertical directions48–50. Upwards-looking freezing level radars
provide information on the precipitation phase only in the vertical
directionby estimating thebrightbandelevation andusing that level as
a proxy for the melting of solid-phase precipitation into liquid51,52.

Satellite-based radars provide anadditionalway ofmonitoring the
precipitation phase over large spatial extents. One such instrument is
the Dual-frequency Precipitation Radar (DPR) from the joint NASA-
JAXA GPM mission. According to its algorithm theoretical basis
document (ATBD), the DPR estimates the precipitation phase by cal-
culating the brightband elevation, similar to the previously discussed
freezing-level radars53. These data are available in a series of range bins
representing different elevation bands of the atmosphere, while the
Level 2A phaseNearSurface product classifies precipitation as rain,
snow, or mixed in the lowest range bin without surface clutter. In a
previous study, we found little spatiotemporal overlap of DPR over-
passes with crowdsourced observations of the precipitation phase,
thus limiting the product’s utility in that study domain9.

Large-scale climate, weather, andhydrologyproducts also include
estimates of the precipitation phase; however, many of these rely on
modeled near-surface meteorological conditions to partition pre-
cipitation into rain and snow54. The IMERG Level 3 product, for
example, uses wet bulb temperature from the fifth generation of the
European Centre for Medium-Range Weather Forecasts reanalysis
product (ERA5)55 to produce spatially and temporally continuous
estimates of the probability of liquid precipitation56,57. As such, this
product suffers from the same shortcomings as other methods using
near-surface meteorology, such as poor performance at air tempera-
tures between approximately 0 °C and 4 °C and an inability to capture
mixed precipitation7,9.

The next question is: how do we integrate alternative data
sources? Previous research has shown that crowdsourced
programs9,38,45,58,59 and observational networks5,6,8,21 are indispensable
for validating rain-snow partitioning methods. However, we need to
move beyond validation. Recent studies have already shown the
potential benefits of integrating crowdsourced data into other facets
of numerical weather prediction60,61. One option is to deploy modeled
or observed upper atmosphere information, which the weather fore-
casting field has been doing for decades62. However, weather fore-
casters struggle with the same challenges as hydrologic modelers:
variability in precipitation phase partitioning performance near
0 °C63,64 and issues with predicting mixed phase precipitation65.
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Despite these shared challenges, one study suggested the skill of
weather models may exceed the ability of ground-based networks to
capture rain-snow dynamics66 while another noted the promise of
using upper atmosphere information in a random forest model to
predict precipitation phase35. A recent investigation showed that
modeled atmospheric snow line data improved snowfall and snow
water equivalent performance compared to a benchmark partitioning
methodusing near-surfacewet bulb temperature67. However, the same
study also showed that forcing the model with the precipitation phase
from a weather model’s microphysics scheme degraded performance
relative to the wet bulb temperature benchmark. These contradictory
findings indicate there is much work left to do in this regard.

Another integration option is the extension and use of data
assimilation (DA) techniques, although there are several significant
challenges here. One is that while there are myriad DA methods in the
earth sciences68, the majority of them can only process quantitative
data69. This contrasts to the commonly categorical observations of the
precipitation phase. In this case, onemay choose aDAmethod that can
handle categorical data70 or convert precipitation phase observations
into continuous values, allowing for direct insertion of these obser-
vations. The Crocus snow model, for example, accepts continuous
data for the precipitation phase, enabling the use of upper atmosphere
information67 and radar and disdrometer data12. An additional DA
challenge is that most climate data products are spatially and tempo-
rally continuouswhile crowdsourced precipitation phase observations
are reported opportunistically from variable locations. Furthermore,
stations that report precipitation phase at regular intervals from the
same location—e.g., stations in the LCD—only offer point observations
and there is, as of now, no validated method we know of to accurately
spatially distribute categorical phase observations. However, there
tends to be high spatial coherence in rainfall and snowfall patterns71,
and many large-scale data products, such as the NLDAS-272,73, already
assimilate continuous data (e.g., gage observations of precipitation)
from point locations that do not fit the scale or spacing of their spatial
grid. This suggests that additional research in this field could yield
promising results.

As of now, however, most land surface and hydrologic models
cannot directly deploy suchmethods nor assimilate their data without

modifications. That means it may be necessary to rely on near-surface
meteorology to partition rain and snow in the coming years. In that
case, there is one guideline: use wet bulb temperature. In study after
study, wet bulb temperature has proven to be the optimal choice,
producing accurate phase predictions, improving snowpack simula-
tions, and increasing the performance of hydrologic models10,11,18,20,67.
In this study, we showed that the machine learning methods only
slightly improve phase partitioning performance relative to the wet
bulb temperature thresholds despite their increased complexity and
computational expense. A look at the variable importance plots
(Supplementary Fig. 3) indicates why. In every panel of Supplementary
Fig. 3, we see the primacy of wet bulb temperature as the most
important variable, meaning it provides the greatest positive con-
tribution to accuracy in the tree-based machine learning methods,
random forest, and XGBoost, in both datasets.

In this study, we assume that the crowdsourced observations and
synoptic reports represent the true precipitation phase. Our group has
previously shown that most crowdsourced observations pass quality
control checks9,38,39 while also noting that the crowdsourced data do
not represent the true rain and snow frequencies of a given location
because they are reported opportunistically. We have found, con-
sistent with other research71, that volunteers tend to report rain less
frequently than snow. This could affect the outcomes of our machine
learning predictions as these methods can be sensitive to class
imbalances74.

We hadmore snow (69.3%) than rain (30.7%) in the testing split of
the crowdsourced data without mixed precipitation. When we inclu-
ded mixed precipitation, the breakdown was 61.1% snow, 27.1% rain,
and 11.8% mixed. Our data preparation workflow did not use any over-
or undersampling method to adjust class imbalances, so we reran the
ANN, random forest, and XGBoost hyperparameter tuning exercise
(Supplementary Table 2) for the no mixed and all-phase scenarios. We
found that when using the synthetic minority oversampling technique
(SMOTE)75, accuracy declined in every case relative to using the
imbalanced data directly (Supplementary Table 2). These accuracy
declines ranged from −0.7% for XGBoost predicting rain and snow to
−13.1% for ANN predicting rain, snow, and mixed precipitation. Reba-
lancing the data with SMOTE consistently produced more predictions
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of mixed precipitation relative to the outcomes in Fig. 3; however,
these new results were highly biased for random forest (74.7%),
XGBoost (90.3%), and ANN (179.8%), suggesting there is more work to
do on accurately classifying mixed precipitation.

Methods
Data
Citizen science observations. Our first dataset—hereafter the crowd-
sourced dataset—consists of 38.5 thousand crowdsourced observations
of the precipitation phase collected between 2020-01-08 and 2023-
07−24 from two related citizen science projects: Tahoe Rain or Snow
andMountain Rain or Snow (Fig. 6a). The former began in 2020 as away
to gather rain, snow, and mixed-phase observations in the Lake Tahoe
region of California andNevada38. This work then evolved intoMountain
Rain or Snow (in 2022), with the team expanding the project to cover
multiple mountain regions of the United States39. For both projects,
volunteers submit reports via a mobile app that automatically geotags
and timestamps each observation of the precipitation phase. We then
access these reports from a private, password-protected database and
process them to share publicly.

The processed dataset includes ancillary data such as elevation,
modeled meteorological data, and quality control (QC) flags9,38. For
each crowdsourced data point, we use the latitude, longitude, and
timestamp to identify meteorological stations within a predefined
search radius. We then download the data reported at those stations
within a time window and remove anomalously high and low tem-
perature and relative humidity data. Next, we select the air tempera-
ture values from each station that are closest in time to the
crowdsourced report and use inverse distance weighting to distribute
the data across the landscape76. We then compute a time-varying lapse
rate from the stations and their elevations to estimate the air tem-
perature corresponding to the time and location of the citizen science
observation.

Most meteorological stations provide air temperature measure-
ments, but wet bulb and dew point temperature and relative humidity
are available less frequently. As such, we use empirical equations from
Alduchov and Eskridge77 and Stull78 to estimate the values using the
meteorological quantities provided by the stations. When station-
observed dew point temperature data are available, or when we can
estimate station dewpoint temperature using relative humidity and air
temperature, we distribute and lapse dew point temperature using the
same approach as for air temperature. These approaches produced
low biases (0.05 °C for air temperature and 0.14 °C for dew point
temperature) and high r2 values (0.84 for air temperature and 0.72 for
dew point temperature) when validating the estimates against obser-
vations on days in the record with precipitation and air temperatures
between −5 °C and 10 °C9.

In this study, we only used observations that passed our six QC
checks. The first removes duplicate observations, which we define as
those submitted by the same user at the same timestamp. The second
QC step removes empty reports—i.e. those that do not include pre-
cipitation phase—from the database. The third and fourth QC checks
ensure that observations correspond to reasonable air temperature
(snow <10°C; rain > −5 °C) and relative humidity (> 30%) values. The
last two QC checks require that each report has at least five nearby
meteorological stations reporting air temperature and dew point
temperature, respectively.

Northern hemisphere observations. The second dataset—hereafter
the synoptic dataset—is a processed collection of 17.8 million rain and
snow observations from land-based stations in the northern hemi-
sphere (Fig. 6b), excluding the tropics, between 1978-01-01 and 2007-
02−256. These data come from the National Center for Environmental
Prediction (NCEP) Automated Data Processing (ADP) Operational
Global Surface Observations program, which includes 3 h and 6 h

synoptic reports of weather conditions and precipitation phase along
with concomitant measurements of air temperature and dew point
temperature from a set of global meteorological stations5.

Some of the reports (80.5%) included surface pressure. For the
remaining reports, Jennings et al. 6 used the 1980–2007 average
December, January, and February surface pressure from the Modern-
Era Retrospective analysis for Research and Applications version 2
(MERRA−2) reanalysis dataset for the grid cell containing the
observation79,80. Additionally, Jennings et al. 6 calculated relative
humidity for each report as a function of air and dew point tempera-
ture and surface pressure as in Dai81. Here, we also calculated the wet
bulb temperature for each report using the Stull78 equation.

Each observation in the dataset uses the rain and snow classifi-
cations from Jennings et al. 6. These are based on the World Meteor-
ological Organization precipitation phase categories described in
detail in Dai5,82. Unlike the crowdsourced dataset, the synoptic obser-
vations do not includemixed-phase precipitation because some of the
mixed categories are ambiguous as to what type of precipitation was
occurring at the time of observation. For example, code 26 corre-
sponds to: Shower(s) of snow, or of rain and snow.

Rain-snow partitioning methods
Benchmarks. We use standard rain-snow partitioning methods that
incorporate near-surface meteorology from the literature as bench-
marks in this work. These include air, wet bulb, and dew point tem-
perature thresholds along with a binary logistic regression model
using optimized coefficients from Jennings et al. 6. Each of the
threshold-based methods uses only one near-surface meteorological
variable, while the binary logistic regression model uses two predictor
variables. For ease of interpretation, we only include the most per-
formant methods from previous studies (Table 1). As such, we do not
consider dual-threshold methods that assign precipitation to be
snowfall when air temperature is below one threshold and rainfall
above another, with a mix of the two phases in between. We forgo
these methods because they performed poorly relative to observa-
tions in our previous study9. For example, the dual-threshold range
from −0.5 °C to 0.5 °C correctly identified the precipitation phase in
only 47.1% of the observations, which was 20.0% worse than the next
best method.

Machine learning methods. We explore the applicability of machine
learning methods to see if we can leverage data-driven techniques to
better predict precipitation phase than the benchmarks using near-
surface meteorology (Fig. 7). Here, we focus on the outcomes from
threemethods of varying complexity: random forest36, XGBoost40, and
an ANN with one hidden layer (specifically a multilayer perceptron,
which is a feed-forward neural network83,84). The first two, random
forest and XGBoost, are conventional tree-based machine learning
methods. The former uses a simplemajority vote classification derived
from the output of the random forest’s many trees, whereas the latter
uses a more complex gradient boosting algorithm that iteratively
builds the weighted ensemble of trees85. The ANN, in turn, is the most
complex of the three as a neural network with one input layer, one
hidden layer with a tunable number of hidden units, and one out-
put layer.

We apply each method using the Tidymodels86 package in R to
classify the precipitation phase in the two datasets. This provides two
scenarios for the crowdsourced dataset (1: rain and snow only; 2: rain,
snow, and mixed precipitation) and one for the synoptic dataset (rain
and snow only). We use the near-surface meteorological data asso-
ciated with each dataset as the predictor variables. For the crowd-
sourced dataset, these four variables are air, wet bulb, and dew point
temperature, and relative humidity. We use these same four variables
plus surface pressure, for a total of five predictor variables, in the
synoptic dataset. This means the machine learning methods
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incorporate more near-surface meteorological data (four or five vari-
ables, depending on the dataset) than the benchmark methods (one
variable per threshold and two variables for the binary logistic
regression model).

To tune and deploy the machine learning models, we randomly
split each dataset into training data and testing data using a 75%
training, 25% testing allocation. We stratify the split using the pre-
cipitation phase to have approximately equal proportions of each
phase in the training and testing data. We then run a hyperparameter
tuning exercise on 10 random, independent folds of the training data
to identify the best model configurations for each dataset, scenario,
and algorithm. The Hyperparameter Tuning section of the Supple-
mentary Information provides further details for each method.
Specifically, we provide the hyperparameter tuning ranges (Supple-
mentary Tables 3, 8, and 13); mean performance values for the
crowdsourced rain and snow (Supplementary Tables 4, 9, and 14), the
crowdsourced rain, snow, andmixed (Supplementary Tables 5, 10, and
15), and the synoptic rain and snow (Supplementary Tables 6, 11, and
16) tuning exercises; and the optimized hyperparameters for each
method (SupplementaryTables 7, 12, and 17).We then fit themodels to
all the training data using the tuned hyperparameters. We next apply

the fitted models to the testing data and compare the resulting pre-
dictions to the observed data to calculate the performance metrics
detailed in the following subsection.

In addition to the three previously detailed methods, we evaluate
whether increasing model complexity leads to better performance in
the crowdsourced dataset. Here, we include an ANN with two hidden
layers (ANN-2) and a stacked ensemble of the random forest, XGBoost,
and ANN output. We tune the hyperparameters and fit the ANN-2
model using the same protocol described above for the ANN with one
hidden layer (Supplementary Tables 18–20). For the stacked ensemble,
we fit the three constituent models using their previously tuned
hyperparameters. We then use the R stacks package to combine the
three individual precipitation phase predictions into a single outcome
with a regularized linear model87.

Method comparison
To predict rain versus snow, we apply both the benchmark methods
and the tuned machine-learning techniques to the crowdsourced and
synoptic datasets and compare the outcomes to the reported phase.
To prevent data leakage and enforce direct comparisons between the
benchmarks and machine learning methods, we perform our

Fig. 6 | Heat maps of crowdsourced precipitation phase observations. Data shown are from the Mountain Rain or Snow dataset38,39 (a) and the synoptic dataset5,6 (b).
The color of each hexagon corresponds to the number of observations within that cell over the study period. Note: the color scale differs in the two maps.
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evaluations using only the testing data, even for the benchmarks.
These data, representing 25% of all observations in each dataset, are
not used in training the machine learning models, making them an
independent validation source of method performance.

To quantify performance we focus primarily on accuracy, which
we define as the total percent of precipitation phase reports correctly
predictedby a givenmethod. Accuracy ranges from0% to 100%,where
0% corresponds to no phase reports correctly predicted and 100%
corresponds to all reports correctly predicted. We also present the
relative rain and snowbiases for eachmethod. A value of 0% equates to
non-biased, while negative and positive biases correspond, respec-
tively, to under and overestimates of the given phase. We present
accuracy and bias statistics as aggregate values for each phase parti-
tioning method and we also present these figures by 0.5 °C air tem-
perature bins for eachmethod to explore the effects of air temperature
on method performance.

Evaluation of rain-snow frequency and near-surface
meteorology
After comparing the performance of the different methods, we also
evaluate the meteorological properties of the precipitation phase cate-
gories—rain, snow, and mixed—to determine their unique and shared
characteristics. We consider the distributions of air, wet bulb, and dew
point temperature from the two datasets along with the relative pro-
portions of each precipitation phase by 0.5 °C temperature bins.

Data availability
The crowdsourceddata used in this study are available in theMendeley
Data database under accession code https://doi.org/10.17632/

x84hy7yky4.1. The synoptic data used in this study are available in
theDataDryaddatabase under accession codehttps://doi.org/10.5061/
dryad.c9h35. Source data are provided with this paper.

Code availability
All of the data preparation, modeling, analysis, and plotting code can
be found on the lead author’s GitHub page (https://github.com/
SnowHydrology/MountainRainOrSnow/tree/main/manuscripts/
jennings_et_al_limits). A DOI version of the full repository is also
available (https://doi.org/10.5281/zenodo.14968963).

References
1. Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gus-

tafsson, D. Meteorological knowledge useful for the improvement
of snow rain separation in surface based models. Hydrology 2,
266–288 (2015).

2. Harpold, A. A. et al. Rain or snow: hydrologic processes, observa-
tions, prediction, and research needs. Hydrol. Earth Syst. Sci. 21,
1–22 (2017).

3. United States Army Corps of Engineers. Snow hydrology. US Army
North Pac. Div. Portland Or. (1956).

4. Auer, A. H. Jr. The rain versus snow threshold temperatures.
Weatherwise 27, 67–67 (1974).

5. Dai, A. Temperature and pressure dependence of the rain-snow
phase transition over land and ocean. Geophys. Res. Lett. 35,
L12802 (2008).

6. Jennings, K. S., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial
variation of the rain-snow temperature threshold across the
Northern Hemisphere. Nat. Commun. 9, 1148 (2018).

Datasets

OutcomesPredictors

Ta
Tw
Td
RH

Rain
Snow

Rain
Snow
Mixed

OutcomesPredictors

Ta
Tw
Td
RH
P

Rain
Snow

decruosd
wor

C
citponyS

Validation

Hyperparameter 
Tuning

75% 
Training

Crowdsourced 
rain /snow

Crowdsourced 
rain/snow/mix

Synoptic 
rain/snow

Machine Learning

Model Fitting
25% 

Testing
Crowdsourced 

rain/snow

Crowdsourced 
rain /snow/mix

Synoptic 
rain /snow

10 Folds

Data
Split

RF

XG

ANN

Tuned
Hyperparameters

Full Training
CS
R/S

CS
R/S/M

Syn
R/S

Benchmarks

Full Testing

RFXG
ANN

RFXG
ANN

Fitted
Parameters

Thresholds
Ta1.0

Other

BinlogTa1.5

Td0.0

Td0.5

Tw0.0

Tw0.5

Tw1.0

Ta1.
0

Ta1.
5

Tw0.
0

Tw0.
5

Tw1.
0

Td0.
0

Td0.
5

Binlog

a

c

b d

e

h

f

g

Random Forest

XGBoost

Artificial Neural Network

CS
R/S

CS
R/S/M

Syn
R/S

Dataset

PPM

Modeling 
Step
Information 
Flow

Fig. 7 | Overview schematic of our project workflow. Here, we show the datasets
(blue boxes), the tuning, fitting, and validation steps (pink boxes), and the phase
partitioning methods (PPMs, peach boxes). We start with complete datasets (a),
which include observations of rain (R), snow (S), andmixed precipitation (M) along
with air (Ta), wet bulb (Tw), and dew point (Td) temperature, relative humidity (RH),

and pressure (P). We split these datasets into training (b) and testing (c). We tune
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