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Enabling new insights from old scans by
repurposing clinical MRI archives for
multiple sclerosis research

Philipp Goebl 1,2 , Jed Wingrove1, Omar Abdelmannan1,
Barbara Brito Vega 1,2, Jonathan Stutters1, Silvia Da Graca Ramos3,
Owain Kenway3, Thomas Rossor4, Evangeline Wassmer 5,6,
Douglas L. Arnold 7, D. Louis Collins 7, Cheryl Hemingway8,
Sridar Narayanan 7, Jeremy Chataway1,9, Declan Chard 1,9,
Juan Eugenio Iglesias2,10,11, Frederik Barkhof 1,2,12, Geoff J. M. Parker2,13,14,
Neil P. Oxtoby 2, Yael Hacohen1, Alan Thompson 1,9, Daniel C. Alexander 2,15,
Olga Ciccarelli 1,9 & Arman Eshaghi 1,2

Magnetic resonance imaging (MRI) biomarkers are vital for multiple sclerosis
(MS) clinical research and trials but quantifying them requires multi-contrast
protocols and limits the use of abundant single-contrast hospital archives. We
developedMindGlide, a deep learningmodel to extract brain region andwhite
matter lesion volumes from any single MRI contrast. We trainedMindGlide on
4247 brain MRI scans from 2934 MS patients across 592 scanners, and exter-
nally validated it using 14,952 scans from 1,001 patients in two clinical trials
(primary-progressive MS and secondary-progressive MS trials) and a routine-
care MS dataset. The model outperformed two state-of-the-art models when
tested against expert-labelled lesion volumes. In clinical trials, MindGlide
detected treatment effects on T2-lesion accrual and cortical and deep grey
matter volume loss. In routine-care data, T2-lesion volume increased with
moderate-efficacy treatment but remained stablewith high-efficacy treatment.
MindGlide uniquely enables quantitative analysis of archival single-contrast
MRIs, unlocking insights from untapped hospital datasets.

Multiple sclerosis (MS) is a chronic disabling disease affecting over 2.8
million people worldwide, with a disproportionate impact on young
populations. Magnetic resonance imaging (MRI) biomarkers are cen-
tral toMSphase 2 and3 clinical trials as primary and secondary efficacy
endpoints. Typical imaging protocols includemulti-contrastMRI scans
to capture distinct aspects of disease evolution: new or enlarging
lesions indicate active inflammation on fluid-attenuated inversion
recovery (FLAIR) and T2-weighted images. In contrast, brain atrophy
on T1-weighted images is a proxy for neurodegeneration. However,
multi-contrast acquisitions are time-consuming, costly, and less avail-
able in the clinical setting. Simplifying MRI analysis, particularly

through single-contrast brain volume calculations, can expand
research opportunities from hospital archives, allowing analysis of
previously acquired routine-care scans and potentially making clinical
trials less costly by reducing the need for multi-contrast acquisitions.

Although routineMRImonitoring inMS care primarily tracks new
or enlarging lesions, untapped potential lies in leveraging this readily
available data also to assess brain atrophy, a key contributor to dis-
ability worsening often overlooked in standard clinical practice. Unlike
the standardised MR acquisition protocols used in pharmaceutical
clinical trials, archived routine clinical scans are more heterogeneous
and present a major obstacle to the reliable, automated volumetry of
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brain structures and lesions. We aimed to develop a computationally
efficient tool to process these highly heterogeneous scans indepen-
dent of contrasts, resolutions, and qualities. Such a tool would extract
key MRI biomarkers in diverse clinical settings, enable real-world
research and pave the way for automatic analysis to aid clinical
decision-making.

Recent advances in deep learning and generative models have
enhanced our ability to analyse routine-care MRI scans. These
advances include tools like SynthSeg and others, primarily focusing
on brain segmentation after removing (or inpainting) lesions1–6.
SAMSEG-lesion is a newly introduced model that robustly segments
lesions and brain structures across MRI contrasts4. A model named
WMH-SynthSeg can segment white matter hyperintensities and brain
anatomy simultaneously from scans of varying resolutions and con-
trasts, including low-field portable MRI7. However, these tools were
not developed or validated to assess treatment effects within the
diverse and heterogeneous MS routine care data and clinical trials.

Two recent studies demonstrated the feasibility of deep-learning-
based quantification of thalamic and lesion volumes in routine clinical
MRI scans for MS patients8,9. However, these studies did not evaluate
treatment effects or include the wide variety of clinical-grade two-
dimensional scans of different contrasts (T1-weighted, T2-weighted,
and T2-FLAIR contrasts) and scans from clinical archives. This high-
lights the urgent need for solutions that extract MRI biomarkers,
including lesion load and changes in brain volume, from the varying
scans acquired in routine care for research repurposing and potential
future clinical applications.

Here, we present MindGlide, a publicly available deep-learning
model that addresses these limitations. We aimed to (1) efficiently (in
less than a minute with no pre-processing required by the user)
quantify brain structures and lesions from varying single MRI contrast
inputs; (2) detect brain volume changes due to treatment effects using
MRI contrasts not typically analysed for these purposes (such as
T2 scans), and (3) demonstrate the potential of routine MRI scans to
detect new lesions and subtle brain tissue loss, even when the ideal
imaging contrasts are unavailable across age ranges.

Results
Study overview and patient characteristics
WedevelopedMindGlide, a 3D convolutional neural network (CNN), to
segment specific brain structures and white matter lesions. As Fig. 1
shows,MindGlide processes brainMRI across commonly availableMRI
contrasts in hospital archives and associated tissue intensities (T1-
weighted, T2-weighted, proton density (PD), and T2-Fluid Attenuated
Inversion Recovery [FLAIR]), including both 2D (two-dimensional) and
3D (three-dimensional) scans.

We used distinct training and external validation datasets con-
sisting exclusively of patients with MS. Table 1 summarises the patient
characteristics of our training and validation datasets. The training set
comprised seven previously published clinical trials of relapsing-
remitting (RR), secondary progressive (SP) and primary progressive
(PP) MS10–18 and one observational cohort (see Supplementary Table 1
for the list of clinical trials). During model training, we used 4247 real
MRI scans (2092 T1-weighted, 2155 FLAIR) from 2871 patients with the
following subtypes: SPMS (n = 1453), RRMS (n = 1082), PPMS (n = 336).
These scans were acquired from 592MRI scanners from 1.5 and 3 tesla
magnetic fields. We generated 4303 synthetic scans to augment
training and trained MindGlide on a dataset of 8550 real and synthetic
images. The training set included only T1-weighted and FLAIR MRI
contrasts and synthetically generated scans. We froze model para-
meters after training completion.

To test MindGlide’s generalisability across ages 14–64, we
employed an external validation set of two progressive MS clinical
trials16,19–24 and a real-world cohort of paediatric relapsing-remitting MS
patients. This set encompassed T2-weighted and PD MRI contrasts and

T1-weighted and FLAIR contrasts.We specifically selected the paediatric
cohort to test robustness across age groups, given the typically more
inflammatory disease course and larger lesion volume relative to skull
size in early-onset cases. Our external validation dataset consisted of
1001 patients from 186MRI scanners, including the PPMS trial (n =699),
SPMS trial (n = 141), and routine-care paediatric RRMS cohort
(n = 161)20,24. The PPMS dataset comprised 11,015 MRI scans (2756 T1-
weighted, 2754 T2-weighted, 2749 FLAIR, 2756 PD), all with a slice
thickness of 3mm (1mm× 1mm×3mm). The SPMS dataset included
763 scans (378 T1-weighted, 385 T2-weighted) with varying slice thick-
nesses (T1: 1mm isotropic, T2: 3mm×1mm× 1mm). The real-world
paediatric cohort consisted of 161 individuals with 1478 scans (523 T1-
weighted, 475 T2-weighted, 480 FLAIR) and diverse slice thicknesses
(median: 3.3mm, range: 0.4–8.5mm). The median follow-up time was
28 months (standard deviation or SD: 8 months) in the PPMS dataset,
26 months (SD: 7 months) in the SPMS dataset, and 12 months (SD:
19months) in the real-world paediatric cohort. In the real-world cohort,
89 receivedmoderate efficacy and 72 received high efficacy treatments.

Cross-sectional validation in external cohorts
Expert-labelled lesions and correlations of segmented volumes
with disability. Throughout the manuscript, we refer to WMH-
SynthSeg and SAMSEG as state-of-the-art. Figure 2 shows the results
of comparing MindGlide with state-of-the-art in various metrics. We
calculated the degree of agreement (dice score) of MindGlide-derived,
SAMSEG-derived, and WMH-Synthseg-derived volumes with ground
truth hand-labelled lesions on the same scans (Fig. 2b). The median
Dice score was 0.606 for MindGlide, 0.504 for SAMSEG and 0.385 for
WMH-Synthseg. Supplementary Table 2 summarises the cross-
software comparison of lesion segmentations (MindGlide, SAMSEG
and WMH-Synthseg)4,7.

As Fig. 2c shows, in our PPMS dataset, MindGlide-derived lesion
load had a numerically higher correlation with the Expanded Disability
Status Scale (EDSS) than the state-of-the-art. However, the differences
were not statistically significant for all comparisons. When using T2-
FLAIR scans, the correlation between MindGlide-derived lesion load
and the EDSS was on average higher (correlation coefficient = 0.127,
P <0.001) than the correlations observed with SAMSEG (correlation
coefficient = 0.009, P =0.813) or WMH-Synthseg (correlation coeffi-
cient = 0.105, P =0.005). When using T2 scans, MindGlide showed
significant correlation between lesion load and EDSS (correlation
coefficient = 0.150, P <0.001), which was also the case for SAMSEG
(correlation coefficient = 0.086, P =0.022) and WMH-Synthseg (cor-
relation coefficient = 0.140, P <0.001). In head-to-head comparisons,
we observed a significant difference between the correlation coeffi-
cients of MindGlide and SAMSEG lesion loads from FLAIR (P = 0.026),
but not for T2 (P =0.227). There was no difference betweenMindGlide
and WMH-Synthseg lesion loads for either contrast (FLAIR: P = 0.680;
T2: P = 0.850). As a reference, the correlation coefficient between
ground truth expert-labelledhyperintense T2 lesion volumes andEDSS
was 0.131 (95% CI: 0.057–0.203; P < 0.001).

Regarding the correlation between deep grey matter (DGM)
volumes and EDSS scores, MindGlide-derived DGM volume demon-
strated a correlation coefficient of −0.130 on FLAIR contrasts (95% CI:
−0.202 to−0.057;P < 0.001),−0.128onT2-weighted (95%CI:−0.200 to
−0.054; P <0.001) and −0.131 on 2D T1-weighted images (95% CI:
−0.203 to −0.057; P <0.001). Conversely, SAMSEG-derived DGM
volume yielded correlation coefficients of −0.057 (95% CI: −0.130 to
0.018; P = 0.134), −0.084 (95% CI: −0.157 to −0.010; P =0.026) and
−0.106 (95% CI: −0.178 to −0.031; P =0.005) for FLAIR, T2-weighted
and 2D T1-weighted contrasts, respectively. WMH-Synthseg-derived
DGMvolume yielded correlation coefficients of −0.106 (95% CI: −0.179
to −0.032; P =0.005), −0.112 (95% CI: −0.185 to −0.038; P = 0.003) and
−0.112 (95% CI: −0.188–−0.035; P =0.004) for FLAIR, T2-weighted and
T1-weighted contrasts. There were no statistically significant
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Fig. 1 | Developing and testing the MindGlide model.MindGlide model enables
highly efficient and robust MRI segmentation. Segmenting and quantifying lesions
on heterogeneous contrasts with minimal pre-processing (and no pre-processing
required by the user). MindGlide model generalizes to tasks not used to train the
model, such as segmenting T2-weighted and positron density MRI scans in unseen

data sets. a Provides an overview of real (top) and augmented (bottom) training
data.b, c Illustrate all parts of our training and fine-tuning pipeline.d Shows images
of heterogenous contrasts used for testing MindGlide. FLAIR Fluid Attenuated
Inversion Recovery, MRI magnetic resonance imaging.
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differences across the correlation coefficients obtained using Mind-
Glide, SAMSEG and WMH-Synthseg on either FLAIR (P = 0.439), T2-
weighted (P = 0.680) or T1-weighted contrasts (P = 0.885).

In the cortical grey matter (CGM), MindGlide-derived volumes
and EDSS correlation coefficients were−0.123 on FLAIR (95%CI: −0.195
to −0.049; P =0.001), −0.102 on T2 (95% CI: −0.175 to −0.028;
P =0.007) and −0.135 on T1 contrasts (95% CI: -0.207 to -0.061;
P <0.001). SAMSEG-derived CGM volume and EDSS correlation coef-
ficients were −0.121 on FLAIR (95% CI: −0.193 to −0.047; P = 0.001),

0.053 on T2 (95% CI: −0.021 to 0.126; P =0.160) and −0.114 on T1
contrasts (95% CI: −0.186 to −0.039; P = 0.002). WMH-Synthseg-
derived CGM volume yielded correlation coefficients of −0.091
(95%CI: −0.164 to −0.017; P =0.016), −0.114 (95% CI: −0.186 to −0.040;
P =0.026) and −0.127 (95% CI −0.202 - −0.050; P =0.001) for FLAIR,
T2-weighted and T1-weighted contrasts. There was a statistically sig-
nificant difference between the correlation coefficients when using
MindGlide or SAMSEG on T2 contrasts (P <0.001) but not on FLAIR
(P = 0.966) or T1 (P =0.691). There was no difference between corre-
lation coefficients obtained using MindGlide and WMH-Synthseg
(FLAIR: P =0.549; T2: P = 0.828; T1: P =0.879).

Longitudinal validation
Treatment effects on lesion accrual. When we tested longitudinal
lesion accrual in the SPMS trial (simvastatin vs placebo) using T2-
weighted MRI, the rate of MindGlide-derived lesion volume accrual
was not significantly faster in the placebo group than in the treatment
group (1.12mL/year vs 0.768mL/year; P =0.054)24. Using 3D T1-
weighted MRI, the rate of hypointense lesion accrual was sig-
nificantly faster in the placebo group than in the treatment group
(1.874mL/year vs 1.071mL/year; P = 0.005).

As Fig. 3 shows the PPMS trial (ocrelizumab vs. placebo) had a
slower MindGlide-derived lesion volume accrual rate in the treatment
group across all MRI contrasts: T2-weighted (1.103mL/year vs.
0.399mL/year), FLAIR (1.042mL/year vs. 0.141mL/year), PD
(0.633mL/year vs. 0.91mL/year) hyperintense lesions, and T1-
weighted hypointense lesions (1.225mL/year vs. 0.648mL/year). All
differences were statistically significant (P < 0.001).

As Fig. 4 shows, MindGlide-derived lesion volumes in the T2 scans
of the routine-care paediatric cohort increased by 0.612ml/year in the
moderate-efficacy treatment group (P <0.001), while remaining stable
in the high-efficacy treatment group (model-estimated average
−0.376ml/year, P = 0.230). FLAIR lesion volumes were stable in both
groups: −0.063ml/year in the high-efficacy group (P =0.824) vs
0.009ml/year in themoderate efficacy group (P = 0.966). T1-weighted
hypointense lesion volumes remained stable in the high-efficacy group
(model-estimated average 0.165ml/year, P =0.611) but increased by
0.647ml/year in the moderate-efficacy group (P =0.001).

Treatment effects on brain tissue loss
Figure 5 illustrates example segmentations across different contrasts
and Table 2 shows the treatment effects in the two clinical trials. In the
SPMS trial (simvastatin vs. placebo), MindGlide showed a significantly
slower rate of cortical GM volume loss in the treatment group than
placebo using MRI contrasts previously unused for this purpose such
as T2-weighted MRI. This effect was consistent across both T2-
weighted (−0.704mL/year (95% CI [−1.254–0.155]) vs. −1.792mL/year
(95% CI [−2.089–−1.495]), P = 0.008) and 3D T1-weighted MRI
(−1.630mL/year (95% CI [−2.283–−0.976]) vs. −2.912mL/year (95% CI
[−3.266–−2.558]), P = 0.009). The DGM had a slower rate of loss in the
treatment group compared to placebo for both T2-weighted
(−0.102ml/year (95% CI [−0.155–−0.048]) vs. −0.205ml/year (95% CI
[−0.234–−0.176]),P =0.009) and 3DT1-weighted contrasts (−0.105ml/
year (95% CI [−0.159–−0.050]) vs. −0.234ml/year (95% CI
[−0.263–−0.204]), P =0.001).

In the PPMS trial (ocrelizumab vs. placebo), MindGlide con-
sistently showed a slower rate of cortical GM volume loss in the
treatment group across T2-weighted (−1.638ml/year (95% CI
[−1.820–−1.457]) vs. −2.335ml/year (95% CI [−2.606–−2.065]),
P <0.001), T2-FLAIR (−1.778ml/year (95% CI [−2.033–−1.524]) vs.
−2.342ml/year (95% CI [−2.722–−1.963]), P = 0.016), and PD contrast
(−1.683ml/year (95% CI [−1.980–−1.386]) vs. −2.310ml/year (95% CI
[−2.752–−1.868]), P =0.021), with a similar trend in 2D T1-weighted
contrast (−2.183ml/year (95% CI [−2.363–−2.002]) vs. −2.485ml/year
(95% CI [−2.753–−2.217]), P =0.06).

Table 1 | Patient characteristics in the training and external
validation sets

Training and model development set

RRMS SPMS PPMS

Number (percentage of
the sample)

1082 (38%) 1453 (51%) 336 (12%)

Age (±standard
deviation)

37.1 ± 9.8 47.8 ± 8.2 49.8 ± 8.2

Female (%) 70.6% 60.6% 45.8%

Disease duration (IQR) 1.2 (0.3–4.5) 11.7 (5.5–16.5) 5.0 (2.5–10.8)

EDSS (IQR) 2.0 (1.5–3.5) 6.0 (5.0–6.5) 4.5 (4.0–6.0)

External validation set

SPMS (n = 141)

Age ( ± standard
deviation)

– 51.3 ± 6.3 –

Female (%) – 69.3% –

Disease duration (IQR) – 20.6 (15.3–27.5) –

EDSS (IQR) – 6.0 (5.5–6.5) –

Follow up in
months (SD)

– 26 (7) –

# of follow up MRIs – 2 –

MRI resolution – 2D-T1: 1 × 1 ×3mm
2D-T2: 1 × 1 × 3mm
3D-T1: 1 × 1 × 1mm

–

PPMS (n =699)

Age (±standard
deviation)

– – 44.6 ± 8.0

Female (%) – – 49.8%

Disease duration (IQR) – – 1.5 (0.5–4.0)

EDSS (IQR) – – 4.5 (3.5–6.0)

Follow up in
months (SD)

– – 28 (8)

# of follow up MRIs – 3 –

MRI resolution – T1: 1 × 1 × 3mm
T2: 1 × 1 × 3mm
T2-FLAIR:
1 × 1 × 3mm
PD: 1 × 1 × 3mm

–

Real world paediatric cohort (n = 161)

Age (±standard
deviation)

14.5 ± 0.2 – –

Female (%) 77.8% – –

Disease duration (IQR) 0.2 (0.1–1.0) – –

EDSS (IQR) 1.0 (1.0–1.5) – –

Follow up in
months (SD)

12 (19) – –

Median MRI slice thick-
ness (Min–Max)

3.3mm (0.4–8.5)
T1: 1.0mm
(0.4–7.7)
T2-FLAIR: 1.0mm
(0.4–7.2)
T2:
4.8mm (1.0–8.5)

– –

In the external validation set, SPMSTrial is theMS-STAT trial andPPMS trial is theORATORIO trial.
See Supplementary Table 1 for details.
EDSS Expanded Disability Status Scale, PPMS Primary Progressive Multiple Sclerosis, SPMS
Secondary Progressive Multiple Sclerosis.
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Regarding deep GM volume loss, there was no significant differ-
ence between groups using T2-weighted MRI (−0.172ml/year (95% CI
[−0.203–−0.141]) vs. −0.143ml/year (95% CI [[−0.164–−0.123]),
P =0.130). However, analysis with FLAIR (0.200ml/year (95% CI
[−0.234–−0.167]) vs. 0.156ml/year (95% CI [−0.178–−0.133]),
P =0.028), PD (0.220ml/year (95% CI [−0.255–−0.186]) vs. 0.144ml/
year (95% CI [−0.167–−0.121]), P <0.001), and 2D T1-weighted images

(0.212ml/year (95% CI [−0.245–−0.179]) vs. 0.172ml/year (95% CI
[−0.194–−0.150]), P =0.049) consistently showed slower loss rates in
the treatment group.

In the routine-care paediatric cohort, we observed cortical GM
loss across all MRI contrasts with MindGlide segmentations in both
treatment groups. T1 scans showed a loss of 5.807ml/year (95% CI
[−8.013–−3.601], P <0.001) in the moderate-efficacy group and

Va
lu
e

A

C

B

Correla�on of Segmenta�on Volume and EDSS

Lesion CGM DGM

Fig. 2 | Performance comparisons with state-of-the-art and ground truth.
A Boxplot displaying Lesion Load estimates (mm3) and distributions measured
using ground truth manual delineations (grey), MindGlide (blue) and Freesurfer’s
SAMSEG (orange). Lesion load estimates between Ground truth and SAMSEG and
MindGlide and SAMSEG methods were significantly different (paired t-tests).
B Boxplot displaying Dice scores, Sensitivity and Precisionmeasurements for both
MindGlide (blue) and SAMSEG (orange) delineated lesions. ***P <0.001, **P <0.01,
*P <0.05. For (A) and (B) we used two openly available lesion segmentation data-
sets comprising 50 brain MRI images and segmentation masks as ground truth
comparators (N = 50, see Supplementary methods)38,39. In (C) we calculated
Spearman’s correlation coefficients for regional brain volumes obtained from
MindGlide and Fressurfer’s SAMSEG and WMH-Synthseg against the expanded
disability status scale (EDSS). The analysis evaluates correlations of lesion, deep
grey matter (DGM), and cortical grey matter (CGM) volumes with EDSS, across

FLAIR and T2 MRI contrasts. As a ground truth comparator for the correlation
between lesion volume and EDSS we used manually labelled lesions by expert
neuroradiologists. For all tested regions and contrasts MindGlide’s output shows
on average higher correlations with EDSS scores except for CGM in T2 (although as
shown, they are not statistically significantly different across software). Error bars
represent 95%CI. Data are presented as boxplots where the black line on the centre
of the boxplot represents the median, the box encloses the lower and upper
quartiles, and the whiskers extend to the minimum and maximum values within a
range of 1.5 times the interquartile range. Values outside 1.5 times the interquartile
range are displayed as black dots. For (C) we used the baseline images of our PPMS
dataset (N = 699) and data are represented as Spearman’s correlation coefficients
and error bars indicate 95% confidence intervals. GT ground truth (manually
labelled lesion segmentation by expert neuroradiologists). Source data are pro-
vided as a Source Data file.
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3.736ml/year (95% CI [−7.423–−0.048], P =0.049) in the high-efficacy
group. T2-weighted images revealed a loss of 3.66ml/year (95% CI
[−4.401–−2.919], P <0.001) and 2.102ml/year (95% CI [−4.353–0.150],
P =0.068) respectively, while FLAIR scans showed a loss of 3.516ml/
year (95% CI [−5.626–−1.405], P = 0.001) and 4.19ml/year (95% CI
[−7.057–−1.322], P = 0.005).

Regarding deepGM, T1 contrast showed stable volume in the high
efficacy group (-0.086ml/year, (95% CI [−0.368–0.197], P =0.552)) but
a loss of 0.301ml/year (95% CI [−0.474–−0.128], P = 0.001) in the
moderate efficacy group. T2 images showed no change in the high
efficacy group (−0.163ml/year (95%CI [−0.416–0.090], P =0.207)) but
a loss of 0.32ml/year (95% CI [−0.403–−0.236], P <0.001) in the
moderate efficacy group. FLAIR scans revealed a loss of 0.22ml/year
(95% CI [−0.421–−0.018], P =0.034) and 0.399ml/year (95% CI
[−0.548–−0.250], P <0.001) in the high andmoderate efficacy groups,
respectively.

In the power analysis single-contrast sample sizes were feasible
for some, but not all, of the acquisitions. For example, for the PPMS
group using only T2-weighted contrast and hyperintense lesion
accrual as the primary outcome the sample size was 94, and for the
cortical GM as the primary outcome a sample of 420 patients was
required to achieve 80% statistical power. Supplementary Table 5
shows the complete sample size results.

Comparing treatment effects with MindGlide against other
segmentation tools and ground truth lesions in the PPMS
clinical trial
In our analysis, MindGlide-derived lesion volumes demonstrated a
treatment effect of 5.31% (95% CI [4.50–6.12%], P <0.001) difference

between treatment groups in FLAIR images and 4.62% (95% CI
[3.88–5.37%], P < 0.001) in T2 images (Fig. 6). This closely aligns with
ground truth values, which indicated a 4.63% (95% CI [3.73–5.54%],
P <0.001) difference between treatment groups. In contrast, long-
itudinal SAMSEG overestimated the treatment effect, showing a
10.70% (95% CI [3.42–17.98%], P = 0.004) difference for FLAIR images
and 8.81% (95% CI [3.64–13.97%], P = 0.001) for T2 images, whileWMH-
Synthseg underestimated the effect with only a 2.56% (95% CI
[1.64–3.47%], P <0.001) difference in FLAIR images and 2.45% (95% CI
[1.69–3.22%], P <0.001) in T2 images. Additionally, longitudinal SAM-
SEG exhibited a broader spread in lesion changes across both T2 and
FLAIR images compared to MindGlide-derived volumes, suggesting a
higher precision in MindGlide’s lesion volume estimation.

Direct comparisons of tissue volumes and visual inspection in
the PPMS trial and real-world cohort
As Fig. 6 shows, in assessing regional brain volumes, MindGlide-
derived measurements demonstrated greater treatment effects
between treatment groups compared to those obtained from long-
itudinal SAMSEG or WMH-Synthseg. Specifically, MindGlide-derived
CGM volume changes revealed a 0.14% (95% CI 0.04–0.24%],
P =0.006) difference between treatment groups for FLAIR images and
a 0.16% (95% CI 0.09–0.23%], P <0.001) difference for T2 images. In
comparison, longitudinal SAMSEG-derived CGM volume changes
indicated a 0.04% (95% CI −0.18–0.24%], P =0.744) difference for
FLAIR images and 0.08% (95% CI −0.07–0.24%], P = 0.288) for T2
images, while WMH-Synthseg-derived CGM volume changes exhibited
a0.11% (95%CI0.02–0.19%],P =0.014) difference for FLAIR images and
a 0.12% (95% CI 0.05–0.2%], P =0.002) difference for T2 images. For

(A) MS Lesion (D) ICC of PBVCs(C) DGM(B) CGM 

Fig. 3 | Measuring treatment effects using single MRI contrasts.MindGlide
uniquely enables quantifying treatment effects using single MRI contrasts, includ-
ing those that have never been used for this purpose (e.g., T2-weighted MRI).
A–C shows longitudinal volume changes with results for our PPMS dataset on the
top and results for our SPMS dataset on the bottom. A Illustrates the annual per
cent change in lesion volume detected by MindGlide across FLAIR, PD, T1, and T2
contrasts (resolution: 1 × 1 × 3mm) for primary progressive MS (PPMS) and sec-
ondary progressive MS (SPMS) cohorts, stratified by treatment allocation. Notably,
treatment cohorts exhibited a reduction in lesion volume accrual compared to
placebo across all contrasts. B Depicts the annualized rate of cortical grey matter
(CGM) atrophy. MindGlide successfully differentiated between treatment and
placebo groups, demonstrating reduced cortical atrophy across allMRI contrasts in

treatedpatients. This is also the case for atrophy rates indeep greymatter (DGM) as
seen in (C). There are no FLAIR and PD contrasts available for the SPMS cohort.
D Shows inter-contrast consistency for percentage brain volume changes (PBVC):
High intra-class correlation coefficients (ICC) for percent brain volume change
(PBVC) across differentMRI contrasts within the PPMSdataset (2D), indicating high
inter-contrast consistency. This underscores the segmentation tool’s robustness
and consistency in detecting neurodegenerative changes across various imaging
contrasts. In the SPMS dataset we compared PBVC of 2D-T1 images and 2D-T2
images with an ICC-coefficient of 0.81 [95% CI 0.73–0.87]. PPMS: N = 680, SPMS:
N = 130. All boxes in (A–D) displaymedians and 95%CI. Source data are provided as
a Source Data file.
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deep grey matter, all three tools reported similar treatment effects.
MindGlide estimated a treatment effect of 0.15% (95% CI 0.03–0.27%],
P =0.015) for FLAIR images and 0.10% (95% CI −0.01–0.21%], P = 0.078)
for T2 images, while longitudinal SAMSEG estimated 0.16% (95% CI
−0.04–0.36%], P =0.124) for FLAIR images and 0.03% (95% CI
−0.07–0.12%], P =0.602) for T2 images, andWMH-Synthseg reported a
treatment effect of 0.16% (95% CI 0.03–0.29%], P =0.019) for FLAIR
images and 0.14% (95% CI 0.03–0.24%], P = 0.010) for T2 images.

WMH-Synthseg performed better than both SAMSEG and long-
itudinal SAMSEG on in the PPMS dataset. Therefore, we only used
WMH-Synthseg as a comparator to MindGlide for our analysis of the
routine-care clinical dataset.We visually inspectedWMH-Synthseg and
MindGlide in our routine-care clinical dataset to assess gross seg-
mentation failures, which included 433 baseline contrasts from 161
patients. WMH-Synthseg demonstrated a significant failure rate, par-
ticularly in scans exceeding a thickness of 5mm. Out of the 433 con-
trasts that we visually assessed, WMH-Synthseg failed to segment 65
(15%) of the scans, whereas MindGlide exhibited a markedly lower
failure rate of only 6 (1%). Of the 6 instances where MindGlide was
unable to successfully segment the scans, only one was successfully
processed by WMH-Synthseg; the remaining five failed with both
methods. Figure 7a shows one example where both, MindGlide and
WMH-Synthseg successfully segmented a clinical trial scan. Figure 7b
shows a scan from our routine-care clinical dataset with a slice thick-
ness of 7mm, where WMH-Synthseg’s segmentation failed.

Consistency
Cross-sectional results. Figure 8 shows MindGlide segmentation’s
strong agreement (except for one region) acrossMRI contrasts (T1, T2,
T2-FLAIR, PD) of the same brain in 19 regions. ICC values for brain
regions ranged from 0.85 to 0.98, except for the optic chiasm (ICC

0.59). MS lesions demonstrated an ICC of 0.95 (95% CI [0.93, 0.95])
across contrasts. We used our PPMS dataset for this analysis.

In our SPMS dataset (the only cohort with both 2D and 3D T1-
weighted acquisitions) we analysed consistency between MindGlide-
derived volumes from 3D-T1 scans (1 ×1 × 1mm) vs 2D-T1 scans
(1 × 1 × 3mm). The intraclass correlation coefficients or ICCwere0.929
for lesion, 0.918 for CGM and 0.943 for DGM. We visualised this cor-
relation using a scatter plot in Supplementary Fig. 1.

Longitudinal: inter-contrast consistency of percentage brain
volume change (PBVC)
We evaluated the inter-contrast agreement of longitudinal total brain
volume changes. In the PPMS dataset, T1 vs. FLAIR showed an ICC of
0.91 (95% CI [0.88, 0.93]), T1 vs PD had an ICC of 0.916 (95% CI [0.90,
0.93]) and for T1 vs. T2 we calculated an ICC of 0.93 (95% CI [0.91,
0.94]). In theSPMSdataset, the ICCbetweenT1 andT2was0.81 (95%CI
[0.73, 0.87]). All the images used for this analysis were 2D.

Longitudinal comparison of 2D and 3D derived volumes
For the deep grey matter in the SPMS dataset (which had both 2D and
3D T1 scans as well as 2D T2 scans), the annual rate of percentage
volume loss across both treatment groups was 0.521% [0.346–0.696]
for 3D-T1 acquisition, 0.513% [95% CI: 0.308–0.718] for 2D-T1 and
0.474% [95% CI: 0.301–0.645] for 2D-T2 acquisition. The annual rate of
percentage volume loss in the cortical greymatter was 0.462% [95%CI:
0.318–0.606] for 3D-T1 acquisition, 0.295% [95% CI: 0.165–0.425] for
2D-T1 and 0.256% [95%CI: 0.139–0.377] for 2D-T2 acquisition. Without
ground truth available, we assessed the relative sensitivity loss of the
2D approach compared to the 3D approach. Comparing 3D-T1 and 2D-
T1, 2D-T1 showed a 1.54% lower volume loss rate than 3D-T1 for deep
grey matter and 36.15% for cortical grey matter. The 2D-T2 acquisition
showed a 9.02% lower volume loss rate for deep grey matter than 3D-
T1. The sensitivity loss was more pronounced in cortical grey matter,
where 2D-T2 detected 44.59% less volume loss than 3D-T1. Comparing
2D-T1 and 2D-T2, 2D-T2 showed a 7.60% lower volume loss rate than
2D-T1 for deep grey matter and 13.22% for cortical grey matter.

Discussion
Our work establishes the capability to extract multiple clinically rele-
vant MRI biomarkers from a single MRI contrast. MindGlide demon-
strates superior performance inmultiple key areas compared to state-
of-the-art: it more closely aligned with ground truth lesion segmenta-
tion, significantly outperformed existing tools in processing routine-
care clinical scans (99% success rate vs 85% for WMH-SynthSeg), and
showed enhanced sensitivity in detecting cortical greymatter changes,
while it performed similarly in deep grey matter segmentation. Fur-
thermore, it captured treatment effects on disease activity (as shown
by lesion accrual) and neurodegeneration (as shown by cortical and
deep grey matter tissue losses) in clinical trials and routine care hos-
pital settings across a wide age range of trials and hospital settings.
This tool significantly streamlines analysis and will enable large-scale
research using diverse and often incomplete clinical MRI datasets – an
advantage for routine-care studies looking at archival data. Below we
will first discuss a comparison of MindGlide with state-of-the-art soft-
ware (SAMSEG and WMH-Synthseg) looking at segmentation metrics,
treatment effects and clinical correlation.We then discussMindGlide’s
consistency across MRI contrasts and highlight the differences
between clinical trial scans and routine-care scans.

Our results demonstrate that clinically meaningful tissue seg-
mentation and lesion quantification are achievable even with limited
MRI data and single contrasts not typically used for these tasks (e.g.,
T2-weighted MRI without FLAIR). We established the validity and
reliability of these findings both cross-sectionally and longitudinally.
We compareMindGlide to two state-of-the-artmethods: anestablished
contrast-agnostic segmentation method (SAMSEG4) and a recently

Fig. 4 | Longitudinal changes of brain regions and lesion volumes in the
routine-care paediatric dataset. Linear mixed-effects models for cortical grey
matter, deep grey matter, and lesion volume on a paediatric real-world cohort,
stratified by treatment allocation. Brain region volume changes over time in this
real-world cohort.Medianvalues are shown as a dot, and thewhiskers show the95%
confidence intervals. N = 161 patients. 72 patients received high-efficacy treatment,
and 89 received moderate efficacy treatment. FLAIR Fluid Attenuated Inversion
Recovery, CGM Cortical Grey Matter, DGM Deep Grey Matter. Source data are
provided as a Source Data file.
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published segmentation method (WMH-Synthseg7) that was based on
a previous model called SynthSeg1–3. MindGlide performed best in
lesion load estimation, dice score and sensitivity (Fig. 2a, b). Treatment
effects on lesion volume detected by MindGlide were larger in mag-
nitude than those detected by WMH-Synthseg. When looking at the
results of MindGlide and state-of-the-art approaches, MindGlide-
derived lesion volumes demonstrated a treatment effect more clo-
sely aligned with ground truth values, than SAMSEG, which over-
estimated, and WMH-Synthseg, which underestimated the treatment
effect. While ground truth comparisons were not feasible for regional
brain volumes due to the impracticality of manual segmentation of
these regions, we were able to compare the relative performance of

SAMSEG, WMH-Synthseg and MindGlide in detecting volumetric
changes between treatment groups. MindGlide revealed larger differ-
ences in regional brain volume changes between treatment groups
compared to the other tools, indicating enhanced sensitivity in
detecting subtle changes. Overall, these results supportMindGlide as a
suitable tool for measuring treatment effects in clinical trials.

At baseline, volumetric measurements extracted using our
method showed on average higher correlation with EDSS than SAM-
SEG or WMH-Synthseg. In our study, WMH-Synthseg, despite having
lower dice coefficients compared to SAMSEG, demonstrated a stron-
ger correlation with EDSS. This can be attributed to the relationship
between lesion volume and EDSS. WMH-Synthseg tends to estimate

Table 2 | Treatment effects in the external validation clinical trials across different MRI contrasts

Trial Variable Contrasta Placebo volume change [95% CI] Treatment volume change
[95% CI]

p-valueb

SPMS (simvastatin vs placebo) Hyperintense lesions T2 1.122 [0.987, 1.256] 0.768 [0.520, 1.017] 0.055

Hypointense lesions 3D-T1 1.875 [1.666, 2.084] 1.071 [0.686, 1.457] 0.006

CGM T2 −1.792 [−2.089, −1.495] −0.704 [−1.254, 0.155] 0.008

3D-T1 −2.912 [−3.266, −2.558] −1.630 [−2.283, −0.976] 0.009

DGM T2 −0.205 [−0.234, −0.176] −0.102 [−0.155, −0.048] 0.009

3D-T1 −0.234 [−0.263, −0.204] −0.105 [−0.159, −0.050] 0.002

PPMS (ocrelizumab vs placebo) Hyper intense Lesions T2-FLAIR 1.042 [0.911, 1.174] 0.141 [0.053, 0.229] <0.001

Hyper intense Lesions PD 0.633 [0.535, 0.731] 0.091 [0.025, 0.157] <0.001

Hypointense lesions T1 1.225 [1.112, 1.338] 0.649 [0.573, 0.725] <0.001

Hyper intense Lesions T2 1.104 [0.990, 1.217] 0.400 [0.324, 0.476] <0.001

CGM T2-FLAIR −2.342 [−2.722, −1.963] −1.778 [−2.033, −1.524] 0.016

PD −2.310 [−2.752, −1.868] −1.683 [−1.980, −1.386] 0.021

T1 −2.485 [−2.753, −2.217] −2.183 [−2.363, −2.002] 0.066

T2 −2.335 [−2.606–−2.065] −1.638 [−1.820, −1.457] <0.001

DGM T2-FLAIR −0.200 [−0.234, −0.167] −0.156 [−0.178, −0.133] 0.028

PD −0.220 [−0.255, −0.186] −0.144 [−0.167, −0.121] <0.001

T1 −0.212 [−0.245, −0.179] −0.172 [−0.194, −0.150] 0.049

T2 −0.172 [−0.203, −0.141] −0.143 [−0.164, −0.123] 0.130

This table provides details aboutMindGlide-derived treatment effects in the two clinical trial datasets used in our external validation analysis. Amixed-effectsmodel was used to calculate treatment
effects (see Methods, Statistical Analysis).
95%CI95%confidence interval,CGM cortical greymatter,DGMdeepgreymatter,FLAIRFluid-Attenuated InversionRecovery,PDprotondensity,2D twodimensional (non-isotropic voxels),3D three
dimensional (isotropic 1 × 1 × 1mm resolution), SPMS secondary progressive multiple sclerosis, PPMS primary progressive multiple sclerosis.
aAll the MRI contrasts were two dimensional or 2D unless specified as 3D (1 × 1 × 1mm). Volume changes are in ml. The real-world cohort is not included here because there was no untreated group
(41% received Interferon Beta, 38% Ocrelizumab and the rest other disease modifying treatments).
btreatment effect p value, or p value of the difference between volume change rates in treatment vs placebo groups from the mixed effects model.

Fig. 5 | Example segmentations from various contrasts. The figure shows sepa-
rate segmentations by the MindGlide model on 2D T1-weighted, T2-weighted,
FLAIR and PD contrasts in the PPMS trial. The top row shows the unprocessed

(“raw”) scans, and the bottom row shows labels or segmentations corresponding to
anatomical regions, in addition to white matter hyperintensities (or hypo-
intensities in the case of T1-weighted contrast).
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lesion volumes closer to those derived from MindGlide and ground
truth than those from SAMSEG. The lower dice score of WMH-
Synthseg suggests limited spatial overlap,which is a result of both high
false positives and high false negatives, indicating a poor performance
in spatial accuracy. Conversely, SAMSEG’s higher precision and lower
sensitivity led to fewer false positives and a lower dice score. This
analysis underscores the limitations of using dice scores as the sole
metric for evaluating segmentation tools, which is why we combined
various metrics to provide a comprehensive assessment of segmen-
tation performance.

Overall, segmenting different structures was highly consistent
except for optic chiasm, which had moderate consistency (ICC of
0.59). This can be explained by the smaller size of the optic chiasm
compared to all other MindGlide labels. A single voxel discrepancy
within this region wields a proportionately larger impact on the ICC,
magnifying the effect of any spatial variations. Furthermore, its close
encirclement by cerebrospinal fluid can obscure the chiasm’s
boundaries in imaging contrasts, reducing the dice score25. The intra-
class correlation analysis across different MRI contrasts demon-
strated the consistency and reliability of percentage brain volume
changemeasurements or PBVC obtained byMindGlide, although ICC
across contrasts was higher in the PPMS dataset than in the SPMS
dataset.

While our proposedmodel demonstrates an advantageover state-
of-the-art models trained on smaller cohorts of MS patients, it is
important to recognise that these improvements may not be as pro-
nounced when analysing clinical trial scans, which often feature con-
trolled conditions and high-quality imaging. However, the benefits of
ourmodel become significantlymore evident in the context of routine-
care scans, where variability in image acquisition and image resolution
can pose substantial challenges. In these cases, our model’s enhance-
ments lead to dramatic improvements in lesion segmentation and

analysis, thereby offering valuable insights into real-world clinical
scenarios.

As expected, there was lost sensitivity in detecting volume chan-
ges between two and three-dimensional scans. Comparing 3D-T1 scans
with 2D-T2 and 2D-T1 acquisitions revealed a differential impact on
sensitivity. In deep grey matter there was only a 2% reduction in
detecting atrophy using 2D-T1 and 9% reduction using 2D-T2 acquisi-
tions. In cortical grey matter the reduction in detecting atrophy were
36% using 2D-T1 and 45% using 2D-T2 acquisitions. The comparison
between 2D-T1 and 2D-T2 scans showed stability, with 2D-T2 resulting
in an 8% lower volume loss rate for deep grey matter and a 13% lower
rate for cortical grey matter. These findings will pave the way to
incorporate fewer contrasts of the same resolution in MRI protocols,
maintaining sensitivity while optimising efficiency, whilst 3D acquisi-
tions are still needed for more detailed analysis.

Our work contributes to the evolution of MRI processing tools
that streamline previously time-consuming pipelines. Running the
model on consumer-grade graphical processing unit (GPU) hardware
took on average, 37 s (see Supplementary Material). Efficiency is
especially valuable for MS MRIs, where multimodal imaging is tradi-
tionally used to extract biomarkers. The typical workflow has involved
intensity inhomogeneity correction26, followed by automatic seg-
mentation of white matter lesions using T2-FLAIR and three-
dimensional T1-weighted MRI. To mitigate the misclassification of
hypointense lesions as grey matter (which share a similar intensity
profile), anatomical T1-weighted MRIs may undergo lesion filling after
affine registration with T2-FLAIR images27. Subsequently, hand-
labelled T1-weighted MRIs (known as atlases) are non-linearly regis-
tered to the patient’s T1-weighted MRI28,29. Labels from the co-
registered atlases are then fused using various fusion algorithms, fol-
lowed by probabilistic segmentation to differentiate tissue classes
(whitematter, greymatter, and cerebrospinal fluid)30. Moving towards

Fig. 6 | Comparison of longitudinal changes of brain regions and lesion
volumes of MindGlide, longitudinal SAMSEG and WMH-Synthseg. This figure
compares derived percentage volume changes per year of MindGlide, longitudinal
SAMSEG and WMH-Synthseg for lesion volume, CGM and DGM separated by
treatment groups. We used the PPMS clinical trial for this comparison because it
was the largest of our datasets and the only one that includesmanually segmented
lesion volumes by expert neuroradiologists which we used as ground truth. The
effect size calculated using MindGlide-derived lesion volume changes is closest to
the ground truth. WMH-Synthseg-derived lesion volume change in the placebo
group is closest to the ground truth for both FLAIR and T2 images. Ground truth
lesion accrual rate was −1.304% per annum in the treatment group and 3.33% per
annum in theplacebogroup. For FLAIR images,MindGlidedetected a lesion accrual
rate of 0.64% per annum in the treatment group and 5.95% in the placebo group,
compared to 1.863% and 12.566% for longitudinal SAMSEG and 0.56% and 3.11% for

WMH-Synthseg. With T2 images, MindGlide showed lesion accrual rates of 2.151%
and 6.775% for treatment and placebo groups, while longitudinal SAMSEG showed
4.47%and 13.277% andWMH-Synthseg showed0.359% and 2.813% respectively. The
differences between the three tools inmeasuringCGMandDGMchanges areminor
compared to lesion volume changes except for the CGM estimates of longitudinal
SAMSEG. Here, especially in T2 images, longitudinal SAMSEG estimates more
atrophy in the treatment group (−0.418% p.a.) than in the placebo group (−0.334%
p.a.), although these differences are not significant (p =0.291) PPMS dataset.
N = 680. All boxes displaymedians (centre line in each box) and 95% CI (upper and
lower bound of each box). A mixed-effects model was used to calculate treatment
effects (see Methods, Statistical Analysis). FLAIR Fluid Attenuated Inversion
Recovery, CGM Cortical Grey Matter, DGM Deep Grey Matter, GT Ground Truth.
Source data are provided as a Source Data file.
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newer deep-learning-based pipelines allows fast turnaround times for
automatic MRI analysis and real-world implementations.

Our study benefits froma large sample size formodel training and
external validation. Importantly, our findings generalised across
datasets and MRI contrasts. Our training used only FLAIR and T1 ima-
ges, yet the model successfully processed new contrasts (like PD and
T2) from different scanners and periods encountered during external
validation. This success is due to the domain randomisation during
synthetic data generation (or augmentation), enabling cross-contrast
generalisation as has been shown before1,7. It is important to note that
MindGlide, like WMH-Synthseg, is a 3D convolutional neural network
with the same core architecture. The varying performances in seg-
menting lesions and detecting treatment effects on grey matter
structures are due to the diversity of data used to train these models.
We used a combination of real and synthetic scans, while previous
studies used synthetic or real scans (but not both). The effect of data
diversity iswell-known in themachine learning community31. However,
quantifying improvements caused by using various training regimes
with real and synthetic data needs further work and was out of the
scope of our study.

While we found high ICC values across all segmented brain
structures, interpreting the ICC values for MS lesions is complex. We
analysed the ICC across different MRI contrasts, including FLAIR, T2,
T1, and PD.We analysed the ICC acrossdifferentMRI sequences during
external validation, including FLAIR, T2, T1, and PD. While the Mind-
Glidemodel was trained on both T1 and FLAIR images, the lesions used
for training came from the FLAIR contrast, but the domain randomi-
sation enabled the model to generalise to unseen contrasts. While
improving generalisability, this approach blurs pathological specificity

and is a limitation of our contrast-agnostic approach. T1 hypointen-
sities are pathologically distinct from FLAIR hyperintensities32. There-
fore, while the ICC values provide an essential insight into the tool’s
reliability, the difference in pathophysiological representation
between contrasts necessitates a careful approach to interpreting
these results. For example, chronic T1 hypo-intensities, often called
“black holes,” indicate MS lesions characterised by axonal loss and
tissue destruction33. The ICC values obtained for MS lesions must,
therefore, be considered within the context of these different imaging
signatures. Ahigh ICCvaluemight suggest thatwhile the segmentation
tool is consistent across contrasts, it may not fully distinguish the
complex nature of lesion pathology that varies between T1 and T2/
FLAIR contrasts. Nonetheless, as explained above, this approach
enables using data to enable a new avenue of research on archival real-
world, data.

In our mixed-effects models for estimating treatment effects, we
included intracranial volume (ICV) as an extra covariate to account for
individual differences at baseline and growth trajectories observed in a
paediatric cohort34–37. While using the volume-to-ICV ratio as a
dependent variable could yield comparable results, our approach
maintains the original volume scale, enhancing interpretability and
clinical relevance across diverse age groups. The analysis of our
routine-carepaediatric dataset reveals significant variability in imaging
acquisitions, which poses challenges for comparing volume changes
across different contrasts. With a heterogeneous range of slice thick-
nesses and incomplete data for some patients—where only certain
contrasts were acquired—our ability to draw definitive conclusions
regarding treatment effects is limited. Additionally, as is the case for
any observational cohort, treatment effect estimation and causal

Fig. 7 | Examples of MindGlide segmentations and WMH-Synthseg segmenta-
tion. Examples of segmentation masks acquired using MindGlide and WMH-
Synthseg. a Segmentation masks of a scan from our PPMS trial dataset with the
segmentation mask acquired using MindGlide on top and the segmentation mask
acquired using WMH-Synthseg on the bottom. Areas labelled as lesion are more
conservative defined in theMindGlide segmentationmask (olive colour) than in the
WMH-Synthseg segmentation mask (black). The red arrow points at an area that is
incorrectly defined as lesion by WMH-Synthseg segmentation but not by

MindGlide. b Segmentation masks of a scan from our routine clinical dataset
(RRMS) with the segmentation mask acquired using MindGlide on top and the
segmentation mask acquired usingWMH-Synthseg on the bottom.WMH-Synthseg
fails to segment an image acquired in anterior-posterior direction with 6mm thick
slices (as seen in the frontal area of the transverse view and multiple areas of the
coronal view in (b)). Most segmentation tools are designed to use superior-inferior
acquisition directions (as in (a)), while MindGlide allows segmentation of images
acquired in any direction.

Article https://doi.org/10.1038/s41467-025-58274-8

Nature Communications |         (2025) 16:3149 10

www.nature.com/naturecommunications


conclusions are extremely challenging. For example, we observed an
average reduction for patients on moderate-efficacy group (although
not statistically significant) using FLAIR images but significant increase
in T2-weighted MRI lesions. Despite this wide variability in absolute
values, the relative difference between treatment groups was statisti-
cally significant and relatively stable across comparisons and brain
regions. These results show that MindGlide can enable quantitative
insights fromhighly variable image acquisitions which were previously
unanalysable.

Our study has several limitations. The primary limitation is
reduced sensitivity in detecting treatment effects using 2D versus
3D scans. While MindGlide showed strong agreement (ICC) across
both scan types in the SPMS dataset, the lower resolution of 2D
images affects segmentation performance significantly. This can
limit detection of small lesions and subtle volume changes, par-
ticularly in longitudinal studies tracking tissue changes and
volumetric assessments of deep and cortical grey matter.
Although 2D scans are more clinically accessible, 3D imaging
remains optimal for detailed segmentation. However, our findings
suggest that fewer imaging contrasts may suffice for accurate
lesion and atrophy detection, potentially reducing scan time and
improving resource efficiency in clinical care and research.
Additionally, our current implementation is restricted to brain
scans. Spinal cord MRI is also widely available in routine care
setting and is strongly associated with disability. Future work
should expand our approach to the entire central nervous system.
We chose the number of labels or segmentations to be 19 by
merging smaller labels from the atlas to ensure efficiency and
lower computational expense during inference time with a view
for implementation within under-resourced research settings
(e.g., non-research hospitals). Therefore, current implementation
is not intended for detailed segmentations (for example a tha-
lamic volume instead of deep grey matter volume) of brain
structures.

In conclusion, we developed and validated a contrast-agnostic
deep learning model that can quantify MRI biomarkers from routine
care and clinical trial datasets from varying single MRI input contrasts.

Methods
This study received ethical approval from the Institutional Review
Board under the auspices of the International Progressive Multi-
ple Sclerosis Alliance (www.progressivemsalliance.org) at the
Montreal Neurological Institute, Canada (IRB00010120) and by
the Great Ormond Street Hospital Research and Development
Department (reference: 16NC10). Written informed consent was
acquired from participants during data acquisition for clinical
trials. For routine care MRI scans, consent was waived for pro-
cessing anonymised data.

Study design
For training our model we sampled the training data from the Inter-
national Progressive MS Alliance data repository at the Montreal
Neurological Institute. Supplementary Table 1 lists the trials included
in the Progressive MS Alliance data repository and Table 1 summarises
the patient characteristics of our training and validation datasets. For
validation we used 5 different datasets unseen during training. These
datasets are from theMS-STAT trial24, ORATORIO trial20, a routine-care
dataset of paediatric relapsing-remitting MS patients and two open
source datasets38,39.

Model development
Figure 1 illustrates our training and external validation strategy and
the associated steps. We developedMindGlide, using “nnU-Net”, a 3D
CNN building on the widespread U-Net architecture40. nnU-Net yields
state-of-the-art results (e.g., it has won several recent challenges6,41)
while featuring automatic self-configuration, thus bypassing the
costly hyperparameter tuning procedure. We trained MindGlide to
simultaneously segment brain grey and white matter regions and MS
lesions, accommodating real-world MRI variations and artefacts that
often hinder traditional image processing software. Our primary goal
was to ensure generalisation acrossMRI contrasts withminimal or no
pre-processing at inference, even for contrasts unseen during train-
ing (for example, for PD and T2-weighted that were not in our
training data). This aligns with successful approaches in other brain
imaging studies1,2.

Fig. 8 | Consistency of regional segmentations across MRI contrasts. Con-
sistency of segmented regions or labels acrossmultipleMRI contrastsmeasured by
the intraclass Correlation Coefficients (ICCs). On the left, coloured brain maps
depict all 19 brain region labels: CSF (Cerebrospinal Fluid), 3rd and 4th Ventricle,
DGM (Deep GreyMatter), Pons, Brainstem, Cerebellar GM (GreyMatter), Temporal
Lobe, Lateral Ventricle Frontal Horn, Lateral Ventricle, Ventral DC (Diencephalon),
Optic Chiasm, Cerebellar Vermis, Corpus Callosum, Cerebral WM (White Matter),
Frontal Lobe GM, Limbic Cortex GM, Parietal Lobe GM, and Occipital Lobe GM,

along with MS (Multiple Sclerosis) Lesions. The right side presents ICC values
ranging from 0 to 1 for these regions, providing a quantitative measure of the
consistency across multiple MRI contrasts. Higher ICC values indicate greater
consistency in themeasurement of a particularbrain region. Dots representmedian
intraclass Correlation Coefficient and error bars display 95% confidence intervals. A
vertical dashed line marks the median intraclass Correlation Coefficient across all
regions. PPMS dataset, baseline images, N = 699. Source data are provided as a
Source Data file.
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Generating training labels. Supervisedmodels likeMindGlide require
large, accurately labelled datasets for robust performance. Manually
creating such labels, considered the ‘gold standard’, is time-consuming
and impractical for diverse real-world data, especially when the lower
quality of scans hinders manual labelling. We used existing segmen-
tations from our datasets of phase two and three clinical trials pre-
viously published42 with Geodesic Information Flows software (GIF
v3.0) as explained in our previous publication43, with additional man-
ual quality control. These labels, derived from the Neuromorpho-
metrics atlas (http://neuromorphometrics.com), were grouped into 18
regions (Supplementary Table 3). To reduce the number of labels and
makeMindGlidemore comparable to other brain image segmentation
tools we performed this label grouping according to the hierarchical
model of the Mindboggle project (https://mindboggle.info/
braincolor). We used a validated lesion segmentation model (a con-
volutional neural network)42,44, to generate lesion masks, creating a
single file with 20 labels (18 brain regions, one lesion, one background)
for training. For feasibility, we employed existing expert-labelled
‘ground truth’ lesion segmentationdata for external validation in fewer
individuals, as described below.

Image pre-processing for model training. We employed a minimal
pre-processing pipeline. We first standardised image resolutions to
1.0mm isotropic voxels, per the nnU-Net design6,41. We then extracted
128 × 128 × 64 voxel patches using a sliding window technique, to
optimise memory and computational efficiency during training. While
weuseddata augmentationduring training (seebelow), no further pre-
processing was performed at inference.

Image augmentation and synthetic data. Data augmentation artifi-
cially expands training data diversity through random modification,
enhancing model generalizability and mitigating overfitting. To mini-
mise post-training pre-processing and broaden MindGlide’s adapt-
ability, we used two techniques: (1) distorting real scans in their
geometry and image intensities and (2) generating synthetic ones.
Synthetic data generation offers greater flexibility than mere distor-
tion. We employed domain randomisation (Fig. 1a), resulting in
intensity variations that prepared themodel for diverseMRI contrasts.
As shown in Fig. 1d, we performed image augmentation with T1-
weighted and FLAIR scans during training.

We used SynthSeg version 2.0 for synthetic data generation and
MONAI version 1.2.0 for augmentation during training1,3,5,45. We gen-
erated synthetic scans of varying contrasts directly from the training
dataset’s labels (units are as defined by the software)3:

Left-right flipping (0.5 probability).
Scaling (uniform distribution, bounds: 0.85–1.15).
Rotation (uniform distribution, bounds: −15–15 degrees).
Elastic deformation (scale: 0.04, standard deviation: 1).
Bias field corruption (scale: 0.25, standard deviation: 0.5).
Random low-resolution resampling (uniform distribution, 1–9mm
per dimension).
Domain randomisation3 (varying voxel intensities of synthetic scans
per tissue class)

Figure 1a illustrates examples of the synthetic data generated. The
model architecture, detailed in the Supplementary Material (Model
Architecture), has one input channel (receiving a single MR contrast)
and 20 output channels (generating 20 labels).

External validation using independent (unseen in training)
datasets
We performed cross-sectional and longitudinal analyses to assess
MindGlide’s performance for its validation and reliability in unseen
cohorts.

Cross-sectional analyses
We used the first available visit in each of the longitudinal datasets for
cross sectional analysis. This involved clinical validation by correlating
segmented structure and lesion volumes with Expanded Disability
Status Scale (EDSS) scores, comparing MindGlide, SAMSEG andWMH-
Synthseg results4,7. We chose SAMSEG and WMH-Synthseg because
they are both recently introducedmodels, publicly available, as part of
Freesurfer, and are among the few models that can segment multiple
different contrasts46,47.

Regarding comparison across MRI contrasts, we used intra-class
correlation analysis. Segmentation Consistency across Contrasts: In
the PPMS trial, the only datasetwith PD, T2, T1, andFLAIRcontrasts,we
assessed the agreement of segmentations for the same brain struc-
tures across these contrasts. We used a hierarchical intraclass corre-
lation coefficient (ICC) to account for the fact that these
measurements were taken from the same individuals, which intro-
duces inherent correlation (ICC 3). Only in the SPMS trial, both 3D-T1
and 2D-T1 imaging data was available, and we used these scans to
calculate ICC between different resolutions.

Longitudinal validation in unseen cohorts
We evaluatedMindGlide’s ability to detect known treatment effects by
analysing data from two successful clinical trials: MS-STAT24 (placebo
vs. simvastatin in secondary progressive MS) and ORATORIO20 (ocre-
lizumab vs. placebo in primary progressive MS). Our aim was to
demonstrate the capability ofMindGlide indetecting known treatment
effects usingMRI contrasts that have never been used for this purpose
(e.g., 2D T2-weighted MRI). We calculated the intra-class correlation
coefficient (ICC) for percentage brain volume change with MindGlide
segmentations and SIENA algorithm48 (PBVC), a key trial outcome
measure, across MRI contrasts (FLAIR, T2-weighted, T1-weighted, and
PD in the PPMS trial and T1 and T2-weightedMRI in the SPMS trial). For
longitudinal software comparison, in the PPMS trial, we calculated
treatment effects using WMH-Synthseg and MindGlide only without
SAMSEG, because WMH-Synthseg showed better performance in
cross-sectional comparisons with SAMSEG.

Additionally,weuseda routine-caredataset ofpaediatric relapsing-
remitting MS patients from three UK hospitals (Great Ormond Street
Hospital, Evelina London Children’s Hospital and Birmingham Chil-
dren’s Hospital) to study the longitudinal evolution of lesions and brain
structures based on available MRI contrasts (T1-weighted, T2-weighted
and FLAIR). We excluded scans from participants whose FLAIR image
slice thickness differed by more than a factor of three across follow-up
scans. We did not exclude T1-weighted and T2-weighted MRIs because
their slice thicknesses varied by less than a factor of three across visits.
We categorised patients as receiving high-efficacy (ocrelizumab, nata-
lizumab, rituximab or cladribine) and moderate efficacy treatments
(interferon betas, fingolimod, dimethyl fumarate or teriflunomide)49,50.

Power analysis
Weperformed apower analysis basedonMindGlide-derived treatment
effects for each contrast to estimate the sample sizes required for a
hypothetical clinical trial designed to detect treatment effects using
MindGlide on only a single MRI contrast. We used the R pwr library for
this analysis.

Reliability analysis in unseen cohorts
Lesion Segmentation across Software: We compared lesion seg-
mentations produced by MindGlide, SAMSEG and WMH-Synthseg
against ground truth labels (hand-labelled segmentations). We used
the same ICC analysis as explained in the cross-sectional analysis
above. We measured longitudinal reliability using the ISBI dataset,
calculating ICC between raters and MindGlide. See Supplementary
Material for details.
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External validation using manual, expert-segmented lesions
Manual lesion segmentation by expert neuroradiologists is considered
the gold standard inMS.Weused twoopen-source lesion segmentation
datasets (called MS-30 and ISBI)38,39 and assessed cross-sectional per-
formance against manual lesion segmentations (consensus in MS-30,
expert rater in ISBI) using lesion volume and voxel-wise spatial metrics
(e.g., Dice score, a standard metric for image segmentation overlap).
Cross-sectionally, we assessed lesion load andvoxel-wise spatialmetrics
on 50 FLAIR images from 35 patients, and longitudinally, we calculated
the intraclass coefficient (ICC)between raters andMindGlideon the ISBI
dataset. For more details, please refer to the Supplementary Material.

Statistical analysis
We used R version 4.3.0 for all analyses. In cross-sectional analysis, we
assessed correlations between segmented brain volumes and EDSS
using Spearman’s rank correlation and Fisher Z scores because EDSS is
an ordinal variable.

Weused linearmixed-effectsmodels to estimate treatment effects.
Each regional volume or lesion load was the dependent variable in a
separate model. Fixed independent variables included time, treatment
group, their interaction (time x treatment group), and intracerebral
volume (ICV). Random effects, nested by visit within participant ID,
accounted for repeatedmeasures and within-participant variability. We
did not adjust for other variables because the comparisons were made
in data from randomised controlled trials in treatment and control
arms. In the real-world data we did not adjust for age (all participants
were in their adolescence) and used the same fixed independent vari-
ables and random effects. In real-world paediatric dataset, we did not
perform a head-to-head comparison of moderate versus high efficacy
treatment because participants were not randomised and the small
number of children with MS did not allow for causal modelling.

We performed ICC with the Pengouin statistical package for
Python 3. We used ICC3 because we had a fixed set of “raters” (seg-
mentation of the same structures by different software [MindGlide vs
SAMSEG vs WMH-Synthseg] or from different contrasts).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data are controlled by pharmaceutical companies and are proprietary.
Requests for the sole purpose of reproducing the results of the study
can be made available upon on contacting the corresponding author
whichwill endeavour tomake it available within amonth of submitting
a request Source data are provided with this paper.

Code availability
The code, trained models, and computational environment (con-
tainer) forMindGlide are publicly accessible at https://github.com/MS-
PINPOINT/mindGlide (https://doi.org/10.5281/zenodo.14725884)51.
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