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Cytogenetic signatures favoring metastatic
organotropism in colorectal cancer

Mariola Monika Golas 1,2 , Bastian Gunawan3,9, Angelika Gutenberg4,
Bernhard C. Danner5, Jan S. Gerdes 3,10, Christine Stadelmann 6,
Laszlo Füzesi3, Torsten Liersch7 & Bjoern Sander 8

Colorectal carcinoma (CRC) exhibits metastatic organotropism, primarily
targeting liver, lung, and rarely the brain. Here, we study chromosomal
imbalances (CIs) in cohorts of primary CRCs andmetastases. Brain metastases
show the highest burden of CIs, including aneuploidies and focal CIs, with
enrichment of +12p encoding KRAS. Compared to liver and lung metastases,
brain metastases present with increased co-occurrence of KRASmutation and
amplification. CRCs with concurrent KRASmutation and amplification display
significant metabolic reprogramming with upregulation of glycolysis, along-
side upregulation of cell cycle pathways, including copy number gains of
MDM2 and CDK4. Evolutionary modeling suggests early acquisition of many
organotropic CIs enriched in both liver and brain metastases, while brain-
enriched CIs preferentially emerge later. Collectively, this study supports a
model where cytogenetic events in CRCs favor site-specific metastatic colo-
nization. These site-enriched CI patterns may serve as biomarkers for meta-
static potential in precision oncology.

Colorectal cancer (CRC) is responsible for about 10% of cancer-related
deaths worldwide, which corresponds to ~900,000 deaths annually1.
The vastmajority of cancer-associated deaths are related tometastatic
spread of the primary malignancy2. About one in four to five patients
withCRCpresentswith distantmetastasis at initial cancer staging3, and
about one in five patients diagnosedwith CRCdevelopsmetachronous
metastatic disease in the clinical course4. Metastatic CRC spread can
occur very early in the progression of disease, at a time-point when the
primary tumor is not yet necessarily clinically manifest5–7. In general,
metastatic seeding can follow a polyclonal pattern, inwhichmetastatic
cells spread from multiple tumor clones, but it can also follow a
monoclonal pattern7–9. Previous work indicates that in about two-
thirds of CRC cases, lymph node and distant metastases appear to be

derived from independent subclones10. In the course of CRC disease,
the main site for metastasis is the liver, followed by the lung11. Less
commonly, peritoneal spread is seen in CRC, and rare sites of metas-
tasis include other gastrointestinal organs, bones, and the brain/cen-
tral nervous system (CNS)11. Thus, the spread of CRC cells follows a
specific organ pattern, a phenomenon referred to as metastatic
organotropism12,13.

Accumulating evidence supports a model in which successful
colonization of cancer cells at a secondary site does not result merely
from passive mechanical constraints, but rather involves active shap-
ing of the microenvironment at the secondary site to create a per-
missive niche that facilitates cancer cell survival and growth at distant
sites14–18. Cancer cells appear to act on the prospective secondary site
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to induce amicroenvironment that favors invasion and colonization of
the secondary organ14–18. The formation of this pre-metastatic niche is
hypothesized to be induced by factors and extracellular vesicles,
including exosomes released from the primary cancer cells15,19,20. In
addition, evidence is accumulating that hematopoietic stem cell-
derived cells shape the metastatic niche. For example, cancer cells
appear to use tenascin C-activated macrophages to induce formation
of a vascular niche in the target organ18. However, the genetic pro-
cesses involved in metastatic organotropism remain poorly
understood.

Modeling the tumor evolution may identify genetic determinants
that confermetastatic organotropism. The process of tumor evolution
is driven by the acquisition of a diverse array of genetic alterations,
ranging from single nucleotide variants and small insertions/deletions
(indels), to focal chromosomal aberrations and structural variants such
as translocations and inversions, as well as chromosomal arm aneu-
ploidies and whole chromosomal aneuploidies21,22. In particular, pri-
mary CRCs commonly carry a set of defined DNA copy number
variations (CNVs), including gains of 8q, 13q, and 20q, as well as losses
of 18q23–28. These CNVs often result fromwhole chromosomal arm and
whole chromosomeaneuploidies24,29. In addition toCNVs,mutations in
a number of genes have been described: collaborative next-generation
sequencing (NGS) efforts23 have led to the description of a temporal
sequenceof drivermutation acquisition in the adenomatous polyposis
coli gene (APC), the tumor protein gene P53 (TP53), the Kirsten rat
sarcoma virus oncogene (KRAS), and the SMAD familymothers against
decapentaplegic homolog 4 gene (SMAD4), among others30. This
sequence is consistent with previous studies31–34 that culminated in the
proposal of a sequential progressionmodel, which has become known
as the Vogelgram35. However, the specific sequence of genetic events
may not be as critical for CRC development as the overall accumula-
tion of genetic alterations over time35.

Following the Vogelgram model, a number of additional models
of tumor evolution in CRC have been proposed. These evolutionary
models integrate the acquisition of genetic changes in the form of
gradual processes or bursts, combined with different extents of clonal
selection36. In the linearmodel, of which the Vogelgram is a prototype,
genetic events are acquired sequentially. In this model, genetic chan-
ges with a growth advantage lead to preferential survival of the fittest
clone(s)35. The branched evolution37 and the neutral model38 share the
idea of a parallel, i.e., branched, expansion of clones, but differ in the
extent of selective pressure. While the former model assumes some
degree of selection37, the latter model favors unrestricted co-
expansion of clones in the absence of relevant selection pressure38.
In the fourth model, the punctuated model39, also known as the big
bang model40, massive genetic changes occur in bursts during cancer
development, followed by the expansion of clones with selective
advantage39 or under neutral evolutionary conditions40,41.

Cytogenetic aberrations in tumor cells, such as those arising from
chromoplexy of several chromosomes39 and chromothripsis of single
chromosomes42 as well as chromosomal CNVs43 have been linked to
the punctuatedmodel. In other tumors, it has been suggested that the
acquisition ofCNVs followed amoregradual evolutionary path44. Thus,
while we have a detailed idea of possible acquisition patterns of
genetic alterations, an understanding of the chronology of metastatic
capacity acquisition, and of the genetic alterations driving metastatic
organotropism, is only beginning to emerge28,45.

Primary CRC and its metastases share a majority of somatic
mutations with few exclusive mutations private to the primary tumor
or metastasis46,47. In a study analyzing primary CRCs and their metas-
tases, the vast majority of which colonized the liver, CRC metastasis-
enrichedmutations were identified in genes linked to the extracellular
matrix, PI3K signaling, and stellate cell activation47. Also, involvement
of TGF-beta signaling has been suggested in liver metastasis45, as has
RAS signaling with KRAS mutations in lung and brain metastases48,49.

However, whether these mutations represent organotropic genetic
alterations or a general expression of the metastatic potential
remained largely unknown. Recent studies have shown no significant
differences between the tumor mutational burden (TMB) in primary
CRC and its metastases28. Along these lines, KRAS mutations were the
only organotropic mutations in lung and brain metastases of CRC that
have been repeatedly reported28,45, yet the complexity of metastatic
behavior, especially in less-studied sites like the brain, remains to be
explored in detail.

At the same time, previous CRC studies on CIs have focused on
genomic changes in primary tumors and single metastatic sites,
which facilitated the definition of common chromosomal aberrations
in primary CRC and specificmetastases23–28,50–63. CRC is an example of
a cancer entity characterized by a complex pattern of chromosomal
imbalances (CIs)23–28,50–63, and it has been suggested that chromoso-
mal aberrations are acquired early in disease development9. Since CIs
typically alter the expression of a (large) group of genes
simultaneously64, CIs can potentially have additive or even syner-
gistic effects and be further potentiated by co-occurrence of multi-
ple CIs.

In this work, we examine the cytogenetic profile of CRCs and their
metastatic spread to the liver, lung, and brain by combining inde-
pendent cohorts. The first cohort, termed CRCTropism, employs a
dedicated cytogenetic approach, while the second cohort, the Mem-
orial Sloan Kettering (MSK) MetTropism cohort28, is based on NGS
data. In the CRCTropism cohort, the vast majority of patients,
including all cases with brain metastases, underwent tumor sampling
prior to receiving any targeted therapy. This approach enables the
identification of genetic signatures that support intrinsic organotropy
rather than reflecting potential consequences of targeted therapeutic
interventions. We demonstrate that metastases are characterized by
site-enriched patterns of cytogenetic events, which translate into
cytogenetic signatures for secondary sites. Using a third cohort from
The Cancer Genome Atlas (TCGA)65,66, we show that concurrent KRAS
mutation and amplification, enriched in brainmetastases, is associated
with enhanced metabolic reprogramming and typically coupled with
MDM2 and CDK4 co-amplifications already in primary tumors. Orga-
notropic patterns reveal the enrichment of specific CNVs in liver and
brain metastases, their rarity in lung metastases, and a temporal
dimensiondefined by the order inwhich these alterations are acquired
during tumor evolution.

Results
Characterization of the CRCTropism cohort
The CRCTropism cohort comprised a total of 314 tumors derived from
191 patients diagnosed with metastatic CRC. Demographic and clinic-
pathological data of this cohort are summarized in Supplementary
Table 1, and an overview of the analyses is given in Supplementary
Fig. 1. The cohort consists of 80 primary CRCs aswell as 117, 78, and 39
metastases to the liver, lung, and brain, respectively. In some cases,
multiple tumor tissue samples were analyzed, including samples from
different areas of the primary tumor, recurrences, and/or one or more
metastases. For 80 patients, at least one primaryCRC/metastasis (P/M)
pair was available, totaling 97 P/M pairs. The comparative analysis of
the primary CRCs reported in this study and TCGA cohort65,66, which
exclusively comprises primary CRCs, revealed no statistically sig-
nificant differences, except for the subgroup of primary CRCs asso-
ciated with lung metastases. This subgroup exhibited a significantly
lower prevalence of +7q (0.426 in the TCGA cohort vs. 0.143 in primary
CRC with lung metastases [log2 ratio -1.57]; padjust = 0.013; Fisher test
with Benjamini-Hochberg correction of multiple testing) and -18p
(0.568 vs. 0.194 [log2 ratio -1.55]; padjust = 4.17 × 10−3) and +20p (0.402
vs. 0.074 [log2 ratio -2.44]; padjust = 0.013), concomitant with a higher
frequency of -20p (0.068 vs. 0.296, [log2 ratio 2.12]; padjust = 0.013;
Supplementary Fig. 2).
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Overall, the CIs observed in the CRCTropism cohort resulted in a
characteristic pattern of gains and losses, enriched in whole chromo-
somal arm aneuploidies and certain focal CNVs (Fig. 1a and Supple-
mentary Fig. 3). In line with previous results67, the CRCTropism cohort
showed the typical CI pattern associated with CRC, including the loss

of the short arm of chromosome 8 accompanied by a gain of the long
arm of this chromosome, with typical breakpoints located in chro-
mosomal bands 8p11 or 8p12 (Supplementary Fig. 4).

Focusing on primary CRCs, the most common DNA copy number
aberrations were +13q, -18q, and +20q (Fig. 1a). A similar pattern of CIs
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Fig. 1 | PatternofCIsobserved in theCRCTropismcohort. aChromosomal losses
and gains in shades of blue and red, respectively, observed in the cohort with 314
tumors, including n = 80 primary CRC and n = 234 distant CRC metastases in the
liver, lung, andbrain. On the left, tumor site and sexare color-encodedaccording to
the legend. b Number of apparent chromosomal arm aneuploidies in relation to
focal CIs, visualized as a stacked bar chart (n = 234). cDistribution of chromosomal
arm aneuploidies in CRC metastases (n = 191). (1) padjust = 2.96 × 10−3; (2)
padjust = 6.94 × 10−6; (3) padjust = 1.31 × 10−2. d Distribution of CIs including losses and
gains for CRC metastases (n = 191). (1) padjust = 2.46 × 10−3; (2) padjust = 1.37 × 10−6;

(3) padjust = 5.57 × 10−3; (4) padjust = 3.70 × 10−4; (5) padjust = 5.96 × 10−3; (6)
padjust = 1.44 × 10−4; (7) padjust = 4.97 × 10−7; (8) padjust = 1.75 × 10−2. c, d Data are pre-
sented as combined violin and box plots (thick line in the box corresponds to
median; lower and upper edges of the box indicating the first (Q1) and third
(Q3) quartiles; whiskers extend to 1.5 times the IQR). Individual data points are
presented using the jitter method. Kruskal-Wallis tests with Dunn posthoc tests
(two-sided) and Benjamini-Hochberg corrections for multiple comparisons were
used to test for statistical significance. *, padjust < 0.05; **, padjust < 0.01, and ***,
padjust < 0.001. Source data are provided as a Source Data file.
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was seen in liver, lung, and brainmetastases (Fig. 1a). However, notable
differences emerged in the frequencies of specific alterations at sec-
ondary sites. For example, brain metastases exhibited a higher pro-
portion of gains at 7p (liver 0.433 [log2 ratio -0.48], lung 0.265 [log2
ratio -1.19] vs. brain 0.606; padjust = 0.025; Fisher exact test with
Benjamini-Hochberg correction), and 12p (liver 0.067 [log2 ratio -1.85],
lung 0.015 [log2 ratio -4.01] vs. brain 0.242; padjust = 7.80 × 10−3).
Moreover, lung metastases showed a significantly lower frequency of
+20p (liver 0.267 [log2 ratio -0.18], lung 0.044 [log2 ratio -2.78] vs.
brain 0.303; padjust = 4.22 × 10−3), among other aberrations.

Chromosomal arm aneuploidies as major source of DNA copy
number aberrations
To address the CI profile in detail, a series of analyses was conducted.
First, we asked about the type of CI (i.e., chromosomal arm aneuploidies
vs. focal subchromosomal arm CNVs). Overall, apparent chromosomal
arm aneuploidies contributed as themajor source of CIs, accounting for
about three-quarters of all CIs (Fig. 1b). Brain metastases exhibited the
highest number of apparent chromosomal arm aneuploidies, while lung
metastases showed the lowest (Fig. 1c). Specifically, the median number
of aneuploidieswas 6.5 (interquartile range [IQR] 6) in livermetastases, 3
(IQR 6) in lung metastases, and 8 (IQR 6) in brain metastases. Statistical
analysis using the Kruskal-Wallis test revealed significant differences
(padjust = 1.35 × 10−18 with Benjamini-Hochberg correction; Supplemen-
tary Table 2). Subsequent pairwise comparisons with Dunn test and
Benjamini-Hochberg correction indicated adjusted p-values of
2.96 × 10−3 for liver vs. lung metastasis, 1.31 × 10−2 for liver vs. brain
metastasis, and 6.94 × 10−6 for lung vs. brain metastasis.

Profile of whole chromosomal arm and subchromosomal arm
copy number aberrations
We next explored the overall pattern of CIs by integrating data from
both whole chromosomal arms and subchromosomal regions. Lung
metastases had the fewest CIs, with a median count of 5 (IQR 7.25;
Fig. 1d), while brain metastases exhibited the highest count, with a
median of 13 CIs (IQR 10). Liver metastases fell in between, showing a
median of 9 CIs (IQR 9). The Kruskal-Wallis test demonstrated
significant differences among these groups (padjust = 6.10 × 10−23;
Supplementary Table 2). Subsequent pairwise comparisons using
Dunn test with Benjamini-Hochberg correction indicated that brain
metastases had a significantly greater number of CIs compared to
both liver metastases (padjust = 5.57 × 10−3) and lung metastases
(padjust = 1.37 × 10−6). These significant differences in total CI counts
were consistent with the observed chromosomal arm aneuploidies.

This pattern was also evident when analyzing both losses and
gains separately. The Kruskal-Wallis tests revealed significant findings
for both categories (padjust = 5.86 × 10−8 for losses and
padjust = 1.86 × 10−5 for gains). In particular, liver metastases had a
median of 4 losses (IQR 5), lung metastases had a median of 3 losses
(IQR6),while brainmetastases had the highestmedianof 6 losses (IQR
7). For gains, liver metastases showed amedian of 4 gains (IQR 5), lung
metastases had 1.5 gains in median (IQR 3.25), whereas brain metas-
tases demonstrated a higher median of 7 gains (IQR 4). With the
exception of losses in liver vs. lung metastases, all pairwise compar-
isons yielded statistically significant results in Dunn tests with
Benjamini-Hochberg correction (Supplementary Table 2). Thus, we
conclude that CRCmetastases exhibit distinct variations in the counts
of individual CI types.

Organotropicmapping identifies site-specific CI patterns in CRC
metastases
Our analysis of DNA copy number alterations in the cohort suggested
distinct patterns of CIs in metastatic CRC dependent on the site of
metastasis. To test whether certain CIs are enriched at specific meta-
static sites, we used a ternary plot, which highlights significant

differences in the proportion of lesions harboring particular imbal-
ances (Fig. 2a).We refer to this visualization as organotropicmap. This
map projects the frequency of observed CIs into a ternary diagram,
with statistical significance assessed by Fisher exact test with
Benjamini-Hochberg correction for multiple comparisons. In this
representation, the size of each circle corresponds to the frequency of
the respective CI within the cohort. The corners of the organotropic
map denote the secondary sites. Organotropic CIs are positioned in
proximity to one of the corners (i.e., metastasis organs), if they are
predominantly associated with a singlemetastatic site; those enriched
at two sites are placed in themiddle between two corners. Conversely,
genetic changes uniformly associatedwith all three sites are situated at
the center of the organotropic map.

A total of sixteen statistically significant CNVs were identified
(Fig. 2a and Supplementary Fig. 5). Notably, none of these organo-
tropicCIswere associatedwith lungmetastasis. NineCIswere enriched
in both liver andbrainmetastasis, specifically +7p, -8p, +8q, +13q, +16p,
+16q, -18p, +20p, and +20q (Fig. 2a,b and Supplementary Fig. 5). These
CIs largely correspond to some of the most frequently observed
chromosomal aberrations in CRC. In addition, seven organotropic CIs
were specifically enriched in brain metastasis (Fig. 2a), with four CIs
identified inmore than 15%of brainmetastases (Supplementary Fig. 5).
These CIs include -3q, +5q, -6q, and +12p. Overall, we conclude that
CRC exhibits a range of organotropic CIs that are preferentially
observed in specific metastatic organs. This organotropic signature of
CRC metastases is visually summarized in Fig. 2c, highlighting the
chromosomal imbalances across autosomes.

Gene-Level Mapping of CNVs in CRC Metastases
To address CNVs in an independent cohort, we took advantage of the
MSK MetTropism cohort28, which comprises a total of 3,548 CRC
samples including 2,401 primary tumors, 624 liver metastases, 146 lung
metastases, and 22 brain/CNS metastases (hereinafter referred to as
brain metastases). The demographics of this cohort are given in Sup-
plementary Table 3, and an overview of the analyses performed is pro-
vided in Supplementary Fig. 1. The overall pattern of chromosomal arm
level gains and losses in theMSKMetTropismcohortwas consistentwith
that observed in the CRCTropism cohort, with +13q, -18, and +20q being
the most common aneuploidies (Fig. 3a). However, as observed for the
CRCTropism cohort, brain metastases showed a higher number of CIs.
Amongst others, -3p, -3q, +5q, +7p, +8q, +12p, and +13qwere enriched in
brain metastases. In line with these observations, the fraction genome
altered (FGA), ameasure of the total proportion of the genome affected
by CNVs, was significantly higher in brain metastases compared to liver
and lung metastases (Kruskal-Wallis test, p=8.23 × 10−9, followed by
Dunn test with Benjamini-Hochberg correction: brain vs. liver,
padjust = 4.66 × 10−9; brain vs. lung, padjust = 5.50 × 10−9). In contrast, there
were no statically significant differences in TMB between the three
metastatic sites (p=0.113, Kruskal-Wallis test; Fig. 3b).

To further characterize these genomic alterations, we performed
a gene-level analysis of the MSK MetTropism cohort. This analysis
revealed a distinct pattern of organotropic CNVs, predominantly
enriched in brain metastases – consistent with the higher FGA
observed in this group and corroborating the findings from our
CRCTropism cohort (Fig. 3c). These enriched genes spanned various
functional categories, including the following (note that genes often
have multiple cellular functions; for simplicity, each gene has been
assigned to only one category):
(I) signaling: e.g., PDGFRB (chromosomal band 5q32), FGFR4

(5q35.2), FLT4 (5q35.3), BRAF (7q34), RET (10q11.21), KRAS
(12p12.1), ERBB3 (12q13.2), FLT3 (13q12.2), FLT1 (13q12.3), and
MAP2K1 (15q22.31);

(II) chromatin organization/transcription: e.g., ARID1A (1p36.11),
SETD2 (3p21.31), PBRM1 (3p21.1), TERT (5p15.33), CDK8
(13q12.13), and CTCF (16q22.1);
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(III) DNA damage response and repair: e.g., MSH6 (2p16.3), BARD1
(2q35), MLH1 (3p22.2), BAP1 (3p21.1), ATR (3q23),MSH3 (5q14.1),
MRE11A (11q21), and ATM (11q22.3), RAD51B (14q24.1), BRCA1
(17q21.31), RAD51C (17q22), CHEK2 (22q12.1);

(IV) cell cycle: e.g., CDK4 (12q14.1),MDM2 (12q15); and
(V) microRNA biology: e.g., DROSHA (5p13.3).

Some organotropic genes, such as AGO2 (8q24.3), were enriched
in both liver and brain metastases. Gains in a single gene, the

transcription factor JUN (1p32.1), were uniquely enriched in both lung
and brain metastases.

Co-occurrence pattern of organotropicKRAS amplifications and
mutations
One of the organotropic genes identified in our analysis is KRAS,
located on 12p12.1, with amplifications significantly enriched in brain
metastases. Organotropic mapping of our CRCTropism cohort
demonstrated a significant enrichment of +12p in brain metastases

lung

liver brain

a

b

c

0.000 – 0.099

0.100 – 0.199

0.200 – 0.299

0.300 – 0.399

0.400 – 0.499

0.500 – 0.599

0.600 – 0.699

0.700 – 0.799

0.800 – 0.899

fre
qu

en
cy

primary CRC lung metastasis

brain metastasisliver metastasis

low number
of CIs

+7p, -8p, +8q, 
+13q, +16p, +16q, 
-18p, +20p, +20q

-3q, +5q, -6p, -6q, 
+7p, -8p, +8q, -8q, 
-10p, +12p, +13q, 
+16p, +16q, -18p, 

+20p, +20q
significance

padjust < 0.05

padjust ≥ 0.05

frequency

0.2

0.4

0.6

+5q

*(1)

-6q +7p -8p +8q

+12p +13q -18p +20p +20q chr.

li
lu
br

*(2) *(3) *(4) *(5)

**(6) *(7)
**(8)

**(9)

***(10)

-17q
-12q

+8p
-13q
+14q

+10p

-20p

+18p

-5p

+6p

-Xp+4q

-11q

-8q

+5q

+Xp

+17p-9p -22q

-6q

+12p
-6p -16q

+6q

+20q

+8q
+15q

+20p

+16p

-18p

+2q
+5p

-9q
+10q

-10p+16q -3q -1q +19q

+12q
+2p

+9q
+11p

-3p
+17q

-10q

-21q

-17p
+7q

+1q

-1p+9p
-15q

+13q -14q

+3q-5q
-4p-18q

-2q
-4q

-8p+7p

+3p
+11q-11p

-7q
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used (*, padjust < 0.05; **, padjust < 0.01, and ***,padjust < 0.001). (1) padjust = 3.80× 10−2;
(2) padjust = 1.14 × 10−2; (3) padjust = 2.48 × 10−2; (4) padjust = 3.80× 10−2; (5)
padjust = 4.10 × 10−2; (6) padjust = 7.80× 10−3; (7) padjust = 3.80× 10−2; (8) padjust = 4.85 ×
10−3; (9) padjust = 4.22 × 10−3; (10) padjust = 3.08 × 10−7. c Graphical summary of
autosomal organotropic CIs with arbitrary intra-organ sites of lesions. CIs observed
in more than 15% of the respective metastases are highlighted in bold. Source data
are provided as a Source Data file.
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(Fig. 2a). This finding was independently corroborated in the MSK
MetTropism cohort, which also showed a significant enrichment of
+12p chromosomal arm aneuploidy in brain metastases (7%, 8%, and
35% for liver, lung and brain metastases, respectively;
padjust = 5.19 × 10−3, Fisher exact test followed by Benjamini-Hochberg
correction; Fig. 3c, right).

Given that oncogenic KRAS mutations are known drivers in CRC,
we next asked whether KRAS amplifications are associated with

oncogenic KRAS mutations. To this end, we analyzed the co-
occurrence of event pairs in the lesions and took advantage of a
probabilisticmodel that accounts for the frequencies of the respective
events. Based on this model, positive and negative co-occurrences,
defined as two events observed together with a significantly higher or
lower frequency, respectively, than assuming a random association,
were visualized in a color-encoded triangular heatmap of Benjamini-
Hochberg adjusted p-values. A significant positive association between
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Fig. 3 | Organotropic genetic signatures of metastatic CRC in the MetTropism
cohort. a Pattern of chromosomal arm aneuploidies in liver, lung, and brain
metastases determined using ASCETS, with n = 792 metastases subjected to ana-
lysis. For each metastatic site, the frequency of the chromosomal arm aneuploidy
(bottom, deletion; top, amplification) is color-coded as shown in the color scale at
the right. b Profile of tumormutational burden (TMB) and fraction genome altered
(FGA) for each liver, lung, and brain metastasis (FGA: p = 8.23 × 10−9 [Kruskal-Wallis
test], padjust = 4.66 × 10−9 for brain metastases vs. liver and padjust = 5.50 × 10−9 for
brainmetastases vs. lungmetastases [Dunn posthoc test with Benjamini-Hochberg
correction]; TMB: p =0.113 [Kruskal-Wallis test]; n = 792). c Organotropic map of
gene-level gains and losses derived from GISTIC 2.0 (n = 792). Significant CIs are
indicated in blue,with the event frequency representedby the bubble size (legend).
The doughnut plot in the top right shows the fraction of metastases with +12p as
determined using ASCETS (n = 758), where the occurrence frequency is color-

encoded according to the legend on the right. (1) padjust = 5.19 × 10−3. d Co-
occurrence probability mapping of genetic changes observed in CRC metastases
(n = 792), with red shades indicating significant positive associations and blue
shades depicting significant negative associations, based on co-occurrence mod-
eling (two-sided), followed by Benjamini-Hochberg adjustment. The inset presents
close-ups of selected genetic changes (amp, amplification; del, deletion; mut,
mutation). e Fraction of metastases (n = 792) harboring KRAS amplifications
determined using GISTIC 2.0 (color-coded according to the legend). (1)
padjust = 3.49× 10−3. f Bar plot depicting the frequency of KRAS amplifications
among metastases (n = 352) with oncogenic KRASmutations. (1) padjust = 0.019; (2)
padjust = 0.019. c, e, fAdjusted p-values were obtained by two-sided Fisher exact test
with Benjamini-Hochberg adjustment for multiple comparisons. *, padjust < 0.05; **,
padjust < 0.01. Source data are provided as a Source Data file.
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KRAS mutations and KRAS amplifications was observed in the co-
occurrence analysis (padjust < 5 × 10−5; Fig. 3d, inset). Notably, KRAS
gains were identified in nearly half of the brain metastases, but only in
about 12% in liver and lungmetastases (padjust = 3.49 × 10−3, Fisher exact
test followed by Benjamini-Hochberg correction; Fig. 3e), in line with
the analysis of +12p chromosomal arm aneuploidy. Further analysis
revealed that the proportion of CRC metastases with simultaneous
KRAS mutation and amplification was significantly higher in brain
metastases compared to liver and lung metastases (liver, 19%; lung,
17%; brain, 50%; padjust = 0.019, each; Fisher exact test with Benjamini-
Hochberg correction; Fig. 3f).

Oncogenic KRAS mutations were found to co-occur with several
other CIs, such as CDK4 amplifications and MDM2 amplifications
(Fig. 3d, inset). As anticipated, a significant negative association was
observed between KRAS mutations and BRAF mutations, and ATR
deletions (Fig. 3d, inset). Similarly, a negative association was noted
between TP53 deletions and MDM2 amplifications. These findings
collectively indicate a significant co-occurrence pattern, suggesting a
unique genomic landscape that may contribute to CRC metastasis.

KRAS CNVs translate into increased KRAS pathway activity
We hypothesized that the co-occurrence of KRAS mutations and
amplifications may facilitate metastatic spread through the rewiring of
the cancer cell pathways, reflected by changes in gene expression pat-
terns. To test this hypothesis, we analyzed the TCGA cohort, which
provides genomic, transcriptomic and proteomic data65,66,68. Patient
characteristics are given inSupplementaryTable4.We identified64CRC
cases exhibiting simultaneousKRASmutation andamplification (Fig. 4a).
Transcriptome analysis revealed significantly higher KRAS expression
levels in CRCs with both KRASmutation and amplification compared to
those with KRASmutation alone (padjust = 1.32 × 10−3, Wilcoxon rank sum
test with Benjamini-Hochberg correction; Fig. 4b), confirming that the
KRAS amplification is linked to increased KRAS expression.

To test whether the significant increase inKRAS expression inKRAS-
mutated and amplified CRCs is also reflected in pathway activity, we
analyzed the levels of activated (phosphorylated) downstream effector
proteinsmitogen-activatedprotein kinase kinase 1 and2 (MAP2K1/2, also
known as MEK1 and MEK2) in CRCs harboring oncogenic KRAS muta-
tions. This analysis utilized reverse-phase protein array (RPPA) data on
160 CRCs, which provide information on both total and phosphorylated
protein levels for selectedcancer-associatedproteins68.OncogenicKRAS
signals through RAF, resulting in the phosphorylation of MAP2K1/2 at
two serine residueswithin the activation loop69.Wehypothesized that, in
addition to KRAS, other factors, including the protein levels of down-
stream target proteins, might influence the amount of phosphorylated
MAP2K1/2. Consequently, we employed multiple linear regression to
model MAP2K1/2 phosphorylation.

KRAS_CNV level correlated with KRAS mRNA expression, necessi-
tating the exclusionof the latter from themodel. The remaining variables
showed no relevantmulticollinearity, with variance inflation factors (VIF)
of 1.008 for KRAS_CNV, 1.009 for pBRAF_S445 (a measure of con-
stitutively phosphorylated BRAF), and 1.016 for pMAP2K1 (total protein).
Data on total MAP2K2 were not available. Our multiple linear regression
analysis confirmed that the KRAS_CNV is a significant predictor of
phosphorylated MAP2K1/2 (p=0.041, likelihood ratio test). In CRC with
oncogenic KRAS mutations, KRAS_CNV positively contributed to pre-
dicting levels of phosphorylated MAP2K1/2, alongside pBRAF_S445 and
pMAP2K1, all of which demonstrated similar importance scores (Fig. 4c).
These findings suggest that the copy number of KRAS translates into
increased KRAS pathway activity at the functional protein level.

Rewiring of CRC cells with simultaneous KRAS mutation and
amplification
Building on our findings that concurrent KRAS mutations and amplifi-
cations result in increased pathway activity, we sought to further

investigate the functional consequences of these genetic alterations.
Specifically, we hypothesized that the concurrent KRAS mutation and
amplificationmay lead to amore accentuated reprogrammingof cellular
pathways, ultimately influencing the aggressive behavior of CRC. To
explore these functional implications, we performed gene set enrich-
ment analysis (GSEA) utilizing oncogenic signature definitions. We were
particularly interested in the M2900 gene set, which represents genes
upregulated in cancer cells overexpressinganoncogenicKRAS form, as it
closely reflects our cohort. Comparing CRC samples with both KRAS
mutation and amplification to those with KRAS mutation alone, we
observed significant enrichment of this gene set in the former (nor-
malized enrichment score, NESGSEA = 1.95, p< 1 × 10⁻⁴, padjust = 0.040;
Fig. 4d). This finding suggests that KRAS mutation and amplification
together contribute to a more pronounced KRAS-driven oncogenic
profile, potentially enhancing the aggressive phenotype of these tumors.

Further analysis of the transcriptome identified 200 significantly
upregulated genes and 156 significantly downregulated genes in CRCs
with concurrent KRASmutation and amplification. The volcano plot of
expressed genes showed a unique peak-like concentration at a fold
change of about 1.25 in the CRC group with both KRAS mutation and
amplification (Fig. 4e). Notably, most upregulated genes shared a
chromosomal location on chromosome 12 (Fig. 4e, inset), suggesting
that other loci on this chromosome may be co-amplified alongside
KRAS due to larger CNVs.

To validate our findings, we performed GSEA using C1 gene set
definitions from MSigDB, which correspond to chromosomal bands.
This analysis confirmed that genes enriched in CRCs with KRAS
mutation and amplification are predominantly locatedonboth armsof
chromosome 12 (Fig. 4f; NESGSEA ranging from 2.80 to 1.95;
padjust < 9 × 10−5 to 0.038), with no other chromosomal bands showing
significance. Enrichedgenes included keyoncogenes suchasCDK4 and
MDM2 (both encoded on 12q), further supporting the notion that the
peak-like asymmetry in the volcano plot is due to co-amplification of
multiple loci on chromosome 12 along with KRAS.

To further characterize the functional landscape of the differen-
tially expressed genes, we first tested the upregulated genes, inde-
pendent of their chromosomal location, for enrichment using Enrichr
with twocomplementary gene set definitions, GeneOntology (GO) and
MSigDBHallmark. This analysis identified several significant biological
processes, including ‘Positive Regulation Of T-helper 17 Cell Differ-
entiation’ (GO:2000321; padjust = 0.019), ‘Negative Regulation Of Pep-
tidase Activity’ (GO:0010466; padjust = 0.027), ‘Regulation Of Cell
Population Proliferation’ (GO:0042127; padjust = 0.042), and ‘Carbohy-
drate Catabolic Process’ (GO:0016052; padjust = 0.042; Fig. 4g).

We further analyzed the upregulated genes separately according
to their chromosomal location, performing separate Enrichr analyses
for genes on chromosome 12 and those outside of it using MSigDB
Hallmark definitions. The enriched gene set for differentially expres-
sed genes on chromosome 12 was the ‘p53 Pathway’ that includes
MDM2 (padjust = 8.18 × 10−3), while those outside chromosome 12
included ‘Angiogenesis’ (padjust = 2.87 × 10−3), ‘Inflammatory Response’
(padjust = 2.87 × 10−3), ‘Epithelial Mesenchymal Transition’ (EMT;
padjust = 2.87 × 10−3) and ‘Apical Junction’ (padjust = 0.014; all p-values
adjusted the Benjamini-Hochberg method for multiple testing). These
biological functions are enriched in processes associated with
hypoxia70–72.

To investigate this association, we examined whether CRCs with
KRAS mutation and amplification demonstrate enhanced hypoxia
adaptation by analyzing the Winter hypoxia score as a measure of
hypoxic response73. Our results indicate that CRCs with concurrent
KRAS mutation and amplification exhibited significantly higher
hypoxia scores compared to those with KRAS mutation alone
(p = 8.75 × 10⁻⁴, Wilcoxon rank sum test; Fig. 4h).

Given our observation of increased hypoxia adaptation in KRAS
mutated and amplified CRC, we explored the potential implications of
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these alterations on hypoxia-related pathways, complemented by
additional medically relevant pathways as implemented in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) MEDICUS gene set defi-
nitions. We hypothesized that highly KRAS-responsive gene sets would
show a systematic increase or decrease in enrichments across the
following groups: (1) CRC with simultaneous KRAS mutation and
amplification, (2) CRCwithKRASmutationonly, (3) CRCwithwild-type

KRAS, and (4) CRCwith KRAS deletion (no KRASmutation). To test this
hypothesis, we performed single-sample gene set enrichment analysis
(ssGSEA), which calculates an enrichment score for each sample-gene
set pairing. In total, 94 gene sets were statistically significant using the
Kruskal-Wallis test with Benjamini-Hochberg correction. Of these,
21 showed statistically significant differences in Dunn test with
Benjamini-Hochberg correction when comparing CRC with KRAS
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mutation and amplification to CRC with KRASmutation alone (Fig. 4i).
The identifiedpathways andprocesses included, amongothers, critical
signaling cascades, cell cycle regulation, transcription, DNA damage
response, as well as glycolysis, a key metabolic response to hypoxia.

Notably, some pathways exhibited a significant gradual increase
or decrease across the four groups, with KRAS mutated and amplified
CRCs consistently showing the highest or lowest enrichment (Fig. 4j).
These pathways included glycolysis (Kruskal-Wallis test
padjust = 2.33 × 10⁻4; Dunn test padjust = 6.19 × 10⁻4 [CRC with KRAS
mutation and amplification vs. CRC with KRAS mutation], 5.27 × 10⁻4

[CRC with KRAS mutation and amplification vs. wildtype KRAS CRC],
and 3.20 × 10⁻6 [CRC with KRAS mutation and amplification vs. CRC
with KRAS deletion]), MDM2/P21/cell cycle G1-S (Kruskal-Wallis test
padjust = 5.61 × 10⁻5; Dunn test padjust = 6.78 × 10⁻3, 1.69 × 10⁻3, and
1.59 × 10⁻7, respectively), and ATR signaling (Kruskal-Wallis test
padjust = 1.32 × 10⁻2; Dunn test padjust = 3.12 × 10⁻2, 7.63 × 10⁻3, and
1.17 × 10⁻3, respectively), among others. Collectively, these results
indicate that CRCs with both KRASmutation and amplification exhibit
a distinct gene expression pattern characterized by enhanced glyco-
lytic activity, disrupted cell cycle control, and impaired DNA damage
response, among other factors, which may, at least in part, be facili-
tated by co-amplified loci on chromosome 12.

Upregulation of HOX genes
Having established the distinct molecular landscape associated with
CRCs exhibiting concurrent KRASmutation and amplification, we next
explored other genetic alterations implicated in metastatic organo-
tropism, specifically focusing onCRCswith deletions of theDNA repair
genesMLH1 andBRCA1, respectively, both ofwhich exhibit enrichment
in brain metastases (Fig. 3c). For MLH1 deletion CRCs, we identified
18 significantly upregulated and 209 significantly downregulated
genes in comparison to control CRC without microsatellite instability
(MSI) phenotype (MLH1 control CRC). The volcano plot revealed a
distinct asymmetric pattern linked to downregulated genes on the 3p
arm,whereMLH1 is located (Fig. 5a)– similar to thepatternobserved in
CRCs with KRASmutation and amplification (Fig. 4e). GSEA confirmed
significant enrichment of genes located in bands 3p14 to 3p26 that are
downregulated in CRC with MLH1 deletion (Fig. 5b; NESGSEA ranging
from -2.88 to -2.15; padjust< 10⁻3 to 3.42 × 10−3).

However, we also identified several genes that are upregulated in
CRCs with MLH1 deletion. A g:Profiler analysis of these differentially
upregulatedgenes showed significant enrichmentofpathways related to
DNA-binding transcription factor activity, embryonic morphogenesis,

and chromatin dynamics (Fig. 5c). In alignment with our g:Profiler find-
ings, differentially expressed genes from the HOX family, including
HOXA1 (located on 7p15.2) and HOXD9 to HOXD13 (located on 2q31.1),
were significantly upregulated inMLH1-deleted CRCs, along with CREB5
(Fig. 5d). Further analysis of the copynumber at theHOXA andHOXD loci
indicated CNVs are not the primary cause of the enhanced expression of
these genes (padjust = 0.757 and 0.941, respectively; Fisher exact test with
Benjamini-Hochberg correction; Fig. 5e). This suggests that theobserved
upregulation of HOX gene expression in CRCs with MLH1 deletion is
likely attributable to transcriptional regulation rather than alterations in
gene dosage.

In our analysis of CRCs with BRCA1 deletion, we identified 152
significantly upregulated and 313 significantly downregulated genes
compared to control CRCs. The volcano plot revealed a similar peak-
like patternassociatedwith genes on chromosome17q,whereBRCA1 is
located (Fig. 5f). GSEA confirmed significant downregulation of genes
encoded on 17q, including other homologous recombination repair
(HRR) genes such as RAD51C, RAD51D, and BRIP1 (Fig. 5g; NESGSEA
ranging from −2.63 to −2.04; padjust < 5 × 10−5 to 0.019). A g:Profiler
analysis of the upregulated genes revealed significant enrichment in
pathways involved in transcriptional regulation, gene silencing, chro-
mosome condensation, WNT signaling, and activation of HOX genes
during differentiation (Fig. 5h). Specifically, we observed significant
upregulation of HOXA3 and HOXA10, alongside a notable down-
regulation of SNX10 (Fig. 5i). Overall, our findings highlight complex
molecular alterations associated with CRCs harboring deletions of
MLH1 and BRCA1, respectively, and point towards an activation ofHOX
genes in these cancers.

Oncogenetic modeling identifies sets of early and late cytoge-
netic events in CRC
The definition of site-specific CIs (Figs. 2a, 3c) suggests that CRCsmay
share common patterns of cytogenetic evolution, despite the inherent
individuality of each tumor’s evolution. We therefore reconstructed
the cytogenetic evolution of CRC, utilizing two approaches: (I)
reconstruction of oncogenetic trees using maximum likelihood esti-
mation, a cross-sectional approach to model common phylogenetic
relationships within the entire cohort or its subsets (Fig. 6) and (II)
phylogenetic tree reconstruction for individual patients through
maximum parsimony using multi-sampling (Fig. 7 and Supplemen-
tary Fig. 6).

Oncogenetic modeling was applied to the three metastatic sub-
groups studied here. Events were classified into nine categories,

Fig. 4 | Rewiring ofKRASmutated and amplified CRCs as indicatedby the TCGA
cohort. aVenndiagram showing the relationship betweenCRCswithKRASmutations
(blue circle) and amplifications (red circles). b Box plot of normalized KRAS expres-
sion levels, with p-values from two-sided Wilcoxon rank-sum test and Benjamini-
Hochberg adjustment for multiple comparison (n=64 and n= 133 for CRC with KRAS
mutation and amplification and CRC with KRAS mutation, respectively). (1)
padjust = 1.32 × 10

−3. c Multiple linear regression indicating KRAS_CNV as a significant
predictor of phosphorylated MAP2K1/2, along with pBRAF_S445, and pMAP2K1 with
similar variable importance scores (ScoreVI), withn= 160.d. Two-sidedGSEAusing the
M2900 gene set, derived from cells overexpressing oncogenic KRAS. The normalized
enrichment score (NES), nominal p-value and false discovery rate (FDR)-adjusted p-
value are shown (n= 197). e Volcano plot of differential gene expression, colored by
chromosomal arm (see legend). The inset highlights genes on chromosome 12. Sta-
tistical significance was assessed using two-sided Wilcoxon rank-sum tests with
Benjamini-Hochberg correction for multiple comparisons (n= 197). The horizontal
dashed line indicates padjust =0.05, while vertical dashed lines correspond to a 1.25-
fold change. f Two-sided GSEA using C1 positional gene sets on chromosomal bands
enriched in KRASmutated and amplified CRCs vs. CRC with KRASmutation (n= 197);
circle size indicates NES and color the FDR-adjusted p-value. An ideogram of chro-
mosome 12 is provided for orientation. g Enrichr analysis of upregulated genes in
CRCs with KRAS mutation and amplification vs. CRC with KRAS mutation (n= 197),

using enriched genes on chromosome 12 and other chromosomes. Circle size reflects
the Enrichr score and color indicates the Benjamini-Hochberg-adjusted p-value. The
GeneOntology andMSigDBHallmark genes sets were tested.h. Winter hypoxia score
comparison using two-sidedWilcoxon rank-sum test (n=45 and n= 106 for CRC with
KRAS mutation and amplification and CRC with KRAS mutation, respectively; (1)
padjust = 8.75 × 10−4). i Heatmap of median ssGSEA scores using KEGG_MEDICUS gene
sets, with Benjamini-Hochberg adjusted p-values fromKruskal-Wallis tests encoded in
grayscale (n=412). m&a, KRAS mutated and amplified CRCs; mut, KRAS mutated
CRCs; wt, KRAS wildtype CRCs; del, KRAS deletion CRCs (without KRAS mutation).
j Box plots of ssGSEA scores for selected gene sets, analyzed by Kruskal-Wallis tests
with Dunn posthoc test (two-sided) and Benjamini-Hochberg adjustment (n=64 for
KRAS mutated and amplified CRCs; n= 133 for KRAS mutated CRCs; n= 181 for KRAS
wildtype CRCs; n=34 for KRAS deletion CRCs (without KRAS mutation); (1)
padjust = 6.78 × 10

−3; (2) padjust = 1.69 × 10−3; (3) padjust = 1.59× 10−7; (4) padjust = 6.19 × 10−4;
(5) padjust = 5.27 × 10−4; (6) padjust = 3.20× 10−6; (7) padjust = 3.12 × 10−2; (8)
padjust = 7.63× 10−3; (9) padjust = 1.17 × 10−3). Analyses compare CRCs with KRAS muta-
tion and amplification to those with KRAS mutation alone (b, d–h) as well as to
wildtype CRC and CRCwith KRAS deletions without KRASmutation (i, j). (b, h, j) Data
are presented with individual data points and a box-and-whisker-plot (thick line,
median; box edges, Q1/Q3; whiskers, 1.5 × IQR). *, padjust < 0.05; **, padjust < 0.01, and
***, padjust < 0.001. Source data are provided as a Source Data file.
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ranging from class 1 (initial events) to class 9 (late events), based on
their distance from the root of the oncogenetic tree. All metastatic
sites shared the loss of 18q as an initial event (Fig. 6). Likewise, losses of
8p and gains of 13q and 20q were among the earliest events in cyto-
genetic tumor evolution of CRC, regardless of the metastatic site. In
contrast, losses of 1p, 5q, and 14q, amongst others, were positioned
further away from the root in the oncogenetic trees, indicating their
occurrence as intermediate to late events in cancer development.

The oncogenetic models indicated site-specific differences in the
relative timing and nature of cytogenetic events. For example, gain of
20p was modeled as intermediate event in liver and brain metastasis,
whereas this event represented a late event in lung metastasis. Con-
versely, loss of 20p was modeled as an intermediate event in lung
metastases but late event in livermetastases.OrganotropicCI enriched

in the brain, such as -3q, +5q, -6q, and +12p, were modeled to be
acquired later during tumor evolution. In contrast, those enriched in
both liver and brain metastases, including +7p, -8p, +8q, +13q, -18p,
+20q, were predominantly positioned early in the oncogenetic tree.
Thus, the CI patterns observed in the CRCmetastasis are also reflected
in cytogenetic evolutionary pathways, revealing both common and
distinct patterns across different metastatic sites.

Cytogenetic tumor evolution in individual patients
Given the individual nature of tumor evolution, we explored whether
the event divisions shown in the oncogenetic trees—reflecting shared
patterns across the cohort—are supported by phylogenetic trees
derived from multiple samples of individual patients. To this end, we
reconstructed phylogenetic trees for individual patients with multiple

Article https://doi.org/10.1038/s41467-025-58413-1

Nature Communications |         (2025) 16:3261 10

www.nature.com/naturecommunications


tumor samples available for multi-regional cytogenetic analysis (Fig. 7
and Supplementary Fig. 6). The coloring of events was based on the
event classes introduced in Fig. 6.

The inferred phylogenetic trees suggested that cytogenetic
divergence between the primary CRC and its metastatic spread may
occur at various time points (e.g., Figure 7c, g, h). In line with the
oncogenetic models (Fig. 6), the loss of the long arm of chromosome
18 is shared among different tumors as a truncal chromosomal aber-
ration in the individual patients’ phylogenetic trees (Fig. 7), indepen-
dent of the site of metastasis. Brain-tropic CIs identified as late events
in oncogenetic modeling (Fig. 6) were preferentially seen in the
branches of the phylogenetic trees of individual patients, supporting
the overall tumor evolution pattern.

To quantify these observations, we divided each phylogenetic
tree into trunk/early, branches/intermediate, and sub-branches/late
categories and determined a CI score for each individual patient. The
analysis revealed that events positioned in the trunk of the individual
phylogenetic trees were enriched in events classified as early in the
oncogenetic models, while events in the branches were enriched in
those attributed as later events in the oncogenetic trees. To assess the
statistical significance of these observations, we employed linear
mixed-effect modeling, followed by post-hoc testing. This model
confirmed significant differences in CI score distributions between the
categories (p = 3.14 × 10−5, likelihood ratio test; padjust = 9.27 × 10⁻3 for
trunk/early vs. branches/intermediate; padjust = 9.27 × 10⁻3 branches/
intermediate vs. sub-branches/late; and padjust = 2.86 × 10⁻7 trunk/early
vs. sub-branches/late, posthoc test with Benjamini-Hochberg correc-
tion; Supplementary Fig. 7). Thus, while the evolution of each tumor is
inherently individual, our analyses suggest that specific chromosomal
aberrations are preferentially observed at distinct stages of tumor
evolution, including early, intermediate, and late phases.

Discussion
Our study shows how site-enriched patterns of DNA copy number
aberrations shape metastatic behavior, providing insights into CRC
progression. Collectively, our findings demonstrate that the DNA copy
number aberrations are not randomly distributed; rather, they exhibit
distinct patterns at different metastatic sites in terms of (I) the total
number of CIs, (II) the frequency and specificity of CNVs, and (III) the
sequential order in which specific CIs are acquired during tumor
evolution. The organotropic CIs we identified showed significant co-
occurrences in probabilistic models. Such co-occurrences would in
principle allow for additive or even synergistic effects in promoting
metastatic spread.

Most organotropic CIs we identified were either brain-and-liver-
tropic or brain-tropic. In this respect, metastatic colonization of the

brain poses a number of challenges, as cancer cells must overcome
barriers such as the blood-brain barrier and adapt to the unique tissue
environment characterized by hypoxia and reduced glucose
concentrations74. To successfully establish tumors in the brain, meta-
static cells likely require additional capabilities beyond those needed
for primary tumor growth andperipheralmetastasis. Theorganotropic
CIs identified in our analysis correspond to larger CNVs, often invol-
ving whole chromosomal arm or whole chromosomal aneuploidies,
that impact numerous genes simultaneously. Such extensive altera-
tions may disrupt or deregulate multiple critical regulatory networks,
potentially granting cancer cells a selective advantage in adapting to
various pressures75. In particular, it has been shown that aneuploidy
inversely correlates with immune infiltration of tumor tissue29,75, and
chromosomal copy number changes affect immune cell function76.
These observations suggest that aneuploidy facilitates escape from
immune surveillance29,75. In addition, aneuploidy appears to modify
drug response in cancer cells77.

One of the organotropic CIs identified in our study is the gain of
chromosome 12p, which we modeled as a late event in oncogenetic
progression and found to be preferentially associated with brain
metastases. This chromosomal arm encodes several critical genes,
including the oncogene KRAS, which is a driver in CRC development33.
A recent meta-analysis indicated that the majority of brain metastases
examined harbor KRASmutations48. Furthermore, previous studies on
CRCs have established an association between gains of 12p and
somatic KRASmutations78, reinforcing our observations. This suggests
that the +12p event – particularly in the presence of oncogenic KRAS
mutations – contributes to the metastatic organotropism observed in
brain metastases.

At the level of protein function, our analysis shows that the KRAS
CNV in KRAS mutant CRCs translates into enhanced KRAS pathway
activity. This finding aligns with our observation showing that KRAS
amplifications further intensify metabolic rewiring in KRAS mutated
CRCs, leading to an upregulation of the glycolytic pathway, amongst
others. Although glycolysis is less efficient than oxidative phosphor-
ylation in terms of ATP production, it generates crucial biomolecular
intermediates necessary for cell proliferation, thereby supporting
tumor growth79,80.

A pivotal player in this metabolic adaptation is Hypoxia Inducible
Factor 1 Alpha (HIF1α), a master regulator of glycolysis81 that upregu-
lates the expression of glycolytic enzymes82. In this respect, mutant
KRAS enhances HIF1α expression at the transcriptional level83 and also
stabilizes HIF1α by inhibiting prolyl hydroxylases (PHDs), which mark
HIF1α for degradation84. This dual mechanism not only amplifies gly-
colytic flux but also promotes a tumor microenvironment conducive
to survival under hypoxic conditions.

Fig. 5 | Transcriptional profile of CRCs with deletions ofMLH1 and BRCA1 in the
TCGA cohort. a Volcano plot showing differential gene expression betweenMLH1
deletion CRC and MLH1 control CRCs, with genes colored by chromosomal arm
(inset highlights genes on chromosome 3; horizontal dashed line, padjust = 0.05;
vertical dashed lines, 1.25-fold change). Significance was determined by two-sided
Wilcoxon rank-sum tests with Benjamini-Hochberg adjustment (n = 276). b Two-
sided GSEA using C1 positional gene sets indicating that genes encoded on chro-
mosomal arm3p (ideogramon the left) are significantly downregulated inCRCwith
MLH1 deletion compared to MLH1 control CRCs (n = 276). Circle size represents
NES, color indicates FDR-adjusted p-value. c G:profiler analysis of genes upregu-
lated in MLH1 deletion CRCs, categorized by Gene Ontology (GO), including
molecular function (MF), biological process (BP), and cellular component (CC)
(n = 276). P-values are adjusted using the g:SCS method. d Differential gene
expression of theHOXA andHOXD loci and flanking genes, with circle size based on
log2(fold change) and color reflecting Benjamini-Hochberg-adjusted p-values from
two-sided Wilcoxon rank-sum tests (open circles indicate padjust > 0.05; n = 276).
e CNV analysis of the HOXA and HOXD loci (two-sided Fisher exact test with
Benjamini-Hochberg correction; n.s. not significant, (1) padjust = 0.757; (2)

padjust = 0.941; n = 276)). f Volcano plot visualizing differential gene expression for
BRCA1 deletion CRC vs. BRCA1 control CRC (n = 213). Inset shows genes on chro-
mosome 17. Significance determined by two-sided Wilcoxon rank-sum tests with
Benjamini-Hochberg adjustment. g Two-sided GSEA using C1 positional gene sets
for chromosome 17 (ideogram) reveals that genes encoded on 17q are significantly
downregulated in CRCs with BRCA1 deletion compared to BRCA1 control CRC
(n = 213). Circle size represents NES, color indicates FDR-adjusted p-value.
h G:profiler analysis of genes upregulated in BRCA1 deletion CRCs compared to
BRCA1 control CRC (n = 213) with GO, KEGG (Kyoto Encyclopedia of Genes and
Genomes), and Reactome (REAC) pathways (p-values adjusted by g:SCS method).
i Differential gene expression of the HOXA locus and surrounding genes, with the
top showing upregulated genes in BRCA1 deletion CRCs and the bottom showing
downregulated ones; circle size reflects log2(fold change), while color indicates
Benjamini-Hochberg-adjusted p-values from two-sided Wilcoxon rank-sum test
(open circles denote padjust > 0.05; n = 213). Panels a–e compare CRCs with MLH1
deletion to control CRCs, while (f–i) compare CRCs with BRCA1 deletion to control
CRCs. Source data are provided as a Source Data file.
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This adaptative capacity appears to be particularly relevant in the
context of brainmetastases, as previous studies have shown thatHIF1α
levels are significantly elevated in CRC brain metastases compared to
paired primary CRC samples85. In line with increased HIF1α in brain
metastases, we observed a significantly higherWinter hypoxia score in
KRAS mutated and amplified CRC, suggesting that these tumors pos-
sess an enhanced capacity for hypoxic adaptation. Given that the
partial pressure of oxygen (PtO2) in the human brain is relatively low –

estimated at ~20–25mmHg – compared to around 55–60mmHg in the
large bowel, 50–55mmHg in the liver, and over 100mmHg in the lung
alveolus86, we propose that the enhanced hypoxic adaptation in KRAS
mutated and amplified CRC may facilitate colonization and growth of
cancer cells in the brain, thereby contributing to the organotropism
towards the brain.

Moreover, oncogene activation such as resulting from RAS
mutations are well-established inducers of replication stress, which in
turn activates the ATR DNA damage response pathway87. This stress
response serves as an adaptive mechanism, enabling KRAS-driven
cancer cells to tolerate the genomic instability associated with aber-
rant proliferation. However, our findings appear to reveal a seemingly
paradoxical relationship betweenmutated and amplified KRAS and the
ATR damage response pathway in CRC. In particular, our analysis
revealed that the ATR pathway is modestly yet significantly down-
regulated in CRC harboring KRAS mutations and amplifications. The
extent of this ATR pathway suppression may be a crucial factor influ-
encing the behavior of KRAS-mutant cancer cells. When ATR levels are
strongly reduced, the resultant genomic instability can lead to syn-
thetic lethality, wherein the accumulation of unrepaired DNA damage
triggers cell death in these cancer cells88. Conversely, when ATR sup-
pression is moderate, genomic instability may promote tumor devel-
opment in KRAS-mutant cells88. In this scenario, residual ATR activity
may provide sufficient capacity for DNA repair, allowing the cells to
tolerate chromosomal aberrations and eventually benefit from addi-
tional driver alterations for continuation of their malignant progres-
sion. This delicate balance between DNA damage and repair capacity
may drive the evolution of more aggressive cancer phenotypes. Con-
sistently, we observed the highest number of CIs and the greatest FGA
in brain metastases.

Organotropism in cancer is likely influenced by a variety of fac-
tors,withKRASalterations being a significant contributor.Of particular
interest areMDM2 and CDK4, both ofwhich, like KRAS, are encoded on
chromosome 12. We observed a significant enrichment of gains in
MDM2 and CDK4 in brain metastases, suggesting that these alterations
may play a role in organotropism alongside KRAS mutations. This
observation is further supported by our pathway analyses, which
reveal a notable upregulation of theMDM2 pathway in CRC with KRAS
mutations and amplifications. The amplification of MDM2 leads to
dysregulation of the p53 pathway89, while CDK4 amplification enhan-
ces cell proliferation90. Collectively, these genomic alterations may
contribute to the aggressive phenotype observed in brain metastases.

In addition to pathways directly linked to genes encompassed by
CIs, our analysis uncovered also alterations in other biological pro-
cesses, including those involving gene members encoded in regions
not covered byCIs. Notably, we found that deletions of the DNA repair
genes MLH1 and BRCA1 are organotropically enriched in brain metas-
tases. While haploinsufficiency of these genes may contribute to
genomic instability91,92, we also observed significant upregulations of
specific HOX gene sets. In CRCs with MLH1 deletions, there was sig-
nificant upregulation of HOXA1 and HOXD9 – HOXD13, whereas in
instances of BRCA1 deletions, we identified increased expression of
HOXA3 andHOXA10. This suggests a complex regulatory landscape, in
which the transcriptional activation of HOX genes may function as a
metastasis promoting mechanism, operating independent of appar-
ent gene dosage effects.
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The HOX gene family, known for its role in embryonic develop-
ment, appears to be repurposed in the context of tumorigenesis. A
growing body of literature highlights the involvement ofHOX genes in
orchestrating aggressive tumor phenotypes and enhancingmetastatic
capabilities across various malignancies. For instance, HOXD9 has
been shown to significantly enhance critical malignant characteristics
of CRCcells, includingproliferation aswell asmigration and invasion93.
The authors revealed a bidirectional relationship wherein TGF-β1 ele-
vates HOXD9 expression, while HOXD9 promotes TGF-β1-triggered
EMT, a pivotal process that empowers cancer cells to invade and
metastasize93. Similarly, HOXA10 has been implicated in promoting
EMT through the TGF-β signaling cascade94, and HOXD13 is linked to
proliferation and invasion95, reinforcing the notion that HOX gene
dysregulation may contribute to the aggressive behavior of CRC.

In contrast to liver and brain metastases, the only lung-enriched
CNV is a gain of JUN, which is also enriched in brain metastases. JUN
codes for a pro-proliferative transcription factor96 that interacts with the
RAS signaling pathway97. This seems remarkable given the previously
reported increased rate of KRAS mutations in CRC lung metastases98.
The marked underrepresentation of organotropic events in lung
metastases is in line with a recent study45, and it has also been reported
that SRC, localized in chromosomal band 20q11.23, is less frequently
amplified in lung metastases28. Overall, lung metastases showed the
lowest number of CIs in our study. Taken together, these observations
suggest that site-specificity in pulmonary seeding – besides a potential
role of the JUN pathway – may follow other mechanisms that are not
(strictly) dependent on the presence of specific CIs18.

The concept of early metastatic spread in CRC5–7 provides a fra-
mework for these observations.We suggest a model in which the early
spread inherently involves tumor cells at early cytogenetic develop-
mental stages, setting the foundation for distinct metastatic trajec-
tories. When these early-disseminating tumor cells encounter the
oxygen-rich pulmonary microenvironment, they appear capable of
establishing metastases without requiring extensive chromosomal
alterations. The favorable conditions of the lung environment could
enable clonal expansion at a relatively early cytogenetic stage, result-
ing in lung metastases that canmaintain this early cytogenetic profile.
Although this oxygen-rich environment initially seems to offer condi-
tions formetastatic growth, thenotable enrichmentofKRASmutations
in lung metastases28 points to a more nuanced process. Specifically,
KRAS mutations could thereby reduce the selective pressure for
additional chromosomal imbalances. This stands in contrast to liver
and brain metastases, where microenvironmental conditions might
necessitate additional genomic alterations for successful colonization,
in line with the more complex cytogenetic profiles. While our findings
point toward minimal requirements for lung colonization, they do not
exclude the possibility that metastatic cells continue to evolve and
acquire additional chromosomal alterations within the lung micro-
environment, nor do they preclude the successful establishment of
lung metastases by tumor cells with more complex cytogenetic pro-
files. Indeed, our cohort and the MetTropism cohort28 includes lung
metastases displaying such advanced cytogenetic profiles.

Overall, the exploration of organotropic colonization signatures
in metastatic CRC reveals a complex interplay of genetic factors that
influence tumor behavior. Whereas the identified organotropic CIs
suggest a predisposition for growth at specificmetastatic sites, they do
not provide a distinction between CRCs that metastasize and those
that remain localized. This observation aligns with a growing body of
evidence indicating that the genomic profiles of primary CRCs,
regardless ofmetastatic spread, exhibit remarkable similarities in both
mutation and CNV patterns28,99. Notably, only a limited subset of
alterations—such as SMAD4 mutations and MYC amplifications—has
been significantly associatedwithmetastatic CRC28,99. This observation
underscores the need for further investigation of the mechanisms
driving metastasis beyond invasion depths.

One potential approach for distinguishing metastatic potential in
CRCs lies in examining the timing and sequence of acquiring specific
CIs, which may play a critical role in shaping the biological behavior of
cancer cells, including their metastatic potential. This notion parallels
models proposed in the study of myeloproliferative neoplasms, where
the order of mutations influences disease characteristics100. Support-
ing this perspective, recent research focusing exclusively on primary
tumors has identified chromosomal gains at 7p and 8q as early events
in the development of metastatic CRC24. In contrast, these same
alterations were observed as late cytogenetic events in primary CRCs
lacking clinical evidence of synchronous or metachronous
metastases24. This temporal distinction suggests that the early acqui-
sition of chromosomal gains at these loci may favor metastatic dis-
semination and could serve as biomarker for assessing metastatic
potential in CRC. In light of these findings, exploring how early genetic
changes might confer a selective advantage to tumor cells during the
metastatic cascade represents a direction for future research.

In conclusion, our results support a model in which a site-specific
pattern of cytogenetic events and the order in which particular CIs are
acquired contribute to the potential of CRC to colonize particular
secondary sites. Involvement of genes linked to signaling, chromatin/
transcription, EMT, DNA repair and cell cyclemay assist cancer cells to
initiate and maintain a cascade that ultimately favors their survival in
potentially challenging environments at the secondary site. The
observed patterns of co-occurring genomic alterations and gene
expression changes provide insights into the molecular mechanisms
underlying CRC progression and metastasis, potentially offering
approaches for targeted therapies andprognosticmarkers thatpredict
the metastatic potential of CRC. Thus, the differential CIs described
here add a cytogenetic layer to Stephen Paget’s seed and soil
hypothesis13 and link cytogenetic events to the phenomenon of
metastatic organotropism.

Methods
Cohorts
The study was approved by the local ethics committees (University
Medical Center Göttingen, Ludwig Maximilian University of Munich)
and included data published previously60,63. For the original data, the
ethics committee of the University Medical Center Göttingen waived
the requirement for informed consent. Data collection from the MSK
MetTropism28 and TCGA (PanCancer Atlas)65,66 cohorts were collected
by their respective research teams and made publicly available. The
original studies reported that data collection was approved by their
respective ethics committees, with informed consent obtained from
patients. For the CRCTropism cohort, data comprised CI information,
supplemented with the patient’s sex and age at diagnosis as well as
metastasis site. The sex was determined through self-reporting, com-
bined with results from cytogenetic analyses. CIs in primary CRCs and
metastases were determined by comparative genomic hybridization
(CGH)101. Signal profiles were assigned for each chromosome by hier-
archical cluster analysis. Threshold criteria were adjusted for the
signal-to-background ratio to account for differences including tumor
purity. We excluded the chromosomal regions 1p32pter, 13p, 14p, 15p,
21p, 22p, telomeres, and constitutive heterochromatic regions at 1q,
9q, 16q, and Yq from the analysis due to insufficient reliability as
described previously101, as well as individual chromosomal regions that
did not pass quality criteria. Chromosomal arm aneuploidy was
defined as chromosomal gain or loss that apparently encompassed the
entire chromosomal arm29. Short arms of chromosomes 13, 14, 15, 21,
and 22 were not considered for the aneuploidy count. Except where
otherwise stated, aneuploidies and focal CIs were combined in the
analyses. For statistical analysis, only one metastasis per patient was
selected. In cases where multiplemetastatic lesions were analyzed, we
prioritized the selection based on their relative frequency within our
dataset. Specifically, brain metastases were given the highest priority
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due to their lower occurrence in the cohort, followed by lung metas-
tases, and subsequently liver metastases. This prioritization ensured
that our analysis reflected the characteristics of less common meta-
static sites. When multiple metastases were present in the same loca-
tion, we selected the one with the lowest number of CIs for analysis.
This selectionwas based on the hypothesis that themetastasiswith the
fewest CIs might represent a state closer to the minimum genomic
alterations potentially associated with metastatic spread.

The NGS-based MSK MetTropism cohort28 was selected as inde-
pendent cohort. Identified single/multi-nucleotide variants and indels,
segmented copy number alterations (with subtraction from matched
normals), the TMB, FGA, MSI score and clinical data were retrieved
from cBioPortal102,103. The resource OncoKB104 was used to classify
mutations according to oncogenic potential. Only mutations listed as
‘oncogenic’ or ‘likely oncogenic’ were considered. Aneuploidies were
determined by ASCETS105 version 1.0 using default parameters. Gains
and losses were analyzed using GISTIC 2.0106 with a threshold for copy
number amplifications and deletions of 0.3 and a q-value threshold of
0.05, conducted using GenePattern107. Only genes included in theMSK
gene panel were considered in the analyses on the gene level. In
addition, we obtained genomic and transcriptomic data from the
TCGA project (PanCancer Atlas)65,66. The data, encompassing cancer
subtype data, somatic mutations, CNVs, aneuploidies, transcriptomic
profiles derived from RNA sequencing, mRNA expression z-scores
relative to diploid samples, methylation data, MSIsensor108 scores, as
well as Winter hypoxia scores were accessed through the Genomic
Data Commons Data (GCD) Portal109, cBioPortal102,103 as well as from a
previous study110. CRCs classified asPOLE subtype or unknownsubtype
were excluded.

Functional proteomics data
RPPA data68 on TCGA cancer samples were downloaded from the GDC
data portal. Protein data included in the analysis were required to have
successfully passed quality control (validation status ‘valid’).

Co-occurrence modeling
The R111 package cooccur112 (version 1.3) was used to derive a prob-
abilistic model of co-occurring CIs in CRC metastases. P-values
obtained from the analyses were adjusted for multiple testing using
the Benjamini-Hochberg method113. Co-occurrences are represented
using a color scale: significant positive associations are indicated with
shades of red, while significant negative associations are depicted in
shades of blue. Associations that were not statistically significant and
combinations that were unavailable are left blank.

Organotropic mapping
Data were visualized in a ternary plot using the R package ggtern114

built 3.5.0. A minimum occurrence threshold of three times was
established for CI events to be included in the analysis. The relative
frequency of each event observed in the cohort was calculated for the
given metastasis site, and used to position the data point for each
chromosomal arm in the organotropic map. The relative frequencies
of each chromosomal aberration in the cohort were used to set the
diameter of the respective bubble. To assess the statistical sig-
nificance, two-sided Fisher exact tests, followed by p-value correction
for multiple testing using the Benjamini-Hochberg method113 were
computed. Statistically significant chromosomal aberrations were
defined as organotropic aberrations.

Transcriptome and pathway analysis
For identification of differentially expressed genes, transcriptomic
data were processed using edgeR115 package version 4.0.3. For chro-
mosome annotation, the package Organism.dplyr version 1.30.1 was
used. Differential gene expression analysis was analyzed using two-

sidedWilcoxon rank-sum tests with Benjamini-Hochberg adjustment116

to compare the following CRC groups:
(I) KRASmutation and amplification;
(II) KRASmutation;
(III) KRAS wildtype;
(IV) KRAS deletion (but no oncogenic mutation);
(V) MLH1 del: MLH1 deletion, but no pathogenic mutation inMLH1,

MSH2, MSH6, PMS2, no deletion ofMSH2, MSH6, PMS2, noMLH1
methylation defined as beta value < 0.3117, no low expression of
MSH2, MSH6, and PMS2 defined as mRNA expression z-scores ≥
mean – one standard deviation (SD);

(VI) MLH1 control: no pathogenic mutation and no deletion in the
genesMLH1,MSH2,MSH6, and PMS2, no methylation defined as
beta value < 0.3117 and no low expression defined as mRNA
expression z-scores ≥mean – one SD,MSIsensor score < 3.5, not
classified as MSI in cBioPortal;

(VII) BRCA1 del: BRCA1 deletion, but no pathogenic mutation in
BRCA1, BRCA2, PALB2, BARD1, no deletion of BRCA2, PALB2,
BARD1, no low expression of BRCA2, PALB2, BARD1 defined as
mRNA expression z-scores ≥ mean – one SD, MSIsensor score
< 3.5, no MLH1 methylation defined as beta value < 0.3117;

(VIII) BRCA1 control: in the genes BRCA1, BRCA2, PALB2, RAD51C,
BARD1 no pathogenic mutation and no deletion, no low
expression defined as mRNA expression z-scores ≥ mean – one
SD, MSIsensor score <3.5, noMLH1methylation defined as beta
value < 0.3117.

Differential gene expression data were visualized using volcano
plots, with data points colored according to their respective chromo-
somal arms. Differentially expressed genes were defined using the
following cut-offs for the log2(fold change) and statistical significance:
1.25-fold upregulation or downregulation and padjust < 0.05. For
enrichment analyses, the following packages and parameters
were used:
(I) Enrichr118: background gene list used, gene set definitions:

GO119,120, and MSigDB Hallmark121,122;
(II) GSEA version 20.4.0123, conducted in GenePattern107: permuta-

tion type: phenotype, scoring scheme: weighted, metric for
ranking genes: Signal2Noise, normalization mode: meandiv,
randomization mode: no_balance, gene set definitions:
MSigDB121,122;

(III) ssGSEA version 10.1.0124, conducted inGenePattern107: weighting
exponent 0.75, gene set definitions: MSigDB121,122;

(IV) g:profiler version e111_eg58_p18_f463989d125: organism: homo
sapiens, gene set definitions: GO119,120, KEGG126, and Reactome127.

Oncogenetic tree models
Oncogenetic tree models derived by maximum likelihood estimation
were computed using the R111 package oncomodel version 1.0128. The
most common CIs found in the respective CRC metastasis type were
considered for tree modeling. Chromosomal aberrations were
grouped innine classes according to their distance from the root of the
oncogenetic tree (equal distances).

Phylogenetic tree reconstruction using multi-region analyses
For patients with available CI data from multiple samples (primary
CRC and at least one metastasis), CI events were encoded as
discrete data. These data were then analyzed to infer phyloge-
netic relationships using the maximum parsimony method, as
implemented in the software suite PHYLIP129 version 3.697. The
resultant phylogenetic trees were visualized using FigTree (ver-
sion 1.4.4; http://tree.bio.ed.ac.uk/software/figtree/). CIs were
color-encoded according to their classification within the
oncogenetic trees.
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Data modeling
To investigate the relationship between KRAS copy number and
MAP2K1/2 phosphorylation in KRAS-mutated CRCs, we employed a
multiple linear regression model. The response variable in our model
was the level of phosphorylated MAP2K1/2, which serves as a marker
for MAP2K1/2 activation. Our primary predictor of interest was the
copy number of KRAS (KRAS_CNV). Additionally, we included two
other predictors: the total protein level of MAP2K1 (pMAP2K1) and the
level of phosphorylated BRAF at serine 445 (pBRAF_S445), which
serves as an indicator of BRAF. For linear regression modeling, the lm
function implemented in the R package stats (built 4.3.1) was used. The
significance of the KRAS_CNV effect was assessed using a likelihood
ratio test comparing the full model to a reduced model without the
KRAS_CNV term. We checked for multicollinearity among predictors
using VIFs calculated with the car package (version 3.1.2). Variable
importance was assessed using the vip package (version 0.4.1). Model
diagnostics, including residual plots and tests for normality and
homoscedasticity, were performed using base R functions and the
lmtest package (version 0.9.40). To assess the evolutionary trajec-
tories, we calculated CI scores, which correspond to the average of the
CI event categories derived from the phylogenetic trees. Linearmixed-
effect modeling was conducted using the package lme4130 (version
1.1.35.5), with tumor evolutionary step as fixed effect and tumors as
random effect to analyze CI scores. Post-hoc analyses with Benjamini-
Hochberg adjustment113 were performed following the modeling.

Further statistics, reproducibility and data visualization
Statistical analyses were performed using two-sided tests. The Wil-
coxon rank-sum test with continuity correction, Kruskal-Wallis tests
with Dunn post-hoc tests and Fisher exact test for contingency tables
were used, as indicated. To address multiple testing, p-values were
corrected using the Benjamini-Hochberg procedure113. The sig-
nificance level was set atp < 0.05 (when applicable, after correction for
multiple testing). The statistical environment R111 (version 4.3.3) was
used for statistical analysis anddata visualizationusing ggplot2 version
3.5.1. No statistical method was used to predetermine sample size. No
data that passed quality control were excluded from the analyses. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The previously published CGH data60,63 comprise chromosomal
imbalance profiles indicating net clonal changes, characterized by
regions of chromosomal losses, gains, and amplifications at the chro-
mosomal band level, accompanied by basic demographic information
including sex and age. The MSK MetTropism publicly available data28

used in this study are available in the cBioPortal database (https://
www.cbioportal.org) under accession code MSK MetTropsim. The
TCGApublicly availabledata65,66,68 used in this study are available at the
GDC Portal (https://portal.gdc.cancer.gov) under accession codes
TCGA-COAD and TCGA-READ and cBioPortal under accession code
Colorectal Adenocarcinoma (TCGA, PanCancer Atlas). The remaining
data are available within the Article, Supplementary Information or
Source Data file. Source data are provided with this paper.
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