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Photon-efficient camera with in-sensor
computing

Yanqiu Guan1, Haochen Li1, Yi Zhang 2, Yuchen Qiu1, Labao Zhang 1,3,4 ,
Xiangyang Ji 2 , Hao Wang 1,3, Qi Chen1, Liang Ma1, Xiaohan Wang1,
Zhuolin Yang1, XuecouTu 1,3, QingyuanZhao 1, Xiaoqing Jia 1,3, JianChen 1,
Lin Kang1,3,4 & Peiheng Wu 1,3

Image sensors with internal computing capabilities fuse sensing and com-
puting to significantly reduce the power consumption and latency of machine
vision tasks. Linear photodetectors such as 2D semiconductors with tunable
electrical and optical properties enable in-sensor computing for multiple
functions. In-sensor computing at the single-photon level is much more
plausible but has not yet been achieved. Here, we demonstrate a photon-
efficient camera with in-sensor computing based on a superconducting
nanowire array detector with four programmable dimensions including pho-
ton count rate, response time, pulse amplitude, and spectral responsivity. At
the same time, the sensor features saturated (100%) quantum efficiency in the
range of 405–1550 nm. Benefiting from the multidimensional modulation and
ultra-high sensitivity, a classification accuracy of 92.22% for three letters is
achieved with only 0.12 photons per pixel per pattern. Furthermore, image
preprocessing and spectral classification are demonstrated. Photon-efficient
in-sensor computing is beneficial for vision tasks in extremely low-light
environments such as covert imaging, biological imaging and space explora-
tion. The single-photon image sensor can be scaled up to construct more
complex neural networks, enabling more complex real-time vision tasks with
high sensitivity.

Traditional image sensors and computing units are separated.
Therefore, a large amount of data obtained by the image sensor
must first be converted into digital signals through analog-to-digital
conversion and temporarily stored in the memory, and then trans-
ferred to the local computing unit or cloud computing system. This
process leads to high power consumption and latency. Emerging in-
sensor computing1,2 can alleviate the above problems. With the in-
sensor computing architecture, a single reconfigurable sensor or
multiple interconnected sensors can directly sense and process
information, which eliminates a large amount of redundant data
transmission and integrates sensing and computing functions3–6. At

present, in-sensor computing based on two-dimensional material
photodetectors have achieved great results, such as image
classification7, spectral resolution8, motion perception9, and image
preprocessing10–12. However, current in-sensor computing is gen-
erally based on sensors in linear working mode with low sensitivity,
requiring a long integration time to achieve desired results. The
problem will be even worse in low-light environments. Increasing
the sensitivity of in-sensor computing to the single-photon level is
beneficial for improving photon utilization, thereby simplifying
vision tasks in extremely low-light environments, such as covert
imaging13, biological imaging14,15, and space exploration16,17.
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Among existing image sensors, single-photon detectors are
undoubtedly the most photon-efficient, especially the super-
conducting nanowire single-photon detector (SNSPD) that has devel-
oped rapidly in the past 20 years. SNSPD has the advantages of high
detection efficiency (>98%)18,19, low dark count rate (10−4cps)20, low
timing jitter (3 ps)21, fast responding speed (<1 ns)22, and wide operat-
ing band23,24 (ultraviolet to mid-infrared). Based on various multi-
plexing schemes, SNSPD arrays have recently expanded from 1024
pixels25,26 to 400,000 pixels27.

Here, we demonstrate a photon-efficient camera with in-sensor
computing based on a multidimensional programmable super-
conducting nanowire array that can simultaneously sense and process
images projected onto the chip to realize various vision tasks, such as
image classification, image preprocessing, and spectral resolution.
Two computing architectures of PCR computing are constructed
based on the S-shaped photon count rate (PCR) curve. When the PCR
increases nonlinearly with the bias current, the computing is based on
the total count rate, so that the signal-to-noise ratio is high and col-
lection is convenient. When the PCR is saturated, the response time

and pulse amplitude increase nonlinearly with the increase of the bias
current, the computing is based on the total integrated area of pulses,
which can further improve photon utilization. Photon-efficient camera
with in-sensor computing is expected to be applied in nondestructive
biological imaging and identification. Furthermore, the sensor’s wide
operating band gives it broad prospects in high-precision astronom-
ical detection.

Results
As shown in Fig. 1a, conventional imaging methods require collecting
and storing data from all pixels for postprocessing to achieve various
vision tasks, which is highly redundant. In contrast, the readout signals
of in-sensor computing directly correspond to the results of image
classification, image preprocessing, and spectral classification, which
can reduce the pressure of data readout and postprocessing. Figure 1b
takes image classification as an example to show the principle of in-
sensor computing based on an SNSPD array. Different color maps
correspond to different convolution kernels and the weights of the
convolution kernels correspond to the bias current of different pixels.
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Fig. 1 | Conventional imaging and in-sensor computing architectures.
a Conventional imaging and postprocessing process. b In-sensor computing using
a superconducting detector. The different color maps correspond to different
convolution kernels. The size of the kernel is 5 × 5 ×N, andN represents the number
of multiplexed dimensions. Functions implemented by in-sensor computing
include image classification, image preprocessing, and spectral classification.

c Superconducting nanowire arrays with multiple programmable dimensions,
including photon count rate, response time, pulse amplitude, and spectral
responsivity. d Two different computing architectures, red represents PCR com-
puting and blue represents area computing, and i represents the number of con-
volution kernels.
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The SNSPD array has multiple programmable dimensions (Fig. 1c),
including PCR, response time, pulse amplitude, and spectral respon-
sivity. According to the output signals f1, f2, f3 obtained by loading each
set of kernels, the letter projected on the sensor can be identified. The
bias current is updated during training based on the error between the
label and the output (the training details are shown in Supplementary
Notes 1–4).

A digital micromirror device (DMD) is used to modulate the col-
limated laser to generate different patterns (Fig. S28). Laser is incident
through the bottomwindow, focused and illuminated onto the sensor.
A homemade three-terminal readout circuit is used to load the DC bias
current to the sensor, and then the response signals of all pixels are
synthesized (using multichannel TDC/ADC for data acquisition and
then summing the data) and read out. Figure 1d shows two computing
architectures of PCR andpulse integrated area.CR1 ~CRi correspond to
the readout signals of programmable PCR, A1 ~Ai correspond to the
pulse integrated area based on the programmable response time and
pulse amplitude, and i is the number of convolution kernels.

The superconducting nanowire array consists of 25 pixels, and the
performance of each pixel is consistent. The PCR of the super-
conducting nanowire remains unchanged as the bias current
increases28,29, indicating that the quantum efficiency reaches satura-
tion (100%). As shown in Fig. 2a, b, all pixels of the sensor maintain
saturated (100%) quantum efficiency at wavelengths of 405 nm
(4–8μA) and 1550nm (7.5–8μA). The shapes of the count rate curves
of the 25 pixels are consistent, and the differences in saturation count
rates are caused by the nonuniformity of the light spot during the
characterization process (in subsequent experiments for in-sensor
computing, weuse a light spot with nearly uniform light intensity). The
sensor generates positive and negative pulses (Fig. 2c) respectively
under positive and negative bias currents and their PCRs are con-
sistent. For the incident light at 405 nm,when the bias current is below
4 µA, the PCR increases with the increase of the bias current, which
enables computing based on the programmable PCR. When the bias
current is 4–7 µA, the PCR does not change while the response time
and pulse amplitude increase as the bias current increases (Fig. 2c), so
the pulse integrated area can be used for computing. As the incident
light intensity increases, the photon count of each pixel increases

linearly (Fig. 2d), which is an inherent property of single-photon
detectors.

Image classification
PCR computing is used to achieve 26-letter classification, and the
distribution of bias current after training is shown in Fig. S5. Owing to
the crosstalk between different micromirrors of the DMD, it can be
seen from Fig. 3a, b that the quality of the direct acquisition image of
some letters is poor. The low signal-to-noise ratio makes it difficult to
distinguish some letters, but the overall classification accuracy
(Fig. S6a) is still greater than 90%. When the average photon number
per pixel per pattern (PPP) is 10.9, the classification accuracy of most
letters is above 95% (Fig. 3c).

Further analysis is conducted on the classification of “NJU”. (see
Fig. S2 for more directly acquired images). The background light and
the crosstalk of DMD cause the image to change dynamically and lead
to poor image quality. The peak signal-to-noise ratio between the
acquired image and the projected image is generally around 10dB.
PCR computing only requires a single-channel counter for acquisition.
Fig. S6b compares the classification accuracy when using positive bias
current and using positive and negative bias current. The accuracy of
using positive bias current is higher when PPP is less than 1. However,
after increasing the number of photons, its accuracy is lower than that
of positive and negative bias current and cannot reach 100%. There-
fore, positive and negative bias currents are used in subsequent
computing. The simulation data set and the experimentally acquired
data set are used for training, respectively, to optimize the bias current
matrix (Fig. S6d). The simulation data set simulates noise caused by
background light and light intensity fluctuations. The accuracies based
on the simulation data set and the experimentally acquired data set are
basically consistent, which shows that the generalization ability of the
classification network is great. When PPP is less than 2, the accuracy
corresponding to the experimentally acquired data set is slightly
higher. Although the acquisition of PCR computing is convenient, it
requires multiple pulses to improve the classification accuracy. The
area computing utilizes two programmable dimensions of recovery
time and pulse amplitude, and the weight is reflected on a single pulse
(Fig. S6c). In addition, all bias currents correspond to saturated
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quantum efficiency, so area computing requires less PPP. Figure 3d, e
compares the accuracy of PCR computing and area computing and
finds that area computing requires less PPP for the same accuracy. For
normal acquisition, when PPP is 0.56, the classification accuracy of
area computing is 90.2% (Fig. 3d), and the classification accuracy of
PCR computing is 83.42%. When multichannel acquisition is used to
eliminate the crosstalk signals caused by the optical path (Fig. 3e), the
classification accuracy of both architectures is improved. When PPP is
only 0.12, the classification accuracy of area computing can reach
92.22%. The classification accuracyof area computing shows a step-like
curve as the average photon number changes, whereas the classifica-
tion accuracy corresponding to PCR computing changes smoothly
with the average photon number. In most cases, the classification
accuracy of area computing is better than that of PCR computing for
the same number of detected photons (Fig. 3d, e). When the average
number of photons is very small (Fig. S20), the area computing is
greatly affected by noise photons, resulting in a sharp decrease in
accuracy, and its accuracy will be lower than that of PCR computing.
Figure 3f shows the image collected directly when the PPP is 0.12 (after
eliminating crosstalk, the results without eliminating crosstalk are
shown in Fig. S23). Here, 0.12 PPP corresponds to 9 photons of the
25-pixel array. No letter features can be found in Fig. S23, while some
features can be seen from Fig. 3f, but the letters in both figures cannot

be accurately distinguished by the human eye. The optimized weights
make it possible to classify images on the basis of local features, but
thehumaneye needsmore information to confirm the image category,
which indicates that the photon utilization of in-sensor computing is
greater than that of normal acquisition.

Image preprocessing
In addition to image classification, we demonstrate reconfigurable in-
sensor image preprocessing. The left side of Fig. 4a is the original
projection image, and the right side is the image acquired directly by
the sensor. The intensity of images is related to PCR computing. Due to
the difference in light intensity of each pixel, the image directly
acquired has obvious blocky effects. The reconfigurable convolution
kernel here refers to modulating the PCR of each pixel by varying the
bias current. Three convolution kernels are given in Fig. 4b–d. The
blue/red squares represent positive/negative bias currents and white
square represents no bias current. The colors from light to saturated
represent increasing absolute values of bias currents.We demonstrate
three image preprocessing operations including Gaussian filtering,
edge enhancement, and image sharpening. The results of simulation
and experiment are consistent. The edge enhancement and sharpen-
ing operations partially alleviate the blocky effect of the image. In-
sensor image preprocessing helps save computing resources and

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 63 0 0 0 0 0 0 2 0 0 0 6 0 0 0 0 0 1 0 0 0 8 4 0 16 0
B 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 2 0
C 0 1 75 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
D 0 12 1 54 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0
E 0 2 0 0 97 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 3 0 0 1 92 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
G 3 0 0 0 0 0 86 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K 0 2 0 0 0 0 0 0 0 0 97 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 18 0 0 0 0 82 0 0 0 0 0 0 0 0 0 0 0 0 0
N 10 2 0 0 0 0 0 23 0 0 0 0 4 48 11 0 0 0 1 0 0 0 1 0 0 0
O 0 0 1 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0
P 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 88 0 1 0 0 0 0 0 0 0 0
Q 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
S 0 3 0 0 5 0 3 0 0 0 0 0 0 0 0 0 0 0 89 0 0 0 0 0 0 0
T 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 99 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0
W 1 0 0 0 0 0 0 2 0 0 0 0 0 0 7 0 0 0 0 0 2 0 88 0 0 0
X 0 5 0 0 2 0 0 0 0 0 2 0 9 0 0 0 2 0 0 0 0 0 0 78 2 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
Z 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98
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makes it possible to achieve real-time stylized imaging in extremely
low-light environments. Subsequent optimization of the network and
sensor may enable real-time image denoising and other complex
functions.

Spectral classification
The superconducting nanowire array has intrinsic spectral resolution.
As the bias current changes, the PCR curves of different wavelengths
are different. Figure 4e shows the PCR curves of five wavelengths from
405 nm to 1550nm. In near-infrared, the sensor’s spectral resolution
can reach 20 nm (Fig. 4f), and its resolution can be better after opti-
mizing the optical path. Based on the array device, we only need to
obtain PCRs at a set of bias currents to determine the wavelength of
the incident photon. Figure 4g shows the specifically optimized bias
current matrix. The output signals S1-S5 can be obtained by summing
the PCRs of five pixels in each row. The discrimination matrix (Fig. 4g)
can be obtained by normalizing S1-S5 at different wavelengths. Set the
value greater than 0.4 to 1 and the value less than 0.4 to 0, so that

S1–S5 = 11111 corresponds to 405 nm, S1–S5 =01111 corresponds to
650 nm, S1–S5 = 00111 corresponds to 1064 nm, S1–S5 =00011 corre-
sponds to 1310 nm, S1–S5 =00001 corresponds to 1550 nm. Spectral
classification can be combined with image classification to improve
classification accuracy. Moreover, the introduction of spectral reso-
lution can provide more image preprocessing operations, such as
radiometric correction and hyperspectral remote sensing image
processing.

Discussion
To summarize, we demonstrate a photon-efficient in-sensor comput-
ing camera using a 25-pixel SNSPD. Each pixel of the sensor has satu-
rated quantum efficiency at wavelengths from 405 nm to 1550 nm.
Based on the S-shaped PCR curve, we construct two computing
architectures. PCR computing requires only a single-channel counter
for acquisition. Area computing utilizes two programmable dimen-
sions of recovery time and pulse amplitude, so the number of photons
required for computing is extremely low. When the PPP is only 0.12 in
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area computing, the classification accuracy of the three letters “NJU”
can reach 92.22%. In addition to image classification, we also demon-
strate image preprocessing and spectral classification. The above
operations are all completed inside the sensor, and the serial output
signals are the result we want without postprocessing. The sensor
currently has four programmable dimensions including PCR, response
time, pulse amplitude, and spectral resolution. The intrinsic polariza-
tion response characteristics of SNSPD can be added and all these
programmable dimensions can be jointly optimized to further enrich
the functions of in-sensor computing.

In normal acquisition, each pixel collects all information with the
same photoresponsivity, and the acquired data are weighted during
postprocessing. However, in-sensor computing loads the weights to
each pixel in advance, so the utilization rate of photons under ideal
conditions is higher than that of normal acquisition. In addition, only a
portion of the pixels are working at the same time, resulting in lower
power consumption. We characterize the classification accuracy of
normal acquisition based on the same sensor, and its classification
accuracy is better than that of in-sensor computing (Fig. S21). The
reason for this anomalous result is that the information obtained by
normal acquisition is more complete, and the weights that can be
loaded by postprocessing are more accurate than those by in-sensor
computing. In addition, in-sensor computing is more susceptible to
various types of noise and crosstalk. However, the entire process of
normal acquisition is cumbersome and requires data storage and off-
line postprocessing. By optimizing programmable dimensions to
provide more precise weights in the future, better results than normal
acquisition can be achieved.

For specific tasks, a precoded sensor can be constructed based on
the reconfigurable sensor. Loading optimized weights into the sensor
can improve computing efficiency. We have previously developed a
pulse-encoded SNSPD array30, in which micron inductor lines of dif-
ferent lengths are connected in series to each pixel to change the
kinetic inductance and AC impedance. Therefore, the pulse areas of
different pixels are different under the same bias current. (The circuit
diagram is shown in Fig. S19 and the specific architecture is explained
in SupplementaryNote 9.) In addition, for large-scale array sensors, we
can also use a row-columnmultiplexing31 scheme tomodulate the bias
current, thereby achieving reconfigurable coding with fewer electrical
channels.

In-sensor computing can alleviate the pressure of data readout
and processing of array sensors, but currently, the functions based on
the sensor itself are limited. In the future, we will combine array sen-
sors with on-chip diffraction neural networks32,33 to enrich computing
capabilities. Superconducting optoelectronic synapses34 constructed
by combining SNSPD with Josephson junctions have been proposed
recently. Further combination of our computing architecture with
superconducting optoelectronic synapses35 will be able to achieve
more complex visual functions.

The extremely low operating temperature of superconducting
sensors cannot be ignored, but with the development of refrigeration
technology, the volume and power consumption of refrigeration
equipment have decreased36. With the exploration and development
of new superconductors, the operating temperature of sensors is
constantly increasing37. The development of CMOS-compatible
processes38 and low-temperature CMOS circuits39,40 will make on-
chip signal processing of superconducting sensors more convenient.

Methods
Modeling of the sensor
The response model of the sensor isR x, y, Ið Þ=QE x, y, Ið Þ�
Ab x, yð Þ � C x, yð Þ � S x, yð Þ+B x, yð Þ½ �+DCRðx, y, IÞ, where R is the
response count of each pixel under different bias currents, QE is the
intrinsic detection efficiency (quantum efficiency) of the pixel, Ab is
the light absorption efficiency of the pixel, C is the coupling efficiency

of the entire optical system, S is the number of incident photons, B is
the number of background photons, and DCR is the dark count of the
pixel. x and y represent the positionof the pixel in the array, and I is the
operating (bias) current. Optical path loss and coupling efficiency are
not considered here, so Ab and C are set to 1.

Model of PCRcomputing: PCRðx, y, IÞ=Rðx, y, IÞ

Model of area computing: Areaðx, y, IÞ=Rðx, y, IÞ � Aðx, y, IÞ,
whereA is the pulse area of eachpixel under different bias currents:

Weights of in-sensor computing: Three sets of bias current
matrices (corresponding to the weights of the three channels of the
convolution kernel) are obtained through pretraining of a single-layer
convolutional network. The optimized weight (absolute value) dis-
tribution is 0–1. In the experiments, the loadable weight range of the
PCR computing is 0.2–1, and the loadable weight range of the area
computing is 0.6–1. Therefore, we set all weights in the range of 0.6–1.

The target image can be directly acquired via multichannel
acquisition, so the process of in-sensor computing can be simulated
based on the directly acquired image. As shown in Fig. S21, the clas-
sification accuracies of in-sensor computing and postprocessing after
normal acquisition are compared. The classification accuracy of nor-
mal acquisition is greater, which may be because the information
obtained by normal acquisition is more complete and the in-sensor
computing is affected by the crosstalk signal (area computing) and low
quantumefficiency (PCRcomputing). Owing to the lowaccuracy of the
bias current, there aredifferences between theweights of the PCR/area
computing and the optimized weights. The residual statistics between
the weight matrices of the two computing architectures and the
optimized weight matrix are shown in Fig. S22c. The classification
accuracies corresponding to different weight matrices are compared
(Fig. S22a, b), and it is found that weight differences had little effect on
classification accuracy.

Based on Monte Carlo simulation, a more detailed numerical
simulation of in-sensor computing is shown in Supplementary Note 7.

Device fabrication and characterization
We fabricate a 36-pixel SNSPD array from a 6 nm thin niobium nitride
(NbN) film. The peripheral electrodes [Ti (10 nm)/Au (100nm)] are
prepared using magnetron sputtering and lift-off. Meandering nano-
wires are patterned by electron beam exposure and transferred from
resist to NbNby reactive ion etching. The line width and spacing of the
nanowires are 80 nm and 120 nm, respectively. The SEM image of
nanowires is shown in Fig. S26. As shown in Fig. S27, the super-
conducting critical currents of 36 pixels are uniform. Finally, we select
the 25 pixels in the upper left corner for the experiment.

Electrical measurement
A homemade multichannel bias and amplification circuit is used to
independently operate 25 pixels. In order to facilitate analysis in PCR
computing, a multichannel time-to-digital converter is used to record
the response signals of 25 pixels. For area computing, the 25-pixel
signals are synthesized and collected by an oscilloscope.

Pattern projection
The 405 nm laser passes through the fiber collimator and is irradiated
on the DMD (Fig. S28). The patterns are written into the DMD con-
troller in advance and switched through the control software. The light
spotmodulated by DMD passes through the focusing lens and 405 nm
filter and then illuminates the sensor through the bottom window of
the GM refrigerator. The sensor is mounted on the cold stage with
temperature of 2.3K. Analysis of DMD projection patterns is shown in
Supplementary Note 8.
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Data availability
The data supporting the findings of this study are available within the
article and its Supplementary Information. Source data are provided
with this paper.

Code availability
The code and algorithm in this study are available from the corre-
sponding author upon request.
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