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Direct photo-patterning of halide
perovskites toward machine-learning-
assisted erasable photonic cryptography

Yingjie Zhao 1,7, Mengru Zhang1,7, Zhaokai Wang1, Haoran Li1, Yi Hao1, Yu Chen2,
Lei Jiang 3,4,5, Yuchen Wu 3,4,5 , Shuang-Quan Zang 1 &
Yanlin Song 1,6

The patterning of perovskites is significant for optical encryption, display, and
optoelectronic integrated devices. However, stringent and complex fabrica-
tion processes restrict its development and applications. Here, we propose a
conceptual methodology to realize erasable patterns based on binary mix-
halide perovskite films via a direct photo-patterning technique. Controllable
ion migration and photochemical degradation mechanism of iodine-rich
regions ensure high-fidelity photoluminescence images with different pat-
terns, sizes, and fast self-erasure time within 5 seconds, yielding erasable
photonic cryptography chip, which guarantees the efficient transmission of
confidential information and avoids the secondary leakage of information. The
ultrafast information encryption, decryption, and erasable processes are
attributed to the modulation of the crystallographic orientation of the per-
ovskite film, which lowers the ion migration activation energy and accelerates
the ion migration rate. Neural network-assisted multi-level pattern encoding
technology with high accuracy and efficiency further enriches the content of
the transmitted information and increases the security of the information. This
pioneering work provides a strategy and opportunity for the integration of
erasable photonic patterning devices based on perovskite materials.

Patterning technology of semiconductors based on the top-down
strategy has propelled significant advancement of optoelectronic
integrated devices, such as light-emitting diodes1,2, field-effect
transistors3–5, and photodetectors6,7. However, the top-down
strategy is incompatible with the patterning of solution-
processed semiconductor materials, such as quantum dots,
organic semiconductors, and halide perovskites, which can
damage the physical and chemical properties of the material,

sacrificing the optoelectronic performance of the devices8–11. For
the patterning of such materials, a series of solution processing
methods have been developed, such as inkjet printing, stencil-
assisted printing, and dip-pen printing12–14. Among them, per-
ovskite materials have been exploited in the field of patterned
optoelectronic devices owing to their excellent optoelectronic
performance, solution processing, diverse crystal structures, and
high photoluminescence quantum yield, but they still suffer from
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trade-offs in low processing efficiency, nonuniformity, complex
processes, and high costs, significantly restricting their practical
application15–24.

Lately, the direct laser writing (DLW) technique was successfully
applied to the patterning of perovskite materials, realizing the fab-
rication of functional optoelectronic devices25–29. For example, Gan
and his colleagues realized multicolor fluorescence patterns based
on the DLW technique, which provides insights into antic-
ounterfeiting and steganography30. Furthermore, direct photo-
lithography has also been developed for patterning perovskite
quantum dots with photosensitive ligands, which can crosslink and
thus change the solubility of the quantumdots, providing an efficient
and uniform patterning strategy31–33. Nevertheless, the synthesis of
quantum dots usually undergoes a complicated process of high
temperature and inert atmosphere protection, and its ionic crystal
nature, unstable surface-bonded ligands, tends to produce defects
and sacrifice its photoluminescence properties34. In addition, high-
resolution patterned photolithography processes for quantum dots
usually irreversibly degrade the photophysical properties of the
material and use environmentally unfriendly solvents, further limit-
ing its commercialization32. Therefore, it is urgent to develop an ideal
microscale patterning method for low-cost, high-throughput, high-
resolution patterning fabrication of perovskite materials.

In this work, we first realize erasable photonic patterns with dif-
ferent compositions, colors, shapes, and sizes based on binary mix-
halide perovskite films via a direct photo-patterning technique, yield-
ing erasable photonic pattern encryption and multilevel pattern
encoding technology (Fig. 1a–c). The realization of photonic pattern
encryption information with clear outlines and boundaries is mainly
attributed to the controlled phase separation caused by halide ion
migration and the photochemical degradation of iodine-rich regions,
yielding the photoluminescence difference between the exposed and
unexposed regions (Fig. 1d). Self-erasure of encrypted information
occurs simultaneously with the decryption of the information, which is
attributed to the rapid ion migration and photodegradation modu-
lated by crystallographic orientation. The self-erasure time within 5 s
can effectively prevent secondary leakage of information and ensure
information security. The unusual spectral blue shift phenomenon
arises from phase separation and photodegradation of the iodine-rich
regions. Furthermore, neural network-assisted multi-level photonic
pattern encoding anddecodingwithhigher accuracyandefficiencyare
demonstrated, which further enriches the information content and
increases the security of the information based on photonic crypto-
graphy (Fig. 1e, f). This work provides insight into low-cost and high-
speed self-erasure encryption information technology based on
perovskites.

Results
Direct photo-patterning technique
The simple, low-cost, high-throughput, and high-precision patterning
method is urgently needed for perovskite materials, but fabrication
remains amajor challenge. To address these issues, an unprecedented
patterning technique with a self-erasure function was demonstrated
via controlled ion migration within binary mix-halide perovskite films
based on the direct photo-patterning technique (Fig. 1a, b). The reali-
zation of photon patterns relies on the introduction of a photo mask,
where the hollowed areas allow the transmission of ultraviolet (UV)
light, resulting in the migration of halide ions, and the non-hollowed
areas do not allow the transmission of UV light, preventing the
migration of halide ions, eventually realizing the photonic pattern.
Patterned information is read under UV illumination, while its pattern
information is hidden in the bright field image. The patterned infor-
mation is erased simultaneously with the reading of the information,
thus avoiding the secondary leakage of information (Fig. 1a, c, and
Supplementary Fig. 1). The photochemical reaction mechanism of

patterning is discussed in detail below. The advantages of the self-
erasure photonic patterning technique include three aspects. Firstly,
the low-cost solution processing and fast photonic pattern are highly
compatible with rigid and flexible substrates, favoring the rapid pro-
duction of patterned photonic devices. Secondly, the self-erasure
photonic patterning technique is universally compatible with various
types of mixed-halide perovskite films, enabling the realization of self-
erasure photonic patterning with different perovskite compositions,
shapes, colors, and sizes. Thirdly, the fast self-erasure process and the
encoding of photonic patterns enable the encryption of information,
which significantly improves information security and increases
information capacity, providing a field for photonic devices based on
perovskites. The realization of the pattern information encryption is
mainly attributed to the controlled ion migration and the photo-
degradation of the iodine-rich regions within the binary mix-halide
perovskite films, resulting in the formation and erasure of the
encrypted information.

Crystal facet dependence of ion migration
The fabrication of photonic patterns mainly relies on controlled ion
migration and degradation of iodine-rich regions within the binary
mix-halide perovskite films based on the direct photo-patterning
technique. Under UV illumination, phase separation resulting from
rapid ion migration facilitates fast pattern writing and self-erasure,
yielding high-performance photonic cryptographic chips. The dif-
ferent crystal facets of perovskite usually correspond to different ion
migration velocities due to the different halide ion mobility activa-
tion energy35,36. To evaluate the effect of different crystal facets on
halide ionmigration, the perovskite films with different crystal facets
were fabricated through additive engineering with 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI)
(see Methods section for details). Photoluminescence spectra of
perovskite films processedwith andwithout BMITFSI additive exhibit
small differences (Supplementary Fig. 2). Figure 2a shows the X-ray
diffraction (XRD) patterns of perovskite films processed with dif-
ferent ratios of additives. In contrast to the (100)-dominant crystal-
lographic orientation using pure solvent, the perovskite films present
stronger (110) diffraction peaks with the introduction of the BMITFSI
additive, indicating the successful tailoring of the crystal facets. With
the increased proportion of additives, the perovskite films present
the (110)-dominant crystallographic orientation, accompanied by an
increased full width at half-maximum (fwhm), which can be attrib-
uted to a reduced grain size of perovskite (Supplementary Fig. 3).
Tailoring of crystal facets using different ratios of additives is further
demonstrated by grazing-incidence wide-angle X-ray scattering
(GIWAXS) results, in which the stronger Bragg diffraction spot
assigned to (110) crystal facets occurs using additives (Fig. 2b–d). The
modulation of the crystallographic orientation of the perovskite
films can be ascribed to the fact that the BMITFSI additive is more
adsorbed onto the 110 crystal facets of the perovskite, thus sup-
pressing its growth37,38. Figure 2e and f show the dominant crystal
facets processed by using pure solvent and additive, respectively.
Fabrication of photonic patterns requires dense and uniform per-
ovskite films. The morphology of perovskite films is revealed by
scanning electron microscopy (SEM), optical microscopy, and
fluorescence microscopy. For the pure solvent, the perovskite films
showed discrete island-like morphology with large grain sizes, which
is not favorable for the production of photonic patterns. In contrast,
perovskite films fabricated by the introduction of additives show a
denser film morphology with a smaller grain size, which is consistent
with XRD results (Fig. 2g, h, and Supplementary Fig. 4).

Then, we investigated the ion migration velocity of different
crystal facets in binary mix-halide perovskite films by monitoring the
photoluminescence spectral evolution under UV illumination and
measuring the steady-state I-V curves. Compared to pure bromine
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perovskite film, the diffraction peaks of bromine-iodine-doped per-
ovskite films are blue-shifted, indicating the success of ion exchange
(Supplementary Fig. 5). Furthermore, the denser filmmorphology and
the same tailoring effect of the crystal facets has also been demon-
strated in binary mix-halide perovskite films by the introduction of
BMITFSI additives (Supplementary Figs. 6–9). Under continuous UV
illumination, the mix-halide perovskite films with (110)-dominant
crystallographic orientations show faster color changes, indicating a
faster ion migration rate (Fig. 2i, j, and Supplementary Fig. 10). Ion
migration usually leads to large hysteresis phenomenon for the I-V
curves39,40. Supplementary Fig. 11 shows the logarithmic I-V curves
under forward sweep and reverse sweep, and the films with (110)-
dominant crystallographic orientations show a larger hysteresis, fur-
ther illustrating the more severe ionic migration phenomenon. To

explain the differences in ion migration rates for different crystal
facets,we systematicallymeasured the ionmigration activation energy
of perovskite single-crystal with different crystal facets by the
temperature-dependent conductivity measurements (details shown in
Supplementary Figs. 12–15 and Supplementary Notes S1, S2)41,42.
Compared to the Ea value of 0.31 eV of the (100) crystal facet, a lower
Ea value of0.16 eV of the (110) crystal facetwas demonstrated, which is
close to previously reported literature43,44. Furthermore, the ion
migration activation energy on the different crystal facets were cal-
culated based on DFT calculation, which is well in agreement with the
experimental value (Fig. 2k–n, and Supplementary Fig. 16). Overall, in
contrast to the (100) crystal facets, the (110) crystal facets have a
smaller ion migration activation energy, thus leading to their higher
ion migration rate (Fig. 2m, n).
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Photochemical reaction mechanism of patterning
Given that the MAPbBr3 perovskite films with (110)-dominant crystal-
lographic orientations have higher ion migration ability, thus we
choose them as the component of the photonic patterns. Then, we
systematically analyzed the photochemical reactionmechanism of the
patterning. To investigate the effect ofmethylammonium iodide (MAI)
concentrations on the binary mix-halide perovskite films, absorption,
and photoluminescence spectrum with different MAI doping con-
centrations under UV irradiation weremonitored. The absorption and

the photoluminescence spectrum of the perovskite film undergoes a
significant redshift with the increased doping concentration of the
MAI, which can be attributed to the introduction of iodide ions,
reducing the bandgap of the perovskite film (Fig. 3a, b). The Com-
mission Internationale de L’ Eclairage (CIE) coordinate plot shows
more clearly the change of photoluminescence spectrum under UV
irradiation (Fig. 3c). The corresponding photoluminescence photo-
graphs also showed a noticeable red shift with the increased MAI
concentration, indicating the success of ion exchange (Supplementary
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Fig. 17). Furthermore, no obvious morphological difference is
observed in the optical photographs before and after the ion
exchange, indicating that the ion exchange is a mild and non-
destructive process, providing guarantees for patterning (Supple-
mentary Fig. 18).

Figure 3d shows the photoluminescence images of MAPbBr3
perovskite films doped with the different MAI concentrations under
different UV irradiation times. At low doping concentrations, the
photoluminescence intensity of perovskite films increases accom-
panied by a blueshift with the increased UV irradiation time, which is
mainly attributed to the rapid ionic migration under UV irradiation,
leading to the redistribution of the bromine and iodine phases, and
hence the spectral change. With the increased doping concentration,
the blue shift rate of the perovskite films decreases until no blueshift
occurs, mainly because the entire film becomes an iodine-rich phase
and thus will not degrade completely (Fig. 3d)45. Under the ion doping
concentration of 0.1mg/ml, the fastest photoluminescence blueshift
time is less than 5 s, providing a guarantee for fast self-erasure pho-
tonic cryptography. Meanwhile, no morphology changes were
observed (Supplementary Fig. 19). Generally, the phase separation will
result in a red shift of the photoluminescence peaks, however, no red-
shifted photoluminescence peaks were found for low MAI concentra-
tions, which can be attributed to the degradation of the iodine-
enriched phase in the process of phase separation, and thus the
spectra are always blue-shifted45. For high MAI concentrations, no
blue-shiftedphotoluminescence is attributed to the inhibitionof phase
separation and theminor decomposition of the iodine-richphase, thus
there is no difference in the photoluminescence photographs (Fig. 3e).
Overall, the photoluminescence spectra of the perovskite films can be
controlled by regulating the doping concentration of the MAI salt and
the time of UV irradiation for producing high-contrast patterns.

To deeply investigate the origin of the photoluminescence blue
shift after phase separation, i.e., the disappearance mechanism of
photoluminescence at longer wavelengths, we carried out a thorough
analysis. First, the mix-halide perovskite films with an MAI concentra-
tion of 0.1mg/ml were fabricated. Figure 3f shows the evolution of the
absorption spectra under different UV illumination times. Under short-
termUV irradiation, the enhanced absorption at longer wavelengths is
attributed to the generation of iodine-rich phases arising from the
onset of phase separation. With the increased UV irradiation time, the
absorption intensity at long wavelengths starts to decrease, which can
be attributed to the degradation of the iodine-rich region. The
decreased photoluminescence intensity at long wavelengths and
enhanced photoluminescence at short wavelengths further demon-
strate the phase separation and degradation process of mix-halide
perovskite films, which is consistent with the absorption results
(Supplementary Fig. 20). Because the size of the grains within the
polycrystalline film is small, it is difficult to observe the phase
separation and decomposition process in the iodine-rich region using
in situ optical characterization, so we fabricatedmix-halide perovskite
single crystals with a size of roughly 10 micrometers (Supplementary
Figs. 21 and 22). Under continuous UV irradiation, a clear phase
separation process was observed with iodine-rich edge regions and
bromine-rich interior regions, which is consistentwith reported results
in the literature46. Furthermore, we found the disappearance of the
iodine-rich regionwith the increased UV irradiation time, which can be
attributed to the photodegradation of the iodine-rich phase (Fig. 3g)45.
Phase separation and decomposition processes were also demon-
strated by the photoluminescence spectra (Supplementary
Figs. 23 and 24).

Finally, we elucidate the underlying mechanism for the photo-
degradation of perovskite films using Fourier Transform Infrared
spectra (FTIR) and XRD characterization. As shown in Supplementary
Fig. 25, the N-H stretch vibration and C-H bend vibration intensity
within the mix-halide perovskite films are noticeably reduced after UV

illumination, revealing the deprotonation reaction of the CH3NH3
+

ions, which has been demonstrated in previously literatures47,48. The
attenuated diffraction peak intensity of (110) crystal facet and dif-
fraction peak appearance of lead iodide after UV irradiation further
indicate the photodegradation of mix-halide perovskite films (Fig. 3h).
The diffraction peaks shifting to a larger diffraction angle also indi-
cates the decomposition of the iodine-rich phase, which leaves amore
stable bromine-rich phase perovskite. Under UV irradiation, the
decomposition mechanism and the corresponding microscopic ion
distribution ofmix-halide perovskitefilm are shown in Fig. 3i, j. Overall,
the decomposition of the mix-halide perovskite film can be attributed
to the deprotonation reaction of the CH3NH3

+ ions under UV irradia-
tion, resulting in the complete decomposition of the perovskite
structure. Controlled ion migration and photochemical decomposi-
tion process within the iodine-rich region providing a guarantee for
the realization of high-fidelity, high-throughput patterns.

Fabrication of photonic pattern and encryption
Given that controlled color transformations canbe realizedwithinmix-
halide perovskite films, self-erasure photonic pattern encryption was
further demonstrated via direct photo-patterning technique (Fig. 4a).
Besides 3D mix-halide perovskite films, the direct photo-patterning
technique is also applicable to 2Dmixed halide perovskite films. Figure
4b demonstrates the universal patterning fabrication based on the
direct photo-patterning technique, which enables the realization of
patterns with different perovskite compositions, shapes, and sizes.
Based on the direct photo-patterning technique, the pattern of the
photoluminescence encryption information is recorded into the
encryption chip. The decryption information is realized by the irra-
diation of UV light without a photo mask, which results in rapid halide
ion migration over the entire exposure area of the encryption chip,
causing the disappearance of the encrypted pattern and realizing the
self-erasure function after decryption. The resolutionof patterning can
reach up to 3175 PPI, which provides the feasibility of high-density data
storage (Supplementary Fig. 26). Figure 4c shows the decryption and
self-erasure process for the letter “ZZU”. The high-fidelity pattern and
the fast disappearance of the encrypted pattern within 5 s indicate the
feasibility of self-erasure photonic pattern encryption. Encryption,
decryption, and self-erasure processes for different-sized patterns and
various numerical patterns from 1 to 9 further demonstrate the uni-
versality of self-erasure photonic pattern encryption (Fig. 4d and
Supplementary Figs. 27 and 28). To demonstrate the reproducible
encryption properties of the photonic cryptographic chip, multiple
encryptions, decryptions, and self-erasure are carried out, showing
excellent reliability, providing a guarantee for the practical applica-
tion (Fig. 4e, f, Supplementary Figs. 29, 30, and details shown in Sup-
plementary Note S3). It’s worth noting that those encryption chips
also present remarkable humidity stability, which can be confirmed
by the photoluminescence spectrum and the encryption patterns
with no obvious difference under different humidity conditions
(Supplementary Figs. 31 and 32). To further improve the humidity
stability of encryption chips, low-dimensional mixed halide perovskite
films can be developed. The direct photo-patterning technique has
also been used for binary mix-halide Sn-based perovskite films, pro-
viding an environmentally friendly platform (Supplementary
Figs. 33 and 34).

Self-erasure multilevel pattern encoding
Despite the fact that photonic pattern information encryption can
transmit basic pattern and letter information, the amount of infor-
mation transmission is limited and does not have anti-counterfeiting
properties. To further enrich the content of the transmitted infor-
mation, a self-erasure quick response (QR) code and multilevel pat-
tern encoding chips with more information and anti-counterfeiting
capability are fabricated. Through decoding information of the
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encoding pattern, the real information can be further decrypted.
Figure 5a shows the schematic diagram of the fabrication of the
multilevel pattern encryption chip and the process of decoding
information. Figure 5b shows the encryption, pattern decryption,
decoding information, and self-erasure process of a photonic pattern
QR code containing the real information of “ZZU”, demonstrating the
feasibility of high-level pattern information encryption. Furthermore,
a novel self-erasure photonic coding technique is realized. Supple-
mentary Fig. 35a presents the binary encryption rules for pattern
information by strictly controlling the length as well as the width of
the photonic pattern. The detailed corresponding relationship
between binary and photonic encoding is shown in Supplementary
Table 1 and Supplementary Table2. To more clearly show the con-
version relationship between the different encoding rules, the cor-
responding code rule for the letter Z is presented (Supplementary
Fig. 35b). The real information “ZZU” was decoded by the photonic
pattern information, enabling the prevention of information deci-
phering and leakage, indicating the excellent security of the self-

erasure photonic information coding (Fig. 5c and Supplementary
Figs. 36 and 37). For more accurate and efficient decoding of pattern
information, neural network-assisted image recognition is employed.
High recognition accuracy ensures accurate decoding of encrypted
information (Fig. 5d–f). Furthermore, clear encryption patterns can
also be obtained by photolithography and direct-writing lithography,
providing multiple fabrication routes for pattern information
encryption (Supplementary Figs. 38 and 39). Overall, the self-erasure
multilevel pattern encoding chip provides insight into the secure
transmission of information.

Discussion
A simple and efficient strategy for the fabrication of self-erasure pho-
tonic cryptographic chips basedonperovskitefilmswasdemonstrated
for the first time via the direct photo-patterning technique. The reali-
zation of fast encryption, decryption, and self-erasure of photonic
pattern information relies on the controlled ion migration within the
binarymix-halide perovskite films,mainly arising from themodulation
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of the crystallographic orientation of the perovskite film, which lowers
the ion migration activation energy and accelerates the ion migration
rate. Furthermore, neural network-assisted multi-level photonic pat-
tern encoding and decoding with higher storage data capacity and
more secure anti-counterfeiting features are realized by customized
encoding rules. To further increase the processing efficiency and
resolution of photonic pattern chips, lasers with micrometer-sized
light spots can be used, enabling the direct encoding of informationon
the photonic chip in future work. This work provides a research per-
spective for smart photonic cryptographic chips andopens aparadigm
for large-scale, high-throughput erasable pattern fabrication of per-
ovskite films.

Methods
Materials
Methylammonium bromide (MABr, 99.9%), Methylammonium iodide
(MAI, 99.9%), Phenethylamine iodine (PEAI, 99.9%), Phenethylamine
bromide (PEABr, 99.9%) were purchased from Advanced Election
Technology CO., Ltd. Leadbromide (PbBr2, 99.99%), Lead iodide (PbI2,
99.99%) were purchased from Xi’an Yuri Solar Co., Ltd. N, N-dime-
thylformamide (DMF, ≥ 99.9%) were purchased from Sigma-Aldrich
company. Isopropanol (C3H8O), 1-butyl-3-methylimidazolium bis(tri-
fluoromethylsulfonyl)imide (BMITFSI, 99.5%) were purchased from
Innochem company. All chemicals were used without further
purification.

Day light

UV light

UV light

UV light

UV light

Self-erasing multilevel pattern encodingDirect photo-patterning

Patterning

Cryptographic chip

UV light

UV light

Self-erasure

Self-erasure

U”Z“Z
Real 

information
 Information 
transcoding 

Pattern decryptionInformation encryption

00 01

10 11

Information encryptionPattern

b

a

100 μm

Pattern 
decryptionInformation encryption Self-erasure

01 01 10 10

01 01 10 10

01 01 0101

c

d e f

Encryption Information

Input 
layer

Hidden 
layer

Neural network
Decoding 
information

Output 
layer

 

 

00

100
Accurary (%)

60 20

01

01

01
10

10

10

11

Bi
na

ry

0 0.5 1.0 1.5 2.0

20

60

100

 

 

Ac
cu

ra
cy

 (%
)

Epochs (x10  )3

“Z”“Z”

“Z”“Z”

100 μm

Day light

Z
Z

Decoding 
information

U
Pattern 

decryption Self-erasureDecoding 
information

UZZ

Fig. 5 | Self-erasure multilevel pattern encoding. a The design principle of self-
erasure multi-level pattern encryption chip. The self-erasure quick response (QR)
code and multilevel pattern encoding chips with more information and anti-
counterfeiting capability are fabricated. The real information can be further
decrypted by pattern under ultraviolet (UV) irradiation before the self-erasure. The
real information of the QR code is the letters “ZZU”. b Photonic pattern encoding

based on QR code. c Encryption, decryption, and self-erasure process of photonic
pattern encoding for “ZZU”. d Neural network-assisted image recognition for
photonic pattern decoding. e Pattern recognition accuracy of encryption infor-
mation during 2000 training epochs. f The recognition accuracy of different binary
encryption pattern information after 2000 training epochs.

Article https://doi.org/10.1038/s41467-025-58677-7

Nature Communications |         (2025) 16:3316 8

www.nature.com/naturecommunications


Fabrication of perovskite films
Toprecise the composition ofMAPbBr3 perovskite, perovskite powder
was first synthesized. The XRD, absorption, and photoluminescence
spectrum indicate phase purity (Supplementary Figs. 40, 41). The
perovskite precursor solution (0.5M) was prepared by dissolving
MAPbBr3 perovskite powder into a solution of DMF. For the perovskite
filmwithout the BMITFSI additive, the perovskite filmswere fabricated
by spin-coating at 3000 rpm for 45 s and annealing under 70 °C for
5minutes. For the perovskite film with different ratios of BMITFSI
additive (volume ratio relative to perovskite solution), perovskite films
were deposited by spin-coating at 3000 rpm for 45 s and annealing
under 70 °C for 5minutes. The PEA2PbI4 (PEA2PbBr4) perovskite pre-
cursor solution (0.5M) was prepared by dissolving PEAI (PEABr) and
PbI2 (PbBr2) into a solution of DMF, and perovskite films were depos-
ited by spin-coating at 3000 rpm for 45 s and annealing under 100 °C
for 15minutes. For binary mix-halide perovskite films, different con-
centrations of MAI dissolved in an isopropanol solution were spin-
coated onto the surface of the perovskite film for an ion exchange
reaction.

Characterization
The crystallinity of perovskite powder and perovskite films was mea-
sured by an X-ray diffractometer (Bruker, D8 focus, Germany). The
morphology of perovskite films was measured by SEM (Hitachi, S-
8010, Japan). Absorption spectra were obtained by UV-vis-NIR spec-
trometer (Cary 7000, Agilent, America). PL spectra were acquired by
Edinburgh Instruments (FLS1000, England). FTIR spectral curves were
acquired by FTIR spectroscopy (Thermo Scientific, Nicolet iS10,
America). The GIWAXS data were obtained at 1W1A Diffuse X-ray
Scattering Station, Beijing SynchrotronRadiation Facility (BSRF-1W1A).
The I-V curves and the temperature-dependent conductivity were
measured using a vacuum manual probe station (Lake Shore) and a
4200 semiconductor characterization system (Keithley, 4200). The
device temperature was controlled with a thermoelectric plate and
liquid nitrogen. The photoluminescence patterns were recorded using
a home-made optical setup.

Calculation
We used the DFT as implemented in the Vienna Ab initio simulation
package (VASP) in all calculations. The exchange-correlation potential
is described by using the generalized gradient approximation of
Perdew-Burke-Ernzerhof (GGA-PBE). The projector augmented-wave
(PAW)method is employed to treat interactions between ion cores and
valence electrons. The plane-wave cutoff energy was fixed to 450eV.
Given structural models were relaxed until the Hellmann–Feynman
forces were smaller than -0.02 eV/Å and the change in energy smaller
than 10-5eV was attained. Grimme’s DFT-D3 methodology was used to
describe the dispersion interactions among all the atoms in adsorption
models. For searching the transition states, we employ the nudged
elastic band (NEB) method as implemented in VASP.

Simulation of neural networks
To simplify the neural network simulation, the image containing the
encrypted pattern information is first sliced into equally spaced units
in the width direction, and no slicing is performed in the length
direction, and each of the sliced strips contains a different color. The
number of stripes within the green pattern corresponds to different
binary codes. The neural networks were composed of the input layer,
hidden layer, and output layer. The sigmoid function unit was used as a
mathematical activation function in neural networks. The back-
propagation algorithm is used for training and recognition processes
in our neural network. The learning rate is set as a fixed value of 0.01.
The training utilized 2000 training images and 1000 test images
dataset at each epoch. After 2000 epochs, the recognition accuracy

was calculated for evaluation. The decoding information can finally be
obtained by identifying the number of stripeswithin the greenpattern.

Data availability
All data supporting the findings of this study are available within the
article and the Supplementary Information file. The raw data are
available via Zenodo at https://doi.org/10.5281/zenodo.14915213.
Source data are provided with this paper (ref. 49). Source data are
provided with this paper.
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