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Brain-wide microstrokes affect the stability
of memory circuits in the hippocampus

Hendrik Heiser 1,2, Filippo Kiessler 3, Adrian Roggenbach 1,2, Victor Ibanez1,2,
Martin Wieckhorst1,2, Fritjof Helmchen 1,2,4, Julijana Gjorgjieva 3 &
Anna-Sophia Wahl 1,2,5,6

Cognitive deficits affect over 70% of stroke survivors, yet the mechanisms by
which multiple small ischemic events contribute to cognitive decline remain
poorly understood. In this study, we employed chronic two-photon calcium
imaging to longitudinally track the fate of individual neurons in the hippo-
campus ofmice navigating a virtual reality environment, both before and after
inducing brain-wide microstrokes. Our findings reveal that, under normal
conditions, hippocampal neurons exhibit varying degrees of stability in their
spatial memory coding. However, microstrokes disrupted this functional
network architecture, leading to cognitive impairments. Notably, the pre-
servation of stable coding place cells, along with the stability, precision, and
persistence of the hippocampal network, was strongly predictive of cognitive
outcomes. Mice with more synchronously active place cells near important
locations demonstrated recovery from cognitive impairment. This study
uncovers critical cellular responses and network alterations following brain
injury, providing a foundation for novel therapeutic strategies preventing
cognitive decline.

Although many stroke survivors develop forms of cognitive decline1,2,
the pathomechanisms how cognitive decline emerges, even if cogni-
tive brain areas are not directly affected, are not understood, nor are
there any specific treatment options available. In particular, the accu-
mulation of multiple, smaller ischemic events—with other obvious
symptoms of stroke, such asmotor impairment lacking—does not lead
to acute cognitive impairment, but cognitive decline develops in
months and years after the ischemic events3. The hippocampus, a relay
station for cognition and memory processing, is particularly suscep-
tible to ischemic events4–6, with neuronal death occurring already after
a brief episode of ischemia7,8. Although this vulnerability of the hip-
pocampus has been discussed in the context of its high plasticity, the
anatomical connection tomany brain areas and its vascularization8,9, it
is not understood how individual neurons and functional networks in

the hippocampus react to brain-wide injuries and how they rewire and
recode to maintain their function. Several types of neurons coding for
distinct memory functions have been identified: O’Keefe and
Dostrovsky10 discovered ‘place cells’ (PCs) in 1971 which respond
specifically to the current location of the animal, but have been also
discussed11 to contain compressed representation of contextual, sen-
sory and episodic experiences during exploration of an environment.
While the importance of ‘place cells’10 for memory formation and
maintenance has been extensively demonstrated, it remains elusive,
how place cells react individually or in ensembles to the induction of
multiplemicrostrokes distributed throughout the brain. Revealing the
functional impact of microstrokes on the single-cell level and on net-
work tuning properties is of high translational value to better link
neuropathological features after ischemic events to cognitive decline
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and to identify new targets for treatment strategies preventing cog-
nitive deficits.

Here, we present an innovative approach, where we studied the
effect of brain-widemicrostrokes on individual neurons and functional
networks in CA1 of the hippocampus in mice performing a cognitive
task. Using chronic two-photon calcium imaging in the hippocampus
in mice navigating in a virtual reality corridor we could follow the fate
of individual neurons in the healthy condition but also several weeks
after the induction of disseminated cerebral microstrokes. We reveal
that brain-wide microstrokes disrupt individual neuronal coding,
functional hippocampal network architecture and induce cognitive
decline. Our findings highlight the importance of understanding fun-
damental reorganization principles in the hippocampus on a cellular
resolution level in relation tomeasurable cognitive deficit parameters:
Analyzing the cellular and network responses after stroke, we could
show that the cognitive outcome of animals is critically related to the
individual stability of place cells or sub-networks of active surviving
neurons with similar spatial tuning to maintain memory function and
prevent cognitive decline.

Results
Microstrokes impair spatial memory and place cell stability
To identify the function of individual neurons during a spatial navi-
gation task, we performed chronic two-photon calcium imaging of
the same hippocampal network in the healthy condition (Fig. 1A) and
after stroke (Fig. 1B). Mice expressing the calcium indicator GCaMP6f
in CA1 were trained to navigate head-fixed in a virtual reality (VR)
corridor (Fig. 1A), while we simultaneously recorded calcium signals
of neuronal populations in CA1 through a chronically implanted glass
window 5 days before and up to 28 days after stroke surgery
(Fig. 1C, D).

We induced microstrokes by injecting fluorescent microspheres
(20 µm diameter) unilaterally in the internal carotid artery, inducing
disseminated microstrokes (Fig. 1B, Figure S1A, B). Microspheres were
found directly visible under the hippocampal window (Figure S1A) in 4
out of 20 animals. We performed histological analysis to identify the
microsphere distribution in the mouse brains (Figure S1B) and to
quantify the lesion volume: Lesion volume andmicrosphere load were
strongly correlated (Spearman’s ρ =0.84, p <0.001; linear regression
model: slope = 0.001, R² = 0.94; Figure S1E). Most microspheres and
lesions were located in the neocortex (spheres: 39.3 ± 2.2%, lesions:
31.3 ± 4.3%), and in the hippocampus (spheres: 13.8 ± 1.7%, lesions:
14.2 ± 3.5%; Figure S1F), but also subcortically, e.g. in the thalamus and
striatum (Figure S1F).

We trained mice to correctly identify four reward zones in the VR
track where they received a water reward (Fig. 1E). While naïve mice
searched for water rewards in the entire corridor, expert mice learned
to lick for water primarily in reward zones ( > 60% licks within reward
zones, Fig. 1E). Microstrokes disrupted this licking pattern so that
animals again randomly licked throughout the track, suggesting that
mice lost the learned ability to locate themselves in the corridor.
Notably, microstrokes did not affect the licking rate itself, as sham and
stroke mice did not show significant differences before and after
stroke induction (Figure S2E, F).

The more microspheres we found post-mortem in the brain, the
worse was the performance of the animals in the VR corridor, parti-
cularly early (within 7 days) after stroke (r = -0.53, p =0.01; Pearson
correlation, Fig. 1F). Similarly, after induction of microstrokes animals
with poor task performance displayed lower mean firing rates of CA1
neurons, a lower place cell ratio (percentage of all imaged cells that
were classified as place cells, see methods), and a reduced stability of
place cells to remain place cells across trials in individual sessions
(“within-session stability”, Fig. 1G). Animals with microstrokes dis-
played only transient, very minor neurological deficits on day 2 after
stroke (Figure S2A, B), whereas we observed no impairment of task-

relevant motor abilities (locomotion, Figure S2C, D; or licking, Fig-
ure S2E) compared to sham animals. A generalized linear model
revealed no significant association between the number of micro-
spheres in a distinct brain region and the cognitive performance in the
VR corridor early after stroke (Figure S1H) or metrics of neural coding
(Figure S1I), suggesting that the number of accumulated microstrokes
and thus the affected brain volume was more critical for the cognitive
performance than the location of individual microstrokes. As our
spatial navigation task involved inparticular visual cues in theVR-setup
to identify reward zones, we also analyzed the relative amount of
microspheres in visual areas (following the Allen Brain Atlas as refer-
ence). We found no significant correlation between the number of
microspheres stuck in visual areas and the task performance after
stroke, suggesting no direct link between damage to the visual system
and task performance (Figure S1G).

Our experimental setup allowed us to track the activity of the
same individual neurons before and after microstrokes for several
weeks while animals performed the spatial navigation task. We could
thus classify neurons according to the stability of their spatial tuning:
We identified stable place cells, whichwere activewhen themousewas
at the same position in the VR during 5 consecutive days pre-stroke,
whereas unstable place cells remapped their spatialfield (Fig. 1H, I).We
could also identify non-coding cells, which did not meet the place cell
criteria12 within imaging sessions (Fig. 1H, I). When we compared the
fractions of these three functional classes across experimental phases
(healthy pre-stroke, early and late after stroke) andbetween stroke and
sham animals (Fig. 1J-L), we found that animals with microstrokes had
significantly fewer stable place cells, both early and late after stroke
compared to sham animals (fraction of stable place cells early after
stroke: Sham: 14.7 ± 3.3% versus Stroke: 2.9 ± 1.3%, p =0.005; fraction
of stable place cells late after stroke: Sham: 24.4 ± 4.5% versus Stroke:
10.8 ± 3.2%, p = 0.025; Fig. 1J). Stroke mice also had significantly more
non-coding cells than sham animals (fraction of non-coding cells late
after stroke: Sham: 64.1 ± 5.5% versus Stroke: 79.3 ± 4.4%, p = 0.046;
Fig. 1L), while the fraction of unstable place cells remained unchanged
for both groups (Fig. 1K), indicating that microstrokes affected the
functional properties of surviving neurons and the stability of spatial
tuning.

Microstrokes induce place cell turn-over
As we had identified a loss of stable place cells after stroke, we next
investigated whether individual surviving neurons had maintained or
switched their functional class for spatial tuning over time from the
healthy to the disease state (Fig. 2A). As functional remapping of hip-
pocampal networks is known to be naturally highly dynamic12–14, we
first quantified the probabilities of place cells and non-coding cells to
be a place cell on the next day in healthy networks, and compared
these to chance level, simulated by a distribution where cell classes
were randomly shuffled, such that a transition occurred more often
than chance given a positive ΔP (with 4P =Ptrue � Pshuf f le), and less
often than chance with a negative ΔP. We found that place cells were
more likely to remainplacecells than chance level, andnoncoding cells
less likely to becomeplace cells than the chance level of 0 (place cell to
place cell (PC-PC) transitions: 13.5 ± 2.4%, p <0.001; noncoding cell to
place cell transitions (NC-PC): -1.3 ± 0.4%, p =0.004; Fig. 2B). Once the
animal learned the task, the corresponding neuronal network con-
solidated. Neurons were attributed to distinct functions within the
network, making it less likely that these cells switch their dedicated
function. We found that microstrokes transiently induced turn-over15

of neurons with dedicated function: While there was a higher prob-
ability in sham animals of place cells to stay place cells and a low
probability of non-coding cells to become place cells over time
(Fig. 2C), in strokemice the probability of place cells keeping and non-
coding cells changing their functional identities were at chance level in
the early phase after stroke (Stroke group early post-stroke: PC-PC
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transitions: 1.4 ± 2.4%, p = 0.580; NC-PC transitions: -0.9 ± 0.7%,
p =0.219; Fig. 2C left), and significantly lower than in shammice (PC-PC
transitions: Sham group versus Stroke group: p <0.001; Fig. 2C left),
indicating that neurons were randomly assigned to different functions
immediately after stroke. Notably, the turn-overwas only transient and
the network re-consolidated during the late post-stroke phase, where
stroke animals had place cells retaining their function above chance
level and non-coding cells switching function below chance level
(Stroke group late post-stroke: PC-PC transitions: 16.2 ± 3.8%,
p =0.004; NC-PC transitions: -0.8 ± 0.3%, p = 0.025; Fig. 2C right),
similar to sham animals and the healthy condition (Fig. 2B).

We next examined the shift of the three identified functional cell
classes (noncoding cells, unstable and stable place cells) when com-
paring the healthy and post-stroke condition (Fig. 1H, I). Indeed, in

sham animals stable place cells (sPC, yellow) and noncoding cells (NC,
grey) preferably maintained their function compared to chance level
(Sham group: NC-NC transitions: 6.8 ± 2.1%, p = 0.009; sPC-sPC tran-
sitions: 14.7 ± 2.2%, p <0.001, Fig. 2D). The transition to other func-
tional classes was less likely (Sham group: NC-sPC transitions:
-6.4 ± 2.1%, p =0.012; sPC-NC transitions: -15.0 ± 1.8%, p <0.001). This
was in strong contrast to stroke animals, where transition probabilities
between all three classes were at chance level early after stroke (Stroke
group: e.g. sPC-sPC transitions: 2.6 ± 1.6%, p =0.134; sPC-NC transi-
tions: -2.8 ± 1.7%,p =0.142, Fig. 2D), and stable place cells retained their
function significantly less often (p =0.004), while becoming non-
coding more often than in sham animals (p <0.001). Interestingly,
sham animals showed a tendency of unstable place cells (uPC, blue) to
turn into stable place cells, indicative of an ongoing functional
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consolidation in the network (Sham group: uPC-sPC transitions:
4.2 ± 1.6%, p =0.027; uPC-NC transitions: -6.9 ± 1.8%, p =0.004,
Fig. 2D). On the long-term, stroke animals appeared to show a trend of
recovering stability, with transition probabilities of stable place cells
becoming similar to sham animals, although individual transitions
were still not significantly different from chance level due to an
increased variance (Figure S3).

Functional stability of spatial coding influences cognitive
outcome
Having identified the loss of stability of spatial coding in surviving
neurons as a major effect after stroke, we next investigated how
important the stability of spatial coding was for the cognitive outcome
of the animals in the spatial navigation task.When comparing the post-
stroke task performance to correctly identify reward zones in the VR
corridor to the pre-stroke level, all stroke mice displayed a significant
cognitive deficit 3 days after stroke ( < 75% below their healthy base-
line, Fig. 3A). However, while some animals recovered from the cog-
nitive deficits within 10 days after stroke (“Recovery” group, Fig. 3A),
this was not the case for other animals that showed a chronic cognitive
deficit (“No-Recovery” group, Fig. 3A). Animals with this chronic cog-
nitive deficit lost a significant fraction of place cells with stable place
fields on long-term compared to sham animals (Stable place cells in
late post-stroke: No-Recovery group: 5.5 ± 2.8% versus Sham group:
24.4 ± 4.5%, p = 0.009, Fig. 3B). Notably, No-Recovery animals had also
significantly larger lesions than Recovery mice in post-mortem histo-
logical analysis (Figure S1D). Animals with a recovery of the cognitive
deficit however, showed only transiently a reduced number of stable
place cells early after stroke (Recovery group: 4.5 ± 2.1% versus Sham
group: 14.7 ± 3.3%, p = 0.050), with the number of stable place cells
increasing again, late post-stroke with no significant difference from
sham animals (Recovery group: 15.1 ± 4.8%, versus Sham group:
p =0.084). These results suggest that the maintenance of individual
place cells to keep their preference for a place field is important for the
cognitive outcome.

We then examined if population activity coding can predict the
position of the animal in the VR corridor before and after stroke16–18. To
investigate whethermicrostrokes affect the quality and stability of this
encoding, we applied a Bayesian decoder to predict the most likely
corridor position at each frame from neural activity of the same
session15,19 (Fig. 3C). The decoder was able to predict the correct
position (Fig. 3D) and detect reward zones (Fig. 3E) significantly above
chance levels in all groups in the healthy condition. However, the
accuracy of the decoder and its sensitivity to predict reward zones

were significantly lower for both stroke groups compared to sham
early post-stroke (Decoder accuracy, Fig. 3D: Sham: 23.8 ± 2.6%,
Recovery: 11.8 ± 0.7%, versus Sham: p = 0.003; No-Recovery: 9.3 ± 1.1%,
versus Sham: p <0.001. Reward zone sensitivity, Fig. 3E: Sham:
85.2 ± 2.4%, Recovery: 72.5 ± 3.9%, versus Sham: p =0.063; No-Recov-
ery: 72.1 ± 1.6%, versus Sham: p =0.002). The decoder showed a sig-
nificantly improved accuracy and sensitivity to predict the animal’s
position for the Recovery group in the late phase after stroke (Accu-
racy: late post-stroke: 21.2 ± 2.0%, versus early post-stroke: p =0.038;
Sensitivity: late post-stroke: 83.5 ± 1.9%, versus early post-stroke:
p =0.045), consistent with the recovery of the cognitive deficits in
these mice.

To further understand the long-term stability of neural network
encoding for spatial information, we adapted the Bayesian decoder
by training it on the last healthy session before stroke and applying it
to all other sessions. This long-term decoder could predict the cor-
ridor positions of sham mice significantly above chance level
throughout the entire experiment (Fig. 3F). However, the ability of
the long-term decoder to predict the position of animals based on
their population activity was abolished for animals with micro-
strokes and particularly for those with a chronic deficit (Fig. 3F,
Decoder accuracy in early post-stroke: Sham: 9.1 ± 1.3% versus No-
Recovery: 2.0 ± 0.4%, p < 0.001; late post-stroke: Sham: 6.4 ± 0.8%
versus No-Recovery: 2.2 ± 0.7%, p = 0.007).

Stability, precision and persistence of functional network
structure are markers for cognitive outcome
We next examined the stability of spatial memory on a network level.
We performed population vector correlation (PVC)15, which quantifies
the stability of the spatial activity of a network across days and can be
visualized in cross-correlation matrices (Fig. 4A top). Whereas sham
animals showed a stable pattern of population activity relative to the
position of the mice in the VR corridor throughout all stages of the
experiment, animals in the No-Recovery group revealed a disturbed
pattern compared to the healthy condition throughout both post-
stroke phases (Fig. 4A). In contrast, the pattern of population activity
recovered 2–4 weeks after stroke for animals in the Recovery group,
consistent with their cognitive recovery in the spatial navigation task
(Fig. 4A). Averaging the cross-correlation matrices across corridor
location offsets yields summary curves that represent the similarity of
neural activity at any two corridor locations with increasing distance
(Fig. 4A bottom), allowing not only to quantify the stability of spatial
information coding in neural populations across time, but also the
spatial specificity and precision of that coding. In sham animals, the

Fig. 1 | Microstrokes impair spatial memory and place cell stability.
A Experimental setup: Mice were trained to navigate in a linear virtual reality (VR)
corridor (4m length) during simultaneous unilateral two-photon calcium imaging
in CA1 of the hippocampus. B Schematic illustration of microstroke induction by
injection of fluorescent microspheres (20 µm diameter) into the common carotid
artery, inducing microstrokes. C Representative two-photon images of the same
field of view (FOV) in CA1 showing GCaMP6f fluorescence before (left) and after
(middle) stroke induction. Damaged tissue overexposed the sensor and is shaded
red. Individual neurons and theirΔF/F calciumfluorescence traces couldbe tracked
over several weeks (right). Landmark blood vessels are marked in red. Scale bars =
25 µm. D Timeline showing the sequence of events of the experiment in days
relative to stroke induction. Chronic two-photon imaging in CA1 was performed
while animalswere navigating in the VR corridor during three experimental phases:
before stroke (“healthy”, ≥−5 to 0 days before stroke), early (0–7 days) and late
( > 7 days – 28 days) after stroke. N = 5 independent experiments were performed
with stroke and sham animals. E Histograms depicting the profile of an example
mouse to lick for a water reward in the VR corridor. Green areas indicate reward
zone locations. F Number of microspheres in the brain plotted against the task
performance (spatial information of lick profile, in bits) during the three phases.
Inset shows Pearson’s correlation coefficients, data points are individual animals in

each stroke phase. “Healthy” represent data points from mice before microsphere
injection serving as controls. G Left: Like F, but task performance plotted against
the percentage of all imaged cells identified as place cells (place cell ratio). Right:
Pearson’s correlation coefficients of task performance with metrics of neural
activity such as the place cell ratio, the stability of neural spatial activity maps
across trials (within-session stability) and the mean firing rate for the three phases.
Error bars represent 95% confidence intervals. H Spatial activity maps of three
exemplary neurons being active at the same corridor location (stable place cell),
different locations (unstable place cell), or at no specific location (noncoding cell)
during four healthy sessions. I Spatial activity maps of neurons imaged onmultiple
days throughout the experiment and sorted into the three functional classes from
H (each row represents an individual neuron tracked before and after stroke).
Boxplots are drawn with the box extending from the 25th to 75th percentiles, with
the centre line at themedian.Whiskers reach to theminimumandmaximumvalues
of the distribution. J–L Percentages of all tracked cells that were classified as stable
place cells (J), unstable place cells (K) and noncoding cells (L). In J–L, statistics were
evaluated using two-way repeated-measures ANOVA with the Greenhouse-Geisser
correction and Tukey-Kramer multiple comparisons test. Asterisks indicate sig-
nificances: *p <0.05, **p <0.01, ***p <0.001.
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matrices and curves showed clear periodic sequences corresponding
to the layout of the VR corridor with repetitive reward zones and inter-
reward zone areas with diverse wall patterns (Fig. 4A). In contrast,
periodicity was lost in No-Recovery mice with only flat population
vector curves after microstrokes (Fig. 4A), while periodicity re-
emerged in animals of the Recovery group. The loss of periodicity in
the No-Recovery mice did not simply reflect changes in behavior
measured in lick rates as shown in Figure S2E, F and Figure S4).

The y-intercept of the population vector curves represents the
correlation of the population activity at the same corridor location on
two different days. It can be interpreted as a measure of the cross-
session stability of the encoded memory (long-term network stability,
Fig. 4A). When comparing the y-intercept between experimental
groups and across time (Fig. 4B), we find that mice in the Sham and
Recovery groups displayed a significant increase in cross-session sta-
bility of the neuronal network over time, suggesting a consolidation of
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network activity for spatial memory (y-intercept change over time:
Sham group: F(1.4,14.1) = 12.50, p =0.002; Recovery group:
F(2.1,8.5) = 6.94, p =0.016; Fig. 4B). In contrast, animals with a chronic
deficit did not show improved cross-session stability over time (No-
Recovery group: F(2.1,6.4) = 1.1, p = 0.405), which instead remained on
a significantly lower level late after stroke (y-intercept in late post-
stroke: No-Recovery: 0.41 ± 0.03; Sham: 0.59 ±0.03, versus No-
Recovery: p =0.003; Recovery: 0.64 ±0.06, versus No-Recovery:
p =0.030; Fig. 4B)

Next, we quantified the ability of the neuronal networks recorded
in CA1 to distinguish nearby corridor location as ameasurement of the
precision of spatial coding. The initial slopes of the mean PVC curves
(Fig. 4A) show the rate at which population activity becomes different
when comparing different locations, with a steeper slope indicating a
higher spatial discrimination and memory precision. We find that

spatial discrimination is strongly disrupted in both stroke groups
immediately after stroke compared to sham (precision in the healthy
versus the post-stroke network activity: Sham: 1.33 ± 0.17; Recovery:
0.49 ± 0.16, versus Sham: p =0.009; No-Recovery: 0.28 ± 0.07, versus
Sham: p <0.001; Fig. 4C). However, the deficits were not permanent.
Although No-Recovery mice showed some improvement of spatial
precision late post-stroke (early post-stroke: Sham: 1.44 ±0.19 versus
No-Recovery: 0.37 ± 0.11, p <0.001; late post-stroke: Sham: 1.35 ± 0.15
versus No-Recovery: 0.79 ±0.17, p =0.087), Recoverymice displayed a
faster and more complete re-establishment of spatial discrimination
already within the first-week post-stroke, similar to the sham group
(early: Recovery: 0.93 ±0.23, versus Sham: p = 0.242; late: Recovery
1.18 ± 0.13, versus Sham: p = 0.678; Fig. 4C).

We also assessed the effect of microstrokes on the persistence of
functional network structure in the hippocampus over time, as
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Article https://doi.org/10.1038/s41467-025-58688-4

Nature Communications |         (2025) 16:3462 6

www.nature.com/naturecommunications


measured by the pairwise correlations of neuronal activity (Fig. 4D).
First, we computed the Pearson correlations of the spatially binned
activity for pairs of neurons on each day (Fig. 4E). We found that in
healthy networks, the resulting pairwise correlation structure looked
similar, especially across consecutive days (“Healthy”, “Sham”, Fig. 4E).
While the same appeared to hold for Recovery mice when comparing
networks after stroke (“Recovery”, Fig. 4E), in No-Recovery mice no

resemblance of pairwise correlation structure could be seen after
stroke. To quantify the persistence of functional networks across time
in the different experimental groups, we computed the cosine simi-
larity of the pairwise correlations of tracked neurons on all pairs of
days (Fig. 4F). Indeed, while there were no differences across the three
groups of mice before stroke induction, No-Recovery mice showed
significantly lower pairwise correlation similarity after stroke
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compared to Sham (Stroke-Stroke: No-Recovery: 0.05 ±0.02, Sham:
0.21 ± 0.02, p <0.001; Fig. 4G). We also observed a lower similarity
when comparing the pairwise correlations of shammice separated by
many days (healthy - stroke) as opposed to consecutive days (healthy –
healthy), consistent with a slight drift (Sham: Healthy-Stroke:
0.13 ± 0.02; Healthy-Healthy: 0.21 ± 0.02, vs. Healthy-Stroke: p < 0.001;
Fig. 4G). The similarity between pairwise correlations of No-Recovery
mice separated by many days, however, was significantly lower than
this “normal” ongoing drift (Healthy-Stroke: No-Recovery: 0.04 ±0.01,
vs. Sham: p < 0.001; Fig. 4G).

Hence, in healthy mice, groups of neurons show a pairwise cor-
relation structure of their spatially binned activity that persists across
time, with some drift, demonstrating the stability of functional sub-
networks. Following stroke, stable functional subnetworks return only
in recovery mice (albeit different than before stroke), while in No-
Recovery mice, functional subnetworks continue changing across
time, consistent with the circuit’s inability to recover normal behavior.
Therefore, these data suggest that the stability of functional networks
over time could be essential in maintaining cognitive capability after
microstrokes.

Synchronous activity close to salient locations in animals with
recovery of memory deficits
To investigate a functional relationship between individual surviving
neurons after stroke, we quantified the synchronicity of pairs of neu-
rons by correlating their ΔF/F traces (Fig. 5A). The average ΔF/F cor-
relation of the whole network calculating the mean correlation
between all pairs of neurons per network did not reveal a significant
difference between experimental groups after stroke (Fig. 5B). How-
ever, we identified a different composition of functional cell classes,
when comparing activity of neuronal pairs with high and low corre-
lated activity. When plotting the cumulative distribution of correlated
firing activity of place cell and non-coding cell pairs, we examined a
clear difference for the 95th percentile of neuronal pairs (with highest
pairwise firing) between place cells and non-coding cells in the healthy
condition (Fig. 5C). Most cell pairs with high synchronous activity (the
95th percentile at the dashed red line) were place cells, justifying a
subsequent quantification of the composition of functional cell types
in this 95th percentile subset of highly correlated cell pairs. We then
examined how the composition of this 95th percentile changed after
stroke. We found in animals of the No-Recovery group, a reduced
percentage of synchronous active place cells early after insult (Sham:
18.4 ± 2.1% vs. No-Recovery: 8.3 ± 2.3%, p =0.048; Fig. 5D), while

animals with a recovery from the cognitive deficits (Recovery group)
revealed an increase of the percentage of synchronous active place
cells after stroke (Early post-stroke: 15.9 ± 3.0% vs. Late post-stroke:
24.5 ± 3.6%, p =0.025, Fig. 5D). Accordingly, the percentage of non-
coding pairs of neurons with highly correlated activity was higher in
animals with a chronic cognitive deficit compared to sham animals
after stroke (Early post-stroke: Sham: 4.4 ± 0.1% vs. No-Recovery:
4.9 ± 0.1%, p =0.015; Late post-stroke: Sham: 4.3 ± 0.2% vs. No-Recov-
ery: 4.8 ± 0.1%, p =0.033; Figure S5D).

We next asked if neuronswith highly correlated activity also share
the same spatial representation. Correspondingly to the results in
Fig. 5D we also found a decline of spatial correlation in animals of the
No-Recovery group early after stroke (Fig. 5E). We then examined
whether these highly correlated functional cells were clustered around
salient locations such as reward zones. Although no differenceof place
field location was found in the healthy situation among the three
groups (Fig. 5G), sham animals had significantly more place fields in
the reward zones than at less salient locations (far: 24.6 ± 3.1%, in:
44.5 ± 6.1%, p =0.029; Fig. 5G). Late after stroke, animals of the
Recovery group revealed a significant increase of place cell pairs with
place fields close to reward zones (close: 58.8 ± 8.8%; in: 25.2 ± 6.9%, vs.
close: p =0.003; far: 16.1 ± 2.9%, vs. close: p <0.001; Fig. 5G), indicative
for a re-organization of place fields close to salient locations in animals
with a good outcome, which was not detectable inmice with a chronic
spatial memory deficit or Sham mice (Fig. 5G).

We also examined towhich extent cross-day stability of place cells
is driven by cells active near reward zones. We first analysed the
average distance to the next reward zone of stable and unstable place
cells, split by experimental group and stage. Plotting these data as a
distance difference, with positive values indicating that unstable place
cells are closer to reward zones, and negative values that stable place
cells are closer to reward zones suggested no connection between
place cell stability and distance to reward, as all datasets were not
significantly different from 0 (Figure S6A). We also correlated place
field distance to the next reward zone to the cross-session stability of
place cells across experimental groups and stages (Figure S6B). While
we found no significant correlation for animals with a stroke, sham
mice displayed weak but significant negative correlation between
cross-session stability and place field distance during early and late
post-stroke sessions.

We also analysed if neurons with highly correlated activity are
physically located close to each other in the rewiring network after
stroke (Figure S5A). We found no strong relationship between

Fig. 4 | Stability, precision and persistence of functional network structure are
markers for cognitive outcome. A Top: Population vector correlation (PVC)
matrices of an exemplarymouse of each outcomegroup across sessionpairswithin
each experimental phase. “Healthy – Stroke” depicts matrices of the last healthy
session in relation to the first poststroke session. Dashed lines show reward zone
borders. Below: Average PVC curves summarize matrices across corridor location
offsets. Correlation peaks reflect the periodic structure of the VR corridor.
B Y-intercept of PVC curves, which indicates cross-session stability of functional
coding, in the three outcome groups (Sham, n = 11; Recovery, n = 5; No-Recovery,
n = 4) across session pairs within each experimental phase. Thin lines represent
individual mice, thick lines with error bars show mean and standard deviation.
Horizontal significance bars mark time effects (group-wise one-way repeated-
measures ANOVA), vertical significance bars mark differences between groups in
the later phase after stroke ( > 7 days postinjection). C The absolute initial slope of
PVC curves, which represents spatial precision in neural location coding, with
higher values (steeper slopes) indicating higher precision, in the three outcome
groups (Sham, n = 11; Recovery, n = 5; No-Recovery, n = 4) across session pairs
within each experimental phase. D Change of functional network structure (cor-
relations of the spatially binned activity) over time varies with effect of stroke.
Schematic to represent functional network structure before (top) and after (bot-
tom) surgery, with two possible outcomes: functional structure before stroke

largely persists (left, solid arrow) or significantly changes (right, dashed arrow).
E Example matrices of functional correlations of spatially binned activity on sub-
sequent experimental sessions. In healthymice, functional structure on a given day
(bottom) largely resembles the functional structure on the previous day. After
stroke, sham mice and recovery mice exhibit similar functional structure of their
spatial activitymaps across consecutive days. Instead, No-Recoverymice showvery
different functional structure of their spatial activity maps even on subsequent
sessions. F Cosine similarity of functional correlations of spatially binned activity
on different days (computed for the off-diagonal elements of the spatial correlation
matrices shown in E).GMean similarity in the three outcome groups (Sham, n = 11;
Recovery, n = 5; No-Recovery, n = 4) across session pairs within each experimental
phase. Each data point shows the mean of all similarities in F, when the sessions
being compared are both before stroke (Healthy-Healthy), before and after stroke
(Healthy-Stroke) andboth after stroke (Stroke-Stroke). Boxplots are drawnwith the
box extending from the 25th to 75th percentiles, with the centre line at themedian.
Whiskers reach to the minimum and maximum values of the distribution. For A, B
data are presented as mean values +/- SD. Group differences in B, C and G were
evaluated with two-way repeated measures ANOVA with the Greenhouse-Geisser
correction and Tukey-Kramer multiple comparisons tests. Asterisks indicate sig-
nificances: *p <0.05, **p <0.01, ***p <0.001.
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synchronous active cells and their (Euclidean) distance to eachother in
the chronically imaged networks.

Discussion
We demonstrated tracking of individual neurons in the same region of
interest in the hippocampus for several weeks before and after
induction of microstrokes in the brain in relation to spatial memory.
We used chronic 2-photon calcium imaging in mice navigating in a
virtual reality corridor to dissect the functional roles of neurons in CA1
for distinct spatial information in the healthy condition and after
microstrokes, and identified place cells with stable activity for a dis-
tinct place field over several days versus unstable, remapping place
cells and non-coding cells for space. Furthermore, our approach

allowed us to measure the loss of spatial memory: The extent of cog-
nitive decline and destruction of the neuronal network architecture in
the hippocampus strongly correlated with the number of brain-wide
microstrokes identified histologically post-mortem, suggesting a dose-
dependent effect, as mice with the highest microsphere load showed
the largest chronic cognitive deficits. Supporting this idea, the No-
Recovery group included animals with some degree of cognitive
improvement (although not to the level observed in the Recovery
group). These animals had the highest fraction of stable place cells
(Fig. 3B), the best decoder performance (Fig. 3D-F) in the late post-
stroke period, but also the lowest number ofmicrospheres in the brain
(Figure S1C) compared to the other animals of the No-Recovery group,
suggesting that our experimental model provided a continuum of

Healthy

Early Poststroke

Late Poststroke

Sham (n=10) Recovery (n=4) No Recovery (n=3)

100

0

20

40

60

80

P
la

ce
fie

ld
s

of
hi

gh
ly

 
co

rr
el

at
ed

P
C

s
[%

]

100

0

20

40

60

80

P
la

ce
fie

ld
s

of
hi

gh
ly

 
co

rr
el

at
ed

P
C

s
[%

]

100

0

20

40

60

80
P

la
ce

fie
ld

s
of

hi
gh

ly
 

co
rr

el
at

ed
P

C
s

[%
]

Far Close In

Far Close In

Far Close In

G
Sham (n=11) Recovery (n=4)
No Recovery (n=3) Chance level

Healthy Early Post Late Post
0

10

20

30

40

%
 o

f a
ll 

pl
ac

e 
ce

ll
pa

irs
in

 9
5th

pe
rc

en
til

e 
of

ΔF
/F

co
rre

la
tio

n Place cell - Place cell

1.00.50.0-0.5-1.0
pairwise ΔF/F correlation

100

80

60

40

20

0C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[%
]

Non-coding cells
Place cells

Healthy Early Post Late Post
0.2

0.4

0.6

0.8

95
th
 p

er
ce

nt
ile

 o
f

sp
at

ia
l c

or
re

la
tio

n

Sham (n=11)
Recovery (n=5)
No Recovery (n=4)

Healthy Early Post Late Post
0.00

0.01

0.02

0.03

0.04

m
ea

n
pa

irw
is

e 
ΔF

/F
co

rre
la

tio
n

100 μm
Non-coding - Non-coding
Non-coding - Place cell
Place cell - Place cellPlace cell

Non-coding cell

F

D

CBA

E

0 100 200 300 400
VR corridor position [cm]

6

4

2

0

Pl
ac

e
fie

ld
s

of
hi

gh
ly

 
co

rre
la

te
d

PC
s

[%
]

Healthy
inclosefarinclosefarinclosefar

0 100 200 300 400
VR corridor position [cm]

6

4

2

0

Pl
ac

e
fie

ld
s

of
hi

gh
ly

 
co

rre
la

te
d

PC
s

[%
]

Early Poststroke
inclosefarinclosefarinclosefar

0 100 200 300 400
VR corridor position [cm]

6

4

2

0

Pl
ac

e
fie

ld
s

of
hi

gh
ly

 
co

rre
la

te
d

PC
s

[%
]

Late Poststroke
inclosefarinclosefarinclosefar

Sham
Recovery
No Recovery

Article https://doi.org/10.1038/s41467-025-58688-4

Nature Communications |         (2025) 16:3462 9

www.nature.com/naturecommunications


stroke severity and recovery potential, which is correlated to the total
microstroke burden in the brain.

As we found only 14% of lesions affecting directly the hippo-
campus andmostmicrostrokeswere remote from the recording site in
the hippocampus, we not only observed a strong deficit in our spatial
navigation task, but in particular an impaired stability of spatial coding
of individual neurons as well as affected stability of the population
activity and the persistence of the functional network structure. These
results suggest that local damage to the hippocampus is not necessary
to impact hippocampal function. Instead, systemic reactions to wide-
spread microstrokes such as inflammation or network remodeling20,21

in form of altered input patterns might be sufficient to modify global
brain activity, impairing neuronal networks remote to the acute lesion
locations.

While chronic recordings of the same field of view in the hippo-
campus have been already reported in a few studies in the healthy
condition12,,22 and inmice after induction of epilepsy15, schizophrenia23

and hippocampal lesions, our study shows that chronicallymonitoring
the activity of individual cells and the sameneuronalpopulations in the
healthy condition and during several weeks after brain injury is pos-
sible. Although functional coding of individual neurons in CA1 of the
hippocampus seems relatively labile in contrast to synchronously fir-
ing groups of neurons or neurons in other regions of the
hippocampus12, we identified stable place cells whichmaintained their
place field activity not only during the healthy condition, but also
several weeks after brain-wide microstrokes. In addition, when mon-
itoring the same neurons in sham animals for >5 weeks we found that
neuronsmaintained their functional class (stable or unstable place cell
or non-coding cell) long-term (Fig. 2C, D and Figure S3), indicative for a
consolidation of the functional network in shamanimals (Fig. 4). This is
in line with preliminary results from Vaidya et al. 24 claiming that there
are two place cell pools – a transient and a sustained one – and that
initially formed unstable, transient place cells are replaced by stable,
sustained place cells over time. This consolidation might be mediated
by behavioral timescale synaptic plasticity (BTSP), a recently dis-
covered non-Hebbian mechanism where synaptic weights can be
modulated by a single event, which can be temporarily separated from
the synaptic input by several seconds25–28 and which is also thought to
induce place field formation in CA127.

We found that in healthy animals with expert knowledge in the
spatial navigation task, place cells had a significantly higher probability
to stay place cells than turning into non-coding cells. Strokes
destroyed the functional determination of neurons within networks
(Fig. 2C, D): Instead of being pre-tuned to a distinct functional class for
the spatial memory task, neurons were randomly assigned to different
functions within the rewiring network after stroke. A similar effect as
observed in this study, has been described in animal models of
schizophrenia23 and epilepsy15. Thus, this return to a more disordered,

plastic state might not be unique to acute lesions, but also occur in
chronic disruptions of hippocampal networks. It thereforemay not be
a purely detrimental process. Instead, it may be a cellular mechanism
of increasedhomeostatic plasticity,which is commonly detected in the
subacute phase of stroke. Besides the already known plasticity pro-
cesses after brain injury such as macroanatomical map shifts29–32,
synaptic and dendritic turn-over33, and molecular modifications34,35,
the loss of functional cellular identity and the promotion of neurons to
new functions after stroke could be an important cellular mechanism
to better adapt to the injury and allow functional rewiring of neuronal
networks after brain injury such as strokes.

While on an individual cellular level, the loss of stable codingplace
cells influenced the outcome (Fig. 3B), on a population level micro-
strokes impaired location encoding (Fig. 3D-F), spatial discrimination
and precision (Fig. 4), persistence of functional network structure
(Fig. 4) and synchronicity of surviving place cells (Fig. 5C). All these
parameters remained significantly affected in animals with a chronic
deficit, while in animals with a recovery from the initial memory loss,
these parameters restituted to the same level as in sham animals,
highlighting these parameters as sensitive functional markers for
outcome prediction and as important indicators for future interven-
tional studies examining the positive or detrimental effects for phar-
macological or rehabilitative approaches.

Finally, we found that in animals with a chronic cognitive deficit
the number of highly synchronous active cells was significantly
reduced. An in-depth analysis revealed that animals in theNo-Recovery
group particularly lose synchronously active place cells (Fig. 5C) and
display nearly complete reorganization of functional connectivity
networks (Fig. 4G), which was not the case for the other groups. In
addition, in Recovery animals, place fields of synchronous active sur-
viving place cells were more often located close to salient locations
(Fig. 5F, G). A clustering of place fields around reward zones has been
reported repeatedly22,36–38. However, in our experiment with chronic
imaging before and after microstroke induction we found that place
fields of neurons with highly correlated activity were uniformly dis-
tributed in the corridor, except for animals of the Recovery group
during the later post-stroke state (Fig. 5F, G). The increased number of
place fields close, but not in reward zones (Fig. 5G), may be related to
the phenomenon of anticipatory licking (Figure S7B) and the reward
prediction mechanism of the dopaminergic system, where the reward
response is triggered by an associated stimulus (such as the visual cue
of the approaching distinctive wall patterns of the reward zone).

We also examined if stability of place cells is driven by neuronal
activity near reward zones as previous studies22 revealed that place
cells near reward zones have higher cross-day stability. In our data we
found only weak evidence for a higher stability of place cells close to
reward zones. A possible explanation may be that in our experiments
mice were well accustomed to the corridor, as they had been exposed

Fig. 5 | Synchronous activity close to salient locations in animals with recovery
of memory deficits. A Network schematic showing spatial distribution and cor-
relation of pairwise firing (Pearson’s correlation of ΔF/F traces) between all imaged
place cells (PCs, green) and non-coding cells (NCs, gray) in an exemplary field of
view.Highly correlated neurons (95th percentile) are connected by lines. Linewidth
and opacity represent connectivity strength, and colors identify functional coding
of cell pairs (gray: NC – NC pairs; yellow: NC – PC pairs, green: PC – PC pairs).
B Mean correlation of pairwise activity between all imaged neurons in the three
outcome groups (Sham, n = 11; Recovery, n = 5; No-Recovery, n = 4) across experi-
mental phases. C Cumulative distribution function (CDF) of pairwise ΔF/F activity
between place cell and non-coding cell pairs in the healthy condition. Red dashed
line indicates the 95th percentile, at which the difference between place cells and
non-coding cells is largest. D Percentage of place cell pairs in the 95th pool of cells
with highly correlated activity shows a loss of place cells pairs in the No-Recovery
group. Error bars depict standard error. Dashed lines represent chance level of a
uniform distribution (5%). E 95th percentile of correlation coefficients of spatial

activitymaps between all imaged neurons. FHistograms of place field distributions
of highly correlated place cells in the three different outcome groups (Sham,
Recovery, No-Recovery) and the different time points (healthy, early and late after
stroke). Histograms show howmany place fields were located far from, close to, or
in the reward zones of the virtual reality corridor. G Analysis of the histograms in
F reveal that initially, highly correlated place cells in sham mice are in particular
found in reward zones, while in the late phase after stroke, animals of the Recovery
group show a significant concentration of place fields close to reward zones
compared toother corridor regions and compared to sham. Bar plots inD andGare
presented asmean values +/- SEM. Boxplots are drawnwith the box extending from
the 25th to 75th percentiles, with the centre line at the median. Whiskers reach to
the minimum and maximum values of the distribution. Group differences were
evaluated with two-way repeated measures ANOVA with the Greenhouse-Geisser
correction and Tukey-Kramer multiple comparisons test. Asterisks indicate sig-
nificances: *p <0.05, **p<0.01, ***p <0.001.
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to the same context for up to 2months prior. In contrast, most studies
use novel or changing corridors, and context exposure is often limited
to a few days or weeks. It is possible that the relationship between
place field reward proximity and cross-session stability is more pro-
nounced during the early learning phase of the corridor, but the bias is
slowly replaced during learning by a more uniform distribution, a
phenomenon already suggested on shorter time scales by Grosmark
et al.22. Future experiments with our setup may include imaging ses-
sions during the learning period, which might provide further infor-
mation about the temporal dynamics of these mechanisms.

Our results indicate a major protective mechanism for the
recovery and preservation of spatial memory after brain injury: The
survival of place cells which are able to maintain their place field pre-
ference for important information (e.g. salient locations such as
reward zones) over time is predictive for a good cognitive outcome
after stroke. Importantly, the synchronous activity of place cells helps
them to survive and to re-stabilize the rewiring network after stroke.
Thus, we show here that the well-known concept of Hebbian learning
of “neurons that fire together wire together” applies also in a rewiring
network after brain injury35. Elucidating this concept in the light of
neuronal repair on a cellular resolution level after stroke has also
implications for the development of novel pharmacological and sti-
mulation strategies, which can induce the co-activation of neurons in
networks to stabilize and enhance reorganizing circuits in the brain
after stroke.

Limitations
With the here presented microstroke model we aimed at mimicking
key features of small vessel disease, which comprises the majority of
cases of vascular dementia39. This includes the induction of dis-
seminatedbrain-widemicrostrokes, ameasurable cognitivedeficit and
an effect on hippocampal networks. However, while in the human
presentation of small vessel disease microstrokes are predominantly
located subcortically, we found in our strokemodel widely distributed
microstrokes, in particular also in cortical regions. As bilateral micro-
sphere injections in the common carotid arteries in mice lead in most
cases to fatal outcomes40, we chose unilateral injections of micro-
spheres in the left common carotid artery leading to microstrokes
predominantly in the left hemisphere, where we imaged the effect of
the disseminated microstrokes on left hippocampal networks. How-
ever, future studies should investigate the effects of the microstrokes
on the contralateral hippocampus using multi-area imaging and tra-
cing technology to reveal structural changes of newly rewired bilateral
hippocampal circuitry in relation to the cognitive outcome.

Method
Animals
We used adultmice aged 5–7months at the first day of experiments of
both sexes (n = 5males, n = 20 females).N = 9mice were C57BL/6 wild-
type (Charles River, Germany) animals, n = 15 were GP5.17 transgenic
mice (Jackson Laboratory, RRID: IMSR\_ JAX:025393Dana et al.41), and
one was a triple-transgenic mouse acquired by crossing animals from
the lines Snap25-IRES2-Cre-D (Jackson Laboratory, RRID: IMSR
\_JAX:023525), CaMKII-tTA (Jackson Laboratory, RRID: IMSR
\_JAX:007004) and Ai93D (Jackson Laboratory, RRID: IMSR
\_JAX:024103). Both transgenic mouse lines expressed the calcium
indicator GCaMP6f42 in CA1 pyramidal neurons of the hippocampus.
For detailed information of animals used in the experiments please
refer to Supplementary Table S2.Male and femalemice did not display
differences in behavioural, neural or histological markers (Figure S8).
However this study was also not designed to investigate sex-specific
responses to microstrokes. Mice displayed strong and uniform
GCaMP6f expression in the CA1, with GP5.17 mice more readily avail-
able due to faster breeding. Micewere housed in groups of two to four
under a constant 12-hour dark/light cycle, constant room temperature

(22 ± 1 °C) and with food and water ad libitum in standard cages
(530 cm² floor area, 7.4 L). After starting training in the virtual reality
corridor, mice were transferred to larger cages (1800 cm² floor area,
51 L) equipped with a running wheel to enhance fitness and treadmill
motivation. All experiments were carried out during the active (dark)
cycle of the animals and according to the guidelines of the Federal
Veterinary Office of Switzerland and the license ZH241/2018 approved
by the Cantonal Veterinary Office in Zurich, Switzerland. They are in
accordance with the Stroke Therapy Academic Industry Roundtable
(STAIR) criteria for preclinical stroke investigations43. The samples size
for the different experimental groups was estimated by means and
variance of measured data in related work30,31,44 and predicted to be
sufficient to detect a statistically significant result in ANOVA with
p < 0.05 and power >0.8.

Surgeries
For all surgical procedures except microsphere injections, mice were
deeply anesthetized with 4% Isoflurane (700-800mL O2 flow rate).
20–30min prior to surgery Carprofen (5mg/kg body weight sub-
cutaneous (s.c.)) was administered, vitamin A crème (Bausch & Lomb)
was applied to both eyes, and body temperature was maintained at
36.5 °C via a heating pad. Animals were fixed in a stereotaxic frame
(Kopf Instruments) under 2% Isoflurane for surgical procedures. After
surgery, mice were kept on a heating pad until being fully awake again
andmoving in the cage. Post-surgical pain wasmanaged by Carprofen
injections (s.c.) every 12 h for 1 day, and every 24 h for an addi-
tional 2 days.

Viral injections
To induce expression of the calcium indicator GCaMP6f in wild-type
mice, 300 nL of AAV9-hSyn::GCaMP6f (1 × 1013 vg/mL; Addgene, cata-
log # 100837-AAV9) were stereotaxically injected into the hippo-
campus (left CA1 at -2 mm AP, -1.3mmML) at least 4 weeks before the
first session of two-photon calcium imaging. Injections were per-
formedusing a glassmicropipette (intraMark, Blaubrand, 10–20 µmtip
diameter) connected to a syringe and a stereotaxic micromanipulator
(Kopf Instruments). After removing the scalp and drilling a hole above
the injection site, the pipette was gradually inserted to the intended
depth (-1.5mm from skull surface), and the virus was injected with a
flow rate of 0.1 µL/min. The pipette remained in place for 10min post-
injection to facilitate viral diffusion and reduce backflow before slow
withdrawal.

Chronic hippocampal imaging preparation
For performing chronic two-photon calcium imaging, we implanted a
chronic cannula implant above the left CA1 region of the hippocampus
2–3 weeks after viral injection of GCaMP6f, according to published
protocols45–47. After scalp removal, iBond (iBond Total Etch, Kulzer)
was applied to the cleaned skull, followed by a 3mm craniotomy and
inserting a biopsy punch above CA1 (-2 mm AP, -1.5mmML relative to
bregma, 1.3mm depth from skull surface). The punch was withdrawn
after 10min, and the severed tissue was slowly aspirated using a blunt
22G needle while irrigating with saline, until the corpus callosum was
fully exposed. After bleeding was stopped with hemostatic sponge, a
custom stainless steel cannula (3mm diameter, 1.3mm length) sealed
with a coverslip (3mm diameter, 0.17mm thickness) via UV-cured
dental cement (Tetric EvoFlow A1, Ivoclar Vivadent) was inserted into
the brain to cover the corpus callosum and fixed to the skull with
dental cement. In addition to the pain medication (Carprofen), mice
received the antibiotic Baytril (10mg/kg s.c., Bayer) for 2 days. 1 week
after cannula insertion, a custom aluminium headpost (10mm inner
diameter, 12.3mm outer diameter, 1mm thickness) was centered on
the hippocampal window and attached to the cement with a ceramic
composite (Charisma, Kulzer) and additional dental cement. After UV
curation, the inside wall of the cement was coated with black nail
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polish to minimize imaging noise. After a recovery period of 3 days,
handling and behavioral training started.

Intraarterial microsphere injection
To induce hemisphere-wide microlesions, we injected red-fluorescent
20-µm diameter PMMA microbeads (Poly-An, Cat. No. 19096-2) into
the left common carotid artery (CCA) of the animals48,49. Mice were
deeply anesthetized with Medetomidine (250 µg/kg, Domitor, Orion
Pharma), Midazolam (5mg/kg, Dormicum, Roche) and Fentanyl
(50 µg/kg, Sintetica), and positioned on their back on a heating pad. A
midline incision above the thyroid gland exposed the CCA, into which
10–20 µL of the 1%microsphere stock solution, diluted in 180 µL saline
was injected with a 33G needle. The external carotid artery was tran-
siently ligated during the injection with surgical thread, and CCA flow
was slightly restricted during the injection (30 s) tominimize bleeding.
After removing the needle, pressure on the injection site was applied
with fine cotton swabs until bleeding ceased (6–20min). The CCA was
sealed with tissue adhesive (Vetbond, 3M), the incision was sutured,
and the animal was placed on a heating pad until fully awake. Sham-
operated mice underwent identical surgery, without the microsphere
injection. After a 2-day recovery, experiments resumed on the
third day.

Virtual environment and task
We built a custom-made virtual reality (VR) setup, optimized to fit
under a standard commercial two-photon microscope (HyperScope,
ScientificaLtd.). Animals could navigate in the virtual reality bywalking
on a custom treadmill consisting of a 5 cm wide black velvet ribbon
belt stretched over two 10.5-cm diameter plastic wheels. The belt
rested on a Teflon bar, with a smooth underside to reduce friction and
a felted surface for improved grip. An optical rotary encoder (1440
pulses/rotation, Phidgets, Cat. No. 3530\_1) captured back wheel
movements, controlling the VR displayed on three TFT-LCD monitors
(10.1”, 1366×738, LG, Cat. No. LP101WH1) positioned around the animal
in 11–17 cm distance to its eyes. The virtual environment created with
Unity (v2018) consisted of a linear corridor featuring four distinctly
patterned sections divided by reward zones (RZs) marked by salient
visual and auditory (200ms, 8 kHz, 60 dB) cues. RZs were 40 cm wide
and centered at 30, 137, 243 and 350cm in the standard 4m corridor.
We choseamultisensoryenvironment similar to publisheddesigns46 to
improve the learning rate and spatial coding in hippocampal CA1.Mice
had to report RZs to receive water rewards (10 µL, controlled by a
solenoid valve (SMC, Cat. No. VDW22JA)) by touching the metal spout
with their tongue, where a capacitance sensor detected these touches
as licks. When the animal reached the end of the corridor, it was vir-
tually reset to the start of the corridor during a 1 s screen blackout. The
VRwas controlled by a Python 3.7 script, while a LabView2014program
orchestrated data acquisition and flow between the sensors, micro-
scope and VR.

Training protocol
At least three days after head-post implantation, the drinking water of
themicewas replacedwith 2% citric acidwater. Thismethodwas shown
to induce thirst and motivation for water rewards without restricting
home-cage water access50, while the body weight was controlled to be
kept at >85% of the pre-experimental value. After familiarizing the mice
with handling and head fixation over 2–4 days, they underwent training
to selectively lick in designated reward zones (RZs) through 15–30-min
daily sessions. Initially, passive water rewards were given regardless of
the RZ location after running 20–30 cm. After two to three sessions,
passive rewards were restricted to RZ locations in a 170 cm corridor.
Oncemicewere running consistently, the corridor lengthwas extended
to 400 cm by adjusting the gain of the rotary encoder, as well as
introducing active rewards requiring licking within an RZ to receive
water. Animals were not punished for licking behavior outside RZs.

As the strategies how to identify reward zones in the spatial
navigation task varied among animals and six animals (IDs 33, 69, 91,
93, 110 and 122, see Table S2) showed extensive anticipatory licking in
front of reward zones (Figure S7B) also during expert phases, we used
the spatial information (SI) content of the lick histogram. The SI-based
performance metric also better reflected the focused licking patterns
of such strategies, while simpler metrices such as the percentage of
licks within reward zones (lick hits) could not accurately represent the
performance of the animal. To quantify the spatial information (SI)
content, we first created a lick histogram by binning licks (defined as
the time points when the tongue of the animal touched the water
spout) into 120 spatial bins, and computing the lick probability (the
fraction of trials with at least one lick) for each position bin (Fig. 1E).
The SI content of this lick histogram was then determined using a
formula commonly applied to measure neural spatial information
content15,51:

SI =
XN
i = 1
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λi
�λ
log2
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�λ
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piλi ð1Þ

where ti represents the occupancy time spent in the i-th bin and λi
represents the lick probability in the i-th bin. Animals were considered
well-trained once they consistently performed at a plateau level for
three consecutive days, and imaging sessions began. Animals required
13–22 days to learn the task, after which baseline neuronal activity in
the CA1 was recorded across five days using two-photon calcium
imaging. Afterwards animals were randomly assigned to the sham and
stroke group. Microstrokes were induced after the last baseline
imaging session on the same day (day 0), followed by post-stroke
imaging sessions every third dayup to4weeks after stroke to study the
“pure” effect of the disseminated lesions on the hippocampal network
and to avoid neurocognitive training/rehabilitation induced plasticity.
Animals were not exposed to the corridor outside of imaging sessions.

Experimental stages & groups
To capture temporal developments of behavioral andneuralmetrics in
relation to the microsphere injections, we structured the experiment
into three phases: “healthy” (before injection), “early post-stroke”
( ≤ 7 days after injection), and “late post-stroke” ( > 7days–28days after
injection). The average standard deviation of task performance for all
animals across healthy sessions was computed to be 23.8%. Rounded
to 25%, a threshold of 75% was defined, where mice that received
microsphere injections andperformedbelow75%of their prestrokeVR
performance in both early and late post-stroke phases were labeled
“No-Recovery”, whereas animals with an average relative VR perfor-
mance of ≤75% only in the early, not late post-stroke phase, were
categorized as “Recovery” (Figure S7A). All mice with an initial per-
formancedeficit of ≤75% aftermicrosphere injections were grouped as
“Stroke”. Mice that maintained >75% relative VR performance in both
post-stroke phases after microsphere injections and did not have sig-
nificantly more detected spheres than sham-operated mice in their
brains were pooled with sham-operated mice for subsequent analysis
(Figure S1C). N = 5 independent experiments were performed with
stroke and sham animals and data were pooled from these experi-
ments as results from independent experiments did not statistically
differ from each other.

Two-photon imaging
Chronic two-photon calcium imaging of mice navigating in the VR
corridorwas performedwith a standard commercial two-photonGalvo-
Resonant scanning imaging system (HyperScope, Scientifica Ltd.) con-
trolled by ScanImage v2017b (Vidrio Technologies52). A 920-nm laser
beam froma tunable Ti:Sapphire laser (Mai Tai BB, Spectra-Physics) was
targeted onto CA1 pyramidal neurons through a 16× water-immersion
objective (0.8 NA, Nikon). Emitted fluorescence was detected by a
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GaAsP photomultiplier tube (Scientifica Ltd.) after passing through a
525/50 nm band-pass filter. Beam power under the objective was
adapted to GCaMP6f expression levels to 25-60mW. The emission light
path between the focal plane and the objective was shielded with a 3D-
printed plastic cylinder fixed between the objective and the head-post,
as well as black nail polish on the dental cement of the window pre-
paration, to reduce light contamination from the VR monitors. Images
of 512×512 pixels, corresponding to afieldof view (FOV) of 830×830 µm,
were acquired at a frame rate of 30Hz. Prior to the experiment, a net-
work with strong GCaMP6f expression encompassing a maximal num-
ber of pyramidal cells, was chosen for each mouse, and the FOV was
manually aligned with this network on consecutive imaging sessions to
monitor as many neurons as possible over time. Pre-processing of all
two-photon imaging data was performed with CaImAn53, utilizing con-
strained non-negative matrix factorization to perform piecewise-rigid
motion correction, functional region of interest (ROI) extraction,
background correction and quality evaluation. CaImAn parameters
were adapted for eachmouse to detect themaximumnumber of active
cells while correctly rejecting non-neuronal ROIs, and were kept con-
stant across the experiment. The resulting fluorescence traces were
detrended with CaImAn using the following formula:

ΔF=F =
F � F0

B0 + F0
ð2Þ

where F is the background-corrected fluorescence trace of the
neuronal ROI, and B0 and F0 are the baseline fluorescence traces of
the background and ROI respectively. The baseline of each trace is set
at thepercentile of themodeof thedata,whichwas computed for each
trace over a sliding window of 1000 frames using a diffusion kernel
density estimator53,54, which yielded baseline percentiles of 45.4 ± 5.5
(mean± standard deviation) across all ROIs. Finally, the resulting ΔF/F
traces were transformed for spike rate analysis into deconvolved spike
probabilities with the CASCADE algorithm55.

Single-cell tracking
Aligning the FOV to the same network in subsequent imaging sessions
enabled us to semi-automatically match individual neuronal ROIs
across the experimental timeline. To identify the same cells across
sessions, we computed the shifts between both FOVs using non-rigid
translation, accounting for non-rigid changes in the underlying tissue,
particularly post-injection, occurring over weeks. Each FOV was split
into four patches, estimating the subpixel translation shift for each
patch with scikit-image’s (v0.19.2) phase cross-correlation using fast
Fourier transform56,57, and upscaling single-patch shifts via spline
interpolation to generate pixel-wise shifts. Putativematched cells were
first selected by identifying the nearest neighbor for each neuron
through a k-d tree (Scipy v1.10.058), then visually inspected and curated
in a custom-built interactive web application developed with Dash
(v2.0.0, Plotly Technologies). Only ROIs that weremanually confirmed
to be the same neuron were used for single-cell analysis.

Neuronal activity analysis
Linear corridor analysis. Place cell classification was performed
according to published criteria45,46. First, ΔF/F traces and occupancy
timeswere spatially binnedusing 5 cmwide bins and a running velocity
threshold of 5 cm/s to yield spatial activitymaps for each neuron. After
smoothingwith aGaussian kernel (σ = 5 cm), spatial activitymapswere
screened for putative place fields, whichweredefined as locationswith
a ΔF/F value above 25% of the difference between the maximum and
baseline ΔF/F (average ΔF/F of the lower quartile activity) of this trace.
Putative place fields also had to pass three criteria: (1) the place field
had to have a minimum width of 15 cm, (2) the mean ΔF/F inside the
field had to be 6x higher than outside the field, and (3) significant
transients had to be present for at least 20% of the time the animal

moved inside the field. Significant transients were periods of at least
0.5 seconds in the unbinned ΔF/F trace with fluorescence above 3 σ
(noise level σ estimated from FWHM of the ΔF/F distribution). The
significance of the place field ppf was estimated using bootstrapping45.
The ΔF/F trace was split into 50 frames long pieces and randomly
shuffled, and place cell detection was performed on the shuffled trace.
This process was repeated 1000 times, and ppf was defined as the
fraction of shuffles where a place field passed all three criteria. Cells
were classified as a place cell if their spatial activity maps contained at
least one place field that passed all three criteria and had a significance
of ppf≤0.05.

The within-session stability of the spatial activity map of each
neuron was determined by computing the Pearson correlation coeffi-
cient between the first and second halves of the trials, as well as
between odd and even trials. The two coefficients were Fisher
Z-transformed and averaged to derive a single stability measure.

To quantify cross-session stability of place cells, we computed the
Pearson correlation coefficient between the spatial activity maps of all
sessionpairs separated by 3 days across all tracked cells, and the Fisher
transformed coefficients were averaged across all sessions within each
period, yielding a stability score per phase for each neuron. The
baseline stability score for a network was established as the median
prestroke stability score across all neurons within that network. Sub-
sequently, each place cell was categorized as “unstable” or “stable” for
the early and late post-stroke phases based on whether its stability
score for that phase was lower or higher, respectively, than baseline
stability score of its network.

Population vector correlation. The population vector correlation
(PVC) for a population of N neurons between two corridor positions x
and y was defined as:

PVC x, yð Þ=
PN

j λ
1
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where λ1j and λ2j are the spatial activity maps of neuron j in two
different sessions. Full PVC curves were created by averaging the PVC
values across all corridor positions for position pairs with a
4x = x � y

�� �� location offset ranging from 0 to 275 cm. Two metrics of
the PVC curves were used for further quantification: (1) The
y-intercept of the curve (4x = 0 cm) represents the correlation of
population activity at the same corridor position between two days,
indicating the cross-session stability of the network. (2) The
maximum absolute initial slope of the curve (0 ≤4x ≤ 100 cm)
represents the reduction of correlation at increasing 4x, indicating
the level of spatial precision of the network. Only sessions 3 days
apart were included in this analysis.

To understand if the loss of periodicity in neuronal population
activity in Figure A4 simply reflects behavioral changes, we performed
a detailed analysis of the periodicity of the population vector corre-
lation (PVC) curves shown in Fig. 4A. Results are shown in Figure S4. As
a quantifiable metric for the periodicity, we chose the relative peak
prominence (RPP), which is the relative height of each peak compared
to its neighboring valleys. Example curves and their associated RPPs
are displayed in Figure S4A with a quantification in Figure S4B. Fig-
ure S4C shows that although there is ameasurable positive correlation
between RPP andmean licks per trial when considering sessions in the
late post-stroke period as well as the entire dataset, the relationship is
weak (R2 < 0.1), and suggests that the loss of periodicity does not
simply reflect changes in lick rates.

Bayesian decoder. A Bayesian decoder was developed to assess the
predictability of corridor position based on neural activity. All models
used the top 100 neurons with the highest within-session stability that
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were present in the training and decoding datasets. To construct the
probability function for the decoder, spatial activity maps of training
trials for all neurons were smoothed with a Gaussian kernel (σ = 5 cm)
and themeanand standarddeviation (SD) across all training trials were
computed. Spatial bins with a cross-trial SD below the average per-bin
SD of that neuron had their SD set to the mean SD. The estimated
position of the animal x̂ at time t using the neural activity ofN neurons
was defined as:

x̂ tð Þ=argmaxx occ xð Þ
YN

i = 1

pi x, tð Þ
maxx pi x, tð Þ� �

 !
,where ð4Þ

pi x, tð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσi xð Þ2

q exp � Si tð Þ � μi xð Þ� �2
2σi xð Þ2

 !
ð5Þ

where occðxÞ is the occupancy probability per spatial bin x in the
training dataset, μiðxÞ is the mean and σiðxÞ is the SD of the spatial
activity map at bin x of neuron i in the training dataset, and SiðtÞ is the
averageΔF/F valueof neuron i in thedecodingdataset over time t ±4t,
with 4t = 0.5 s.

For within-session decoding, we adopted a leave-one-out cross-
validation approach, where each trial was decoded once while the
remaining trials within that session were utilized to create the training
set. The final decoder performance for the session was the average
metric across all iterations. For cross-sessiondecoding, the training set
was generated from the entire last pre-stroke session, and the
decoding executed on the entire second session. Two different error
metrics were used to quantify the decoder performance: (1) Accuracy
is the fraction of correct position bin predictions out of all time points
t. (2) Sensitivity measures the fraction of time points t out of all time
points where the animal was inside a RZ and the decoder correctly
predicted to be in a RZ. Chance levels of decoder error metrics were
empirically determined by randomly shuffling the position bins in the
training dataset 500 times, using the shuffled training set to decode
the position of the respective trial, and averaging the error metrics of
each session across all animals.

Analysis of pairwise firing activity between neurons. Activity syn-
chronicity within neuronal populations was analyzed by computing
the pairwise Pearson’s correlation coefficients of the fluorescence
traces of all neurons within each network. Correlation of the ΔF/F
traces indicates the synchronicity of neuronal activity in time and is
termed”pairwisefiring activity”. Correlationof the spatial activitymaps
yields the synchronicity of neuronal activity in the linear corridor, and
is termed “spatial synchronicity”. A cell pair was considered “highly
synchronous” if it had a high correlation value for correlated activity or
a spatial synchronicity value within the 95th percentile of the network.

Cross-phase changes of pairwise firing activity between neurons59

were investigated by computing the pairwise Pearson’s correlation
coefficient of ΔF/F traces for each session and averaging the coeffi-
cients of each cell pair across the sessions within each experimental
phase. Neurons that were not present at all sessions during the com-
pared pair of periods were excluded from this analysis. These phase-
averaged pairwise correlation coefficients were matched across phase
pairs, yielding three distributions (Healthy – Early post, Healthy – Late
post, Early post – Late Post) of matched cell pairs for each mouse. For
quantification, the Pearson’s correlation coefficient, corresponding p-
value, and slope of a linear regression model were computed for each
distributions using SciPy’s linregress function. Distributions with a
p-value exceeding 0.05, indicating nonsignificant correlation, were
excluded from the results.

Sensorimotor tasks
To assess possible deficits in the sensorimotor system after micro-
sphere injection, animalswere tested in several behavioral tasks before
the injection to establish a baseline, and re-tested 2, 7, 10, 22, 32 and
35 days after microstrokes.

Neurological deficit score
Mice were tested for neurological deficits using a common scoring
system48,60. In brief, possible deficits in differentmotor functions (limb
clasping, C-shape bending, forepaw grasping and hindlimb reposi-
tioning) were scored with 0 (no deficit), 1 (moderate deficit) or 2
(severe deficit). Individual scores of each test were added to yield a
total neurological deficit score.

Skilled forelimb grasping
A grasping test was performed to assess skilled forelimb function
using the MotoTrak system61 (Vulintus). The setup consisted of a
lever behind a acrylic glass plate, which was only accessible for
the animal with one forelimb through a narrow gap in the plastic.
Mice were trained to reach for the lever and pull it towards them
to receive a water reward, with sessions lasting 10 – 15 min. An
attempt of the animal to reach for the lever was considered a trial.
If the pulling force exceeded 5 g, the trial was counted as a “hit”; if
the mouse touched the lever, but without enough force, the trial
was considered a “miss”; if the forelimb missed the lever, the trial
was discarded. The performance per session was quantified as the
hit-ratio hits

trials *100.

Open Field test
To test if microstrokes could impair mobility locomotion, mice were
allowed to freely explore an empty open-roofed box of 40×40×40 cm
for 6min, once before and once in the first week after stroke. The
movement of the animal was recorded with a video camera and the
trajectory extracted with the EthoVision software62.

Histology
After conclusion of all experiments (6–8 weeks after microsphere
injection), mice were deeply anesthetized with 5% Isoflurane and
overdosed with pentobarbital (Kantonsapotheke Zurich, 300mg/kg
body weight, i.p. injection). As soon as respiratory arrest occurred,
0.05mL Heparin (Braun) was injected into the left ventricle and the
animal was perfused transcardially with cold 0.1M PO4 followed by 4%
paraformaldehyde (PFA) in 0.1M PO4. Brains were extracted, post-
fixed (4% PFA, 4 °C, 24 h), cryoprotected (30% sucrose, 0.1M PO4, 4 °C,
48 h), embedded in OCT (Tissue-Tek, Sakura), frozen at -80 °C, and
100 µm coronal sections were cut with a sliding cryostat (Microm HM
560). Free-floating slices were stored in cryoprotectant (30% ethy-
lenglycol, 15% sucrose, 0.003% Na-azide in 0.1M PO4). Every third slice
(excluding cerebellum) was selected for immunostaining. Sections
were washed 3 × 10min in 1× PBS at room temperature (RT), incubated
in blocking solution (10% natural donkey serum (NDS), 0.3% Triton X-
100, 1× PBS) for 24 h at 4 °C, followed by an incubation with guinea pig
anti-GFAP (1:750, Synaptic Systems, Cat. No. 173004), rabbit anti-Iba1
(1:500, Wako, Cat. No. 019-19471) or rat anti-CD68 (FA-11 clone, 1:500,
Invitrogen, Cat. No. 14-0681-82) in antibody buffer (10% NDS, 0.1%
Triton X-100, 1× PBS) for 72 h at 4 °C. Slices were washed 3 ×10min in
1× PBS at RT, then incubated in secondary antibodies (Cy3-conjugated
donkey anti-guinea pig, donkey anti-rabbit or donkey anti-rat, 1:250,
Jackson) for 4 h at RT. Slices were exposed to DAPI (1:1000), washed
again in 1× PBS and mounted on Superfrost Plus glass slides (Thermo
Fisher Scientific) with fluorescent mounting medium (Dako). The
whole-slice images were acquired with an Axio Scan.Z1 automatic slide
scanner (10× objective, 0.6 µm/px resolution, extended depth of
field; Zeiss).
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Image analysis
Images were analyzed with QuPath v0.2.363 for microsphere and lesion
detection. Experimenters were blinded to the experimental condition
of each mouse, and microspheres were manually counted and
assigned to brain regions using the P56 Allen Mouse Brain Reference
Atlas. The non-zero sphere counts of sham-operatedmice served as an
estimate of the Type I error rate (false positives) of microsphere
detection.

For a subset of brains, lesions around microspheres were
quantified via fluorescent markers of astrocyte (GFAP) and microglia
(Iba1, CD68) activation. If the average fluorescence of GFAP, Iba1,
CD68 or autofluorescence (Cy5 channel, signaling cell debris) of the
area surrounding a microsphere was at least 2 standard deviations
higher than the same area in the contralateral hemisphere, this area
was labeled as “lesioned”. Similarly, if an area not directly associated
with a visible microsphere showed significant fluorescence increase
compared to the contralateral hemisphere as well as control slices
(slices of the same region from sham-injected animals), the area was
labeled as “lesioned”. For each brain, microsphere numbers and
lesion volumes were summed for each region, and the total micro-
sphere load for the whole brain was estimated by multiplying the
counts and volumes by the fraction of imaged volume of each brain
based on average volumetric data provided by the Allen Mouse Brain
CCFv364.

To investigate if microsphere abundance in specific brain regions
affected VR task performance, we built two generalized linear models
(GLMs) using statsmodels65. The dependent variables were average VR
task performance during early and late post-stroke phases relative to
healthy baseline performance. Independent variables were micro-
sphere counts in a set of brain regions (hippocampus, neocortex,
striatum, thalamus, white matter, other), which collectively cover the
entire brain. We used a Gamma distribution for microsphere counts
and the identity link function, assuming an additive effect of the
number of microsphere on task performance. As the Gamma dis-
tribution assumes non-negative values, and someneural metrics could
be negative, we performedOrdinary Least Squares (OLS) regression to
investigate the impact of sphere location on neural metrics.

Data management and statistical analysis
Experimental data and analysis pipelines were managed by a custom
DataJoint database66 (RRID:SCR\_014543) implemented in Python v3.7.
Statistical analysis and plotting was performed with Python and Prism
v10 (Graphpad), while figures were assembled with Adobe Illustrator
(v28.3). Unless stated otherwise, data are reported as mean± standard
deviation (SD), and data points in figures represent individual animals,
with analyses performed per session and averaged across days of each
experimental phase. Boxplots are drawn with the box extending from
the 25th to 75th percentiles, and the middle line plotted at the median.
Whiskers reach to the minimum and maximum values of the dis-
tribution. Details regarding the statistical tests employed, multiple
hypothesis correction, and the use of repeated-measures statistical
testing are outlined in the figure captions and listed in Supplementary
Table 1 providing exact p-values.

Data and materials availability
Raw and processed data are available on the data platform
DANDI: https://doi.org/10.48324/dandi.001184/0.240829.1458.

All remaining data are available in the manuscript or the supple-
mentarymaterials. For individualfigures source data areprovidedwith
this paper.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Code availability
The codes used for the processing and analysis of the rawdata aremade
available as a GitHub repository - https://doi.org/10.5281/zenodo.
14906653 - and with more example data on a google drive: https://
drive.google.com/drive/folders/1ab3ikKsryVG2jC4eWNAiDETfdJxLhd-J.
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