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Deep learning enabled liquid-based cytology
model for cervical precancer and cancer
detection

Peng Xue 1,2,16, Le Dang3,16, Ling-Hua Kong3, Hong-Ping Tang4, Hai-Miao Xu5,
Hai-Yan Weng6, Zhe Wang7, Rong-Gan Wei8, Lian Xu9, Hong-Xia Li10,
Hai-Yan Niu11, Ming-Juan Wang12, Zi-Chen Ye1, Zhi-Fang Li13, Wen Chen2,
Qin-Jing Pan2, Xun Zhang2, Remila Rezhake14, Li Zhang1, Yu Jiang 15,
You-Lin Qiao 1,2, Lan Zhu 3 & Fang-Hui Zhao 2

Deep learning (DL) enabled liquid-based cytology has potential for cervical
cancer screening or triage. Here, we develop a DLmodel using whole cytology
slides from 17,397 women and test it on 10,826 additional cases through a
three-stage process. The DL model achieves robust performance across nine
hospitals. In a multi-reader, multi-case study, it outperforms cytopathologists’
sensitivity by 9%. Reading time significantly decreases with DL assistance (218s
vs 30s; p < 0.0001). In community-based organized screening, the DL model’s
sensitivity matches that of senior cytopathologists (0.878 vs 0.854; p > 0.999),
yet it has reduced specificity (0.831 vs 0.901; p < 0.0001). Notably, hospital-
based opportunistic screening shows that junior cytopathologists with DL
assistance significantly improve both their sensitivity and specificity (0.857 vs
0.657, 0.840 vs 0.737; both p < 0.0001). When triaging human papillomavirus-
positive cases, DL assistance exhibits better performance than junior cyto-
pathologists alone. These findings support using theDLmodel as an assistance
tool in cervical screening and case triage.

Cervical cancer is one of the most common gynecologic tumors, with
662,301 new cases and 348,874 deaths worldwide in 20221. Cytology-
based screening is associatedwith significant declines inmortality, but
this is limited by low sensitivity and significant heterogeneity across
different providers, particularly in low-middle income countries2,3.
Human papillomavirus (HPV) testing has been recommended for pri-
mary cervical screening due to high sensitivity and long-term reas-
surance after a negative test result4. However, HPV infections can be
transient, which influences specificity. In high-resource countries, the
screening strategy is often based on co-testing for HPV and cytology
every five years to identify those at increased risk5. However, HPV
testing is not yetwidely available across all regions, creating barriers to
screening coverage6. Countries with quality-assured cytology pro-
grams can justifiably continue to utilize cytology as a primary
screening test for the general population and even if HPV testing is

available, cytology is preferred for triaging HPV-positive women7. The
widespread use of cytology over the past several decades is due to
utility and applicability, making it a crucial component of national
screening programs in 109 countries8. However, this approach relies
on cytopathologists’ subjective judgments, making it both labor-
intensive and time-consuming.

Traditional microscopy is gradually transitioning to a digital
process which has facilitated the development of artificial intelligence
(AI), specifically deep learning (DL) in cytopathology (see Supple-
mentaryNote 1 for literature review). Recently, the U.S. Food andDrug
Administration approved a Hologic Genius Digital Diagnostic System
with DL assistance to identify abnormal cells9. This system uses auto-
mated scanning to digitize slides and generate high-resolution cell
images. This has the potential to improve both diagnostic accuracy
and efficiency by reducing reading time. Several studies have
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presented supportive findings related to the technical feasibility of DL
models for abnormal cell detection10–13. However, there is insufficient
evidence around the clinical impactofDLmodels ondisease outcomes
and it remains necessary to conduct further investigations with his-
tological outcomes as the reference standard. In addition, it is also
unlikely that these AI tools will be used independently until more is
known about the effects, safety, clinical acceptance, or the implica-
tions for public trust. Therefore, we do not yet know whether DL tools
can help cytopathologists improve diagnostic performance and few
have analysed the integration of DL-based cytology solutions in dif-
ferent scenarios.

In this study, we developed a DL model to detect cervical intrae-
pithelial neoplasia grade 2 or worse (CIN2+ ). Initially, we assessed the
generalizability of this DL model using liquid-based cytology (LBC)
slides from several different hospitals across China, which had not
been previously analyzed with this model. The Findings were directly
compared with those from human cytopathologists. Then, a multi-

reader multi-case (MRMC) study was performed to investigate whe-
ther cytopathologists improve their diagnostic performance with DL
assistance. Finally, we applied the DLmodel in two different screening
scenarios to validate its performance and to assess its influence on
clinical practice.

Results
Study population
In total, 19,318 slides were obtained for the training set from two
independent pathology archives. After quality control, 1921 slideswere
excluded. 17,397 slides remained and were used to develop the DL
model. For the three-stage stepwise validation, we obtained four
datasets, which included 5803 slides (test set A), 550 slides (test set B),
3001 slides (test set C) and 1472 slides (test set D). An overview of the
study design is presented in Fig. 1. Details of the characteristics of the
modules and each dataset are provided in Supplementary Tables 1-4
and Supplementary Fig. 1.
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Fig. 1 | Study profile. This DL model was trained to classify LBC digital slides as
positive or negative cases using data from two independent pathology archives. By
histological reference standards, the DL model was then tested in a stepwise vali-
dation study which had three stages (test sets A–D). First, a multi-institutional vali-
dation study was performed to assess the generalizability across nine hospitals.
Second, diagnostic performance and efficiency of cytopathologists before and after

DL assistance was assessed in a multi-reader multi-case study. Third, diagnostic
performance and referral efficiency between senior cytopathologists and DL alone
were evaluated using a cloud platform in a community-based organized screening
population. Diagnostic performance and referral efficiency of junior cytopatholo-
gists before and after DL assistance was assessed locally in a hospital-based
opportunistic screening population. DL Deep learning, LBC Liquid-based cytology.
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Multi-institutional validation study
As part of themulti-institutional validation study (stage 1), we analysed
the diagnostic performance of our DL model at CIN2+ detection
(Table 1). DL alone achieved a pooled accuracy of 0.832, a sensitivity of
0.861 and a specificity of 0.829, when generalized across nine different
hospitals. DL accuracy varied between 0.798 to 0.857, as did sensitivity
(ranging from 0.833 to 0.883) and specificity (ranging from 0.794 to
0.856). Area under the curve (AUC) values ranged from0.814 to 0.868
(Fig. 2A). The most common false positives and false negatives are
presented in Supplementary Fig. 2.

Additionally, we stratified the 5803 slides (test set A) from nine
hospitals based on the level of expertise of each cytopathologist who
conducted initial diagnoses. Specifically, the subset comprising
2147 slides was evaluated by junior cytopathologists at three hospitals,
whereas the remaining 3656 slides were diagnosed by senior cyto-
pathologists at six different hospitals. Within this independent subset
of 2147 slides, the DL model had higher sensitivity and specificity than
the average of three junior cytopathologists (0.850 vs 0.719, 0.822 vs
0.746, both p <0.0001). See Fig. 2B and Supplementary Table 5. In
another independent subset of 3656 slides, the DL model had com-
parable sensitivity (0.867 vs 0.854, p =0.572) but lower specificity
(0.834 vs 0.888, p <0.0001) than the average of six senior cyto-
pathologists. See Fig. 2C and Supplementary Table 6 for further details.

Multi-reader multi-case study
In the second stage of theMRMC study, we compared the DLmodel to
cytopathologists’ readings of 550 digitized slides. The sensitivity and
specificity of DL significantly exceeded the average level of all 28
cytopathologists (0.870 vs 0.780, 0.831 vs 0.813, both p < 0.0001).
However, with DL assistance, these cytopathologists had higher aver-
age sensitivity and specificity (0.874 vs 0.780, 0.852 vs 0.813, both
p <0.0001; Table 2). Individual cytopathologists’ sensitivity without
DL varied from 0.609 to 0.913, and specificity varied from 0.677 to
0.948. After adding DL assistance, sensitivity varied from 0.804 to
0.935, and specificity varied from 0.762 to 0.972, but the greatest
improvement was observed in junior cytopathologists (Fig. 2D and
Supplementary Table 7).

The average sensitivity and specificity of junior cytopathologists
significantly improved (0.717 vs 0.858, 0.750 vs 0.815, both
p <0.0001), but there was no difference for senior cytopathologists
before and after addingDL assistance (0.864 vs 0.897, p =0.073; 0.898
vs 0.903, p = 0.300). Receiver operating characteristic (ROC) curves
are provided in Fig. 2E. In addition, the average review time was
reduced with the use of DL compared to without (218s vs 30s per case,
p <0.0001, Fig. 2F). Similar results were observed in subgroups of
junior and senior cytopathologists (Supplementary Table 8).

The application validation study
In the two application validation studies (stage 3), we investigated
influence of the DL model on cytopathologists’ performances in the
community-based organized screening and hospital-based opportu-
nistic screening. Both patterns of local service and the cloud-based
platform were made available to allow cytopathologists to upload
digital slides for DL analysis (Supplementary Fig. 3). The community-
based organized screening study (test set C) represented a general
population with a CIN2+ prevalence (1.366 cases per 100 women), and
consisted of 41 CIN2+ cases and 2960<CIN2 (Supplementary Table 3).
Compared to senior cytopathologists, the specificity of DL alone was
lower (0.831 vs 0.901, p <0.0001), but sensitivity was comparable
(0.878 vs 0.854, p >0.999, Fig. 3A, B).

Positive results initiated colposcopy referrals, and senior cyto-
pathologists had a lower rate of colposcopy referrals (0.109 vs 0.179,
p <0.0001) with few number of colposcopies required to yield one
CIN2+ (NNR, 9.371 vs 14.889, respectively), compared to the DLmodel
alone (Fig. 3C). To extend our analysis and simulate HPV testing as a
primary screening method, we compared triage performance of DL
alone to seniors for HPV-positive or non-HPV16/18-positive women.
Similar to the overall assessment, DL alone was equally sensitive but
had lower specificity and a higher rate of referrals compared to seniors
alone (Supplementary Table 9).

The hospital-based opportunistic screening study (test set D)
represented an opportunistically screened population with a CIN2+
prevalence of 4.755 per 100 women, and included 70 CIN2+ cases and
1402 <CIN2 (Supplementary Table 3). Through initial diagnoses,
juniorswithoutDL assistance hada sensitivity of0.843 and a specificity
of 0.830 (Fig. 3D, E). However, sensitivity associated with juniors sig-
nificantly improved from 0.657 to 0.857, and specificity from 0.737 to
0.840 (both p < 0.0001).

In terms of clinical efficiency, DL assistance reduced the overall
colposcopy referral rate by one-third, from0.282 to 0.193 (p <0.0001)
compared to juniors alone (Fig. 3F). This resulted in a lower number of
colposcopies required to detect one CIN2+ case (NNR, 4.733 vs 9.022,
respectively). Similar to the overall assessment observed in HPV-
positive or non-HPV16/18-positive women, DL assistance yielded
higher sensitivity, specificity and a lower referral rate than juniors
alone (Supplementary Table 10).

Discussion
Wedeveloped and validated a DLmodel using LBC slides for detecting
CIN2+. DL alone was effective and robust in analyzing data from geo-
graphically different hospitals across China, exceeding the average
performance of cytopathologists. Notably evidence from clinical
practice suggested juniors can significantly improve their diagnoses

Table 1 | Performance of DL alone in the multi-institutional validation study for detection of CIN2+

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Pooled results (n = 5803,
468 CIN2+)

0.832 (0.822–0.842) 0.861 (0.827–0.890) 0.829 (0.819–0.839) 0.307 (0.282–0.332) 0.986 (0.982–0.989)

APH (n = 673, 48 CIN2+) 0.857 (0.831–0.884) 0.875 (0.753–0.941) 0.856 (0.826–0.881) 0.318 (0.239–0.398) 0.989 (0.980–0.998)

GZPH (n = 800, 72 CIN2+) 0.798 (0.770–0.825) 0.833 (0.731–0.902) 0.794 (0.763–0.822) 0.286 (0.225–0.347) 0.980 (0.968–0.991)

HHMU (n = 674, 47 CIN2+) 0.822 (0.793–0.851) 0.851 (0.723–0.926) 0.820 (0.788–0.848) 0.261 (0.192–0.331) 0.987 (0.977–0.996)

WCSUH (n = 709, 60 CIN2+) 0.856 (0.830–0.882) 0.883 (0.778–0.942) 0.854 (0.824–0.879) 0.358 (0.281–0.435) 0.988 (0.978–0.997)

GHPLA (n = 590, 51 CIN2+) 0.837 (0.808–0.867) 0.882 (0.766–0.945) 0.833 (0.799–0.862) 0.333 (0.254–0.413) 0.987 (0.976–0.997)

SMCHH (n = 622, 59 CIN2+) 0.850 (0.822–0.879) 0.847 (0.735–0.918) 0.851 (0.819–0.878) 0.373 (0.291–0.455) 0.982 (0.970–0.993)

NWCH (n = 705, 29 CIN2+) 0.841 (0.814–0.868) 0.862 (0.694–0.945) 0.840 (0.811–0.866) 0.188 (0.122–0.254) 0.993 (0.986–1.000)

XH (n = 507, 52 CIN2+) 0.807 (0.772–0.841) 0.846 (0.725–0.920) 0.802 (0.763–0.836) 0.328 (0.249–0.408) 0.979 (0.964–0.993)

ZCH (n = 523, 50 CIN2+) 0.816 (0.783–0.850) 0.880 (0.762–0.944) 0.810 (0.772–0.843) 0.328 (0.249–0.408) 0.985 (0.972–0.997)

DL Deep learning, CIN2+ Cervical intraepithelial neoplasia grade 2 or worse, PPV Positive predictive value, NPV Negative predictive value, APH Anhui Provincial Hospital, GZPH Guangxi Zhuang
Autonomous Region People’s Hospital, HHMU The First Affiliated Hospital of Hainan Medical University, WCSUHWest China Second University Hospital, GHPLA The 7th Medical Center, General
Hospital of PLA, SMCHH Shenzhen Maternity and Child Healthcare Hospital, NWCH Northwest Women’s and Children’s Hospital, XH Xijing Hospital, ZCH Zhejiang Cancer Hospital.
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Fig. 2 | Comparison of diagnostic performance of DL model and cytopatholo-
gists in the multi-institutional validation study and multi-reader multi-case
study for CIN2+ detection. Multi-institutional validation study (A–C): A ROC
curves for diagnostic performance of DL alone across nine different hospitals.
BDiagnostic performanceofDLmodel comparedwith each junior cytopathologist.
Blue dots indicate diagnostic sensitivities and specificities for individual junior
cytopathologists. Blue rhombus indicates the average sensitivity and specificity for
all junior cytopathologists. C Diagnostic performance of DL model compared with
each senior cytopathologist. Orange dots indicate sensitivities and specificities for
individual senior cytopathologists. Orange rhombus indicates the average sensi-
tivity and specificity of all senior cytopathologists. Multi-reader multi-case study
(D–F): D Diagnostic sensitivities and specificities of individual junior and senior
cytopathologists before and after DL assistance. Blue dots indicate sensitivities and
specificities of individual cytopathologists without DL assistance. Orange triangles
indicate sensitivities and specificities of individual cytopathologists with the use of
DL assistance. E ROC curves for diagnostic performance of DL alone, junior and
senior cytopathologists with and without DL assistance. Blue and orange dots
indicate sensitivities and specificities of individual junior cytopathologists without
and with DL assistance, respectively. Blue and orange rhombi indicate sensitivities
and specificities of individual senior cytopathologists without and with DL

assistance, respectively. Blue and orange rhombi indicate average sensitivities and
specificities of all junior cytopathologists without and with DL assistance, respec-
tively. Blue and orange stars indicate average sensitivities and specificities of all
senior cytopathologists without andwithDL assistance, respectively. FThe average
reading time is measured for all cytopathologists (n = 28), junior cytopathologists
(n = 16), and senior cytopathologists (n = 12) with and without DL assistance. The
data represent independent assessments by each group, with biological replicates
defined as separate assessments by different cytopathologists with and without DL
assistance. The upper and lower bounds of the box represent the 75th percentile
(Q3) and 25th (Q1) percentile, respectively. The line within the box indicates the
median. The rhombus outside of whiskers refer to outliers. The time of review per
case is described as the median and interquartile range (IQR). CIN2+ Cervical
intraepithelial neoplasia grade 2 or worse, AUC Area under the receiver operating
characteristic curves, DL Deep learning, APH Anhui Provincial Hospital, GZPH
Guangxi Zhuang Autonomous Region People’s Hospital, HHMU The First Affiliated
Hospital of Hainan Medical University, WCSUH West China Second University
Hospital, GHPLA The 7th Medical Center, General Hospital of PLA, SMCHH
Shenzhen Maternity and Child Healthcare Hospital, NWCH Northwest Women’s
and Children’s Hospital, XH Xijing Hospital, ZCH Zhejiang Cancer Hospital, IQR
Interquartile Range.
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with DL assistance. Of course, efficiency would also be improved in
relation to the reading time required but also by reducing the number
of unnecessary colposcopy referrals. Similar results were observed
when DL model was used as a triage method for HPV-positive women.
These findings support the use of DL to assist cytopathologists,
especially junior practitioners.

The DLmodel proved both effective and robust. It was developed
using slides from 17,397 women, and was externally validated across
different geographical, independent and heterogeneous datasets. This
is distinguished fromother available DLmodels14,15 based on LBC slides
for detecting CIN2+ which have been developed using single center
datasets for training and conducted without external validation. To
improve upon the existing evidence base, we included a wider variety
of slides including negative, squamous and those with glandular cells
abnormalities, which were created by specialists with different pro-
fessional statuses using different devices. Including a greater number
of scanners (developed by different manufacturers) ensures the DL
model is more generalizable to a diverse range of settings. In this
study, we applied the DL model to previously unseen data from nine
hospitals in China. We found that the DL alone can achieve high
diagnostic performance although it is yet to be seen whether this
model will prove sufficiently sensitive and specific for populations
outside the Chinese mainland.

This model has the potential to improve cytological practice by
assisting in diagnostic processes. Cytopathologists using conventional
microscopy spend a long time looking for suspicious lesions among
thousands of cells or clusters within a single slide. This prolonged
process is prone to distractions which can result inmissed diagnoses16.
Our DL model can analyze whole slides within milliseconds, providing
cytopathologists with a series of the most diagnostically important
regions of interest (ROIs). Evidence demonstrates that some DL
models can match and even exceed human cytopathologists17–19.
Therefore, some suggest that these technologies will replace cyto-
pathologists as independent screeners15. However, these advanced
technologies can alsomismatch, omit key subimages and cangenerate
errors. These issues are forcing this field of research to consider AI
models as supplementary tools rather than being replacements for
human practitioners. Our MRMC study findings support this assertion
suggesting the most important role of this DL model is to improve the
diagnostic abilities and reading efficiencies by assisting cytopatholo-
gists, which could alleviate the burden on health-care systems, espe-
cially in large-scale population screening. This proposition may seem
unduly tentative given the reading time reduction observed in this
study; however, we do not want cytopathologists to become com-
pletely reliant on DL tools. Human-in-the-loop AI has not been fully
tested and should enable cytopathologists to focus on more obscure
cases with a higher risk of misdiagnosis, rather than spending time on
clearer cases.

The application validation studies conducted in both the
community-based organized screening and hospital-based opportu-
nistic screening enabled us to consider changes in the disease spec-
trum. Previous studies in rural Kenya have shown the feasibility of DL
models for pap smear20; however, the approach implemented had
methodological weaknesses including limited training and testing
samples, and the researchers used cytological outcomes asopposed to
histological outcomes, which hindered the application of their DL
model into clinical practice. This study was designed to assess the
application of this tool and we found the DL model to be both reliable
andeffective in practice. In the community-basedorganized screening,
which had a low CIN2+ prevalence, of prospectively collected 3001
LBC slides, the DL model detected four new CIN2+ cases which were
missedby senior cytopathologists. However, specificitywas lower than
that of seniors, although sensitivity was comparable. Further investi-
gation showed that most false positives were due to DL misclassifying
true negatives as atypical squamous cells of undetermined significanceTa
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or worse (ASC-US), and false negatives were due to DL misclassifying
ASC-US as true negatives. We suggest this could be improved in the
future with ASC-US training based upon histological outcomes
although this would require further research. Sensitivity or specificity
could also be improved by tweaking algorithmic configurations based
on refined cut-off values to match requirements. However, this again
raises questions around the positioning of AI assistance and the
implications generally. It may be necessary to develop a safety
mechanism, where cytopathologists can easily and quickly find ROIs
with potential abnormal cells identified by DL.

In the hospital-based opportunistic screening, which had a CIN2+
prevalence of 4.755 per 100 women, we found that junior cyto-
pathologists benefit most from DL support. There were significant
increases in both sensitivity from 0.657 to 0.857 and specificity from
0.737 to 0.840, which were comparable to that reported in a meta-
analytical study21. This consistent finding suggests that junior cyto-
pathologists will derive significant benefit, particularly in county hos-
pitals across China but also across the world. This assistance becomes
crucial in environments where experienced professionals are few and
far between, enablingmoreaccurate and timely diagnoses for patients,
who previously had to wait weeks before receiving their screening
results. This makes our DL model an affordable solution to improve
practice.

Several challenges exist when integrating the DL model into
clinical workflow. First, unsatisfactory sample processing, staining and
preparation including deep dyeing, random dots and speckles,

blurring and the influence of untrainedoperatorsmay impact scanning
quality, which could be mistaken by DL. However, these processes
were performed by experienced cytotechnologists in a standardized
laboratory setting which strictly controlled for interferences in our
study. This is not always possible in community hospitals. Second, the
absence of automatic high-volume, specialized scanners slows DL
model-based screening processes. Currently, the cost of scanners can
be prohibitive and a possible solution would be to transport slides to a
nearby locationwhichpossesses awhole slide scanner22. This analytical
centralization may lower labour costs and help standardize identifi-
cation but it will also come with logistics challenges. Therefore, it may
be necessary to develop a portable scanner which can be shared
among facilities23. Third, despite cloud servers, slow internet con-
nectivity may result in locally delayed image uploading and diagnostic
result generation. The provision of portable wireless networks at each
site mitigated internet reliability issues. However, augmenting data
management in high-volume community hospitals and outpatient
clinics requires an integrated image compression algorithm or an
offline DL model for optimization. Fourth, introducing the DL model
into new environments necessitates optimization and validation to
ensure it is feasible. This step is crucial for adapting the model to
different datasets and clinical settings, ensuring that it performs reli-
ably across various populations and regions. Fifth, ensuring the DL
model is economical in different health systems requires a cost-
effectiveness analysis that balances implementation costs against
potential savings resulting from reduced false positives and negatives.
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Fig. 3 | Comparison of diagnostic performance and efficiency of DL model and
cytopathologists in twoapplicationvalidation studies forCIN2+detection.The
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and senior cytopathologists. Blue triangles indicate the average sensitivities and
specificities of senior cytopathologists. B Diagnostic accuracy, sensitivity and
specificity between DL alone and the average of senior cytopathologists. c Referral
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E Diagnostic accuracy, sensitivity and specificity, for DL alone and junior cyto-
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Additionally, themodelmust be scalable and integrate seamlessly with
existing workflows to be economically viable in both well-funded or
resource-limited environments. In practice,wealso need to foster trust
in DL models among cytotechnologists as this is crucial for effective
integration. As the model is introduced, it will impact cytopathology
practices, potentially altering job roles and necessitating retraining to
ensure professionals can effectively interpret and act on AI-generated
insights. This transition should be managed to maintain job satisfac-
tion by positioning the DL model as a supportive tool rather than a
replacement24.

We also found that using DL model as the cytology-based
screening method alone resulted in a higher referral rate for colpo-
scopy, but as evidenced by screening of 25,404 Chinese women in 13
population-based pooled studies25,26, this referral rate is common in
China and is influenced by the specific screening population and
regional practices. To address this, we propose the DLmodel could be
suitable for triaging HPV-positive women, where it improved junior
cytopathologists’ triage performance by significantly reducing unne-
cessary colposcopies. This was consistent with the findings from our
previous study which highlighted a reduction in colposcopic referrals
by approximately 10%27. This aligns with the World Health Organiza-
tion recommendation that HPV testing be the mainstream primary
screening method with triaging HPV-positive women. Moreover, self-
sampling for HPV screening combined with AI triage is appealing in
middle-to-high resource settings, but currently it’s limited as it doesn’t
provide material for cytological analysis. Future developments are
needed to enhance self-sampling techniques for cytological use.
However again, the positioning of DL model will depend upon the
allocation of health resources. There is clearly a need for further health
economics research and to assess the duration of assurance of nega-
tive DL results against precancer to determine a safe screening inter-
val. It is also necessary to understand its effectiveness through longer-
term surveillance.

This study has some limitations. First, we did not have biopsies
from every woman who provided slides, and therefore could not
ascertain disease status for all. Women with negative screening results
for both hr-HPV and cytology were assumed to be at very low risk of
developing high-grade cervical lesions, which may have affected our
results. Second, the validated cohorts in our study exhibited a higher
prevalence of CIN2+, which may not reflect the characteristics of the
general screening population. Therefore, while these metrics provide
valuable insights within the context of our specific study cohorts, their
applicability to the general population may be limited and should be
interpreted cautiously. Third, poor images were excluded to ensure
data quality. However, the main reason is their susceptibility to fading
over time, which is primarily attributed to factors such as prolonged
light exposure, inadequate storage conditions, suboptimal mounting
medium quality, inconsistencies in the staining process, and issues
with chemical reagents. Therefore, it is recommended that cytology
laboratory staff ensure the quality of slide preparation and staining,
and that slides are scanned promptly to preserve the integrity of the
cellular details. Fourth, while the cell-level performance of DL model
was not shown, we directly assessed its slide-level performance, which
may offer greater utility than focusing on individual cells or clusters.
Finally, the presence of atypical glandular cell (AGC) could help iden-
tify adenocarcinoma precursors, but this was notmeasured due to the
limited number of cases. This aspect requires further investigation.

In conclusion, cytopathologists’ diagnostic accuracy and effi-
ciency were substantially improved when detecting CIN2+ with DL
assistance. DL has potential for practice and is suitable for both
screening and triage. With a cloud platform, this DL model could be
globally accessible and would serve as an ‘assistant’ which would be
particularly beneficial in areaswhere experienced cytopathologists are
scarce. Furthermore, regardless of a country’s transitional status or
advancement in cytology-based screening, the implementation of DL

model in combination with point-of-care testing could lead to timely
detection and intervention for cervical cancer, thereby improving
screening or triage performance.

Methods
Ethical approval
This study was approved by the institutional review board of the Chi-
nese Academy of Medical Sciences and Peking Union Medical College
(IEC-2021-023; IEC-2022-022) and Peking Union Medical College Hos-
pital (KS2023129). The need for informed consent waswaived because
this study involved the retrospective LBCslide and text data collection,
as these were anonymized. However, written informed consent was
obtained from patients whose LBC slides and text data were pro-
spectively collected. All data were de-identified prior tomodel training
and testing.

Study design and datasets
This was amulticentre, diagnostic study using LBC slides from 13 clinical
hospitals inmainland China. The study comprised a training phase and a
testing phasewith separate sets of LBC slides (one slide perwoman). The
training set, consisting of 17,397 LBC slides with their cytological results,
was retrospectively extracted from two independent datasets from the
institutes of pathology in Chongqing and Guangzhou between February
2020 and August 2021. The testing phase was conducted in three step-
wise stages with distinct test sets: Stage 1 involved a multi-institutional
validation studywherewe retrospectively collected 5803 LBC slides (test
set A) from nine different hospitals between October 2021 and Novem-
ber 2022 to evaluate the model’s generalizability, ensuring its reliability
for broader clinical use. Stage 2 featured the MRMC study, where we
randomly selected 550 slides (test set B) from stage 1 betweenDecember
2022 and January 2023 to compare the diagnostic performance and
efficiency of a total of 28 cytopathologists with and without DL assis-
tance. Stage 3 encompassed two application validation studies: one with
3001 prospectively collected slides (test set C) from a community-based
organized screening population between December 2022 and April
2023, and the other with 1472 slides (test set D) prospectively obtained
from four independent tertiary hospitals between April and September
2023. All slides were collected and scanned within three months after
cytological samples were prepared to prevent fading and there was no
overlap between the training set and any test sets, ensuring an inde-
pendent evaluation.

Women aged 18 years or older with intact uteri and no history of
pelvic radiation or hysterectomy were considered eligible. All partici-
pants provided LBC samples taken using one of the three widely used
products (ThinPrep, Hologic, USA; SurePath, BD, USA; LBP, Guangz-
hou LBP, China). Whole slides were processed and digitized at a 0.18
μm/pixel resolution using ×20 magnification with one of three scan-
ners (IBL-300 Scanner, Bingli, China; SQ-600 Scanner, Shengqiang,
China; EasyScanNFC-60 Scanner, XiamenMotic, China). All slideswere
initially screened and the low-quality images were removed, including
unsatisfactory, blurred, and defocused images, as well as those with
poor staining. Details in relation to eligibility criteria, labeling, and
clinical information are provided in Supplementary Note 2-3, Supple-
mentary Fig. 1, and Supplementary Tables 2-3.

A total of 56 cytopathologists participated. Of these, 12 were
involved in the development of the DL model, the remaining 44
participated in validation processes (stages 1-3). Each cytopatholo-
gist participated voluntarily and was involved in only one stage.
Cytopathologists were categorized as either junior or senior based
on their experience. The juniors were essentially beginners who were
accredited trainees and had 1-3 years of cytological experience. The
seniors had specialist qualifications related to cytological diagnosis
and more than eight years of experience. Further details about the
participating cytopathologists are provided in Supplementary
Table 4.
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Clinical outcomes
All women adhered to recommended testing and care at their
respective hospitals. Cytological results were reported as negative or
squamous and/or glandular cells abnormalities: ASC-US; atypical
squamous cells cannot exclude high-grade squamous intraepithelial
lesion (ASC-H); low-grade squamous intraepithelial lesion (LSIL); high-
grade squamous intraepithelial lesion (HSIL); squamous cell carcinoma
(SCC); AGC; adenocarcinoma in situ (AIS) or adenocarcinoma (ADC),
according to the Bethesda System28. The threshold for cytological
positivity was ASC-US or worse. HPV testing was performed (if avail-
able) according to manufacturer’s instructions (using either HC2 hr-
HPV test or clinically validated genotype PCR assays). Those who
cytologically tested positive and/or had hr-HPV received a local col-
poscopy and biopsy within sixmonths. Decisions to biopsywere taken
in accordancewith the International Federation for Cervical Pathology
and Colposcopy Standards29,30. Patients with biopsies were classified
based on themost severe histological diagnosis. Biopsies were used to
determinedisease status according to cervical intraepithelial neoplasia
(CIN) nomenclature: normal/benign, CIN1, CIN2, CIN3, or cancer. The
disease endpoint was a histologically confirmed CIN2+ diagnosis,
which is the threshold for treatment. However, when a biopsy-based
diagnosis was not available, a combination of secondary test results
was used to verify the final disease status. According to previous stu-
dies on risk assessment in a Chinese population26,31,32, women without
biopsy but with negative or ASC-US cytology and hr-HPV-negative
results were deemed to be histologically normal/benign. Women
without biopsy were also considered histologically normal/benign if
they were hr-HPV positive but had negative cytology and a negative
colposcopic finding. Those without biopsy were considered incom-
plete but were still assigned to to one of the following groups: ASC-US
and hr-HPV positive; LSIL or worse; hr-HPV positive, negative cytology,
and missing or positive colposcopy groups.

Procedures
The DL model was engineered through a two-stage process which
comprised cell-level detection and slide-level classification, tailored for
cytological diagnosis. Cell-level detection was trained to identify
abnormal squamous and glandular cells using 1,011,322 expert-
annotated cell image tiles, including 225,970 ASC-US, 121,404 LSIL,
318,241 ASC-H, 232,199 HSIL and SCC, 113,508 AGC, AIS or ADC.
Heatmaps were generated to visualize the outputs of the cell-level
detector and have been provided in Supplementary Fig. 4. We then
trained the slide-level classifier based on a multiple instance learning
strategy using 17,397 slides including 10,601 negative, 2314 ASC-US,
1833 LSIL, 1657 ASC-H, 693 HSIL and SCC, as well as 299 AGC, AIS or
ADC. This strategy aggregated individual cell outputs generated by the
cell-level detector to slide-level classifier in order to distinguish
between whole slides that are most likely negative or positive, and
generated DL-suggested ROIs, which were most likely to contain
abnormal cells (Supplementary Note 4, Supplementary Figs. 5-7 and
Supplementary Table 1).

This model was tested through a three-stage stepwise process. In
the first stage, we validated its generalizability across nine different
hospitals, each with a proportion of women diagnosed with CIN2+. We
then compared diagnostic performance of the DL model to original
cytological results using histology as the gold standard. The original
findingswereprovided by six senior and three junior cytopathologists.
All cytopathologists analyzed each slide and relied on their experience
to make decisions.

In the second stage, we performed the MRMC study involving 28
recruited cytopathologists, 12 seniors and 16 juniors. Each cyto-
pathologist was asked to independently read all digital slides and
provide initial diagnoses via a web-based platform. For cytopatholo-
gists without DL assistance, only the digital slideswere displayed. After
a 4-week interval, the slides were shuffled and presented randomly,

and then the slide-level results (negative or positive) of the DL pre-
diction, along with the indication of the ROIs with potential abnormal
cells, were displayed. Each cytopathologist made their second diag-
nosis with the DL assistance. Initial diagnoses, final assisted diagnoses,
and reading times were automatically recorded for each slide.

In the third stage, we conducted two application validation stu-
dies, where our DL model was applied in a community screening site
and an outpatient clinic. For community-based organized screening,
which involved a general populationwith a relatively lowprevalence of
CIN2+, we validated the diagnostic performance and referral efficiency
of the DL model. Manual diagnoses were provided by senior cyto-
pathologists and results were compared to those generated through
the cloud platform by the DL. In the hospital-based opportunistic
screening, the DL model was prospectively validated across a sample
of women who participated in hospital screening. Initial cytological
diagnoses were provided by junior cytopathologists. The slides were
digitized and transferred to a locally deployed DL model to generate
outputs. If two results were inconsistent and junior cytopathologists
had to choose whether to rely on their diagnosis or adopt the DL
model’s determination. Final diagnoses were made with DL assistance.

Positive results triggered colposcopy referrals and biopsies, in
accordancewith the standardof care. This enabled us tomeasure both
the diagnostic performance and the rate of colposcopy referrals forDL
alone, and juniors with and without DL assistance. As primary
screening is switching toHPV testing, we also simulated scenario using
DL alone, and juniors with and without DL assistance as a triaging
method, restricted to HPV-positive women. These results were recor-
ded and statistically analyzed.

Statistical analysis
A pre-study sample size was calculated for the DL model validation
(Supplementary Note 5, Supplementary Figs. 8-9). The diagnostic
performances of the DL model alone, and cytopathologists with and
without DL assistance for CIN2+ detection were assessed using diag-
nostic accuracy, sensitivity, specificity, positive predictive value and
negative predictive valuewith respective confidence intervals (95%CI).
ROC curves were generated to calculate the AUC values using the
ROCRpackage (version 1.18.5).McNemar’s and a standard Chi-squared
test were used to compare diagnostic performances, while Wilcoxon’s
signed rank test determined differences in reading times. For referral
efficiency, we counted colposcopy referrals and considered NNR.
Subgroup analyseswere conducted to assess performance and referral
efficiency using DL alone, and cytopathologists with and without DL
assistance as a triaging method for HPV-positive women. All statistical
tests were two-sided, with statistical significance set at a threshold of
0.05. R software (version 4.4.0) was used for all analyses. This study is
reported according to the DECIDE-AI reporting guidelines in Supple-
mentary Note 633.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this study, we developed a DLmodel using whole cytology slides for
detection of cervical precancer and cancer. Due to personal informa-
tion protection, patient privacy regulations, and medical institutional
data policies, slide images have not been publicly deposited. However,
the authors have made every effort to make the resources publicly
available, such as the source code, software methods, and supporting
information to reproduce the technical pipeline and analyses. All data
supporting the findings of this work are available unconditionally for
accredited scientific researchers for the purpose of reproducing the
results and/or academic activities from the corresponding authors
upon request within 14 working days.
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Code availability
The codes used in this study are available online https://github.com/
LuZWCHA/LBC_WSI_Classification.
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