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Transcriptome analysis of archived tumors
by Visium, GeoMx DSP, and Chromium
reveals patient heterogeneity

Yixing Dong 1, Chiara Saglietti2, Quentin Bayard 3, Almudena Espin Perez3,
Sabrina Carpentier3, Daria Buszta 4, Stephanie Tissot 4,5, Rémy Dubois3,
Atanas Kamburov3, Senbai Kang1, Carla Haignere3, Rita Sarkis 2,
Sylvie Andre4,5,6, Marina Alexandre Gaveta4,5,6, Silvia Lopez Lastra3,
Nathalie Piazzon2, Rita Santos3, Katharina von Loga3, Caroline Hoffmann3,
George Coukos 4,5,6, Solange Peters 4, Vassili Soumelis3, Eric Yves Durand3,
Laurence de Leval 2,9 , Raphael Gottardo 1,6,7,8,9 ,
Krisztian Homicsko4,5,6,9 & Elo Madissoon 3,9

Recent advancements in probe-based, full-transcriptome technologies for
FFPE tissues, such as VisiumCytAssist, ChromiumFlex, andGeoMxDSP, enable
analysis of archival samples, facilitating the generation of data from extensive
cohorts. However, these methods can be labor-intensive and costly, requiring
informed selection based on research objectives. We compare these methods
on FFPE tumor samples in Breast, NSCLC and DLBCL showing 1) good-quality,
highly reproducible data from all methods; 2) GeoMx data containing cell
mixtures despite marker-based preselection; 3) Visium and Chromium out-
perform GeoMx in discovering tumor heterogeneity and potential drug tar-
gets. We recommend the use of Visium and Chromium for high-throughput
and discovery projects, while the manually more challenging GeoMx platform
with targeted regions remains valuable for specialized questions.

Recent advances in sequencing- and imaging-based techniques have
led to the development of spatially resolved transcriptomics, named
method of the year in 20201 with the ability to spatially quantify gene
expression within a given tissue. These technologies allow health
researchers and clinicians to characterize patient samples with
unprecedented depth and spatial resolution, leading to transformative
insights that have the potential to improve diagnoses, treatments, and
patient outcomes.

Hybridization-based full-transcriptome methods relying on short
probes have proven successful on FFPE tissue: Visium v2 (Visium)2,

Chromium Flex (snRNAseq)3 and GeoMx Digital Spatial Profiling
(GeoMx DSP)4 methods profile over 18,000 transcripts on the human
genome, including the majority of the protein-coding transcripts
necessary for the discovery of unconventional biological mechanisms
and potential drug targets. Visium v2 enables uniform coverage of
tissue with ~5000 of spots of 55 µm diameter, spaced 100 µm apart.
GeoMx DSP allows users to pre-select regions of interest (ROI) on the
tissue, and collect spatially distributed segments identified by fluor-
escencemarkers called areas of illumination (AOI). Chromium Flex is a
single-cell/ single-nuclei transcriptomics platform with similar
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performance to theprevious droplet-basedmethods, adapted for FFPE
tissues5. Each individual method is both laboursome and costly to set
up andperform.The relative strengths andweaknesses of themethods
need better assessment to inform researchers on which technology
to use.

While there have been significant recent advancements in spatial
technologies (including Xenium6 and CosMx7) enabling transcript
quantification at cellular or even sub-cellular resolution, these tech-
nologies are often constrained by high costs, limited throughput, or
restricted gene panels. Consequently, GeoMx DSP and Visium remain
the most commonly used platforms for large-scale exploratory stu-
dies, such as MOSAIC8. Despite this, direct head-to-head comparisons
of the two platforms remain scarce. There have been attempts at
comparing Visium version 1 (v1) and GeoMx DSP. For instance, Wang
et al. showed higher sensitivity but lower specificity on gene detection
forGeoMx, using comparative experimental design for bothmethods9.
However, since then, Visium was updated with an automated sample
transfer tool, Cytassist, which offers improved sensitivity and specifi-
city compared to its predecessor (Visium v1), making it the method of
choice for the current study10. Furthermore, the release of single-cell
RNA-seq for FFPE tissue on the Chromium platform has enabled its
combined use with Visium to enhance the identification and mapping
of malignant cell subtypes within single patients3. The synergistic
application of Visium, GeoMx, and Chromium has been demonstrated
in the creation of an atlas for cholestatic liver disease. In this work,
Chromium was used to determine cell states, Visium to define tissue
regions, and both Visium and GeoMx to confirm the co-localization of
cell types within regions11. In a recent study, Yan et al. integrated
GeoMx DSP, Visium spatial gene expression, and single-cell RNA
sequencing (scRNA-seq) to comprehensively characterize tumor cell
states and spatial cellular compositions within the tumor micro-
environment (TME) of 19 patients, both before and after immu-
notherapy for non-small cell lung cancer (NSCLC)12. While this work
highlights the complementarity of these approaches, it remains
unclear which biological insights can be obtained from both spatial
methods and which are exclusive to each technology.

Despite the successful application of Visium and GeoMx to cancer
samples, a rigorous, large-scale head-to-head comparison of these
technologies for high-throughput discovery projects across hundreds of
patients is still lacking. Wang et al.9, the only comparison study to date,
includes just four breast cancer tissue samples and does not perform a
direct comparison of Visium and GeoMx on registered adjacent tissue
sections, as we do here. Furthermore, their study focuses on a non-
specific set of immune AOIs (CD45 and CD8) and does not integrate
snRNA-seq from adjacent sections with rigorous statistical methods.

In this work, we compare Visium and GeoMx in terms of opera-
tional performance, biological insights and propose optimal use-cases
for each of these three technologies while taking advantage of the
strength of each method. For this purpose we profile ROIs across four
AOI labels (Malignant, T cells,Macrophage,Other) with GeoMx, as well
as performVisium andChromiumprotocols on adjacent sections from
16 samples representing 14 patients with breast cancer, lung cancer,
and DLBCL in archival FFPE blocks. By analyzing heterogeneity and
intra-/inter-patient variations aided by tissue registration and decon-
volution, we highlight the strengths, weaknesses and complementa-
rities of the methods, as well as demonstrate how these insights can
guide precision therapy.

Results
Experimental overview and data curation
First we generated a dataset of spatial and single-nuclei tran-
scriptomes across three cancer types. Consecutive tissue sections of
archival FFPE blocks (median age 57 months (22-103); median DV200
53.75% (7.2-80.3)) of breast and lung cancer resections (n = 4 each)
and diffuse large B-cell lymphoma (DLBCL) excisional and sampling

biopsies (n = 6) were submitted for profiling with GeoMx, Visium v2
and Chromium FLEX platforms (Fig. 1a, Supplementary Fig. 1a, Sup-
plementary Data 1-3). Tissue sections from each specimen with
maximum size of 11mmx12mm were placed on GeoMx slides by
groups of three and stained with fluorescence markers to collect the
corresponding AOI-s (Fig. 1a, Supplementary Fig. 1a). For the Chro-
mium FLEX workflow four samples were pooled in a single well. The
nuclei were prepared using the snPATHO protocol13 from two 25 uM
cuts and were used for single-nuclei preparation. Wide distribution
of different RNA quality values with DV200, histology types and
block ages were chosen (Fig. 1b, Supplementary Fig. 1a). DV200 and
the block age did not have a major impact on the gene detection,
with even the sample B4 with considerably lower DV200 providing
comparable data with other samples for Chromium and Visium
(Supplementary Fig. 1b-e).

The number of data units varied across methods and samples
(Supplementary Fig. 2a-e). GeoMx AOI-s were successfully selected
for about 24 AOI-s per patient. Number of spots in Visium varied
from 822 in a Breast cancer sample to 4951 in DLBCL depending on
the size of the tissue. Chromium recovery was more variable from
802 nuclei to 17,804 nuclei per sample. We also observed high var-
iation in the number of transcripts and in the number of genes
detected across the samples with all three methods (Fig. 1c, Sup-
plementary Fig. 1f).

To assess reproducibility, we compared data from adjacent sec-
tions in Breast (Fig. 1d). The samples performed consistently both in
gene detection, as well as by clustering using high-dimensional
representation. We observed a slide effect between replicates of
lung samples in GeoMx, which was later corrected in downstream
analysis (Methods). Overall, we conclude that the sample-level varia-
bility in data dominates the variability induced by processing,
demonstrating high reproducibility for all three technologies. Overall,
we present a highly reproducible spatial and single nuclei dataset
characterizing the transcriptome of archival samples from three can-
cer types.

GeoMx data exhibit non-specific signals in pre-selected AOI
segments
We first aimed to compare GeoMx and Visium for their capacity to
characterize cell types in tissue. For this purpose,we used image-based
(i.e., H&E derived) labels for Visium spots and manually annotated
Chromium data. AOI segment identity was used for GeoMx (Supple-
mentary Fig. 2e, Supplementary Data 4a-c). For Visium, pathologists
used the Loupe Browser (10X Genomics) to annotate all spots into
tissue categories based on H&E images. These categories were then
grouped into broader classifications: Tumor-enriched, Stroma-enri-
ched, Lymphocyte-enriched, Immune Cell Mix (lung and breast), and
Epithelia (DLBCL gastric and bronchial biopsies) (Supplementary
Fig. 2c, Supplementary Data 5). The single-nuclei data was annotated
into known cell types according to previously described markers and
assigned to four hierarchical levels of cell type groups (Figs. 2a, Sup-
plementary Fig. 3, 4, Supplementary Data 6, 7). Single-cell annotation
at highest resolution (Level 4) enabled the identification of subtypes of
malignant cells within one donor, effectively capturing intra-patient
heterogeneity.

The cell-type composition of the AOI-s and spotswas then derived
by deconvolution of each data point using our Chromium reference
data with the SpatialDecon14 tool for GeoMx and Cell2location15 for
Visium (Methods). Both Visium and GeoMx methods captured
enrichment of expected cell types in agreement to the Visium
pathology annotation and the GeoMx curated AOI label (Fig. 2b, c).
Also, in both methods tumor and stromal cell types were pre-
dominantly enriched in their respective Tumor and Stromal regions.
T-cell signatures were enriched in T cells AOI-s in GeoMx, and the T-
and B-cell signatures were enriched in Lymphocyte regions in Visium.
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Macrophage AOI-s in GeoMx and Immune cell mix in Visium also
matched expected cell type enrichments. In addition to the expected
signal, there was an unexpected stromal signal for all the immune-
related regions in both methods. This was expected in Visium where,
by design, spots capture around 20 cells. In GeoMx, nonspecific signal
in AOI capturewas alsoobservedwith canonicalmarkers’ expression in
Breast, Lung, and DLBCL (Supplementary Fig. 5a, b). The cell type
specificity on a global scale was lost in the Breast T cells that clustered

together with Other segments (Supplementary Fig. 5c). Although the
GeoMxmethodwas designed to capture single cell types, we observed
that the least specific signals originated from AOIs containing scat-
tered cells, such asT cells. In contrast, the purest signals were obtained
from tissue areas with high uniformity and a large surface area relative
to the AOI contour (Fig. 2d). The nonspecific signal from Visium is
explained by the spots laying at intersection between two areas, and
cell type mixtures positioned within the same area (Fig. 2e).
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Fig. 1 | Experimental setup and data quality with three full transcriptome
methods GeoMx, Visium and Chromium on Breast and Lung cancer, and
DLBCLbiobank samples. a Schematics of experimental design to generateGeoMx
and Visium spatial transcriptomics and Chromium single-nuclei data for three
cancer types corresponding to 14 donors from FFPE blocks with 2 samples repli-
cated for each technology. AOI - area of illumination, DLBCL - Diffuse large B-cell
lymphoma, DSP - digital spatial profiler. Created in BioRender. Gottardo, R. (2025)
https://BioRender.com/o13c311. b Display of block age and RNA quality measure

DV200 values for all the samples with histology type, labelled by patient ID. cGene
detection rate for GeoMx AOI-s and number of genes detected in Visium spots and
single nuclei. Colors inGeoMx correspond to AOI labels.d Breast cancer tSNE plots
with GeoMx and UMAP plots with Visium and Chromium show good reproduci-
bility. Technical replicates with adjacent sections from the same block are high-
lighted with a dashed line. GeoMx: 5 samples/117 AOIs; Visium: 5 samples/
10249 spots; Chromium: 6 samples/10689 cells. B breast, L lung, D DLBCL. Source
data are provided as a Source Data file.
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Additionally, our H&E-derived labels assigned spots based on their
predominant cell type(s), so background signals from other cell types
were expected (Methods). Overall, we concluded that both spatial
methods captured mixtures of cells that can be readily deconvolved
computationally. However, in the case of GeoMx, the selection of AOIs
within cell clusters versus scattered cells in the tissue can influence the
specificity of the signal.

Cell type specificity in matched GeoMx and Visium regions
To directly compare GeoMx and Visium, we aligned images to match
Visium spots with specific AOI locations in GeoMx (Methods, Fig. 3a).
In total, nine pairs of consecutive sections of GeoMx and Visiumbreast
and lung samples were used for alignment (Supplementary Fig. 6a).
When 70% of the Visium spot’s area was overlapping with a GeoMx
segment, it was considered matching to that segment’s AOI label.

Lo
w

 s
pe

ci
fic

ity
 e

xa
m

pl
e

Scattered single cells in tissue: high ratio of
contour line length over surface area

AOI: T-cell, CD3D
(red with cyan border)

H
ig

h 
sp

ec
ifi

ci
ty

 e
xa

m
pl

e

AOI: Malignant, PanCK
(green with black border)

Grouped and excluded cells in tissue: low ratio
of contour line length over surface area

GeoMx DSP

D
LB

C
L

Br
ea

st
Lu

ng

Expected signal Additional signal

b d

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

Breast
Lung

Epithelia
Stroma
B cells
T cells
NK
Macrophage
Myeloid else
Tu_B1
Tu_B3
Tu_B4
Tu_L1
Tu_L2
Tu_L3
Tu_L4

Epithelia
Stroma
B cells
T cells
NK
Macrophage
Myeloid else
Tu_D1
Tu_D2
Tu_D3
Tu_D4
Tu_D5
Tu_D6

UMAP1

U
M

AP
2

Cancer type

UMAP1

U
M

AP
2

Cell type Cell type

UMAP1

U
M

AP
2

Breast + Lung Cancer Breast + Lung Cancer DLBCLa

Malignant T cells MacrophageOther

C
el

lt
yp

e
fra

ct
io

n

GeoMx
AOI label

Signature
cell type

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

E
pi

th
el

ia
S

tr
om

a
Tu

m
or

M
ac

ro
ph

ag
e

T
ce

lls
B

 c
el

ls
N

K
M

ye
lo

id
 e

ls
e

Visium: breast

Tumor Tumor stroma mix

Intratumoral stroma

Visium
c e

C
el

lt
yp

e
fra

ct
io

n

Pathology
annotation

D
LB

C
L

Br
ea

st
Lu

ng

Signature
cell type

Tumor
-enriched

Lymphocytes
-enriched

Immune Cell MixStroma
-enriched

Expected signal Additional signal

Epithelium

100 μm

100 μm

Article https://doi.org/10.1038/s41467-025-59005-9

Nature Communications |         (2025) 16:4400 4

www.nature.com/naturecommunications


Around 11% of the spots that fell into anAOI got spatiallymapped to an
AOI label.Malignant and Other AOI-s had the highest number of spots
mapping to their area providing 116 and 342 data points respectively
(Fig. 3b). Spots mapping to either T cells or Macrophage AOI-s had a
smaller overlapping area to a GeoMx segment, providing only five
spots forT cells andnomatching spot forMacrophageAOI label. This is

due to the gaps between Visium spots, and the irregular shapes of
immune cell marker staining in GeoMx that fail to be captured by
Visium spots. For the location-matched spots, we compared the cell
type specific signal with deconvolution between GeoMx and Visium
(Fig. 3c). Both technologies showed comparable cell type fraction in
Malignant and Other AOI-s. In matched T cells AOI-s, we saw a higher

Fig. 2 | Assessment of cell type specificity in GeoMx AOI-s and Visium spots.
a UMAP plots for annotated Chromium data at Level 1.5 resolution. Breast & Lung:
10 samples/46,643 cells; DLBCL: 6 samples/39,713 cells. Predicted cell type frac-
tionsbydeconvolution inGeoMx (b) andVisium (c), groupedbyAOI label inGeoMx
and Pathologist annotation groups in Visium. Fractions are displayed for groups of
shown cell types. Boxes represent the quartiles of the data, while the whiskers
extend to data points within 1.5x the interquartile range from the lower and upper
quartiles. The horizontal black line within each box represents themedian. Outliers
are indicated as individual data points. GeoMx: Breast (Malignant: n = 225 AOIs;
Other: n = 281 AOIs; T cells: n = 148 AOIs; Macrophage: n = 134 AOIs), Lung (Malig-
nant: n = 248 AOIs; Other: n = 296 AOIs; T cells: n = 296 AOIs; Macrophage: n = 104
AOIs), DLBCL (Malignant: n = 448 AOIs; Other: n = 72 AOIs; T cells: n = 416 AOIs;
Macrophage: n = 152 AOIs). Visium: Breast (Tumor-enriched: n = 15,352 spots;

Stroma-enriched: n = 36,086 spots; Lymphocytes-enriched: n = 638 spots; Immune
Cell Mix: n = 1625 spots), Lung (Tumor-enriched: n = 15,352 spots; Stroma-enriched:
n = 13,224 spots; Lymphocytes-enriched: n = 7160 spots; Immune Cell Mix:
n = 14,088 spots), DLBCL (Tumor-enriched: n = 120,824 spots; Stroma-enriched:
n = 5288 spots; Lymphocytes-enriched: n = 5840 spots; Epithelium:
n = 7592 spots). Expected and unexpected additional signals for that AOI label or
pathology group are highlighted. Pathology annotations were grouped as in Sup-
plementary Data 5. d Examples of AOI-s with low and high specificity on immuno-
fluorescent images. Thicker line is contour for the full regionof interest, thinner line
is contours for AOI. Images above are representative of 1 sample. e Examples of
Visium spot annotation into Tumor and adjacent areas. Image above is repre-
sentative of 1 sample. Source data are provided as a Source Data file.

Malignant Other T cells

E
pi

th
el

ia

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

E
pi

th
el

ia

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

0.00

0.25

0.50

0.75

1.00

Malignant Other T cells

E
pi

th
el

ia

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

E
pi

th
el

ia

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

S
tr

om
a

Tu
m

or

M
ac

ro
ph

ag
e

T
ce

lls

B
 c

el
ls

N
K

M
ye

lo
id

 e
ls

e

0.00

0.25

0.50

0.75

1.00

Platform

GeoMx

Visium

C
el

lt
yp

e
fra

ct
io

n

GeoMx AOI label for Visium
matchings spots Breast and Lung samples combined

Expected signal

Additional signal

Macrophage

c

Signature
cell type

Image alignment across GeoMx and Visium

Spot assigned to GeoMx label if
(spot, AOI) > 70% spot area

Visium spot GeoMx AOI label

… …

94x36 Malignant

93x39 Not assigned due to
≤ 70% overlap to any AOI

… …

B1-2 GeoMx OME-TIF
WithROIs overlaid

B1-2 Visium spots
WithGeoMxROIs overlaid

G
eo

M
x

flu
or

es
ce

nt
im

ag
e

re
gi

st
er

ed
to

Vi
si

um
H

&E

Malignant
Other

Spots mapped:

>70% AOI overlap

n = 0

n = 5

n = 342

n = 116

n = 395

n = 696

n = 1334

n = 1306

Macrophage

T cells

Other

Malignant

0.00 0.25 0.50 0.75 1.00

AOI & spot area overlap percentage

A
O

I l
ab

el

a b

Insufficient location-matched
Visium spots with Macrophage
AOI label

500 μm
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proportion of stroma cells than T cells in GeoMx, while such a back-
ground signal is suppressed in Visium. Note that all 5 mapped spots
belonged to breast samples (Supplementary Fig. 6d), for which the
stromal signal is lower than T-cell signal compared to that in lung
samples (Fig. 2b). To estimate the signal from theseminority cell types
in GeoMx and Visium independently of location matching, we display
theT-cell andmacrophagedeconvolution fractions of eachAOI or spot
on integrated reduced dimension plots for all indications (Supple-
mentary Fig. 7c, d). Lung samples show higher abundance of T-cell and
macrophage spots in Visium, consistent with cell type proportions in
Chromium (Supplementary Fig. 4). However, we observe a higher
deconvolution fraction of T-cell and macrophage in GeoMx’manually
selected AOI-s (Supplementary Fig. 7d). This demonstrates the
strength of highly segmented GeoMx design that allows a better
enrichment for rare cell types of interest in a tissue.

Overall, we conclude that Visium and GeoMx demonstrate com-
parable specificity in head-to-head spatial registration comparisons
and effectively capture signals from rare cell types. Notably, despite
the enhanced cell-type enrichment offered by GeoMx’s AOIs, Visium
reliably detects signals from corresponding regions.

Deconvolution into cell types enhances spatial characterization
in Visium and GeoMx
Next, we explored data-driven cell type composition through decon-
volution in both Visium and GeoMx, and compared them to the H&E-
driven pathology annotations or morphology marker-based segments
correspondingly.

The deconvolution of each Visium spot into cell type fractions
enables higher resolution of the tissue than distinguished by pathol-
ogists based on H&E alone (Fig. 4a, b). Cell type fractions derived from
the deconvolution of GeoMx AOIs vary across regions and also exhibit
significant variability within a single segment type (Fig. 4c, d).
Inspections of the AOI pie charts reveals that the variation for selected
cell types ranged from about 5% to about 35% of the predicted T-cell
abundance in the T cells AOI and from less than 25% to over 45% of the
predicted macrophage abundance in the Macrophage AOI. These
findings highlight the presence of mixed cell populations, despite the
segments being primarily defined for a single cell type in donor B1.

The pathology label and deconvolution majority vote for all Vis-
ium samples were shown in a gallery (Supplementary Figs. 6b, c, 7a, b).
Across all Breast, Lung and DLBCL donors, both Visium and GeoMx
demonstrated overall consistency in the tumor cell capture compared
to the pathology labels or segment types correspondingly (Fig. 4e, f).
T- and B-cell abundances were highest in the annotated lymphocyte-
enriched or Immune Cell Mix regions in Visium as expected, as well as
the stromal cell abundances in the stromal regions. T-cell and Macro-
phage cell type abundances were more specific in the T cells and
Macrophage AOIs in GeoMx for all three indications. High stromal cell
abundance was observed for both methods in all the annotated or
segmented regions. A further breakdown of such agreement analysis
with Chromium Level 4 annotations were shown for breast, lung, and
DLBCL (Supplementary Fig. 8a, b).

We then focused on regions where Visium deconvolution showed
increased resolution compared to H&E-based pathology annotations,
and used GeoMx as a validation by spatially registering the matching
sections. The increased resolution by deconvolution is evident in
regions with similar histology but different cell type composition. First,
T- and B- cells were annotated as Lymphocytes on H&E, but deconvo-
lution can distinguish these cell types in Visium (Fig. 4g). In the corre-
sponding GeoMx section, the B-cell signal is abundant across the Other,
T cells, and Macrophage AOI-s, despite not specifically staining for “B
cells”AOI. B cells notably co-existwithmacrophages, as observed in both
Visium spot deconvolution and GeoMx AOI pie charts. For the T-cell
region identified in Visium, no GeoMx ROI was sampled, and thus the
gene expression data is not available for GeoMx. Second, malignant cell

subtypes identified in Chromium for patientD3 showed spatially distinct
locations between Tu_D3_FAM3C and Tu_D3_dividing on Visium
(Fig. 4h). GeoMx showed consistent localisation in the Tu_D3_dividing
region, but was missing an ROI in the Tu_FAM3C region. Finally, neo-
plastic B-cell and stomach epithelium layers in DLBCL biopsy are clearly
separated by deconvolution into distinct regions, although intermixed
with pathology annotations (Fig. 4i). Reasonable spatial concordance is
observed between Visium and GeoMx in the four selected ROI-s for the
tumor and epithelium subtypes.

Overall, we demonstrate that data-driven annotation via decon-
volution offers significantly higher resolution compared to threshold-
based segmentation in GeoMx and manual H&E-based annotation for
Visium. While we observe reasonable concordance between the two
technologies, the manual and subjective selection of a limited number
of ROIs and their associated AOIs poses substantial challenges for
analysis and visualization. This selective process restricts the dynamic
range of gene expression for certain targets, making quantification
more difficult. In contrast, Visium samples the entire tissue, capturing
spots with both low and high expression levels, thereby enablingmore
meaningful and comprehensive quantification.

Spot-level data can be enhanced computationally to increase
resolution and detection rates
A commoncriticism of the Visium technology is its resolution and data
sparsity1. Each spot typically contains an average of about 20 cells, and
similar to single-nuclei RNA-seq, the expression levels for canonical
marker genes can be relatively low, making it challenging to identify
and visualize detailed tissue structures. To address this limitation, we
applied BayesSpace16, a reference-free approach that subdivides each
spot into subspots, estimating the gene expression contribution of
each subspot to the overall spot-level value, thereby generating a
super-resolution image. With its high-resolution gene expression
maps, BayesSpace can resolve tissue structures that are difficult to
detect at the original resolution. To illustrate this, we analyzed a
sample containing a visible tertiary lymphoid structure (TLS) on the
H&E image. The corresponding area in Visium shows limited evidence
of TLS, with sparse expression of canonical marker genes such as
CXCL13, MS4A1, and CD4 (Fig. 5a). However, after enhancement with
BayesSpace, the same region reveals a well-defined area with elevated
expression of these marker genes. These findings show that the reso-
lution of Visiumdata can be significantly enhanced, thereby increasing
its analytical value for spatial profiling.

To determine whether a similar biological signal exists in the con-
secutive GeoMx section, we analyzed the ROI corresponding to the
same tissue location where the TLS was identified in Visium. We
expected TLS markers to be highly expressed in the “Other” segment of
the ROI in TME compared to neighboring malignant ROIs. However,
with the exception of CXCL13, most markers did not show significant
expression. As discussed earlier, unlike Visium, which provides full
spatial coverage with uniform spot sizes, GeoMx AOIs are more limited
in number and can vary significantly in size, while averaging the
expression across the whole capture area. Consequently, the deconvo-
lution fraction serves as a more reliable indicator, offering internal
normalization across all AOIs and providing a cleaner signal. Using this
approach, we observed a higher B-cell deconvolution fraction in the ROI
overlapping with TLS compared to other ROIs (Supplementary Fig. 9a).

In addition to the previouslymentionedTLSmarkers,we analyzed
an additional sample, L4, to compare the sensitivity of Visium and
GeoMx in detecting immune cell signals. We focused on an immune
cell aggregate identified through pathology annotation on Visium,
matched to anROI inGeoMx (Supplementary Fig. 9b). At the spot-level
resolution in Visium, onlyCD14exhibited a clear signal.However, using
BayesSpace-enhanced subspot resolution, numerous canonical mar-
kers for B-cells, T-cells, and macrophages highlighted the immune cell
aggregate. In contrast, the immune cell signals in GeoMx were not
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consistently stronger in the TME compared to the Islet in the expected
segment. Deconvolution fractions for B cells, T cells, andmacrophages
in GeoMx showed expected intensities based on their AOI locations
but lacked the ability to pinpoint specific regions due to the pre-
defined irregular shape of the ROI-s (Supplementary Fig. 9c). Overall
we demonstrate that Visium has the higher capacity to detect struc-
tures that were not pre-defined before study, allowing for a better
hypothesis-free approach to analysis.

Visium and GeoMx reveal spatially distinct malignant regions
with unique transcriptional profiles
In addition to identifying structures, we aimed to look for intra-patient
variation in Visium and GeoMx. Using the spatially-aware clustering
method, BayesSpace, we discovered two transcriptionally distinct
areas on the reduced dimension UMAP for patient B3 on Visium
(Fig. 5b). The regions had similar morphology, annotated as
“Tumor_pure” and received a cell typemajority vote “Tu_B3”.Wegroup
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the clusters as cluster 14 (AreaA) and clusters 1, 5, and9 (AreaB). For all
AOIs in GeoMx sample B3, we mapped their spatial location to Area A
and B. In concordance to Visium, the malignant AOIs also showed
separate clusters in the UMAP of GeoMx, by Area A and B. The
deconvolution result indicates that more than 60% of the Malignant
AOI-s are composed of Tu_B3 cell type (Fig. 5c). We then performed
Differential Expression (DE) analysis between the two tumor areas in
Visium and GeoMx (Methods). Not surprisingly, due to the larger
number of spots and increased statistical power, Visium identifies
more significantly differentially expressed (DE) genes and higher fold-
changes compared to GeoMx. The majority of the top DE genes
identified by GeoMx are also detected by Visium (Fig. 5d, e). Some of
the DE genes identified are drug targets (Methods), for example, a
potential treatment for marker GSTP1 in Area B is ezatiostat and for
marker ADRA2A in Area A is dexmedetomidine (Fig. 5d). This intra-
patient heterogeneity was replicated with Chromium data where we
annotated two tumor subclusters for Tu_B3 corresponding to the area
A and B with specific DE genes PLA2G2A and NPPC correspondingly
(Supplementary Fig. 9d). The two subclustersmapped to the expected
areas in Visium, and the DE analysis on Chromium showed similar
significant DE genes as the spatial analysis (Supplementary Fig. 9e, f).
We next examined the consensus of differentially expressed (DE)
genes across the three platforms in each area. Visium identified the
highest number of distinct DE genes, while GeoMx identified the
fewest (Fig. 5h). Notably, greater overlap was observed between Vis-
ium and GeoMx, as well as between Visium and Chromium, high-
lighting the strongpotential of integrating Visiumwith other platforms
for uncovering intra-patient heterogeneity.

Potential for targeted therapies in heterogeneous patient
population
Besides molecular characterisation of intra-patient heterogeneity in
Breast, we wanted to explore the power of full transcriptomemethods
to describe existing drug targets and discover potential ones in a
highly heterogeneous and complex tissue such as DLBCL. We first
aggregated annotations of DLBCL malignant and tumor micro-
environment (TME) cells to similar categories (Fig. 6a) by using Level 2
categories in Chromium with malignant subtypes, annotating Visium
spots and usingGeoMxAOI labels.Wedid observe patient-effect in the
uncorrected data for both Visium (Supplementary Figs. 10, 11) and
GeoMx (Supplementary Fig. 12 b, h, n) also in the non-malignant spots/
AOI labels. After adjusting for donor effect (Methods), Visium anno-
tation into epithelium, stroma, plasma, and vessels/immune was done
using clustering and known marker gene enrichment (Methods, Sup-
plementary Fig. 13). We used canonical marker expression and relied
onpathologist annotations forNecrosis regions.Malignant nuclei were
annotated by both enrichment of specific patients in the cluster as well
as the cell type signature similarity with the corresponding donors’
malignant cell markers gained from Chromium data (Supplementary
Fig. 4b–d).

Known and potential drug targets were selected manually from
known targets or top targets for exploring intra- and interpatient
variability (Fig. 6b, Methods). In fact, many of them are among the top
100 most differentially expressed genes when comparing malignant
cells or spots to their non-malignant counterparts (Supplementary
Fig. 14, Methods). The B-cell markers were enriched in all patients’
malignant cells compared to the TME cells with Chromium data. We
observed differences in expression between patients for many drug
targets including CD47, CD52, CD40 and CD38, potentially suggesting
an existing patient subgroup that might better respond to antibody-
drug conjugates (ADC) designed against those surface molecules.
Interestingly, we also observed intra-patient variability in expression in
some potential drug targets. CD52 and some BCL genes showed vary-
ing expression within patient D3 between the identified subclones in
single-nuclei data. Other potential drug targets such as FCRL genes
showed patient-specific expression in D1, D2, D3 and D6. Interestingly,
patient D5 stood out with very specific gene expression patterns,
suggesting more drastic differences in the underlying biology.

While there was considerable heterogeneity both within and
between patients’ malignant nuclei in the Chromium data, these dif-
ferences are more difficult to detect in the Visium or GeoMxmethods,
likely due to the mixing of cells within spots or AOI-s. We tried to
enhance the cell type signal specificity in Visium and GeoMx by using
deconvolution information with Chromium. Instead of the clustering
approach above, we used majority votes from deconvolution, and
showed densities of each cell type fraction for its corresponding
majority vote class (Supplementary Fig. 15a, b). To enhance the purity
of spots, only spots with more than 50% maximum cell type fraction
were kept in Visium (Supplementary Fig. 15b). After such filtering, 52%
DLBCL spots were included in the downstream analysis for Visium. For
GeoMx, we kept 75% segments that showed consensus between AOI
label and deconvolution majority vote label (Supplementary
Fig. 15c, d). The “purified” Visium and GeoMx data revealed a more
distinct pattern in the expression levels of known drug targets, more
similar to the patterns observed in Chromium, particularly for patient
D5 (Supplementary Fig. 15e). However, a lack of cell type specific gene
expression persists for GeoMx.

This use case is prominent in DLBCL where cellular density in
tissue is high and heterogeneous, demonstrated by higher additional
signals compared to breast and lung (Fig. 2a, b). For tissues withmixed
cell types, Chromium and Visium offer the highest resolution, with
Chromium providing superior granularity. This underscores the cri-
tical importance of integrating matched single-cell or single-nuclei
RNA-seq data with full-transcriptome spatial data to comprehensively
capture the complexity of cellular heterogeneity.

Discussion
We aimed to compare full transcriptome methods on archival FFPE
blocks from tumor patient samples: GeoMx DSP, Visium CytAssist and
Chromium Flex. We assessed the operational challenges, specificity of

Fig. 4 | Multi-modality of Visium and GeoMx data visualized with H&E and
fluorescence image, pathology label, and deconvolution. a Pathology label
visualizedonH&E imageof Visium sample B1_4.bDeconvolution cell type fractions
plotted as scattered pie charts for each spot visualized on H&E image of Visium
sample B1_4. c Pathological regions of interest (ROI-s) visualized on fluorescence
images of GeoMx sample B1_3. d Up to four AOI segments have their outlines
complement each other in an ROI. Deconvolution cell type fractions plotted as pie
charts for each area of illumination (AOI) segment within each ROI. Sample B1 -
Visium: 1988 spots; GeoMx: 24AOIs. Pathology label and deconvolution agreement
for breast, lung and DLBCL in Visium (e) and GeoMx (f) samples. Heatmap is
labelled by the average cell type deconvolution fraction per pathology label or AOI
label, colored by square root of the number. g Lymphocyte resolution zoomed in
on H&E image, pathology annotation, deconvolution shown as scatterpie of cell
type fractions, and individual deconvolution fraction for cell type of interest in

Visium sample B1_4. At the same spatial location, ROI and AOI outlines (if any) were
shown on the consecutive section of GeoMx sample B1_3. The individual deconvo-
lution fraction of B-cells is shown spatially in the TME ROI. The T-cell region
identified in Visium did not have an ROI sampled exactly head-to-head in GeoMx.
h Malignant cell subtypes visualized across various modalities for consecutive
sections of Visium and GeoMx sample D3. Deconvolution is able to depict the
spatial transitioning in Visium of tumor cell types annotated in Chromium. The
absence of Tu_D3_FAM3C and the existence of Tu_D3_dividing can be validated in
GeoMx at the same spatial location. Sample D3 - Visium: 4951 spots; GeoMx: 23
AOIs. i Tumor and epithelium cell subtypes visualized across variousmodalities for
consecutive sections of Visium and GeoMx sample D6. Sample D6 - Visium:
1649 spots; GeoMx: 19 AOIs. Images above are representative of 3 samples. Source
data are provided as a Source Data file.
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cell type signatures, ability to capture heterogeneity and potential for
high-throughput set-up.

The operational setup of GeoMx required more resources in
terms of optimization, cost, and lab personnel training compared to
Visium and Chromium. However, it offered greater flexibility in
experimental design, despite being more susceptible to batch effects

(Table 1, Supplementary Fig. 12). Chromium had about twice lower
running cost, making the user consider whether spatial resolution on
cell type groups is twicemore valuable than corresponding single-cell/
nuclei resolution. However, Chromium is suggested to consume at
leastfive timesmore tissue than the spatialmethods3 (Table 1), making
this an important consideration for low-input clinically valuable
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samples such as core-needle biopsies. Estimated maximum through-
put per week is highest for Chromium and lowest for GeoMx with the
current experimental set-up. Pre-processing and data analysis can rely
on vendor-provided tools, but advanced analyses are easily available
for Visium and Chromium with a large scientific community and con-
tributors but require more specialized effort for GeoMx.

Although the data was highly reproducible across similar biolo-
gical samples for all three methods, GeoMx and Visium exhibited
greater biological variability across samples due to the mixing of cells
within individual data points. This variability is inherent to Visium, as
its capture of transcripts within circular spots on the tissue naturally
leads to cell mixtures, which was expected. However, it was surprising
to observe high fractions of other cell types in the GeoMx AOI-s, which
were preselected for specific cell types—defeating the purpose of tar-
geted selection to someextent. This issuewasparticularly pronounced
in scattered cell types within the tissue, potentially due to transcript or
probe leakage from nearby areas or physically overlapping cells along
the Z-axis of the tissue. Contamination in GeoMx could be reduced
with a simpler experimental design, such as selecting fewer segments
or better-separated cell clusters, but making the flexibility of GeoMx a
less relevant advantage of the method.

While the challenges of setup andunexpected transcript signals in
GeoMx could have beenmitigated with a simpler design, we aimed for
thehighest resolutionof cell types, as thiswas thebiggest advantageof
GeoMx over Visium. We collected CD68-enriched data from GeoMx
that were notmatchedwith Visium, highlighting the benefit to address
specific questions. The current best full-transcriptome resolution
would be the Visium HD method with a 2 × 2μm grid17. However, this
method is much more expensive, making it less applicable to larger
studies. The highest spatial resolution would be provided by in situ
sub-cellular CosMx and Xenium methods that can detect up to 6000
genes6,7 and more recently even full-transcriptome18. However, the
costs for these in-situ technologies are even higher, and their
throughput is at multiple days per sample, not allowing scale-up for
study across a large number of patients. The development of sub-
cellular technologies into full-transcriptome assays is the next frontier
in studying tissue biology, with the cost and analysis difficulty hin-
dering the usage by scientific and clinical communities.

We also demonstrated the discovery of transcriptional hetero-
geneity on morphologically similar tissue with both Visium and
GeoMx. This finding underscores the unique potential of Visium,
Chromium, and GeoMx to independently uncover intra-patient het-
erogeneity that may be overlooked by standard pathology relying on
H&E image or marker-based annotation. This enabled identification of
two regions expressing targets for two different drugs, thereby
demonstrating the potential for combination therapies for specific
patients. Notably, both Visium and GeoMx provide the added cap-
ability to spatially map these subtypes, offering deeper insights into
tissue architecture and cellular distribution. While there is reasonable
agreement in identifying top targets across platforms, Visium’s higher
resolution and larger sample size enabled improved detection of
spatially distinct regions and their associated transcriptional profiles,

thanks to its uniform and unbiased sampling approach. One approach
to reduce sampling bias inGeoMx is to increase thenumber of selected
ROIs. However, this comes with a trade-off, as the cost of GeoMx
analysis scales with the number of data points. Additionally, while an
AOI typically captures higher read counts averaging transcripts across
a wider tissue area than a Visium spot, the signal within the whole AOI
region is uniform, not enabling to pinpoint the location of specific
transcriptomeor tissue region. This limitation is particularly evident in
zoomed-in regions, where AOI-derived fractions are consistently less
sensitive compared to Visium spots.

Finally, we explored the functionality of full transcriptome
methods in drug target discovery from highly heterogeneous FFPE
tissue on DLBCL. Expression of known and potential drug targets
varied across patients and within patients with Chromium data,
showing promise for patient subgroup identification and for assigning
personalized and combination therapies. Expression differences were
less distinct in Visium and even less so in GeoMx, likely due to the
presence of mixed cell types and the larger capture areas associated
with GeoMx. Additionally we observed substantial donor-to-donor
variability, further emphasizing the utility of these platforms for
identifying targeted therapies tailored to individual donors. While all
three methods have the potential for the discovery of targets, GeoMx
is limited in the number of data points for intra-patient heterogeneity
discovery, and both GeoMx and Visium are limited in cell type specific
signal.

Overall, we successfully applied full-transcriptome methods in
tumor FFPE blocks and demonstrated the applicability of Visium and
Chromium for the systematic spatial profiling of large panels of
samples. The unbiased nature of the two platforms make them ideal
in high throughput setups aiming at characterizing thousands of
tumor samples. Based on this data, we propose Visium and Chro-
mium as the platforms of choice for spatial and transcriptomic ana-
lysis of tumor samples as part of the MOSAIC (Multi-Omics Spatial
Atlas in Cancer) project7. The MOSAIC consortium will systematically
profile thousands of tumor samples to analyze their spatial and single
cell structures. By integrating these data with other modalities, like
H&E staining, using advanced AI, we aim to create meaningful
representations of cancer histology and transcriptomics. Coupled
with clinical outcomes, these insights will offer an understanding of
how tumor spatial organization influences disease progression and
treatment response.

Methods
Human tissue samples
The institutional review board of the Lausanne University Hospital and
the local ethics committee approved the study, in accordancewith the
Helsinki Declaration (CER-VD 2023-00080).Written informed consent
was available for all patients. Tissue sections were obtained from
archival FFPE tumor samples. Histological diagnoses were reviewed by
consensus between two pathologists (K.v.L. and C.S. for Breast and
Lung; L.d.L. and C.S. for DLBCL). Detailed information on histotype,
block age, and DV200 values are listed in Supplementary Data 1.

Fig. 5 | Integrating H&E image, pathology label, deconvolution, and clustering
identifies TLS and tumor subtypes in Visium. a For lung sample L1, TLS markers
show boundary of TLS after BayesSpace resolution enhancement, which validates
the TLS location by pathology label in Visium. In the consecutive section of L1 in
GeoMx, at the same tissue location where the TLS was identified in Visium, we
zoomed in to check the TLS markers expression level in the TME ROI compared to
its neighboring Islet ROI. Black arrows point to the Other AOI, where the B-cell
signal is expected to appear. Sample L1 - Visium: 944 spots; GeoMx: 25 AOIs. b For
breast sample B3, two regionswere similar inH&E, labeled as tumor by pathologist,
and deconvolution majority voted as single tumor type from Chromium; two
spatially distinct tumor subtypes appeared with spatially-aware clustering in Vis-
ium. c In the consecutive sectionof B3 inGeoMx, the ROI-s weremapped to the two

regions identified by Visium. The Malignant AOI-s show distinct clusters in the
reduced dimension. Deconvolution results for each AOI are displayed as pie charts.
Sample B3 - Visium: 2156 spots; GeoMx: 23 AOIs. d Volcano plot of Differential
Expression (DE) analysis between selected clusters from (b) (moderated t-test, two-
sided). Genes for which there are existing drugs are highlighted (see further
information in Supplementary Data 8). e Volcano plot of DE analysis between two
Malignant AOI clusters in (c) (Wilcoxon’s Rank Sum test, two-sided). Genes that are
mutually DE in both Visium and GeoMx are highlighted with black outline. f Upset
plot showing number of distinct DE genes identified by Visium, GeoMx, and
Chromium, and their combinations. Images above are representative of 2 samples.
Source data are provided as a Source Data file.
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Chromium FLEX
Labworkflow. For the single-cell transcriptomics, two FFPE curls of 25
micrometers were sectioned from each of the FFPE block. Nuclei were
extracted using snPATHO protocol13, based on the protocol from 10X
(CG000632). The nuclei were counted on the LUNA-FX7 cell counter
(AO/PI viability kit, Logos). Pools of four samples were processed

together as shown in Supplementary Data 4, targeting 40,000 nuclei
recovery per pool (10,000 nuclei per sample). Replicas for two donors
B3 and B4 were processed independently. The protocol was followed
by the manufacturer’s protocol Chromium Fixed RNA profiling - Mul-
tiplexed samples (CG000527). Libraries were sequenced using a
NovaSeq™ 6000/X sequencer aiming for 10,000 read pairs/nuclei.
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Fig. 6 | Exploration of drug targets and patient subgroups in DLBCL. a UMAP
representations ofChromium, VisiumandGeoMxDLBCLpatients, colored by Level
4 cell types, clustering-based annotation of spots, or AOI types correspondingly.
6 samples, Chromium: 39,713 cells; Visium: 18,580 spots; GeoMx: 136 AOIs.
b Expression of selected genes that are significantly differentially expressed in at
least one donor subtype compared to TME cells in any of the threemethods. Genes

for which there are existing drugs (see further information in Supplementary
Data 8) are listed per row. Geneswith nodrug are labeled as “Potential target”. Gene
expression in any of the donors is color-coded. Patient-specific and subclone spe-
cific gene expression is highlightedwith dashed lines. Source data are provided as a
Source Data file.
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Table 1 | Comparison of the methods

Task GeoMx DSP Whole 
Transcriptome ST

Visium CytAssist ST Chromium scRNAseq

O
V
E
R
V
I
E
W

Imaging data IF (3 markers + nuclear) H&E or IF* none

Description of 
data unit

25-200 cells pooled, pre-selected by 
IF marker

1-50 cells pooled in a circle 
of 55 µm diameter

single cell, no spatial 
resolution

E
X
P.
D
E
S
I
G
N

Input material 5 µm section, surface up to 12 x 10 
mm2⁑

10 µm (5 µm for DLBCL) 
section, surface up to 6.5 x 
6.5 mm2

1 x 25 µm curl

Number of 
aimed data 
units/ patient

24⁂ AOIs Up to 4992 spots 10,000 cells

W
E
T
-
L
A
B

Workflow 
difficulty

Advanced: operator makes 
decisions for each individual data 
point. Requires optimisation of 
protocol for every tissue and 
combination of fluorescent markers.

Medium: follow 
manufacturer's protocol

Medium: follow 
manufacturer's protocol

Cost
~$300,000 Digital Spatial Profiler + 
~$1500 per sample (increases with 
more AOIs)

~$80,000 CytAssist + 
~$2450 per sample

~$65,000 Chromium +  
~$750 per sample

Max 

throughput
8-12 samples/week 16 samples/week 64 samples/week

D
A
T
A

Computational 
resources

~30min for the cohort starting 

from .dcc files

~1h for the cohort starting 

from .fastq files

~8h for the cohort starting 

from .fastq files

Data analysis
Easy-to-use software in the DSP 
machine. Limited tools available by 
the community, requiring more 
custom code for advanced analysis.

Easy-to-use user software 
Loupe Browser. Good 
selection of community-
developed tools available.

Easy-to-use user software 
Loupe Browser. Good 
selection of community-
developed tools available.

Further 
comment

Access of files from the machine is 
slow and can take hours per slide 
for copying. Unexpected 
contamination appeared between 
the AOI-s.

Observed unexpected 
patient-effect

Probe-based data might not 
be suitable with all the 
previous tools made mainly 
on 3', 5' or full-length 
sequencing data
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bcl2fastq was used for demultiplexing libraries after sequencing.
FASTQfileswere processedwithCell Ranger 7.1.0 (10XGenomics)with
multi pipeline and human genome reference GRCh38-2020-A.

Pre-processing, quality control (QC) and annotation. Filtered bar-
code counts matrices from CellRanger were imported into R (v. 4.3.2,
https://www.R-project.org/) analyses by the Seurat package (v. 5.0.1)19.
SoupX20 was used to remove ambient RNA contamination. Only cells
with minimum 200 genes (and max 6000 genes in DLBCL only), and
< 10% (and < 20% in breast and lung) of reads mapping to mitochon-
drial genes were kept. For each sample, corrected raw counts were
normalized using SCTransform. The top 3000 variable genes across
samples were selected using the SelectIntegrationFeatures function.
Dimensionality reduction using principal component analysis (PCA)
was done, followed by a Uniform Manifold Approximation and Pro-
jection (UMAP) dimensional reductionusing 50principal components.
Clustering with shared nearest neighbor (SNN) modularity

optimization-based clustering algorithm implemented in the Find-
Neighbors() and FindClusters() functions wereas performed, with 30
principal components and resolutions between 0.4 and 0.8. The
expression level of canonical marker genes and the top differentially
expressed genes were used for identifying known cell types corre-
sponding to the clusters. We finally performed sub-clustering to
increase the granularity of annotations.

Differential expression (DE) analysis. We used Seur-
at::FindAllMarkers() tofind significantly (Wilcoxon’s rank sum test, two-
sided, multiple comparisons corrected with default Bonferroni
method, adjusted p value < 0.05, log fold change > 1) differentially
expressed genes between clusters of interest.

Deconvolution. Chromium data are used as reference for deconvo-
lution with cell type annotation at different levels of resolution. Since
breast and lung cancer samples are both solid tumor and are

Table 1 (continued) | Comparison of the methods

D
I
S
E
A
S
E

B
I
O
L
O
G
Y

Cell type
specificity

Mixtures of cell types within ROIs 
and even within cell-type specific 
AOIs.

Mixtures of cell types within 
spots

Pure cell type 
transcriptomes

Spatial 
organization of 
cell types

Available in pre-defined ROIs Available across the 
assayed tissue area 

none

Identification of 
localized 
structures (e.g. 
TLS)

Feasible within pre-selected AOI 
segments with reduced certainty.

Feasible across assayed 
tissue area. Computational 
enhancement (e.g., 
BayesSpace) improves 
certainty.

none

DE genes 
detection for 
intra-tumor 
subtypes

Possible only across selected ROIs. 
DE genes consistent with Visium 
but decreased statistical power.

Possible across any region 
in the assayed area. 
Identifies highest number of 
distinct DE genes due to  
large number of spots that 
increase statistical power

Identifies DE genes 
consistent with Visium but 
spatial mapping needs 
coupling with spatial 
method.

Drug target 
detection 
(informed by 
deconvolution)

Inter-patient heterogeneity 
remained ambiguous even when 
using Chromium data for 
deconvolution.

Enhanced clarity through 
deconvolution using 
Chromium data. Helps map 
targets spatially.

High resolution of drug 
target expression between 
patients and malignant 
subtypes within patient.

FTE Full-time equivalent
AOI Area of Illumination
ST Spatial Transcriptomics
scRNAseq single-cell RNA sequencing
IF Immunofluorescence
* Optional
⁑ Total capture area is 12 × 24 mm, but in this experiment 3 sections were placed in the same area in order to save cost
⁂ User chooses the amount, correlated with cost
✳ Throughput is higher with less AOIs and segments
✤ 2 FTE-s and 1 instrument
✺ On a 16 CPU and 64Go of RAM machine
Grey (+) - positive
Grey (++) - neutral
Grey (+++) - negative
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annotated together, when constructing Chromium reference, we
combine healthy cell types from both indications and add indication-
specific tumor cells at Level 4.

For Fig. 2 and Fig. 3 on deconvolution cell type specificity of
GeoMx and Visium, we used a combination of Level 1 and Level 4
annotation as Level 1.5 so that we obtain T cells and Macrophage cell
types of interest while keeping concise grouping of other healthy or
tumor cell types. For breast and lung cancer, T cells cell type is com-
posed of “T_CD4”, “T_CD8_exhausted”, “T_CTL”, “T_CXCL13”, “T_reg”,
and “TNK_dividing” from Level 4 annotation. For DLBCL, “T_CD4”,
“T_CD4_reg”, “T_CD8”, “T_dividing” are grouped as T cells. For breast
and lung cancer, we groupedMacrophage andMonocyte from Level 4
annotation as Macrophage. Because in GeoMx, the marker used for
staining theMacrophage region is CD68 + , which is expressed in both
macrophage and monocyte cell types. For DLBCL, “Mono_Macro” cell
type is labeled asMacrophage. Myeloid else consists of “DC_1”, “DC_2”,
“DC_activated”, “DC_pc”, “Granulocyte”, “Mast_cell” for breast and
lung, and “DC_1”, “DC_2”, “DC_pc” for DLBCL.

For Figs. 4, 5 on Visium enabling biology discovery, to show
scatterpie plot of deconvolution result for each patient and to obtain
the deconvolution cell type majority vote for each spot, the tumor
signature in Chromium reference was filtered to each patient’s Level 4
tumor subtypes, if there are multiple subtypes.

Intra- and inter-patient tumor heterogeneity analysis. For Fig. 6, our
interest is to identify the expression level of drug targets in tumor cell
types in Chromium. Therefore, we make a condensed aggregation of
healthy cell types from Level 1 annotation, while separating out tumor
subtypes within each patient, if there are multiple subtypes, by
adopting Level 4.

In Supplementary Fig. 15, to borrow insights from Chromium and
enhance the drug discovery capability of Visium and GeoMx, healthy
cell types at Level 1 and patient-specific tumor cells from Level 2
annotation are used for Chromium. For Visium, the density of decon-
volution fraction for each targeted cell type in the corresponding
majority voted cell type categorywere grouped from Level 4 to Level 1
for healthy spots and Level 2 for tumor spots. Similarly for GeoMx, the
density of deconvolution fraction for each targeted cell type in the
corresponding AOI labeled segments were combined in the following
way: cell type “Other” contains “Plasma”, “Epithelia”, “Fibro_muscle”,
and “Vessel”; cell type “T cells” consists of “T-cell” and “NK”; cell type
“Macrophage” is characterized as “Myeloid”.

Known and potential drug targets were selected manually from a
genes list that showed significantly higher expression in any technol-
ogies formalignant cells/regions/AOI label versus non-malignant cells/
regions/AOI label. Gene expression specificity for malignant cells was
considered, as well as consultation of literature, for selecting potential
drug targets. Gene-drug matches in Supplementary Data 8, that were
used in Figs. 5, 6, and Supplementary Figs. 11, 12 were collected from
the ChEMBL database21. DE analysis on drug targets was performed
separately onChromium, Visium andGeoMxdata. Fold changes and p-
values obtained using Wilcoxon rank sum test (FindMarkers function
from Seurat v. 5.0.1) for all the genes were calculated per donor per
technology between malignant cells, regions or AOI labels versus non-
malignant cells, regions or AOI labels in Chromium, Visium andGeoMx
correspondingly. The gene rank was determined by the p-value among
all expressed genes per donor per technology. The statistics’ are
compiled in Supplementary Data 9, and visualised in Supplemen-
tary Fig. 14.

GeoMx DSP
Lab workflow. All Breast, Lung and DLBCL samples were assayed on
the Nanostring GeoMxDigital Spatial Profiler (DSP) platform using the
Whole TranscriptomeAtlas (WTA) probe panel with NGS readout. Two
to three tissue sections were placed on each slide (Supplementary

Fig. 1a). Two samples (one each for Breast and Lung, B1 and L1
respectively) were analyzed in duplicate. Due to the failure of the
GeoMx DSP instrument, two samples were repeated, including L4 and
a duplicate of L3.

Slides were processed according to the manufacturer’s instruc-
tions. Tissue sections were cut at 5 um thickness. They were baked at
60 °C for 2 hours. Sections were stained on a BOND-RXm fully
automated multiplexing immunohistochemical stainer (Leica Bio-
systems; Wetzlar, Germany) using the following immuno-
fluorescence antibodies: for Breast and Lung, PanCK - AF532 (Clone
AE1 + AE3 from Novus) diluted at 1/50, CD3 - AF647 (Clone CD3-12
from Biorad) diluted at 1/100, CD68 - AF594 (Clone KP1, from Santa
Cruz) in concentration 0.25 ug/ml and SYTO 13 nuclear stain diluted
at 1:10000 (Nanostring) in Buffer W for 1 h at room temperature; for
DLBCL, CD20 - AF594 (Clone IGL/773 from BioTechne) diluted at 1/
100, CD3 - AF647 (Clone CD3-12 fromBiorad) diluted at 1/100, CD68 -
AF488 (Clone KP1 from e-BioMed) at concentration 0.25 ug/ml and
SYTO 83 nuclear stain diluted at 1:100000 (Invitrogen) in Buffer W
for 1 h at room temperature.

Regions of interest (ROIs) were selected by pathologists, and
segmented into areas of illumination (AOI-s) based on immuno-
fluorescent markers (Supplementary Datas 3-4). The first segment was
defined as double positive for CD3 and CD68 with the purpose of
excluding autofluorescent structures (such as elastin fibers in lung) or
debris, and it wasnot collected. For Lung andDLBCL samples, theCD3-
AOI-swere collected first, followed by CD68-AOI-s. For Breast samples,
CD68-AOI-s were collected first, followed by CD3-AOI-s. PanCK-AOI-s
and CD20-AOI-s were collected third for solid cancers and DLBCL
respectively. For five and four ROI-s in breast and lung replica samples
respectively, only two segments of PanCK+ and PanCK-were collected
in that order, ignoring other markers. The remaining cells showing
SYTO nuclear expression in the absence of any cytoplasmic marker
were collected as the fourth marker-negative (Other) segment in BC.
All the remaining surface of ROIs which had not been collected into
any AOI was collected as marker-negative (Other) segments for Lung
and DLBCL, independently of the presence of nuclei. With the excep-
tion of theOther segment of Lung andDLBCL, a segmentwas collected
when it contained at least 50 cells. About 24 such AOI-s per patient
were collected with AOI size varying from about 500 µm2 2 to
300,000 µm2 with an average size of 60,000 µm2. Library preparation
and sequencing was performed according to the manufacturer’s
instructions and kits. Briefly, i5 and i7 indices were added, reactions
pooled and purified, and libraries sequenced with paired-read
sequences with 2 × 27 base pairs. Manual curation of the annotation
file was performed to match the collected segments with a biological
cell fragment as AOI label (Supplementary Data 3).

Pre-processing and QC. The GeoMx NGS pipeline GeomxTools22 was
used to convert FASTQ files into expression matrices of raw probe
counts stored in DCC files. AOI segment QC was conducted using
NanoString recommendations: segments with > 1000 raw reads, < 80%
aligned, trimmed or stitched, < 50% saturation, > 1000 NTC and < 100
nuclei are removed. Therewere 2 breast segments removeddue to low
saturation, 1 lung segment excluded due to low alignment, and 7
DLBCL segments were filtered out due to low reads (n = 1), low
saturation (n = 2), and small nuclei area (n = 4). This results in a sample
size of 122, 117, and 137 for breast, lung, and DLBCL samples,
respectively.

Probes with geometric mean from all segments divided by the
geometric mean of all probe counts representing the target from all
segments less than 0.1, together with probes flagged as outliers
according to the Grubb’s test in at least 20% of the segments, were
filtered out. Gene raw counts were generated using the geometric
mean of the associated probe counts. Meta variable number of genes
detected were derived and plotted in Fig. 1d GeoMx panel.
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Segments from each indication were combined byGeomxTools as
a SummarizedExperiment object, and then converted by standR23 to a
SpatialExperiment object. No AOI segment or gene was further exclu-
ded with the standR preprocessing pipeline.

Normalization and batch correction. As suggested by van Hijfte
et al24., we use quantile normalization for GeoMx data analysis.
Quantile normalization (preprocessCore::normalize.quantile()) was
applied to log1p() transformed data. The reduced dimension of nor-
malized GeoMx breast samples is shown in Fig. 1d. We applied batch
correction method RUV4, as implemented in standR, to quantile nor-
malized data to remove batch effects introduced by slides. Distinct
T cells and Macrophage clusters on the reduced dimension of nor-
malized and batch corrected data are shown in Supplementary Fig. 7d.
The corrected batch effect is shown in Supplementary Fig. 12.

Reduceddimensions.WeusedRpackage scater, runPCA(), runUMAP(),
and runTSNE() to obtain reduced dimensions. For the GeoMx data, we
used t-SNE embedding for visualization due to the small number of
data points, as it provided a clear and not cluttered representation.

DE analysis. Given GeoMx data closely resembles bulk RNA-seq, we
used the limma-voom25 pipeline, by using voom(), lmFit(), contrasts.fit()
and eBayes() functions, as suggested in standR, to find significantly
(moderated t-test, two-sided, multiple comparisons corrected with
default Benjamini-Hochberg method, adjusted p value < 0.05, log fold
change > 1) differentially expressed genes between clusters of interest.

Deconvolution. Cell type abundance was estimated using the Spa-
tialDecon package14 and the signature matrix derived from the Chro-
mium single-cell RNAseq dataset. When running deconvolution, we
exponentiated back the log transformed, quantile normalized, and
RUV4 batch corrected assay to obtain normalized and batch corrected
data on linear scale, as suggested by SpatialDecon::spatialdecon()
manual. To enhance the drug discovery potential of GeoMx, we bor-
rowed insights from Chromium through deconvolution as shown in
Supplementary Fig. 15d, e.

Visualization. Deconvolution cell type proportions and marker gene
expressions across all AOIs in each ROI were visualized spatially with R
package SpatialOmicsOverlay26. The fluorescence image, ROI pathol-
ogy class and AOI segmentations were visualized in QuPath27.

Visium CytAssist
Labworkflow. Sectionswith 10micrometers for lung andbreast, and 5
micrometers for DLBCL were placed on individual positively charged
slides (Superfrost PlusAdhesionMicroscopeSlides, thermofisher). The
slide preparation workflow was performed using the Visium CytAssist
Spatial Gene Expression for FFPE by 10X (CG000520 and CG000518).
High resolution H&E imaging was done on Aperio CS at 40x magnifi-
cation. The 6.5mm×6.5mm capture area was chosen by the pathol-
ogists. Manufacturer’s workflow was followed until the library
preparation. Libraries were sequenced with paired-end dual-indexing
(28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2) on
NovaSeq™ 6000/X. Space Ranger 2.0.1 pipeline was used to align the
reads to human genome reference GRCh38-2020-A. High resolution
image and CytAssist image were aligned using Space Ranger.

Manual annotation of the Visium spots. Loupe Browser version 6.5.0
was used by the pathologists to annotate all of the Visium spots in one
of the following classes: pure tumor (invasive carcinoma), in situ car-
cinoma, tumor-stroma mix, intratumoral stroma, lymphocytes,
immune cell mix, tumor infiltrating lymphocytes, intratumoral vessels,
artefact/ fold/ empty (for spots to be excluded from the analysis due to
sectioning artefacts or falling outside the tissue), most likely tumor

(for epithelial proliferations which were difficult to classify based on
H&E staining alone), acellular mucin, necrosis/debris for solid Breast
and Lung cancer; tumor, small lymphocytes, stroma, necrosis, epi-
thelium, and vessels for DLBCL. Visium spots, each covering a mixture
of cells, were assigned to one of the previously listed classes according
to the majority cell type (> 50%) observed on H&E staining. The hybrid
category “tumor-stroma mix” was used for spots covering an
approximately equivalent mixture of tumoral cells and stroma.
Immune cell mix annotation class was used for spots covering a mix-
ture of cells, including macrophages, lymphocytes, and plasmocytes
(Supplementary Data 5, Supplementary Fig. 2c).

Pre-processing and QC. Using the filtered gene count matrix, we
excluded spots that had fewer than 100 unique molecular identifiers
(UMIs), more than 22% mitochondrial reads, or were located at the
edge of the fiducial frame, unreasonably distant from the majority of
the tissue. Additionally, spots identified by pathologists as artifacts,
folds, or empty were also filtered out. We set a quality control
threshold requiring genes to be detected in at least 20 spots to be
included in the analysis.

Deconvolution. After QC, cell type fraction is estimated using
deconvolution method Cell2location15, which takes raw unique mole-
cular identifier (UMI) counts of each Visium sample and annotated
single cell reference data as input. We defined a Visium annotation
approach from deconvolution majority vote with Level 4 Chromium
annotation, by setting a cut-off that if the highest cell type fraction is
above 20%, we label the spot as that cell type, otherwise, we label the
spot as “Mix”. To enhance the drug discovery potential of Visium, we
borrowed insights from Chromium through deconvolution as shown
in Supplementary Fig. 15b, e.

Normalization. We adapted the recommended normalization method
for different biological questions. To show sample reproducibility
among replicates and to integrate samples within each indication, we
followed the Seurat workflow19 and used SCTransform normalization.
The reduced dimension of normalized Visium breast samples is shown
in Fig. 1d Visium panel. On the other hand, we used the default log
normalization for individual sample’s spatial aware clustering (Fig. 5b)
to achieve optimal spatial domain detection that detects intra-patient
heterogeneity, as recommended in the BayesSpace vignette.

Clustering. For individual samples (Fig. 5b), we used the graph-based
clustering approach implemented in Seurat to identify the optimal
number of clusters for BayesSpace16. We followed the default Bayes-
Spacepipeline andparameters, with log normalization and 50PCs. The
log transformed subspot gene expression was inferred from subspot
level PCs, with a linear model projection between spot level log
transformed gene expression to spot level PCs, as detailed in
BayesSpace.

DE analysis. Given Visium can have nearly single-cell resolution, we
used Seurat::FindAllMarkers() to find significantly (Wilcoxon’s rank sum
test, two-sided, multiple comparisons corrected with default Bonfer-
ronimethod, adjusted p value < 0.05, log fold change > 1) differentially
expressed genes between clusters of interest.

Integration. To integrate multiple samples with the same indication
across patients, we decontaminated Visium counts with SpotClean28

and used SCTransformnormalization for each sample (Supplementary
Fig. 10, 11). SpotClean::spotclean() is run with the default parameter on
the raw gene count matrix from the SpaceRanger output. We then
performed QC of the spot-cleaned object by filtering to the gene and
spot barcodes that passed QC previously. We used Seurat::SCTrans-
form() in Seurat (v.5.0.1)19 to normalize each spot-cleaned Visium
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sample and to identify variable genes. We used Seurat::Selec-
tIntegrationFeatures() function to select a union of 3000 HVGs by
consensus ranking of the gene from all samples. Standard Seurat
pipeline (e.g., RunPCA(), FindNeighbors(), FindClusters()) is used to
obtain the reduced dimension UMAP and clusters.

DLBCL Visium data was annotated into regions after Seurat clus-
tering on the integrated object (Supplementary Fig. 13a). Donor and
pathology annotation distribution was considered for each cluster to
annotate clusters 4 (D5) and 5 (D6) and clusters 2, 12, 14, 16 (necrosis)
correspondingly (Supplementary Fig 13b, c). Canonical marker genes’
expression in each cluster (Supplementary Fig. 13d) aided to annotate
regions: clusters 9, 10 and 13 were mostly expressing plasma cell
marker genes, cluster 6 was assigned to epithelium, and cluster 1 was
showing strong stroma signal. Cluster 7was likely amixture of immune
cells with vessels, which was confirmed by pathology annotation.
Aggregated patient-specific tumormarkers from Supplementary Fig. 4
were used to annotate malignant areas: cluster 0 (D1), clusters 15, 18
(D2), clusters 3, 8, 11 (D3), and cluster 17 (D4) were identified. Seur-
at::FindAllMarkers() was further consulted for differentially expressed
genes between clusters.

Visualization. Deconvolution cell type proportion across all spots in
one sample, pathology annotation, clusters and other continuous
values, such as gene expression and a single cell type deconvolution
proportion, as well as reduced dimensions were visualized spatially
with R packages Seurat19 and ggspavis29.

Spot-segment matching between Visium and GeoMx. Fluorescent
images carrying GeoMx’s regions of interest and areas of interest
were registered to high resolution H&E images carrying Visium spots
using the Elastix software30,31. For GeoMx images, registration was
performed on the SYTO 13 channel, with pixel intensities clamped to
1% and 99% of extremal values in order to alleviate fluorescent
artefacts. H&E images were converted to grayscale prior to regis-
tration. Registration was performed on downsampled images with a
resolution of (approximately) 4 microns per pixel. Affine registra-
tion parameters were optimized by minimizing Mattes advanced
mutual information metrics30. As GeoMx’s fluorescent image and
Visium’s H&E were carried on two subsequent slides of the same
block, a visual inspection was performed to ensure the quality of the
registration procedure. For mapped spots and subspots, PanCK-
AOI-s are excluded from the analysis due to their impurity by
definition.

Statistics and reproducibility. Four patients in Breast andNSCLC, and
6 patients in DLBCL were profiled. Two patients in Breast and Lung
were repeated with GeoMx and Visium, and two Breast patients were
repeated in Chromium. H&E staining was performed once. Figure
panels on Figs. 4 and 5, and Supplementary Fig. 9 demonstrate specific
structures and were found on specific donors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Visium, Chromium and GeoMx raw and processed data generated
in this study have been deposited in the ArrayExpress database under
accession codes E-MTAB-14560 and E-MTAB-14566. In addition, pro-
cessed single-cell Chromium data are available for browsing at cellx-
gene database [https://cellxgene.cziscience.com/collections/
bd552f76-1f1b-43a3-b9ee-0aace57e90d6]. The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
file. Source data are provided with this paper.

Code availability
The source code of theMOSAIC pilotmanuscript is available at https://
github.com/bdsc-tds/mosaic_pilot_study32. Instructions on how to
reproduce the analysis are specified in the README file. Specific soft-
ware and package versions are listed as a singularity container script
and a conda environment file in the renv.lock file and env.yml file,
respectively, in the repository. Key packages are: R version 4.3.2, Bio-
conductor v3.18, Seurat v5.0.1, BayesSpace v1.11.9, ggplot2 v3.5.1,
ggspavis v1.3.1, GeomxTools v3.5.0, SpatialDecon v1.12.0, SpotClean
v1.4.1, dplyr v1.3.1, scran v1.30.2, ComplexHeatmap v2.18.0, SpatialO-
micsOverlay v1.2.1, magick v2.8.2. Python version 3.9.18, cell2location
v0.1.3, squidpy v1.3.0.
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