Fig. 3: Feature reduction and development of a gene classifier that predicts deterioration-risk-groups in patients.
From: A machine learning and centrifugal microfluidics platform for bedside prediction of sepsis

This started with taking in-house RNA seq data from patient collected from a heterogenous cohort of patients with suspected sepsis (top left) to reduce our original published gene signature down to 6-genes (Sepset), for which expression could be related to 2 housekeeping genes. Feature selection was performed using machine learning (ML) and AI and the classifier validated in samples from published transcriptomic studies. Molecular assay is then developed by designing and testing primer/probe sequences specific to the target genes using digital droplet PCR. In parallel, sample-to-answer microfluidic platform and cartridges are developed (bottom right) and analytical performance of multiplex quantitative assay is tested. Prognostic enrichment is obtained by analyzing the results using ML algorithm to determine the percent likelihood of significant clinical deterioration within the immediate next 24 h. The deployment of PREDICT platform (center) at the point-of-care is anticipated to aid in triage and management of prospective sepsis within the first 3 h of clinical presentation.