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A protein languagemodel for exploring viral
fitness landscapes

Jumpei Ito 1,2 , Adam Strange1, Wei Liu 1,3,4,19, Gustav Joas 1,5,19,
Spyros Lytras 1,6, TheGenotype to Phenotype Japan (G2P-Japan) Consortium*&
Kei Sato 1,2,6,7,8,9

Successively emerging SARS-CoV-2 variants lead to repeated epidemic surges
through escalatedfitness (i.e., relative effective reproduction number between
variants). Modeling the genotype–fitness relationship enables us to pinpoint
the mutations boosting viral fitness and flag high-risk variants immediately
after their detection. Here, we present CoVFit, a protein language model
adapted from ESM-2, designed to predict variant fitness based solely on spike
protein sequences. CoVFit was trained on genotype–fitness data derived from
viral genome surveillance and functional mutation assays related to immune
evasion. CoVFit successively ranked the fitness of unknown future variants
harboringnearly 15mutationswith informative accuracy. CoVFit identified959
fitness elevation events throughout SARS-CoV-2 evolution until late 2023.
Furthermore, we show that CoVFit is applicable for predicting viral evolution
through single amino acid mutations. Our study gives insight into the SARS-
CoV-2 fitness landscape and provides a tool for efficiently identifying SARS-
CoV-2 variants with higher epidemic risk.

A primary challenge faced in controlling viral infectious diseases stems
from the ability of viruses to evolve through mutations1. Throughout
theCOVID-19 pandemic, SARS-CoV-2 variantswith escalated spreading
potential (i.e., fitness) in the host population have successively
emerged, leading to repeated epidemic surges2,3. The fitness of a virus
is determined by multiple factors such as its ability to replicate effi-
ciently within host cells, its capacity to evade innate immunity, and,
most notably, its ability to escape host population-level immunity
shaped by vaccination and natural infection. By understanding how
viruses enhance their fitness in a pandemic through the lens of SARS-
CoV-2 studies, we can learn critical insights for managing not just
COVID-19 but future viral infectious diseases as well.

SARS-CoV-2 can alter its fitness by acquiringmutations (including
substitutions, insertions, and deletions) in viral proteins, with parti-
cular emphasis on the spike (S) protein4. The S protein is the glyco-
protein essential for virus entry into the host cells via interaction with
the angiotensin-converting enzyme 2 (ACE2) receptor5. Also, the S
protein is a primary target for neutralizing antibodies (Abs), which are
key components of the humoral immune response triggered by vac-
cinations or natural infections6. Therefore, mutations in the S protein
that can affect its binding efficiency with ACE2 and its ability to evade
neutralizing Abs tend to have a stronger impact on viral fitness2,3,7–19.

In genetics, fitness is defined as a measure of an organism’s
reproductive success, passing on its genes to the next generation.
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Accordingly, the fitness of SARS-CoV-2 variants can be defined as the
relative effective reproduction number (Re) between variants (here-
after, “fitness” refers to relative Re in this study)4,20–22. Re represents the
average number of secondary infections caused by an infected indi-
vidual conditioned by the host population's immunity, which is in turn
shaped by the history of vaccination and natural infections. Owing to
advancements in virus genome surveillance, it is now feasible to esti-
mate the relative Re of SARS-CoV-2 variants in almost real-time. Using
temporal data on variant detection frequencies with a logistic model,
we can estimate the Re values of various variants relative to a reference
variant, under certain assumptions—such as the relative Re between
variants remaining constant over time (also see the second-to-last
paragraph of the Discussion section)7. Based on the estimated relative
Re, we can predict which variant(s) has the biggest advantage amongst
co-circulating viruses at a given time and will likely become the next
epidemic variant. Several research groups, including ours, have suc-
cessfully utilized Re or similar indicators to detect upcoming epidemic
variants and further elucidated the characteristics and risks these
variants possess through virological experiments23–28.

These conventional methods to estimate the fitness (relative
Re) of variants are based on the accumulation rate of variant
sequences. This means that the fitness of a newly emerged variant
cannot be estimated until a sufficient number (e.g., ≥30) of
sequences for that variant has accumulated. In contrast, if the fit-
ness of variants can be predicted based on their genotypes, it would
theoretically become possible to predict the fitness of a newly
emerged, unknown variant as soon as a single sequence is obtained.
Furthermore, by establishing a fitness prediction model, we can
identify mutations that contribute to increased viral fitness under
given conditions (e.g., specific immune landscape). Moreover, since
viruses like SARS-CoV-2 tend to evolve in a direction that increases
their fitness, understanding the virus’s fitness landscape enables the
prediction of their evolution.

Previous studies, including ours, have developed methods to
predict the fitness (relative Re) of variants based on their mutation
patterns using a statistical modeling approach4,11,29,30. However, these
models simply represent fitness as a linear combination of individual
mutation effects, not considering interactions between mutations,
namely epistasis4,11,29,30. Furthermore, these statistical models cannot
consider the effect of mutations that have not yet emerged at the time
of the training dataset creation. We speculated that these challenges
can be addressed using protein language models, an innovative tech-
nology that has become increasingly popular in the field of natural
language processing31. Protein language models are large language
models pretrained on extensive datasets of protein sequences, allow-
ing them to capture context-specific patterns within and across amino
acid sequences. Protein language models can represent protein
sequences as numerical vectors (i.e., embeddings) that reflect their
characteristics and functions. By leveraging these embeddings, we can
further develop a regression or classification model from a protein
language model to address specific tasks, such as fitness prediction.
Moreover, by employing a multitask learning framework, we can fur-
ther inform the fitness prediction process with functional data on
individual mutations, potentially enhancing the model’s predictive
accuracy.

In this study, we developed CoVFit, a model to predict the fitness
(relative Re) of SARS-CoV-2 variants based on the S protein by utilizing
the state-of-the-art protein language model ESM-232. We finetuned a
customized ESM-2 model using (i) genotype–fitness information,
estimated from virus genome surveillance, and (ii) individualmutation
effect information on evasion ability from humoral immunity, deter-
mined by high-throughput deep mutational scanning (DMS)
experiments33. Using CoVFit, we have explored the current fitness
landscape until late 2023 and the evolutionary potential of SARS-
CoV-2.

Results
Introduction of CoVFit
We developed CoVFit, a fitness prediction model based on S protein
sequences by finetuning ESM-2 (Fig. 1a). To increase the model’s
knowledge of the coronavirus S proteins, we first established ESM-
2Coronaviridae, by performing additional pretraining (i.e., domain adap-
tation) on the ESM-2 model with S protein sequences obtained from
1506 Coronaviridae viruses (Figs. 1b and S1). The ESM-2Coronaviridae
model demonstrates enhanced predictive capability in the masked
learning task specifically for SARS-CoV-2 S proteins, while retaining its
performance across a broader collection of proteins (Fig. S1c). Sub-
sequently, utilizing a multitask learning framework, we finetuned the
model on both genotype–fitness (relative Re) data and DMS data for
the ability to escapeneutralization bymonoclonal Abs (mAbs) (Fig. 1b).
Consequently, for a given S protein sequence, CoVFit can predict the
country-specific fitness value and the ability to escape from each mAb
(Fig. S1a).

To assemble the genotype–fitness dataset, we first classified viral
sequences into S protein genotypes, defined as groups of viruses
sharing a unique set of mutations in S protein, using the genome
surveillance data up to November 2, 2023, obtained from GISAID.
Subsequently, we estimated the relative Re of each genotype in each
country by fitting a multinomial logistic model to temporal data on
genotype detection frequencies, as previously described2,3,7–19. Conse-
quently, we obtained a total of 21,281 genotype–fitness data points,
covering 12,817 genotypes across 17 countries (Figs. 1b and S2a).
Consistent with a previous study4, there is a clear trend where later-
emerging variants exhibit higher Re values, resulting in the continuous
replacement of circulating variants (Fig. S2a). This result suggests that
the average relative fitness of circulating variants increases over time
likely in response to the rising levels of population immunity in
the hosts.

We utilized an in vitro DMS dataset on the neutralization cap-
abilities of mAbs, produced by Cao et al.24. A total of 173,384
mutation–mAb DMS data points, covering 2096 types of mutations in
the receptor binding domain (RBD) in the S protein and 1548mAbs,
were included in the dataset (Figs. 1b and S2b). Aligning with previous
findings24, the effects ofmutations onmAbs varied depending on their
epitope classes (Fig. S2b–d). Variants exhibiting higher fitness, such as
BQ.1.1 or XBB, exhibited an increased ability to evade these mAbs,
supporting the effectiveness of utilizing this information for predict-
ing fitness (Fig. S2d).

Using the five-fold cross-validation scheme, we generated five
model instances of CoVFit (Fig. 1b). These model instances were
used to evaluate performance for the corresponding test data.
Additionally, these instances can provide the mean and variance of
predictions for new data (e.g., data acquired after model training).
Hereafter these model instances are referred to as CoVFitNov23
(subscript denoting the month and year when the genotype–fitness
data were obtained).

Prediction performance of CoVFit
To evaluate the prediction performance of the CoVFitNov23 model
instances, we examined the prediction performance of respective
model instances using the corresponding test datasets. We selected
Spearman’s rank correlation score as the main metric because we
believe it is necessary to assess the model’s ability to predict the
ranking of relative fitness between variants in order to prioritize
variants with high fitness that are likely to spread. The resulting
prediction performance for fitness on data that doesn’t require
extrapolation is notably high (Spearman’s correlation: 0.990)
(Fig. 2a–c). Also, prediction of escape ability from neutralization by
mAbs reaches moderately high performance (Spearman’s correla-
tion for each epitope class: 0.578–0.814) (Figs. 2a and S3a). The
model’s higher predictive performance was also supported in
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evaluations stratified by sampling country and mAb type for fitness
and immune escape ability, respectively (Fig. S3b, c). Even when
variants were stratified by country of circulation and emergence
time (on a weekly basis), a robust correlation was observed between
fitness and predicted fitness (Fig. S3d, e). This result suggests that
CoVFit can distinguish the fitness of variants emerging during the
same period with an effective level of accuracy. Together, we show
that CoVFit has sufficient power to represent the fitness landscape
as well as the effect of mutations on evasion from diverse types
of mAbs.

Prediction performance of CoVFit for unknown, future variants
This study aims to develop a model that can robustly predict the
fitness of yet-to-emerge variants in addition to known variants.
However, in the experiment shown in Fig. 2, where the dataset is
randomly split into training and test sets, it is highly likely that
variants in the test set are very similar to those in the training set.
Indeed, we analyzed the minimum amino acid difference between
variants in the test dataset and their closest counterparts in the
training dataset (referred to as the minimum amino acid distance)
and found that most variants have a distance of less than five amino

Fig. 2 | Prediction performance of CoVFit. a Spearman’s correlation scores for
predicted relative fitness values andmAbneutralization escape scores. Scores from
five cross-validation folds are shown as dots, with the mean represented by a bar
and the standarddeviation by an error bar. The correlation formAbswas calculated
in each epitope group. b Scatter plot for fitness prediction, aggregating results
from five-fold cross-validation. Dot denotes the result of a certain viral genotype in

a specific country. Dot is colored by the Nextclade clade. The relative fitness value
was scaled so that the 0.1 percentile and 99.9 percentile points fall between0 and 1.
A dashed line with a slope 1 and intercept 0 is shown. c Scatter plot inherited from
(b) but colored by the emergence date of each genotype. Source data are provided
as a Source Data file.

Fig. 1 | Overview of CoVFit. a Conceptual framework of CoVFit. CoVFit is a protein language model designed to predict the fitness (relative Re) of SARS-CoV-2 variants
based on their S protein sequences. b Outline of the training process used to develop CoVFit model instances.
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acids (Fig. S3f). This suggests that the task may be easier than the
real-world prediction task we aim to solve.

Hence, to evaluate the model’s prediction performance for
unknown, future variants (i.e., extrapolation capacity), we synthesized
datasets for “past” and “future” variants by splitting the existing
genotype–fitness dataset based on variants’ emergence dates with a
specific cutoff date (e.g., February 28, 2022) (Fig. 3a). Subsequently, we
generated five instances of CoVFit solely using the past variant dataset
with the five-fold cross-validation scheme and then evaluated its per-
formance on the corresponding future variant dataset. We conducted
the same experiment for these eight cutoff dates, which were spaced
1 month apart from January 31, 2022, to August 31, 2022 (Fig. 3b). The

earliest cutoff date corresponds to just after the emergence of BA.2,
while the latest cutoff date is just before the emergence of BQ.1 and
XBB lineages (Fig. 3b). BQ.1 is a lineage that arose from BA.5 through a
sequential evolutionary process,whereasXBBemerged through a non-
sequential (or saltation-like) process, involving recombination in the S
gene that resulted in the acquisition of 14 amino acid mutations.

We demonstrated that this series of trained model instances,
CoVFitPast, successfully predicted that the fitness of future variants
exceeds that of past variants (Figs. 3c and S4a). Furthermore,
CoVFitPast showed a notable level of accuracy in predicting the relative
fitness ranking of future variants (Figs. 3d, e and S4a). For example,
CoVFitFeb22, trained ondata up to the emergenceof BA.2.12.1, achieved

Fig. 3 | Prediction performance of CoVFit for unknown, future variants.
a Strategy for evaluating prediction performance on future variants. Model
instances, referred to as CoVFitPast, were trained on variant data prior to a specified
cutoff date (e.g., January 31, 2022). Prediction performance for future variants was
then assessed using data from variants that emerged after this date. b Number of
sequences from each clade in the past datasets with specific cutoff dates. c Fitness
predictions for future (gray) and past (light gray) variants in the dataset with a
cutoff date of February 28, 2022. Points represent results for each genotype, cal-
culated as average values across countries and five-fold predictions. A dashed line
with a slope of 1 and an intercept of 0 is included. d Fitness predictions for future
variants, with colors indicating Nextclade clade classifications. In addition to the
dashed linewith a slope of 1 and intercept0, a gray estimated regression line, based

on mean prediction values, is displayed. e Scatter plot based on (d) but colored
according to the minimum amino acid distance from variants in the past data.
f Predicted fitness of genotypes within each Nextclade clade. Each clade’s dis-
tribution (violin) and median value (dot) are shown. Individual panels display
results for datasets with different cutoff dates. Clades present in the past data are
separated by a dashed vertical line from those absent in the past data. Additionally,
themedian observed fitness value of each clade is represented by a heatmapon the
left side. g Comparison of prediction performance metrics across methods,
including Spearman’s correlation score, R-squared value, mean absolute error
(MAE), and estimated regression slope. Source data are provided as a Source
Data file.
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a Spearman correlation score of 0.862 for the future dataset
(Fig. 3d, e). Moreover, we calculated the median predicted fitness for
each viral clade in the future dataset and found that CoVFitFeb22
accurately ranked the clade-median fitness of future variants, includ-
ing BA.4, BA.5, BA.2.75, BQ.1, XBB, XBB.1.5, EG.5.1, and HK.3 (Fig. 3f).
Given that the XBB lineages has ≥14 amino acid differences from its
closest genetic counterparts in the past dataset, CoVFit’s extrapolation
capacity is notably effective (Fig. 3e). Although prediction accuracy
tended to decrease for variants with greater amino acid distances from
those in the past (training) dataset, this relationship was neither linear
nor strictly monotonic (Fig. S4b). Finally, consistent results were
generally observed across datasets with varying cutoff dates, high-
lighting CoVFit’s extrapolation capacity for previously unknown,
future variants (Figs. 3f and S4a).

However, we also found that CoVFit does not exhibit high gen-
eralization ability in some scenarios. For instance, CoVFit trained on
datasets that either completely lack or contain only a few sequences of
BA.2.75 (before June 30, 2022) tended to overestimate the fitness
ranking of BA.2.75 with the K356T mutation, likely due to this muta-
tion’s high immune escape effect by K356T (Figs. 3f and S4a)34. Fur-
thermore, in later cutoff dates (e.g., August 31, 2022), CoVFit tended to
underestimate the fitness value of XBB subvariants, although CoVFit
was able to correctly rank the fitness values of these variants (Fig. S4a;
also see the regression slope in Fig. 3g).Moreover, in somecutoff dates
(e.g., August 31, 2022), CoVFit underestimated the fitness ranking of
BA.2.86, a variant that emerged through a saltation-like evolutionary
process involving 30 mutations in the S protein and exhibited one of
the highest fitness levels in late 2023 (Fig. 3f). This underestimation
was apparent even when CoVFit was trained on data up to just before
the emergence of BA.2.86 (e.g., July 31, 2023) (Fig. S4c). These results
show that while CoVFit has high extrapolation capacity, there are
limitations to its generalization ability, where prediction accuracy can
be inconsistent between training datasets for some more divergent
protein contexts.

Performance comparison with other prediction models
Next, we evaluated CoVFit’s performance relative to other currently
availablemethods. A previous study by Obermeyer et. al established
PyR0, a statistical model that can predict the fitness (relative Re) of
unknown variants based on their mutation profiles4. Thus, we began
by comparing CoVFit with PyR0. Two versions of the PyR0 model
instances are available: one trained on data up to January 20, 2022
(covering variants up to BA.2), and another trained on data up to
September 19, 2022 (just before the emergence of BQ.1 and XBB).
While these PyR0 models achieved an effective level of accuracy in
predicting the fitness of past variants, their Spearman correlation
scores were negative when applied to future variants (Fig. S5).
Particularly, PyR0 model instances underestimate variants with
greater amino acid distances from those in the past dataset, such as
XBB lineages (Fig. S5a, b, right). These results suggest that PyR0 was
unable to accurately rank future variant fitness in our experimental
setting, suggesting that CoVFit has a higher extrapolation capacity
than PyR0. This outcome likely reflects PyR0’s design as an inter-
pretable statistical model to identify mutations critical for fit-
ness gains.

To gain additional insight into the extrapolation capacity of
CoVFit, we constructed alternative prediction models using non-deep
learning methods, including LASSO, Random Forest, and Light Gra-
dient Boosting Machine (LightGBM) (Fig. 3g). These models demon-
strated prediction performance comparable to CoVFit in terms of
Spearman correlation, R-squared, mean absolute error (MAE), and
estimated the regression slope when applied to past variants. How-
ever, when predicting the fitness of future variants, CoVFit out-
performed thesemodels onmost metrics and cutoff dates, suggesting
that CoVFit has a higher extrapolation capacity than all these models.

To assess the impact of incorporating DMS data into CoVFit on
the efficacy of fitness prediction, we generated an additional model
instance, CoVFitnoDMS, by training without the DMS dataset and sub-
sequently evaluated its predictive performance against the original
model (Fig. 3g). In predicting the fitness of past variants, CoVFitnoDMS

exhibited prediction performance similar to the original CoVFit.
However, CoVFitnoDMS substantially underperformed in predicting the
fitness of future variants across most metrics and cutoff dates. Simi-
larly, we examined the impact of the domain adaptation step on pre-
diction performance anddemonstrated the contribution of this step in
achieving higher performance (Fig. 3g). Removing the DMS dataset
had amuch stronger effect than omitting the domain adaptation step,
underscoring the critical role of DMS dataset incorporation. Collec-
tively, CoVFit’s higher extrapolation capacity is likely attributed to its
incorporation of functional information on mutations and the appli-
cation of domain adaptation frameworks.

Fitness elevation events during SARS-CoV-2 evolution
To deepen our understanding of the fitness landscape of SARS-CoV-2,
we developed a CoVFit-based phylogenetic framework to analyze fit-
ness elevation throughout its evolution (Fig. 4). First, we constructed a
phylogenetic tree of 11,098 variants, which correspond to viral gen-
ome sequences encoding respective S protein genotypes. Subse-
quently, ancestral S protein sequences at the internal nodes of the tree
were reconstructed (Fig. 4a). We then inferred the fitness of all nodes,
representing both observed and reconstructed ancestral sequences,
utilizing the latest CoVFitNov23models (Fig. 4b and Fig. S6 for Omicron
and all lineages, respectively). We obtained five predicted fitness
values per node via a five-fold cross-validation scheme. Finally, we
identified branches where fitness elevation was statistically significant
(false discovery rate, FDR <0.1) by comparing predicted fitness values
between a given node and its parent node. Of the 9846 branches that
acquired mutations in the S protein, 959 (9.7%) branches were identi-
fied with significant fitness elevation (Fig. S6), including 542 branches
within the Omicron lineages (Fig. 4c). We observed increases in viral
fitness both in the branches representing the most recent common
ancestor of major lineages and throughout their subsequent diversi-
fication (Figs. 4c and S6).

To identify mutations critical for fitness elevation, we next cal-
culated the average fitness gain per mutation by examining branches
with the acquisition of a single mutation (Fig. 4d and Fig. S6 for Omi-
cron and all lineages, respectively). Mutations with higher fitness gain
[per mutation] score are predominantly found in the RBD of the S
protein, particularly in its receptor binding motif (RBM), consisting of
the binding interface to ACE235 (Figs. 4e, f and S6). Additionally, we
identified significant non-RBDmutations, like the T19I andQ52H, in the
N-terminal domain. We found that mutations with a greater impact on
fitness elevation also tend to enhance the virus’s ability to evade
humoral immunity (Fig. 4g). Furthermore, mutations with significant
fitness impact in Omicron lineages tend to have been acquired multi-
ple times in a convergent manner throughout Omicron’s evolution
(Fig. 4h). This association was evident in RBDmutations (Nagelkerke’s
pseudo R2: 0.392) but not in non-RBDmutations (Nagelkerke’s pseudo
R2: 0.008).

Context-specific effects of the F456L substitution
We found that acquisitions of some mutations were overrepresented
in a specific phylogenetic lineage. For example, while the R346T sub-
stitution was convergently acquired across Omicron lineages, the
F456L substitution was markedly overrepresented in the XBB lineage,
with few occurrences in the BQ.1 lineage (Fig. 5a). To quantify differ-
ences in the fitness effect of F456L among lineages, we performed in
silico mutational scanning analysis leveraging CoVFitNov23 by compu-
tationally inducing F456L in various S protein backbones and inferring
the fitness gain caused by this substitution (Fig. 5b). The predicted
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fitness gain from F456L was markedly higher in the XBB lineage,
followed by BQ.1, with other lineages showing substantially lower
gains. Together, these results suggest that the fitness-increasing
impact of F456L is specific to the XBB lineages (and possibly to BQ.1
as well).

To gainmechanistic insights into the XBB-specific F456L effect on
viral fitness, we analyzed published DMS data. This includes the data
on mAb neutralization by Cao et al.24 and those on the RBD ACE2-
binding affinity and protein stability by Taylor and Starr36. Substitu-
tions at F456 has one of the largest impacts on neutralization escape,
according to the escape estimator data37, in various lineages including
the ancestral D614G strain’s S protein (Fig. 5c). On the other hand, the
effects of this mutation on ACE2 binding and protein expression were
different among S protein backbones. While F456L enhances ACE2
binding and protein expression in the XBB S protein, this substitution
has a negative effect on ACE2 binding and/or protein expression in all
tested S backgrounds other than XBB (Fig. 5d). The non-deleterious

effect of F456L in ACE2 binding and expression, unique to XBB, has
been confirmed in both RBD and full S DMS assays in previous
studies24,38. These results suggest that F456L confers preferable effects
on the XBB’s S protein but confers a double-edged sword effect on
other lineages’ S protein. Together, the XBB-specific positive effect of
F456L on fitness can be explained by the XBB-specific removal of the
deleterious effects of this mutation. This example validates the effec-
tiveness of CoVFit to infer mutational effects in a context-specific
manner.

CoVFit-based in silico DMS to predict subsequent mutations
To evaluate the potential of CoVFit in predicting viral evolution, we
developed a simulationmethod, namely CoVFit-based in silico DMS. In
this method, we computationally introduced every possible single
amino acid substitution into the S protein sequence of a specific var-
iant. Subsequently, the fitness gain fromeach substitutionwas inferred
using CoVFit.

Fig. 4 | Detection of fitness elevation events during Omicron diversification.
a Scheme to detect phylogenetic branches with fitness elevation utilizing CoVFit
models. b Inference of change in fitness through Omicron’s evolution. The max-
imum likelihood (ML) tree of Omicron lineages is shown. Branch color indicates an
inferred fitness value for each phylogenetic node, including both observed and
reconstructed ancestral genotypes of S proteins in the phylogenetic tree.
c Detection of fitness elevation events during Omicron’s evolution. Dot color
indicates inferred fitness gain in each branch, calculated as the difference in pre-
dicted fitness between a node and its parental node. d Mean fitness gain over a
specific mutation during Omicron evolution. Since some mutations have been
acquired multiple times, the mean value of fitness gain among acquisition events
was used as the “fitness gain [permutation]” score. The top 20mutations regarding
this score are shownwith the protein domain information. e Enrichment of fitness-
associated mutations in the RBD, particularly in its RBM. The negative score is
clipped to 0. f Mapping the site-wise fitness gain score on the 3D structure of the
ancestral D614G Sprotein (PDB: 7BNN)56. Ifmultiplemutation types are present in a

specific site, the maximum value is shown as the “fitness gain [per site]” score.
Amino acid side chains for the top 15 sites regarding this score are shown as sphere.
The plot was generated using Chimera X57. g Association of fitness gain rank with
the mean mAb escape score. This escape score was calculated as the mean of the
escape score across mAbs over a mutation. The ND group includes mutations not
observed in our phylogenetic analysis. The categories 1–50, 51–100, 101–, and ND
include 39, 24, 75, and 1964 entries, respectively. The box represents the inter-
quartile range (IQR; 25th to 75th percentile), with the horizontal line indicating the
median (50th percentile). The whiskers extend to the smallest and largest values
within 1.5 times the IQR from the lower and upper quartiles, respectively.
h Association of the fitness gain [per mutation] score with the inferred acquisition
count. The estimated regression curve (line) with standard error (ribbon) by Pois-
son regression using all mutations is shown. In addition, Nagelkerke’s pseudo R2

values for Poisson regression analyses using allmutations, RBDmutations, andnon-
RBD mutations are shown. Source data are provided as a Source Data file.
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In this study, we selected BA.2.86.1 as the target for in silico DMS
analysis to evaluate CoVFit’s performance in predicting the evolution
of the BA.2.86.1 lineage. Following the emergence of BA.2.86.1, its
descendant lineage, JN.1, arose through the L455S mutation and
rapidly spread worldwide. JN.1 demonstrated higher fitness than both
BA.2.86.1 and the XBB subvariants circulating at the time, leading to a
near-complete replacement of the dominant lineage from XBB to the
BA.2.86 lineage by early 202423. Subsequently, JN.1 underwent further
diversification, giving rise to various subvariants, such as KP.2
and KP.3.

The genotype–fitness dataset we used included one sequence
of JN.1 and 11 sequences from other BA.2.86 lineages. To create a
model that completely excluded knowledge of JN.1, we removed its
sequence from the dataset and trained a new CoVFit model
instance, referred to as CoVFitwoJN1, for conducting in silico DMS
targeting BA.2.86.1. Finally, we calculated per-site fitness gains
based on the in silico DMS analysis.

The results showed that the top 2% (20 sites) with the highest
predictedfitness gainswere significantly enriched in the top 2%of sites
with the highest mutation frequencies within the BA.2.86.1 lineage
(odds ratio: 29.4; P < 1.0E-6) (Fig. 6a). This finding suggests that
mutations with the highest fitness gains predicted by our model were
indeed the ones acquired and subsequently in the BA.2.86 lineage.
Notably, the mutation at site 455 (ranked 3rd; e.g., L455S) was the first
to rapidly fixwithin the viral population, coincidingwith the expansion
of JN.1 (Fig. 6b, c). Similarly, the mutation at site 456 (ranked 1st; e.g.,
F456L) became fixed second in the population during the spread of
KP.2 and KP.3, descendants of JN.1 that harbored both L455S and
F456L. Furthermore, themutation at site 346 (ranked 6th; e.g., R346T)
initially increased in frequency alongside the expansion of KP.2, which
carried L455S, F456L, andR346T.However, its frequency later declined
as KP.3, which carried L455S and F456L but lacked R346T, out-
competed KP.2. Moreover, as of December 2024, JN.1 subvariants
harboring R346T in addition to L455S and F456L—such as LP.8.1—have
emerged and spread rapidly worldwide39. These findings suggest that
CoVFitwoJN1 successfully predicted, with an effective level of accuracy,
the mutations that were likely to be acquired and spread within the

BA.2.86 population. This highlights the utility of CoVFit for predicting
viral evolution through single amino acid mutations.

CoVFit-CLI tool
The trained CoVFitNov23 model instances used in this study are avail-
able as a command-line tool, CoVFit-CLI, from our GitHub repository
(https://github.com/TheSatoLab/CoVFit). Additionally, the instances
trained on the latest genome surveillance data, CoVFitNov24, are also
available. Researchers can use the standaloneprogram to conveniently
provide fitness and DMS escape predictions for their own SARS-CoV-2
S protein sequences. The CoVFit-CLI tool will receive periodic updates
to themodel instances, trainedon the latest genomic surveillancedata.

Discussion
In this study, we established CoVFit, a protein language model to
predict the fitness (i.e., relative Re) of SARS-CoV-2 variants, which
represents a variant’s relative ability to spread in the host population.
Previous studies have proposed statistical models predicting viral
fitness4,11,29,30 as well as machine learning models predicting viral phe-
notypes strongly associated with fitness, such as immune evasion
ability40,41 or protein grammaticality42,43. However, to our knowledge,
CoVFit is the first machine learningmodel designed to directly predict
viral fitness beyond conventional statistical models.

We demonstrated that while CoVFit exhibits higher extrapolation
capacity compared to other methods, it also has certain limitations.
CoVFit was able topredict thefitness of future, unknownvariants, such
as XBB and its descendant lineages, which are ~15 amino acids distant
from the training data, with reasonable accuracy. This strong extra-
polative ability likely stems from CoVFit’s integration of multitask
learning with DMS data, as indicated by ablation experiments (Fig. 3g).
However, CoVFit was unable to consistently predict the fitness ranking
of BA.2.86,which has >30 amino acid differences compared to variants
in the training data (Figs. 3f and S4c). In other words, CoVFit appears
capable of extrapolating to moderate saltation-like events (e.g., the
emergence of XBB) but struggles with larger saltation-like events (e.g.,
the emergence of BA.2.86, which is comparable to the emergence of
Omicron in the number of spike mutations). Furthermore, we found

Fig. 5 | Context-specific effect of the F456L substitution. a Examples of con-
vergent acquisitions of specific substitutions. A node indicates the acquisition
events, and node color denotes fitness gain at the acquisition events. Branch color
denotes the presence (gray) or absence (light gray) of specific substitutions in the
reconstructed ancestral S protein sequences. b Fitness gain upon F456L in each
backbone S protein sequence, inferred by in silico mutational scanning using
CoVFit. Variants with available DMS data (shown in (d)) were included in this

analysis. c Site-wise immune escape score for the ancestral D614G strain, BA.2, and
XBB variants, estimated bymAb escape estimator37 based on Cao’s DMS data24. The
top 5 sites regarding the escape score are annotated. d Effect of F456L on the S
protein’s expression (stability) and ACE2-binding affinity, extracted from publicly
available DMS data from Taylor and Starr36. The dot color indicates inferred fitness
gain shown in (b). Higher values indicate enhanced higher expression and ACE2-
binding affinity values. Source data are provided as a Source Data file.
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that CoVFit tended to underestimate the fitness values of XBB sub-
variants in later cutoff dates (e.g., August 31, 2022), although it was still
able to correctly rank their relative fitness values (Fig. S4a). Collec-
tively, this study provides comprehensive insights into both the utility
and limitations of CoVFit.

The CoVFit model design is expected to be most effective in the
mid-to-late stages of a pandemic, when sufficient genome data has
been accumulated, but surveillance is declining. As of 2024, with the
SARS-CoV-2 pandemic persisting over a prolonged period of time, it
has become increasingly difficult to sustain intensive viral genome
surveillance (https://gisaid.org/hcov-19-variants-dashboard/). Con-
ventional methods estimate fitness based on the accumulation rate of
variant sequences. Therefore, to apply these methods effectively, a
large number of viral genomes must be continuously sequenced and
shared without delay. In contrast, CoVFit leverages past genomic
information to directly predict fitness from genotype, enabling
immediate predictions without waiting for new variant sequences to
accumulate. Moreover, CoVFit’s predictions do not rely on variant
classification, eliminating the need for the processes of variant iden-
tification, classification, and naming, which requiremanual curation by
experts (https://github.com/cov-lineages/pango-designation). A CoV-
Fitmodel instance canbe trainedwithin24 husing a singleNvidiaA100
GPU, making it feasible to regularly update the model with the latest
genome surveillance data. Thus, deploying the latest CoVFit model to
monitor viral genome databases presents a promising strategy for
improving the efficiency of high-risk variant surveillance, a task that
remains essential even in a prolonged pandemic scenario. Moreover,
based on the reasons outlined above, CoVFit-like methods would also
be useful for monitoring pathogens already circulating in humans,
such as Influenza, RSV, and common cold coronaviruses, where there’s
sparse sequencing data covering a wider period of their evolution.

In this study, we developed a framework that combines CoVFit
with a phylogenetic approach to identify mutations that enhance viral
fitness (Figs. 4 and 5). Despite the common challenge of interpret-
ability in machine learning models, our framework is designed to
assess not just the average effect of specific mutations but also their

context-specific or epistatic effects. For instance, it can distinguish the
varying impacts of a particular mutation (e.g., F456L) across different
contexts (e.g., within the XBB lineage versus other lineages) (Fig. 5).
This framework is highly versatile and can be applied in combination
with various phenotype prediction models beyond CoVFit. Compared
to in silico DMS, this approach aims to retrospectively interpret
observed evolutionary steps and identify patterns in their occurrence.

Previous studies have reported that some mutations are con-
vergently acquired through the SARS-CoV-2 evolution, probably
because these convergent mutations confer a positive effect on viral
fitness24,44. Indeed, some studies have inferred the importance of
mutations for viral fitness according to how often thesemutations are
acquired convergently, under the assumption that these two features
are correlated24,45. However, despite our prior investigations focusing
on a limited set of mutations11, the degree of association between a
mutation’s acquisition frequency and its impact on fitness has
remained unclear. In this study, we comprehensively investigated this
issue and found an association between these two features, with a
particularly strong correlation observed in mutations within the RBD
(Fig. 4h). This result suggests, for accurate predictions of viral evolu-
tion, it is effective to consider both the acquisition frequency of
mutations and their fitness effects. By steering future development
towards a machine learning model based on a phylodynamics
approach integrating both factors, we could potentially achieve pre-
cise predictions and simulations of viral evolution.

Despite the utility of CoVFit, it still has several limitations in its
present form. First, as the objective variable, we utilized the fitness
(relative Re) of a variant, which was estimated from viral genome sur-
veillance data and inherently carries a degree of uncertainty and bias.
This bias arises partly because the surveillance does not employ ran-
dom sampling. Often, samples from specific infection clusters are
disproportionately represented in the surveillance data, potentially
leading to a biased estimationof thefitness of certain variants. Second,
the logistic model used to estimate variant fitness operates under a
strong assumption that the relative fitness among variants remains
constant over time4,20–22. Although this model is widely used, this

Fig. 6 | CoVFit-based in silico DMS on the BA.2.86.1 lineage. a Association
between the fitness gain [per site] score and the mutation frequency at each site in
the BA.2.86.1 lineage. Points represent amino acid sites, while dashed lines indicate
the 98th percentile (top2%) for both thefitness gain score andmutation frequency.
Statistical measures quantifying the degree of overlap between data points within
the top 2% for these twometrics are shown. The p value was calculated using a two-
sided Fisher’s exact test. b Temporal trend in mutation frequency at individual

amino acid sites within the BA.2.86.1 population. The genome surveillance data
fromOctober 1, 2023, to July 31, 2024, was used. Frequencies were calculated using
7-day bins. c Temporal trends in viral lineage frequencies within the BA.2.86.1
population. Each viral lineage category includes its descendant lineages unless
those descendant lineages are explicitly defined as separate categories. Mutations
in the S protein relative to BA.2.86.1 are indicated, with emphasis on those with
higher fitness gain [per site] scores. Source data are provided as a Source Data file.
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assumptionmight not always hold true. In reality, the relative fitness of
variants can vary in response to changes in the host population’s
immune status, influenced by factors such as natural infections and
vaccinations2,3. For example, in 2024, when the majority of the popu-
lation has some level of immunity to SARS-CoV-2, the impact of
immune escape on fitness is likely more pronounced compared to the
early stages of the COVID-19 pandemic in 2020. Similarly, although it is
likely that the effects of mutations on fitness may also change over
time, the method to identify fitness-elevating mutations with CoVFit
does not account for this temporal variation. Third, in our fitness
prediction task, we utilized sequences from real-world variants as
training inputs.Mutationswith a substantial negative impact on fitness
must be underrepresented in our training dataset since such muta-
tions are usually eliminated through natural selection. Consequently,
CoVFit is likely to underestimate the negative effects of certain
mutations on fitness. Finally, because CoVFit requires a large amount
of viral genome sequences for training, its utility would be limited in
the early stages of future viral outbreaks, before sufficient genomic
data has been accumulated. In the early phases, methods like
EVEscape41, which use expert-designed scoring systems to estimate
immune escape potential without requiring a training process, may be
more practical. Other technical limitations and their potential solu-
tions are discussed in the “Room for improvement of CoVFit” section
in the “Methods” section. Together, the fitness predictions made by
our model should be carefully interpreted in the context of compli-
mentary information.

Despite the limitations mentioned, CoVFit holds the potential to
decipher the fitness landscape of viruses. Our approach is poised to
contribute to the development of innovative methods for the early
prediction of future epidemic variants and for advancing viral evolu-
tionary predictions. These advancements are critical for efficient epi-
demic control, vaccine development, and drug discovery.
Furthermore, themethodologies employed inCoVFit can be applied to
predicting the fitness of other viruses, including viral pathogens
causing future pandemics. In anticipation of the next pandemic, it is
imperative to continually develop foundational bioinformatics meth-
ods that assist in epidemic control, leveraging the extensive genomic
data efforts of SARS-CoV-2 as an archetypical forerunner.

Methods
Preparation of genotype–fitness dataset
We retrieved all SARS-CoV-2 genome sequences and their associated
metadata available as of November 2, 2023, from GISAID. We then
assigned themost recent PANGO lineage classification available at that
time to each sequence in our dataset using Nextclade v.2.14.046 with
Nextclade dataset version “2023-10-26T12:00:00Z.” Then we excluded
low-quality sequences based on the following criteria: (i) absence of
collection date information; (ii) samples derived from animals other
than humans; or (iii) more than 1% undetermined nucleotide
characters.

To develop a classification system for SARS-CoV-2 with a higher
resolution than the PANGO lineage and based solely on the sequence
of the S protein, we defined the genotype of the S protein and utilized
it as the virus classification system in this study. The S protein geno-
types refer to groups of viral sequences that share a unique set of
mutations in the S protein. To achieve this, we first identified muta-
tions in the S protein observed in more than 100 sequences. We then
analyzed the mutation patterns across each sequence, enabling us to
categorize sequences into genotypes based on these patterns. Only
genotypes represented by 20 or more sequences in any country were
considered for our analysis. As a result, a total of 13,643 S protein
genotypes were included in our dataset. Each genotype was linked to
the Nextclade PANGO lineage, Nextclade clade, and a representative
genome sequence. This representative sequencewas randomly chosen
from the collection of sequences of the genotype. The emergencedate

of a genotype was determined as the 1st percentile date of collection
for the viral isolates within the genotype. The viral genome sequences
contained within this dataset are summarized under the EPI_SET_ID:
EPI_SET_240311ma, which can be accessed through the GISAID website
(https://gisaid.org/).

To estimate the relativeRe valueof eachgenotype in each country,
we began by tallying the daily count of each genotype within each
country’s dataset. We applied a multinomial logistic model to the
count data of each country as previously described8. In this model,
time (date) was used as the explanatory variable and the detection
count for each variant as the dependent variable. Parameters in the
model were estimated using themaximum likelihoodmethodwith the
“multinom” function in the “nnet” package v.7.3.18 in R v.4.2.1.

In estimating Re within the multinomial logistic model, it is
necessary to select one variant as the reference variant with Re = 1.
Ideally, the reference variant should have the largest possible number
of sequences. Additionally, a common reference variant must be
chosen for all countries included in the analysis. To do this, we first
counted how many sequences of each variant were detected in each
country. Then, we compared the detection counts across countries for
each variant and calculated theminimumcount for each variant across
countries. Finally, the variant with the highest minimum count was
selected as the common reference variant for all countries. This
approach allows us to choose a reference variant with the largest
number of sequences registered across all countries, or at least in the
country with the fewest sequences. Accordingly, the major genotype
of the BA.5 lineage (equivalent to BA.5.2.1 in the PANGO lineage) was
selected as the reference.

We then extracted the estimated growth rate (slope parameter) of
each genotype relative to a reference genotype. The relative Re of the
viral lineage l, rl , was calculated according to the slope parameter βl of
the lineage as rl = exp γβl

� �
, where γ is the average viral generation

time (2.1 days) (http://sonorouschocolate.com/covid19/index.php?
title=Estimating_Generation_Time_Of_Omicron)7. The estimated Re
value for each genotype is summarized in Supplemental Data 1.

Estimating relative Re with the multinomial logistic regression
model has certain limitations. The first is that it can only estimate
relative Re values between variants; in other words, it cannot provide
absolute (non-relative) values of Re. As a result, we cannot determine
solely based on these values whether an epidemic caused by a parti-
cular variant will expand or subside. In this model, a variant’s dis-
appearance from the viral population (its relative frequency becoming
negligible) is driven only by the expansion of other variants with a
higher Re. The second limitation of this model is the assumption that
the relative Re between variants remains constant over time. In reality,
the relative fitness of variants can fluctuate in response to changes in
the host population’s immune status, influenced by factors such as
natural infections and vaccinations. In 2024, when most of the popu-
lation has some immunity to SARS-CoV-2 due to vaccination or prior
infection, the impact of immune escape on fitness is likely more pro-
nounced compared to the early stages of the COVID-19 pandemic in
2020. The third limitation of this model is the assumption that the
average viral generation time remains constant across variants. This
assumption does not always hold, as previous studies have estimated
differences in generation time between the Delta and Omicron
variants47. Therefore, it is essential to interpret the estimated relative
Re values with these limitations in mind.

In each viral clade, a small number of viral genotypes had emer-
gence dates that were exceptionally earlier than the majority of other
genotypes. For instance, the earliest emergence date in clade 21 K
(BA.1) is associated with hap_89965, which is recorded as January 1,
2021. However, considering that BA.1 was first identified in November
2021, this date is likely erroneous. Additionally, in the analysis of pre-
diction performance for future variants described later, it is preferable
for the past–future cutoff dates (set at 1-month intervals) to align as
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closely as possible with the actual emergence dates of the viral clades.
Therefore, we excluded a small number of these earliest genotypes
with anomalously early emergence dates from the genotype–fitness
dataset. Specifically, genotypes with emergence dates earlier than
November 30, 2021 for clade 21K (BA.1); December 31, 2021 for clade
21L (BA.2);March 31, 2022 for clades 22A (BA.4) and 22B (BA.5); January
31, 2022 for clade 22C (BA.12.1); May 31, 2022 for clade 22D (BA.2.75);
August 31, 2022 for clades 22E (BQ.1) and 22F (XBB); November 30,
2022 for clade 23A (XBB.1.5); February 28, 2023 for clade 23B
(XBB.1.16); September 30, 2022 for clade 23C (CH.1.1); and May 31,
2023 for clade 23F (EG.5.1) were removed from the dataset.

Prior to the training step, we excluded S protein sequences con-
taining more than 5 ambiguous characters and more than 30 amino
acid deletions from the dataset. Furthermore, we excluded viral gen-
otypes classified as Recombination clades (i.e., recombinant lineages,
excluding major recombinant lineages such as XBB) in the Nextclade
classification. Also, we focused on countries where more than 300
genotypes were detected, which led to collecting data for 17 countries:
Australia, Belgium, Brazil, Canada, Denmark, France, Germany, India,
Italy, Japan, Netherlands, South Korea, Spain, Sweden, Switzerland, the
UK, and the USA. As a result of this additional filtering, a total of 21,281
genotype–fitness (relative Re) data points, encompassing 12,817 gen-
otypes across 17 countries, were included in our genotype–fitness
dataset.

The estimated fitness value was transformed using the natural
logarithm function, and then the data was scaled so that the 0.1 per-
centile and 99.9 percentile points fall between 0 and 1 before model
training.

Preparation of DMS data for mAbs evasion
In this study, we utilized DMS data on evasion frommAbs provided by
Cao et al.24. The processed DMS data, specifically the mutation-wise
immune escape score prepared for the antibody-escape estimator
developed by Greaney et al.37, was downloaded from the Bloom lab
GitHub repository on April 11, 2023 (https://github.com/jbloomlab/
SARS2_RBD_Ab_escape_maps/blob/main/processed_data/escape_data_
mutation.csv). We applied specific exclusion criteria to the DMS data:
(i) mAbs categorized as “SARS convalescents” and “WT-engineered”;
and (ii) mAbs with an IC50 value ≥ 10, indicative of very weak binding
affinity, for the target virus. The escape score in this repository was
calculated using a DMS experiment using the ancestral D614G strain’s
RBD. Following the methods of Greaney et al., we defined a weighted
escape score for each target virus (e.g., D614G and BA.2) from this
escape score, following the method of Greaney et al. Specifically, the
escape score was multiplied by the IC50 value for the S protein of the
target virus, followed by negative log transformation with a pseudo
count of 1. The weighted escape score was scaled so that the 0 and 95
percentiles fell within the range 0–1, and values above 95 percentile
were clipped to 1. For the comprehensive training of CoVFit, the
weighted escape values for D614G were employed. On the other hand,
considering that variants predominantly circulating after early 2022
are related to the BA.2 lineages, the weighted escape values for BA.2
were used in the training for CoVFitPast.

Dataset preparation for domain adaptation
The S protein sequences forCoronaviridae, except for SARS-CoV-2, were
downloaded from the NCBI Identical Protein Groups database (https://
www.ncbi.nlm.nih.gov/ipg) on July 3, 2023, using the following search
query: query:(“Alphacoronavirus”[Organism] OR “Betacoronavir-
us”[Organism] OR “Gammacoronavirus”[Organism] OR coronavirus[All
Fields]) AND (spike[All Fields] OR S[All Fields] OR surface[All Fields])
NOT (“Severe acute respiratory syndrome coronavirus 2”[Organism] OR
(“Severe acute respiratory syndrome coronavirus 2”[Organism]
OR (“Severe acute respiratory syndrome coronavirus 2”[Organism] OR
(“Severe acute respiratory syndrome coronavirus 2”[Organism] OR

(“Severe acute respiratory syndrome coronavirus 2”[Organism] OR
(“Severe acute respiratory syndrome coronavirus 2”[Organism]
OR (“Severe acute respiratory syndrome coronavirus 2”[Organism]
OR (“Severe acute respiratory syndrome coronavirus 2”[Organism] OR
(“Severe acute respiratory syndrome coronavirus 2”[Organism]
OR (“Severe acute respiratory syndrome coronavirus 2”[Organism] OR
SARS-CoV-2[All Fields])))))))))) NOT (“unidentified”[Organism] OR
(“unidentified”[Organism] OR (“unidentified”[Organism] OR (“uni-
dentified”[Organism] OR (“unidentified”[Organism] OR “Unknown”[All
Fields]))))) NOT “unidentified human coronavirus”[Organism] NOT
(“synthetic construct”[Organism]) AND (“1000”[SLEN]: “1500”[SLEN]).
The metadata associated with these sequences were also downloaded.
The S protein for the SARS-CoV-2 Wuhan-Hu-1 strain was downloaded
using NCBI Datasets Command-line tools v.15.6.1 (https://www.ncbi.nlm.
nih.gov/datasets/docs/v2/download-and-install/) and subsequently
incorporated into our dataset. Sequences with more than 5% uni-
dentified amino acids were filtered out. Next, we removed redundant
sequences using CD-HIT v.4.8.148 with a clustering threshold of 99%
sequence identity. However, even after the CD-HIT filtering, a large
number of sequences (i.e., 796 sequences) corresponding to the porcine
epidemic diarrhea virus (PEDV) remained in the dataset. To reduce the
redundancy of this virus group, we randomly selected 10 representative
PEDV sequences to retain in our dataset. Consequently, 1392 Cor-
onaviridae sequences were included in our dataset.

In addition to the Coronaviridae S protein dataset, we prepared a
dataset for the SARS-CoV-2 S protein specifically for domain adapta-
tion. Of the S protein genotypes we defined in this study (see the
section “Preparation of genotype–fitness dataset”), we eliminated
genotypes with an emergence date later than August 31, 2022, in order
to prevent the model from accessing data beyond this cutoff date
during the domain adaptation process. Subsequently, we removed
redundant sequences using CD-HITwith a clustering threshold of 99%,
in accordance with the method described above. Consequently, 114 S
protein sequences of SARS-CoV-2 were retained in the dataset. Finally,
we combined the Coronaviridae and SARS-CoV-2 S protein datasets,
resulting in 1506 sequences, for use in domain adaptation. The S
protein sequence information used in the domain adaptation step is
summarized in Supplemental Data 2.

Introduction of CoVFit
We developed CoVFit, a fitness prediction model based on S protein
sequences, by finetuning the ESM-2 protein language model (Fig. 1a).
To enhance the model’s performance, we employed three key tech-
niques: domain adaptation, multitask learning, and Low-Rank Adap-
tation (LoRA)49. Domain adaptation is an additional pretraining phase
using a custom data collection. In this study, we performed domain
adaptation using S protein sequences from various human and ani-
mal coronaviruses (see the “Dataset preparation for domain adap-
tation” section). This technique enabled themodel to better learn the
general properties of these proteins (see the “Domain adaptation”
section). Multitask learning, a framework that trains a model on
different types of data simultaneously, was utilized to allow the
model to capture critical information shared across tasks, thereby
enhancing its generalization capabilities. In CoVFit, the model was
finetuned using a total of 1,565 regression tasks, including to predict
fitness values for 17 countries and to predict relative binding affinity
for 1548 mAbs (see the “Model architecture of CoVFit” section).
Finally, LoRA is a technique to fine-tune large models efficiently that
reduces the requirements for GPU memory resources without com-
promising the model’s prediction performance. LoRA additionally
contributes to mitigating the model’s tendency to overfit (see the
“Model finetuning and performance evaluation” section for further
information).

The input for CoVFit consists of amino acid sequences of SARS-
CoV-2 S proteins, aligned with the S protein of the Wuhan-Hu-1 strain.
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These aligned sequences can be generated by Nextclade. CoVFit can
predict the fitness (relative Re) value across 17 countries and the ability
to evade 1548 types of mAbs for a given S protein sequence (Fig. S1a).

Training of the CoVFit model completes within 24 h on a com-
putational node with a single Nvidia A100 GPU (40GB) for each
instance. Consequently, the model can be updated routinely using the
latest genome surveillance data without intensive computational
resource requirements.

Utilizing a five-fold cross-validation scheme, we generated five
instances of the CoVFit model, which enabled us to estimate both the
average prediction value and its uncertainty across these models
(Fig. 1b). This approach was chosen because the predicted values,
especially regarding the fitness of future variants, can vary among
different instances of the trained models (Fig. 3).

CoVFit implementation
ESM-2 models with various parameter sizes are available32 (https://
github.com/facebookresearch/esm). Of these models, we used the
version with 650M parameters, prioritizing a balance between pre-
diction performance and computational cost. According to the official
benchmark using the unsupervised contact prediction task, this 650M
parametermodel achieves a performance 1.7 times superior compared
to the 35M parameter model, which possesses 20 times fewer para-
meters. However, the performance gain when comparing the 650M
model to the 15 billion (B) parameter model, which has 20 times more
parameters, is relatively modest at only 1.08 times. Furthermore, a
systematic analysis presented in a recent preprint indicates that
enlarging the parameter size of a protein language model does not
necessarily enhance prediction performance for tasks outside of pro-
tein structure prediction50. Given this insight, we opted not to employ
models larger than the 650M model, such as the 3B or 15B models, in
our study.

The ESM-2 model has a maximum input sequence length (1024
amino acids) due to the computational demands of self-attention,
which requires memory in proportion to the square of the sequence
length (O(L2)). Unfortunately, the S protein of theWuhan-Hu-1 strain
is composed of 1273 amino acids, exceeding the model’s limit.
Consequently, amino acid sequences beyond the 1024th position
(amino acids 1025–1273; the C-terminus of the S2 subunit) are
truncated and not utilized in the ESM-2 model. This constitutes a
technical limitation of CoVFit. Nonetheless, this limitation is
anticipated to minimally impact performance, considering that
while mutations predominantly occur within the S1 subunit (amino
acids 1–681), the S2 subunit (amino acids 682–1273) remains highly
conserved and with fewer mutations.

CoVFit was implemented using Python v.3.11.4, NVIDIA CUDA
v.12.1.0, PyTorch v.2.1.0, Transformers v.4.31.0, and PEFT v.0.5.0. Fur-
ther information about the system requirements for CoVFit can be
found in the GitHub repository (https://github.com/TheSatoLab/
CoVFit). The computational codes were executed on a super-
computer node equipped with a single NVIDIA A100 GPU with 40GB
RAM unless otherwise noted.

Domain adaptation
To establish the ESM-2Coronaviridae model, domain adaptation was car-
ried out using the masked language learning scheme as described in
Delvin et al.51. For domain adaptation, the S protein dataset prepared in
the “Dataset preparation for domain adaptation” section was used. For
our model’s domain adaptation training, each input sequence had 15%
of its positions masked randomly, with each instance of a position’s
masking having an 80% chance to be a <mask> token, a 10% chance to
be incorrect, and a 10% chance to be the original. Subsequently, amino
acid or token types for these 15% of positions were predicted in bat-
ched training steps, and model weights were updated using a cross-
entropy loss function.

Using the scheme above, we trained the 650M parameter ESM-2
model with the provided MaskedLM layer, downloaded via functions
implemented in the Hugging Face Transformers library. The model
was trained for 30 epochs. The batch size was set at 5. A base learning
rate of 2e�5 was used with one epoch of warmup, and a cosine-based
learning rate scheduler was implemented to successively lower the
learning rate during training.

To compare the inference ability of the ESM-2Coronaviridaemodel to
the original ESM-2 model, we performed inference with both models
on masked SARS-CoV-2 S protein sequences. Since our dataset for
domain adaptation training includes the S proteins of genotypes that
emerged up to August 31, 2022, we used genotypes with emergence
dates later than September 1, 2022, for inference. The same masking
parameters as in the training were used. The results on the test dataset
were converted to perplexity scores as the exponential of the cross-
entropy loss value calculated during inference. Given as
perplexity= e�

P
x
P xð Þ logQðxÞ where PðxÞ is the true probability dis-

tribution and QðxÞ is the probability distribution from the model’s
predictions, the perplexity score represents how certain the model is
in making its predictions, with lower values demonstrating higher
certainty. For our inference results, the original ESM-2 model pro-
duced a perplexity score of 11.38, whereas the ESM-2Coronaviridae model
achieved a low perplexity score of 1.17, demonstrating higher predic-
tion certainty after domain adaptation training (Fig. S1c).

To assess the possibility of the domain adaptation negatively
impacting the model’s original ability to provide inference on a wide
variety of proteins, we again compared the original EMS-2 and ESM-
2Coronaviridae models, this time with protein sequences sampled from
the UniRef50 released in March 2018. A subset consisting of
29,950 sequences was randomly sampled from the full
3,016,211 sequences and used for the evaluation. The perplexity values
of the models were checked as above for the two models, with the
original ESM-2 model’s perplexity score at 6.76 and the ESM-
2Coronaviridae model’s perplexity score at 6.86, demonstrating that the
model retains its certainty ongeneral proteins after domain adaptation
(Fig. S1c).

We conducted the domain adaptation training in Python v3.10.9
with CUDA v12.1.1 and torch v2.1.0.dev20230601 using the Hugging
Face Transformers v4.34.1 library.

The computationwas executed on a single NVIDIA RTX 6000 Ada
GPUwith 48GBRAM.More detailed information on implementation is
available in the GitHub repository (https://github.com/TheSatoLab/
CoVFit).

Model architecture of CoVFit
For the multitask learning component, we engineered custom task-
specific regression heads for the ESM-2 model (Fig. S1a). On the
embedding layer of ESM-2, a linear layer with dimensions equal to the
number of tasks was set as task-specific heads. Additionally, an inter-
mediate linear layer with 252 dimensions connecting the embedding
layer and the task-head layer was set.

In CoVFit, a single input sequence is linked to multiple target
variables due to the multitask learning framework. For example,
regarding DMS data, a typical S protein mutant (input sequence) is
linked to relative binding affinity values for >1000mAbs (target vari-
ables). To boost computational efficiency, CoVFit utilizes an archi-
tecture that processes a single input sequence alongside its multiple
corresponding target variables in parallel, rather than processing pairs
of the same input sequence and one target variable sequentially
(Fig. S1b). As a result, the loss values for multiple target variables
associated with a single input sequence are calculated simultaneously.

However, the number of tasks linked to each input sequence can
differ greatly, especially when comparing the variant S protein
sequences used for fitness prediction (up to 17 tasks) against the
mutant sequences used for DMS predictions (up to 1548 tasks).
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Consequently, the magnitude of the loss value for each dataset can
vary significantly based on the number of associated tasks, which can
lead to training instability. To stabilize the training process, CoVFit
utilized non-overlapping random sampling to create data chunks
where a single input sequence is associated with target variables for a
maximumof 10 tasks. These generated sequence-variable chunkswere
then used as the training inputs.

For the loss function, CoVFit utilizes a custom least squares
approach weighted according to individual tasks. In principle, the
weights were determined to be proportional to the reciprocals of the
task frequencies. One exception was implemented where, for fitness
prediction tasks for genotypes that emerged after January 1, 2022, we
adjusted the weights by doubling them.

Model finetuning and performance evaluation
In CoVFit, we finetuned the custom model based on ESM-2 using the
LoRA technique implemented in the Hugging Face PEFT v.0.5.0. Low-
rank adapters were injected into the weightmatrices of the key, query,
and value components, as well as those for the dense layers. Full
finetuning was applied to these adapters and the custom regression
heads added onto ESM-2, while the other, original layers were kept
frozen in their pretrained state. A rank parameter of r = 8 and a scale
parameter of alpha = 16 were used. Consequently, out of the total
659,741,475 parameters, the model has 7,768,974 trainable para-
meters, which constitutes ~1.18% of the total. The LoRA dropout rate
was set at 0.05.

For finetuning, the AdamW optimizer was used with a weight
decay parameter of 0.02. Themaximum learning rate was set at 2.0E-4
with a linear learning rate scheduler, and the training was conducted
over 20 epochswith awarmup ratio of 0.05. The batch sizewas set at 4
with gradient accumulation steps of 2.

The genotype–fitness and DMS datasets were randomly divided
into training, evaluation, and test datasets in a 6:2:2 ratio. For the
genotype–fitness dataset, we considered the combinations of country
and Nextclade clade, ensuring that data representing each combina-
tion were evenly distributed across the training-evaluation and test
datasets. Similarly, for the DMS dataset, the types of mAbs were con-
sidered during the data splitting process. We conducted the data
splitting with a five-fold cross-validation approach.

In our experiments aimed at assessing the model’s ability to pre-
dict the performance of future variants, we began by dividing the
genotype–fitness dataset into two: one for past variants and another
for future variants, based on their emergence dates. We generated
eight datasets using eight cutoff dates, spaced 1 month apart, from
January 31, 2022, to August 31, 2022 (Fig. 3b). Training was done using
these datasets according to the scheme described above.

In our experiments designed to assess the importance of includ-
ing DMS data for immune evasion, we trained alternative instances
without incorporating the DMS dataset for comparison. Likewise, in
our experiments evaluating the significance of the domain adaptation
step, we employed the original ESM-2 model rather than the version
adapted to the coronaviral S protein dataset.

CoVFit-CLI
The CoVFit-CLI tool packages CoVFitNov23 via pyinstaller 6.4.0 using
Python v.3.10.9, torch v.2.1.2, transformers 4.37.1, and bio v.1.5.9 with
CUDA v.12.3 on x86_64 Linux, kernel 5.15.0.

Development of fitness prediction models based on non-deep
learning models
We constructed fitness prediction models based on LASSO, Random
Forest, and LightGBM to compare the prediction performance of
CoVFit with those of thesemodels. LASSO employs a linear regression
framework enhanced with L1 regularization, offering a method to
include penalty terms that reduce overfitting by shrinking some

coefficients to zero. In contrast, Random Forest and LightGBM are
advanced, decision tree-based models known for their greater
expressive capability. These models aim to predict a variant’s fitness
value based on its amino acidmutation profile in the S protein and the
country of origin. Both themutation profile and the country data were
one-hot encoded to serve as input features for the models.

We trained these models and evaluated their performance using
the past–future variant datasets with eight cutoff dates, spaced
1 month apart, from January 31, 2022, to August 31, 2022, and the five-
fold cross-validation schemeasdescribed in the “Model finetuning and
performance evaluation” section. In the training dataset, we selected
200 features to be used as inputs of the models according to the
feature importance estimated by Random Forest. We trained the
models with hyperparameter-tuning using a Bayesian optimization
method. In this process, R2 was used as the optimization metric, and
the number of iterations was set at 20. The parameter spaces searched
in this step are described in detail in the GitHub repository (https://
github.com/TheSatoLab/CoVFit).

The machine learning models above were reconstructed using
Python v.3.9.13, pandas v.1.4.4, numpy v.1.21.5, lightgbm v.3.3.5, scikit-
learn v.1.0.2, and scikit-optimize v.0.9.0.

Phylogenetic analysis
We created the dataset for phylogenetic analysis as a subset of the
dataset of the representative viral genome sequences encoding
respective S protein genotypes (EPI_SET_ID: EPI_SET_240311ma;
https://www.gisaid.org; see “Preparation of genotype–fitness dataset”
section). We removed sequences matching the following criteria: (i)
sequences with >3% ambiguous characters across positions 265 to
29,673 (in alignment with the Wuhan-Hu-1 reference (GenBank acces-
sion number: NC_045512.2 [https://www.ncbi.nlm.nih.gov/nuccore/
1798174254])) and (ii) sequences classified as “recombinant” accord-
ing to Nextclade clade assignments. Additionally, we included the
Wuhan-Hu-1 reference genome sequence to our dataset. The dataset
for viral genome sequences used in the phylogenetic analysis, except
for the Wuhan-Hu-1 reference genome, is summarized under the
EPI_SET_ID: EPI_SET_240311rk, which can be accessed through the
GISAID website (https://gisaid.org/).

The nucleotide viral genome sequences were aligned to the
reference sequence of Wuhan-Hu-1 using Minimap2 v.2.1752. This
alignment was then converted into a multiple sequence alignment
following the GISAID phylogenetic analysis pipeline (https://github.
com/roblanf/sarscov2phylo). Sites corresponding to positions 1–265
and 29,674–29,903 in the reference genome were masked, that is,
converted to “NNN,” to exclude them from subsequent analyses. The
maximum likelihood phylogenetic treewas constructed using IQ-TREE
v.2.1.4_beta, adopting the GTR+I+G nucleotide substitution model53.
To assess the reliability of the phylogenetic tree nodes, an ultrafast
bootstrap analysis was performed with 1000 replicates. A time-
resolved phylogenetic tree was inferred from the constructed tree
using TreeTime v.0.11.1, with the rerooting strategy set to “oldest”54,
resulting in rerooting by the Wuhan-Hu-1 strain. The S protein
sequences for ancestral nodes were also reconstructed using Time-
Tree with the default options.

Detection of phylogenetic branches with fitness elevation
using CoVFit
To infer the impact of mutations on fitness through the observed
evolution of SARS-CoV-2, we analyzed the increase in predicted fitness
across all branches of the SARS-CoV-2 phylogenetic tree, as outlined in
the “Phylogenetic analysis” section. We employed five CoVFitNov23
models, developed via afive-fold cross-validation, to predict thefitness
values for both existing and reconstructed ancestral S protein
sequenceswithin the tree. SinceCoVFit predictsfitness acrossmultiple
countries, we averaged these predictions to obtain a single
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representative fitness value for each sequence, resulting in five
representative fitness values per sequence. We compared these values
between eachnode and its ancestral node, calculating themeanfitness
gain for the branches connecting them. Statistical significance of fit-
ness changes was determined using a paired Welch’s t-test, with mul-
tiple testing correction applied via the Benjamini–Hochberg method.
Branches with an FDR less than 0.1 were considered statistically sig-
nificant. We also identified mutations in the S protein acquired along
each branch by comparing the S protein sequences at both ends of the
branch. The detected fitness elevation events are summarized in
Supplemental Data 3.

Characterization of the F456L substitution using publicly avail-
able DMS data
Position-wise scores for escape from humoral immunity were calcu-
lated using escape estimator37 based on DMS data for the ability to
evade mAbs presented in Cao et al.24 (https://github.com/jbloomlab/
SARS2_RBD_Ab_escape_maps) (shown in Fig. 5c). For the ACE2 binding
and protein expression DMS data, we retrieved the per-site variant
score results presented by Taylor and Starr36 (https://github.com/
tstarrlab/SARS-CoV-2-RBD_DMS_Omicron-XBB-BQ/blob/main/results/
final_variant_scores/final_variant_scores.csv). We filtered for mutant L
on position 456 and retrieved the “delta_bind” and “delta_expr” values
presenting themeanof values across replicatesminus themean for the
reference residue for each variant target (shown in Fig. 5d).

CoVFit-based in silico (deep) mutational scanning analysis
Instances of the CoVFitnonJN1 model, models trained on the dataset
without the sequences of JN.1, were utilized to infer the fitness of S
protein mutants. First, the mean fitness value for each mutant was
calculated across different countries. Subsequently, thesemean values
were averaged across all five CoVFitnonJN1 model instances, yielding a
singular average fitness value for each S protein mutant. This stream-
lined fitness value was then compared to the fitness of the original
backbone S protein sequence.

Epidemic analysis on JN.1 subvariants
We retrieved all SARS-CoV-2 genome sequences and their associated
metadata available up to October 21, 2024, from GISAID. To ensure
data quality, sequences were excluded from analysis based on the
following criteria: (i) absenceof collectiondate; (ii) samples taken from
animals other than humans; (iii) more than 2% undetermined nucleo-
tides; or (iv) samples collected during quarantine. We analyzed the
BA.2.86 lineage collected between October 1, 2023, and July 31, 2024
(EPI SET ID: EPI_SET_241126wq).

We calculated the proportion of viral sequences harboring
mutations at specific sites within the BA.2.86 lineage. Each viral lineage
category includes its descendant lineages unless those descendant
lineages are explicitly defined as separate categories. For the temporal
trends in mutation and variant detection frequencies, calculations
were performed at 7-day intervals for each geographic region within
the BA.2.86 population. Results from Africa and South America were
excluded due to the low total sequence count.

Methodological discussion: room for improvement of CoVFit
We recognize the presence of multiple areas where CoVFit could
potentially be improved with future development. First, since our
current model is solely trained on S protein sequences, it may be
possible to improve its performance by including information on
additional viral proteins. Previous studies have identified mutations
associated with increased fitness also in non-S proteins, particularly in
the nucleocapsid (N) protein, supporting the possible effectiveness of
this approach4. In the current setting, the effects ofmutations in non-S
proteins are absorbed into the effects of mutations in the S protein
that have linkage disequilibrium relationships with these mutations.

However, it is certain that the S protein has a particularly strong impact
on fitness compared to other viral proteins4. Therefore, it is unclear to
what extent prediction accuracy would be improved by adding infor-
mation from other viral proteins. There is even a possibility that gen-
eralizability could be decreased by including other viral proteins due
to the decrease in signal-to-noise ratio. Similarly, although the amino
acid sequences of the S protein beyond the 1024th position (amino
acids 1025–1273; the C-terminus of the S2 subunit) are truncated and
not utilized in the ESM-2model, it is unclear whether this limitation has
a negative effect on prediction performance, as the S2 subunit (amino
acids 682–1273) remains highly conserved and has fewer mutations.

Second, it may also be possible to improve the performance by
including various DMS data, such as those on other viral phenotypes.
In this study, we only used DMS data on the immune evasion ability
against mAbs. However, given the significant impact of the ACE2-
binding affinity of the S protein onfitness, employingDMSdata for this
trait could improve predictive performance. In our preliminary
experiments, however, we found that the convergence speed for DMS
data on binding affinity to ACE2 was much slower compared to other
tasks. Considering the difficulty of simultaneous learning, we decided
not to use this DMS data in this study. Similarly, while we used DMS
data based on the ancestral strain (D614G), incorporating DMS data
obtained by experiments using S proteins of other variants (particu-
larly variants emerged recently) could potentially further improve
predictive performance.

The third consideration is the scaling up of the model. It is gen-
erally known that language models improve in performance as they
increase in size. Indeed, benchmark tests using ESM-2 have shown that
changing themodel size from the650M,used in this study, to 3Bor 15B
can lead to slight improvements in performance regarding the pre-
diction of protein structures32. For our method, using larger models
like 3B or 15B models may also enhance performance. Recently
developed techniques, such as QLoRA, a quantization-based LoRA55,
make it possible to fine-tune even 15B models in a limited GPU
resource. However, we faced issues with incompatibility between
CoVFit and QLoRA, leading us to abandon the development of a
QLoRA-based model. It is also important to note that scaling up the
model can significantly increase training and inference times.

The fourth consideration is data augmentation for fitness data. In
viral genome surveillance, there can be a delay of several weeks to
months between the date of sample collection and the date of data
submission to databases. Furthermore, in viral genome surveillance,
the number of viral genomes newly sequenced have gradually
decreased in recent years (https://gisaid.org/). Consequently, themost
recent genomic data tends to be under-sampled. However, this recent
data is considered to contain more critical information for predicting
future variants compared to older data. Therefore, increasing the
proportion of recent data in the training dataset or employing data
augmentation techniques, which artificially expand the dataset, might
enhance the model’s ability to generalize to future variants.

Lastly, sincewehave not conducted anexhaustive investigationof
the model’s hyperparameters, the model’s performance could be
improvedby adjusting them. Adjustable hyperparameters includedata
normalizationmethods, network architecture, taskweight balance, the
optimizer algorithm, learning rate, and maximum epoch numbers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Surveillance datasets of SARS-CoV-2 genomes are available from the
GISAID database (https://www.gisaid.org; EPI_SET_240307pq; EPI_-
SET_240311ma; EPI_SET_240311rk; EPI_SET_241126wq). The supple-
mental table for each GISAID dataset is available in the GitHub
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repository (https://github.com/TheSatoLab/CoVFit). Source data are
provided with this paper.

Code availability
The computational codes used in this study are available in the GitHub
repository (https://github.com/TheSatoLab/CoVFit).
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