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Droughts worsen air quality and health by
shifting power generation

Mathilda Eriksson 1,3 , Alejandro del Valle 1,3 & Alejandro de la Fuente2

Fine particulate matter (PM2.5) is a leading environmental cause of mortality.
Droughts can worsen air quality in regions that rely on hydropower by shifting
energyproduction to combustion power plants. This studyquantifies drought-
induced excess PM2.5 in Latin America and the Caribbean, where over 443
million people live within 50 km of a combustion power plant. Leveraging a
monthly plant-level panel spanning 20 years, we link hydrological droughts,
measured as negative runoff anomalies in hydropower watersheds, to changes
in PM2.5 concentrations near combustion power plants. Our analysis reveals
that these droughts lead to an average increase of 0.83 μg m−3 in PM2.5 levels.
Counterfactual simulations for the region reveal that this excess PM2.5 results
in up to 10,000 premature deaths annually. Combining our estimates with
climate, demographic, and combustion power plant phase-out projections, we
demonstrate that this health burden will persist over the next four decades
without targeted interventions.

Electricity generation is a water-intensive process, with most power
plants requiring water to spin hydroelectric turbines or cool thermo-
electric generators1. In Latin America and the Caribbean (LAC),
approximately half of total electricity generation comes from hydro-
power, while the other half is derived from combustion power plants
fueled by coal, oil, gas, andbiomass2. Becausedroughts predominantly
limit the generation capacity of hydropower plants, droughts can shift
generation to combustion power plants. A plausibly important but
understudied consequence of this shift in generation is the worsening
of local air quality. Among the pollutants released during combustion,
fine particulate matter (PM2.5, particles smaller than 2.5μm) warrants
particular attention for its ability to disperse over wide areas3–7, and
its well-documented adverse health effects8–12, even at low
concentrations13. With over 443 million individuals residing near
combustion power plants and climate change anticipated to exacer-
bate the frequency and severity of droughts in the region, quantifying
the extent of drought-induced excess PM2.5 is a critical empirical
question with profound implications for public health and energy
policy.

To address this question, we assemble a monthly frequency
power plant-level panel covering the 2000–2020 period. The panel

provides information on PM2.5 concentrations in the proximity of
combustion power plants and market-level measures of hydrological
drought affecting hydropower plants. We focus on hydrological
droughts as they directly reflect water availability in rivers and reser-
voirs. To measure hydrological drought, we use runoff anomalies,
defined as deviations from long-term mean runoff levels, calculated
within the watersheds that supply hydropower plants. These anoma-
lies provide a granular and localized indicator of drought conditions
affecting water resources essential for energy production. To capture
broader market-level impacts, we aggregate these watershed-level
runoff anomalies using multiple methods, ensuring that our measures
accurately represent the overall degree of hydrological drought faced
by hydropower plants while preserving their localized relevance to
generation capacity. Our preferred market-level measure is the frac-
tion of hydropower generation capacity affected by drought (FHD).
The assembled panel also provides information on an extensive set of
meteorological factors, wildfire emissions, proxies of electricity
demand, and characteristics of power plants. Using this dataset, we
estimate the excess PM2.5 generated by hydrological droughts. Our
empirical strategy combines fixed effects methods, which allow us
to control for unobserved time-invariant characteristics, common
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time-varying shocks, and market-specific seasonal variations, with
post-double selectionmethods, which enable us to flexibly control for
observed confounders. Our estimates have a causal interpretation
because, conditional on meteorological factors, changes in electricity
demand, and the extensive set of fixed effects, hydrological droughts
create a plausibly exogenous shock to hydropower generation.

To distinguish the impact of drought-induced shifts in energy
generation from alternative mechanisms, such as wildfire emissions,
we implement several methodological safeguards. In our main analy-
sis, to minimize wildfire influence we exclude plant-month observa-
tions where wildfire emissions are detected within a 50 km radius.
Additional robustness checks extend the exclusion radii and remove
observations potentially affected by dust storms, addressing another
significant source of air quality degradation associated with hydro-
logical droughts. Placebo tests further reinforce our effort to pinpoint
the mechanism, as they reveal no relationship between hydrological
droughts and PM2.5 near non-combustion power plants or during
periods before combustion power plants became operational. Addi-
tionally, we analyze the heterogeneous effects of droughts with
respect to plant characteristics and uncover patterns that strongly
support the conclusion that hydrological droughts drive shifts in
energy generation, leading to increased PM2.5 levels.

In this work, we demonstrate through multiple lines of evidence,
including robust controls, extensive exclusion analyses, placebo tests,
and observed patterns of heterogeneous effects, that hydrological
droughts pose a significant public health risk as they considerably
increase PM2.5 concentrations through their impact on energy gen-
eration. Our paper contributes to several strands of literature. Most
directly, it provides causal evidence of how hydrological droughts
affect air quality through shifts in energy generation inmiddle-income
countries, extending recent work focused on the western United
States14–16. Our findings show that drought-induced changes in energy
generation are an important driver of PM2.5 across LAC. By examining
this relationship in a region where energy systems, exposure patterns,
and environmental conditions differ markedly from those in the U.S.,
we uncover three insights into how drought-induced shifts in energy
generation impact air quality in middle-income economies. First, we
demonstrate that even short-duration droughts (≤3 months) can sub-
stantially impact air quality, likely due to the vulnerability of the
region’s run-of-river hydropower infrastructure, which depends
heavily on consistentwater flow and lacks substantial storage capacity.
Second, we identify small-capacity combustion power plants, which
are typically air-cooled and serve as marginal energy sources in the
region, as significant contributors to excess PM2.5 during drought
periods. Third, we show that oil and biomass combustion power
plants, which are widespread in LAC but rare in the U.S., emerge as
major contributors to air quality degradation during droughts. Toge-
ther, these findings expand our understanding of how droughts affect
energy systems and air quality across diverse contexts, complement-
ing evidence from the U.S. while underscoring the unique challenges
faced by middle-income economies.

We also contribute to the environmental justice literature17–20 by
documenting that excess PM2.5 falls disproportionately among those
with lower socioeconomic status. This finding highlights a channel
through which adaptation to droughts, by shifting generation to
combustion power, can exacerbate existing inequalities. Our results
have important implications for ensuring that energy transition poli-
cies and infrastructure planning consider distributive impacts, parti-
cularly as countries in LAC work to balance climate resilience with
environmental justice goals.

More broadly, this study contributes to research quantifying the
economic costs of droughts and climate change21–26 by offering plant-
level estimates of the costs associated with drought-induced excess
PM2.5, expressed in terms of premature deaths and associated mon-
etized losses. Our analysis captures both accrued societal costs and

projected losses through 2059, accounting for various climate-forcing
scenarios and power plant phase-out policies. Importantly, our pro-
jections reveal significant regional variation in future hydrological
drought trends, with most of LAC expected to experience an increase
in droughts,while the AndeanRegion (Colombia, Ecuador, and Peru) is
projected to see a decrease. Despite this regional heterogeneity, our
projections indicate that, in the absence of policy action, the health
burden of drought-induced excess PM2.5 is likely to persist. By quan-
tifying these previously unmeasured impacts, our work helps establish
the full costs of droughts and provides critical evidence to evaluate
both adaptation strategies andmitigation policies. These granular cost
estimates are particularly valuable for policymakers weighing invest-
ments in energy storage, regional grid interconnection, and other
infrastructure solutions that could reduce reliance on combustion
power plants as marginal energy sources during droughts.

Results
Droughts affecting hydropower lead to excess PM2.5

Our analysis reveals that hydrological droughts significantly increase
PM2.5 concentrations near combustionpower plants in LAC, evenwhen
considering short-duration droughts. We examine the impact of
droughts using the fraction of hydropower generation capacity
affected by drought (FHD), which measures the proportion of hydro-
power capacity experiencing below-normal water conditions over a
three-month window. As briefly described in the introduction, our
primary analysis employs a linear regression model (Eq. (1)), hereafter
referred to as the benchmark model, to quantify the relationship
between FHD and PM2.5 concentrations while controlling for various
meteorological factors, proxies of electricity demand, and an exten-
sive set of fixed effects. To ensure the robustness of our findings, we
conduct a comprehensive series of sensitivity analyses, detailed in the
Methods section.

We find that when all hydropower generation experiences
drought (FHD= 1), PM2.5 concentrations within 50 km of combustion
power plants increase by 1.55μgm−3 (p-value = 0.000) compared to
non-drought conditions (Fig. 1a). This substantial impact of short-
duration droughts (3 months) highlights the vulnerability of the
region’s hydropower infrastructure to even brief periods of hydro-
logical drought. We observe consistent results when analyzing alter-
native drought durations (see Supplementary Methods 1).

Figure 1b contextualizes the previous result by plotting the
implied total PM2.5 concentrations across different levels of FHD. The
benchmark model predicts baseline concentrations of 15.76 μgm−3

without drought, already well above theWHO guideline of 5 μgm−3 for
harmful concentrations27. These levels rise to 16.59μgm−3 atmeanFHD
and reach 17.31 μgm−3 at maximum observed FHD. The drought-
induced increase of 0.83 μgm−3 at mean FHD levels represents a sig-
nificant additional health risk in areas already burdened by high PM2.5

levels.
To further investigate the relationship between drought severity

and PM2.5, we employ a dose-responsemodel (Fig. 1c). Consistent with
our hypothesis that hydrological droughts increase pollution by
shifting energy generation to combustion power plants, we find a
monotonic increase in PM2.5 concentrations as the FHD rises. Notably,
the impact on PM2.5 is substantially larger when at least half of
hydropower generation is affected by drought. Given that the dose-
response model yields comparable results to those of the more par-
simonious benchmark model (Fig. 1b, d), we focus on the benchmark
model for the remainder of the analysis.

Shifts to combustion power explain excess PM2.5

Having established that hydrological droughts lead to excess PM2.5

concentrations, we investigate alternative mechanisms that could
explain our results. Most prominently, droughts increase the like-
lihoodofwildfires, one of the primary sources of PM2.5 pollution

28–31, as
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well as increase the occurrence of dust storms32. To address these
potential confounding factors, our primary analysis excludes plant-
month observations with fire emissions within a 50km radius. As
described in Supplementary Methods 1, our robustness checks
demonstrate that our results are robust when extending the exclusion
radius up to 100 km for both fire and dust emissions. While these
restrictions reduce concerns about wildfires and dust emissions driv-
ing our findings, they do not entirely rule out their influence, as PM2.5

can remain suspended in the atmosphere for several days and travel
hundreds of kilometers.

To further disentangle the impact of droughts on PM2.5 through a
shift in generation to combustion power from other potential
mechanisms, we conduct two placebo exercises (Fig. 1e). In the first
placebo exercise, we compute PM2.5 concentrations within a 50 km
radius of non-combustion power plants (i.e., wind, solar, geothermal,
and nuclear) and exclude observations with combustion power plants
within that radius. We then estimate Eq. (1) using this sample. If

wildfires or dust storms drive the excess air pollution, we should also
expect to observe an increase in air pollution in this sample of non-
combustion power plants. However, consistent with the idea that
wildfires and dust storms are not the primarymechanism for excess air
pollution, we find that the impact of FHD on air pollution around non-
combustion power plants is small and statistically indistinguishable
from zero (p-value = 0.638).

One important caveat with the previous exercise is that the loca-
tion of combustion and non-combustion power plants may differ
systematically, and the resulting null effectmay reflect the differences
in geographic characteristics. To address this limitation, the second
placebo exercise tests whether air pollution increased among com-
bustion power plants in the years before they were operational. Once
again, we cannot reject the null hypothesis that the impact of FHD on
air pollution is different from zero (p-value = 0.194). Together, these
placebo exercises indicate that wildfires and dust storms are unlikely
to drive our results.
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Fig. 1 | Effect of the fraction of hydropower generation affected by drought
(FHD) on PM2.5 concentration, dose-response model, placebo tests, and het-
erogeneity with respect to size and fuel type.All results are based on the analysis
sample (N = 79,022 plant-month observations), unless otherwise stated. a Point
shows the β coefficient from Eq. (1), with error bars indicating 95% confidence
intervals (CI) derived from standard errors clustered at the market level (19 clus-
ters). b Distribution of the implied total PM2.5 concentrations, i.e., the marginal
effect of the coefficient presented in (a) plus the predicted level of PM2.5 in the
absenceofdroughts. cRegressioncoefficients (points) and95%CI (errorbars) from
a dose-response model where the FHD variable is discretized in four groups. The
reference group is FHD less than 0.25. d Distribution of the implied total PM2.5

concentrations, i.e., themarginal effect of each coefficient presented in (c) plus the
predicted level of PM2.5 for the reference group. b, d Box plots indicate median
(middle line), 25th, 75th percentile (box), and minimum and maximum (whiskers)

as well as mean values (triangles). e Regression coefficients (points) and 95% CI
(error bars) from two placebo exercises, i.e., the impact of FHD on PM2.5 around
non-combustion power plants (N = 62,066 plant-month observations) and around
combustion power plants before they are operational. Non-combustion power
plants include wind, solar, geothermal, and nuclear. The placebos exclude plants
with combustion power plants operating within a 50 km radius. f, g Regression
coefficients (points) and 95%CI (error bars) of the impact of FHD on PM2.5 for each
size and fuel type sub-group. f Coefficient for large power plants (≥30 MW) is
statistically different from small plants (p-value = 0.053). g Coefficient for coal
plants is statistically different from oil plants (p-value = 0.038). Reported p-values
correspond to two-sided t-tests without adjustment for multiple comparisons.
Source data are provided as a Source Data file (sourcedata.xlsx). The data and code
used to obtain the estimates are available at https://www.openicpsr.org/openicpsr/
project/217201.
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To further investigate whether the estimated increase in PM2.5

during hydrological droughts is consistent with a shift in energy gen-
eration towards combustion power plants, we examine how the effect
varies with plant size and fuel source. Figure 1f, g presents the drought-
induced excess PM2.5 for each subgroup of combustion power plants.
While hydrological droughts lead to increased air pollution across all
subgroups, the magnitude of the effect is notably larger for smaller
capacity plants (<30MW) and those using oil or biomass as fuel.

This pattern of heterogeneous effects aligns with the energy shift
mechanism in several ways. First, larger coal and gas power plants
typically serve as baseload electricity generation, operating con-
tinuously near maximum capacity1. Consequently, these plants have
limited spare capacity to increase output during droughts, resulting in
a more muted pollution response compared to oil or biomass plants.
Second, large baseload power plants tend to be more water-intensive
than their smaller counterparts1, further constraining their ability to
ramp up production during water-scarce periods. In contrast, smaller
combustion power plants, which in our sample primarily consist of
biomass and oil plants, more frequently utilize air-cooling methods,
allowing for greater flexibility in adjusting output. Notably, the most

substantial increase in PM2.5 occurs around biomass power plants, a
well-known source of particulate pollution33,34. Taken together, the
patternof heterogeneous effects byplant size and fuel sourceprovides
strong supporting evidence for the hypothesis that our estimates of
the impact of hydrological droughts on PM2.5 are primarily driven by
shifts in electricity generation toward combustion power plants.

Lives lost due to excess PM2.5

To assess the human health consequences of drought-induced air
pollution, we estimate premature deaths using our estimates of excess
PM2.5, counts of exposed population, and the causal concentration-
response function (CRF) fromDeryugina et al.35. Figure 2b presents the
distribution of cumulative drought-induced premature deaths
between 2000 and 2020, revealing that these deaths are widespread
across the region. Nearly every country has at least one power plant
linked to over 250premature deaths within this period. Figure 2c plots
the annual time series of drought-induced premature deaths aggre-
gated at the LAC level. The spread of the box plot displayed each year
results from the uncertainty in our estimation of excess PM2.5 con-
centrations and the observed FHD. The figure reveals that the mean
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Fig. 2 | Premature deaths and monetized losses from drought-induced excess
PM2.5. Premature deaths are calculated using the estimate in Fig. 1a and the
concentration-response function of Deryugina et al.35. Premature deaths are mon-
etized to 2019 USD using country-year estimates of the value of a statistical life
extrapolated from US estimates. a Country-level distribution of cumulative losses
between 2000 and 2020. Country codes are as follows: CRI (Costa Rica), GTM
(Guatemala), MEX (Mexico), BRA (Brazil), SLV (El Salvador), PAN (Panama), HND
(Honduras), NIC (Nicaragua), CHL (Chile), COL (Colombia), ARG (Argentina), PER
(Peru), BOL (Bolivia), GUF (French Guiana), DOM (Dominican Republic), JAM
(Jamaica), URY (Uruguay), VEN (Venezuela), and ECU (Ecuador). b Plant-level dis-
tribution of cumulative premature deaths between 2000 and 2020. c LAC-level

annual time series of premature deaths and losses (N = 21,000 simulation-year
units; 1000 draws × 21 years). The spread of the box plots displayed each year
results from the uncertainty in our estimation of excess PM2.5 concentrations and
the value of the observed FHD. Box plots indicate median (middle line), 25th, 75th
percentile (box), 1.5 times the interquartile range (whiskers), outliers (single
points), and mean values (triangles). Administrative boundary data were obtained
from the Database of Global Administrative Areas (GADM), version 4.1, available at
www.gadm.org. Source data are provided as a Source Data file (sourcedata.xlsx).
The data and code used to obtain the estimates are available at https://www.
openicpsr.org/openicpsr/project/217201.
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premature deaths per year (red triangle markers) range from 3692 to
10,641. Supplementary Fig. 1 extends the analysis to include alternative
well-known CRFs36–39, yielding mean annual premature deaths ranging
roughly from 700 to 13,500. Notably, the estimates based on our
preferred CRF35 lie near the midpoint of this range, reflecting their
alignment with the broader set of CRFs considered.

A potential limitation of the available CRFs is that they do not
account for the possibly greater vulnerability to PM2.5 among popu-
lations with lower socioeconomic status. To descriptively assess whe-
ther populations residing near power plants tend to have lower
socioeconomic status compared to the overall population, we use
downscaled Human Development Index (HDI) data40 to compute the
power plant-level mean HDI relative to country-level HDI. As shown in
Supplementary Fig. 2, four out of five combustion power plants have
nearby populations with significantly lower HDI levels. This pattern is
consistent across all types of combustion power plants (i.e., coal, gas,
oil, biomass) and aligns with existing literature, which highlights the
negative association between socioeconomic status and PM2.5

exposure18–20,41. Given the prevalent residential pattern of the popula-
tion with lower socioeconomic status in LAC and the available CRFs, it
is likely that our estimates underestimate the prematuredeaths caused
by excess PM2.5.

To quantify the economic value of these lives lost, we combine
ourprematuredeath estimateswith country and year-specific valuesof
a statistical life (VSL).Whilewe recognize that thismetric does not fully
capture the intrinsic value of human life or the lived experiences, it
provides a useful standardized measure for policy evaluation. Figure 2
shows that cumulative losses for the region between 2000 and 2020
are in the order of $150 billion (2019 USD), with Brazil, Mexico, and
Argentina each experiencing cumulative losses of over $24 billion.
Figure 2c plots the annual time series of these drought-induced losses
aggregated at the LAC level. Thefigure further reveals that yearlymean
losses (blue triangle markers) are in the order of $4.2–12.2 billion. An
analogous exercise using using alternative CRFs36–39 yields mean
annual losses of 0.8–15.0 billion (Supplementary Fig. 3). Notably, these
monetized longevity losses may underestimate the total social cost of
worsened air quality triggered by droughts, as our counterfactual
simulations do not account for decreased quality of life42 or non-health
effects, such as impacts on productivity and cognitive ability43–46.

Projected lives lost due to excess PM2.5

To assess the future implications of our findings, we present projec-
tions of hydropower generation affected by drought and the asso-
ciated health costs of drought-induced excess PM2.5. Figure 3a
illustrates the projected percentage change in the mean fraction of
hydropower generation affected by droughts during 2020–2059,
relative to the baseline period of 2000–2019. These projections are
derived from runoff data provided by 22 climate and earth system
models under three climate scenarios: SSP1–2.6, SSP2–4.5, and
SSP3–7.0,which combine Shared Socio-economicPathways (SSPs) and
Representative Concentration Pathways (RCPs). These scenarios span
a range of potential future climate forcing, with higher numbers indi-
cating more severe climate change. The box plots represent the
variability across model projections, while the triangle markers indi-
cate the ensemble means. For the region, most models indicate an
increase in the fraction of hydropower generation affected by hydro-
logical droughts. The ensemble mean suggests that the FHD will likely
increase between 22 and 24%. The ranking in the FHD increase is
consistent with higher climate-forcing scenarios leading to a higher
drought exposure. However, differences across scenarios are pro-
jected to remain small by 2059. Figure 3b–f presents results from
analogous analysis for each IEA sub-region. Nearly all sub-regions
are expected to experience an increase in FHD, with sub-regions
like the Caribbean and Southern South America particularly affected.

The exception is the Andean Region (Colombia, Ecuador, and Peru),
which is expected to see a reduction in the FHD of roughly 25%.

Building on the evidence that droughts will continue to affect
hydropower generation across the region, we extend our analysis to
project the evolution of premature deaths and the associated mon-
etized losses caused by drought-induced excess PM2.5. These projec-
tions integrate climate, demographic, and economic growth trends
under the SSP-RCPs paired with IEA energy policy scenarios that out-
line potential retirement schedules for combustion power plants. The
three energy policy scenarios, APS, STEPS, and RES, reflect progres-
sively fewer retirements, ranging from full implementation of
announced pledges to no retirements (see Methods for details).

Figure 3g shows observed mean premature deaths and 66 pro-
jected paths (3 scenarios × 22models). To illustrate the overall trends,
we include LOESS curve fits (bold lines) for each scenario. The figure
reveals that there is substantial uncertainty in the projected number of
premature deaths. Only under SSP1–2.6-APS do deaths stabilize at
approximately 5000 per year by 2059, a level comparable to that
observed in the early 2000s. In other scenarios, premature deaths
increase significantly. For instance, under SSP3–7.0-RES, premature
deaths rise to approximately 30,000 annually by 2059, nearly six times
the levels observed in SSP1–2.6-APS. Figure 3h presents themonetized
losses associated with these premature deaths. Consistent with the
previous results, projected losses are expected to persist or increase
relative to the early 2000s.

To explore the drivers of these projections, Supplementary Fig. 4
depicts the evolution of premature deaths and economic losses across
SSP-RCP combinations for each energy policy scenario. The figure
underscores the dominant influence of energy policy, with ambitious
plant retirements under APS significantly reducing premature deaths
and economic losses compared to STEPSor RES scenarios.Within each
energy policy scenario, differences between SSP-RCPs depend on cli-
mate, demographic, and economic factors. The figure shows that the
largest projected increase in deaths occurs under SSP1–2.6, driven by
the rapid aging of the population, which offsets the relatively minor
differences in runoff across SSP-RCP scenarios by 2059. This finding
highlights the significant role demographic factors play in shaping
exposure to this hazard over this time horizon. Additionally, the figure
shows that economic losses are further amplified by higher economic
growth, which increases the VSL. These findings highlight that climate
mitigation measures alone are insufficient and that targeted policies,
such as accelerating plant retirements and reducing population
exposure, are crucial to addressing these losses.

Discussion
Over the past century, droughts have intensified, extending their
duration and geographic reach, with documented impacts on eco-
systems, economic activity, and public health47. One understudied
pathway through which droughts affect human health is by disrupting
electricity generation. This study builds on previous evidence for this
pathway from the western United States14–16 and provides multi-
country evidence linking hydrological droughts to worsening air
quality and health through shifts in electricity generation from
hydropower to combustion power plants.

The observed relationship reveals that droughts affecting hydro-
power watersheds lead to measurable increases in PM2.5 concentra-
tions near combustion power plants. Dose-response estimates,
placebo tests, heterogeneity analyses, and a broad battery of robust-
ness checks support the interpretation that drought-induced shifts in
power generation drive these increases. The analysis reveals distinct
vulnerability patterns in the region, marked by the susceptibility of
hydropower infrastructure to even short-duration droughts and a
heavy reliance on oil and biomass combustion plants as marginal
sources of energy.
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Our findings have several implications for energy and environ-
mental policy in regions dependent on hydropower. First, the quanti-
fied health burden associated with drought-induced generation shifts
provides a basis for demand-side interventions to account for this
additional cost (approximately $12 billion (2019 USD) per year).

Second, our work informs ongoing policy discussions on dec-
arbonizing electricity generation in LAC. While expanding renewable
energy capacity through sources like solar and wind is essential for
reducing overall emissions, this transition will not mitigate drought-
related health impacts if combustion plants continue to serve as
marginal generators during droughts. Moreover, the documented
increase in drought exposure is expected to lead to heavier reliance on
combustion power as a marginal source of energy, undermining
efforts to decarbonize energy generation. Quantifying the health costs
associatedwith this reliancemay help inform cost-benefit assessments
for prioritizing energy storage infrastructure alongside investments in
renewable energy.

Third, the plant-level estimates provide an input for prioritizing
combustion power plant retirements to alleviate the air quality

impacts of drought-induced shifts in generation. Given the projected
persistence of health burdens through 2059, strategic decom-
missioning may be necessary even under optimistic climate scenarios.
Furthermore, the evidence that these health costs disproportionately
affect disadvantaged communities highlights the need to incorporate
environmental justice considerations into retirement decisions.
Prioritizing the decommissioning of plants in vulnerable areas can
simultaneously advance climate resilience and social equity goals.

Fourth, the documented geographic variation in drought patterns
also underscores the potential role of regional electricity trade in
mitigating impacts on local air quality. However, without harmonized
environmental regulations, interconnection risks shifting emissions to
markets with weaker standards. Realizing the full benefits of inter-
connection would require coupling infrastructure development with
coordinated policies that enforce uniform generation and environ-
mental standards across countries.

This focus on coordinated regional solutions becomes evenmore
critical when considering the multiple demands on water resources.
While our analysis focuses on hydrological drought, environmental
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The data and code used to obtain the estimates are available at https://www.
openicpsr.org/openicpsr/project/217201.
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flows, which help maintain river ecosystem functions, represent
another important constraint on hydropower generation. This con-
straint is particularly relevant in Latin America, where significant
alterations to river connectivity and flow regimes have been
documented48. The complexity of these competing demands further
strengthens our finding that investments in energy storage and
regional grid interconnection are valuable policy tools. By reducing
pressure on hydropower generation during droughts, these invest-
ments hold the potential to reduce reliance on combustion power and
enable adaptive flow management that can help restore some eco-
system functions49.

This analysis has three important caveats concerning the size of
the externality and suggests that our loss estimates should be inter-
preted as lower bounds. First, our counterfactual calculations do not
account for the disproportionate exposure to excess PM2.5 by groups
with lower socioeconomic status, whose increased vulnerability will
likely lead to additional premature deaths in the region. Second, our
estimates do not account for the costs created by excess PM2.5 on
other outcomes such as quality of life and productivity. Third, our
estimates do not consider the cost of drought-induced excess emis-
sions of other local or global pollutants, such as NO2, SO2, O3, and CO2,
which have a wide range of environmental, health, and economic
consequences. Notwithstanding the potential for even larger losses in
LAC, this analysis illustrates how the existing energy generation
infrastructure and droughts interact to create a considerable health
burden. This burden is poised to persist and potentially worsen with-
out energy policies that account for the water-electricity-health nexus.

Methods
Power plant panel
The starting point for our assembled panel is the Global Power Plant
Database50. This database provides detailed information on the geo-
location, capacity, fuel type, and commissioning year for all power
plants with generators above 1 megawatt (MW). This feature of our
dataset is important because little is known about the pollutionburden
created by plants with smaller capacities.

Hydropower exposure to drought
Next, we augment the power plant panelwithmarket-levelmeasures of
the degree of drought faced by hydropower plants on amonthly basis.
Among various drought metrics, we focus on hydrological droughts
because it allows us to directly capture the degree of water availability
in hydropower watersheds. In the first step, we follow existing litera-
ture and use runoff anomalies to measure hydrological drought14–16.
Runoff is the depth of water accumulated over time in the soil and is a
valuable indicator of drought or flood conditions. Runoff anomalies
indicate a period where water availability is above or below normal.
Specifically, we define runoff anomalies as the difference between the
monthly runoff and its corresponding average value over the reference
period (2000–2019). To measure runoff anomalies, we use data from
the International Energy Agency Weather for Energy Tracker
database51. This database provides information derived from the ERA 5
reanalysis on monthly total runoff anomalies (surface and subsurface)
measured in millimeters per hour (mm/h) at a spatial resolution of
0.25° × 0.25°.

In the second step, we determine the watershed of each hydro-
power plant in the sample. The watershed is the area over which water
would accumulate for use by the hydropower plant. To compute these
areas,we use the hydro basin polygons (areaswherewater collects and
may flow) from the HydroSHEDS database52. This dataset is produced
from digital elevation maps and hydrological models. Next, following
standard engineering practices for each hydropower plant, we
delineate the watershed by tracing all of the upstream sub-basins that
flow in the direction of the power plant. The resulting dataset provides
a watershed for each hydropower plant.

In the third step, we overlay the information on runoff anomalies
with the watershed delineations and compute the average monthly
runoff anomalies for each watershed. Supplementary Fig. 5 plots the
evolution of runoff anomalies for the whole region (a) and for sub-
regions defined by the IEA (b). The figure reveals that drought is not a
region-wide phenomenon, with considerable sub-regional hetero-
geneity even during periods of significant overall drought, such as
2015–2020. To measure the impact of anomalies with a duration
greater than one month, we repeat the previous calculation using a
moving average of the runoff anomalies over the past three, six, nine,
and 12months. The resulting dataset provides detailed information on
whether water availability conditions are above or below normal for
each hydropower plant. Supplementary Fig. 6a shows the distribution
of the hydropower plants in our sample and provides a visual example
of how the hydrological drought dataset is constructed.

In the fourth step, we use the information derived in the previous
step to computemarket-level measures of the hydropower generation
affected by hydrological drought. In the absence of systematic infor-
mation on the boundaries of electrical markets within countries, we
define each electricity market using the country boundaries. There is
little cross-border trade in the region, with less than 5% of total
regional generation being transmitted across countries53.

Our preferred market-level measure is the fraction of hydro-
power generation capacity affected by drought (FHD). To construct
this measure, we create a binary variable equal to one when the
watershedof a hydropower plant has less water available than normal
in the past three months (mean negative runoff anomaly) and zero
otherwise. Next, we compute the average of this variable for each
market and month. To account for the greater impact that larger
plants experiencing drought can have on electricity generation, we
weigh this average by plant capacity. We define droughts over a
relatively short period (three months) because small hydropower
plants are common in the region, and for these plants, even short-run
changes in water availability may imply reduced generation capacity.
Nonetheless, to check whether our results are robust to alternative
definitions of drought duration, we also compute the FHD variable
using the moving average of runoff anomalies in the past one, six,
nine, and 12 months. Additionally, to verify that our results do not
rely on extrapolation, we present a ridgeline plot (Supplementary
Fig. 7) showing the year-by-year distribution of FHD values. The plot
confirms that FHD spans the full range from 0 to 1 across all years of
the study period.

We also acknowledge that different aggregation methods
prioritize different features of the data. With our primary approach,
we exploit the spatial granularity of our data and aim to capture the
effect of both local and regional droughts by identifying periods in
which hydropower generation declines due to water availability
being below normal levels. However, to ensure that we study the full
scope of our data, we also compute our market-level measure in
other ways. For instance, we prioritize the number of plants affected
in an alternative computation using an arithmetic average instead of
a capacity-weighted average. Additionally, we calculate market-level
measures considering only the most severe droughts. To oper-
ationalize this alternative definition, we followHerrera-Estrada et al.15

and create a binary variable that equals one only when runoff
anomalies are one standard deviation below normal levels. We then
compute the average of the variable for each market and month.
These and other variations of the market-level measures help us
understand the effects of extreme drought. We also compute a
measure that directly gauges the intensity of the drought by calcu-
lating the average runoff anomaly for each market and month. One
downside of this measure is that, in the case of non-market-wide
droughts, it may incorrectly assume that negative anomalies
experienced by some hydropower plants can be offset by positive
anomalies experienced by other plants.
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Air quality around power plants
With our battery of market-level measures added to the panel using
country and month-year identifiers, we now focus on measuring the
concentration of PM2.5 around combustion power plants. We classify
plants as combustion if the primary or secondary fuel type is coal, gas,
oil (including petcoke), or biomass (including waste). To measure air
quality, we use information on monthly mean surface PM2.5 con-
centrations measured in micrograms per cubic meter (μgm−3) from
Van Donkelaar et al.54. This dataset provides estimates of PM2.5 con-
centrations by combining information from satellites, chemical
transportmodels, and ground-basedmonitors. It provides information
at 0.01° × 0.01° resolution at a monthly frequency between 1998 and
2021. To integrate this information with our panel, we define each
plant’s dispersion area as the 50 km radius around the plant and cal-
culate average monthly PM2.5 concentrations for every plant. We
consider this definition of the dispersion area conservative, consistent
with literature indicating that PM2.5 emissions from power plants
impact areas extending at least 50 km3,4 and significantly affect health
within this distance5–7. While we recognize that daily exposure may
vary within the dispersion area due to factors like wind direction,
studies have shown that on a monthly scale, power plants in the US
have similar effects on PM2.5 levels at monitors located within 50 km,
regardless of whether they are upwind or downwind16. These obser-
vations suggest that our monthly averages within a 50 km radius
adequately measure overall exposure. Nonetheless, we also conduct
analogous calculations using a 10 km radius to test result sensitivity.
Supplementary Fig. 6b shows the distribution of the combustion
plants in our sample and provides a visual example of how the PM2.5

concentrations are calculated. To run placebo exercises, we also
compute thesemeasures of PM2.5 concentrations within 50 kmof non-
combustion power plants (i.e., solar, wind, geothermal, and nuclear).
To assess the robustness of our findings, we also construct a com-
parable measure of monthly PM2.5 using data derived from ground-
based monitoring stations (see Supplementary Methods 1).

Wildfires and meteorological controls
We also include in the dataset variables that can confound the rela-
tionship between PM2.5 concentrations and ourmarket-level measures
of drought. A particular source of concern is wildfires, which are more
prevalent during droughts and lead to higher PM2.5 concentrations

30.
To limit the influence of surface PM2.5 related to wildfires, we follow
Qiu et al.16 and omit observations plausibly affected by wildfires. Spe-
cifically, weuse data from theGlobal Fire EmissionsDatabase version 4
(GFED4s)55. This dataset provides monthly information on carbon
emissions from fires at a spatial resolution of 0.25° × 0.25° and at a
monthly frequency between 1997 and 2022. Using this information, we
construct our primary analysis sample by excluding plant-month-year
observations where fire emissions were detected within 50 km of a
power plant. To evaluate the robustness of our findings, we also create
two additional samples that exclude observations potentially affected
by fire emissionswithin 75 km and 100 km. Additionally, to account for
the potential impact of dust emissions, we use data from Chappell
et al.56 on seasonal sources of dust emissions (winter, spring, summer,
and fall) and create three further samples that exclude plant-month
observations potentially affected by either fire or dust emissions
within radii of 50, 75, or 100 km.

To account for other confounding factors, we also include in our
dataset severalmeteorological variables derived from the IEAWeather
for Energy Tracker database51,57. These variables provide monthly fre-
quency information and correspond to the variablemeanwithin 50km
of the plant. Themeteorological variables are temperature (°C at 2m),
total precipitation (mm/h), relative humidity (%), surfacepressure (Pa),
and wind speed (m/s at 10m and 100m). Additionally, to account for
changes in electricity demand related to meteorological conditions
(e.g., heatwaves), we includemarket-levelmeasures of heating degree-

days (HDD) and cooling degree-days (CDD). Following IEA guidelines
we define HDD (°C days) with 18 °C reference and a 15 °C threshold.
Similarly CDD (°C days) is defined with 18 °C reference and a 21 °C
threshold.

Population around power plants
To quantify exposure to excess PM2.5 concentrations, we compute the
population residing within 50 km of combustion power plants. Spe-
cifically, we use 0.001° × 0.001° resolution population data available
between 2000 and 2020 at five-year intervals from the Global Human
Settlement Layer (GHSL)58. To avoiddouble counting the population in
cases where the 50km radius for different power plants overlaps, we
partition these areas using the Thiessen method. We then sum the
population residing around eachpowerplant at each time step anduse
linear interpolation to generate a plant-level annual time series of the
population exposed.

Additionally, to better characterize the population residing
aroundpower plants, we use the Thiessen polygons derived previously
and 2019 Human Development Index (HDI) data down-scaled to
0.1° × 0.1° resolution40 to compute mean plant level HDI. We then
compare theplant-levelHDIwith country-levelHDI data59 to determine
whether the population residing near power plants is systematically
different.

Benchmark statistical model
The final dataset for combustion power plants comprises 80,355 plant-
month-year observations across 22 markets. However, since three
markets lack hydropower capacity, the analysis dataset used for
examining the impact of FHD includes 79,022 observations across 19
markets. The sample of non-combustion power plants used in the
placebo exercise is constructed analogously and is comprised of
62,066 observations across 18 markets. Supplementary Table 1 pre-
sents descriptive statistics for key variables in these samples.

Using the analysis dataset, we estimate the impacts of drought on
average PM2.5 concentrations around power plants using the fixed
effects regression shown in Eq. (1):

PMicmy =βHDcmy +X
0
icmyγ +αi +αmy +αcm + εicmy, ð1Þ

where PM represents the average PM2.5 (μgm−3) within 50 km of
combustionpower plant i in electricitymarket c inmonthm and year y.
HDcmy is the market-level measure of hydrological drought. The
parameter of interest is β, which measures the impact of hydrological
droughts on PM2.5 concentrations under the assumption that the
shocks are exogenous, given the controls. We account for time-
invariant unobserved confounders using plant-level fixed effects (αi),
for time-varying unobserved common shocks using month-by-year
fixed effects (αmy), and for market-specific seasonality using market-
by-calendar-month fixed effects (αcm). Because meteorological condi-
tions related to hydrological droughts can also affect PM2.5 concentra-
tions, Eq. (1) includes a vector of meteorological controls (X0

icmy). The
vector comprises plant-level measures of temperature, total precipita-
tion, relative humidity, surface pressure, wind speed measured at a
height of 10 and 100m, and an indicator of local hydrological drought.
To account for the effect of fluctuations in electricity demand,
potentially correlated with hydrological drought conditions, the
vector also includes market-level measures of HDD and CDD.

We estimate Eq. (1) and alternative specifications using Ordinary
Least Squares (OLS). To allow for arbitrary patterns of correlation
among PM2.5 concentrations across space and over time, we cluster
standard errors at the market level. Reported p-values correspond to
two-sided t-tests. Data analysis was performed with Stata MP v17, and
figures were produced with R v4.3.2.
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Alternative statistical models and robustness checks
Dose-responsemodel: We use OLS to estimate Eq. (1) after discretizing
the FHD variable into four groups: less than 0.25, 0.25–0.5, 0.5–0.75,
and greater than 0.75. These groups roughly correspond to the quar-
tiles of the FHD variable. In the estimation, the reference group is FHD
less than 0.25.

Heterogeneous effect exercises: In the plant size exercise, as
measured by capacity, we follow the US Department of Energy defi-
nition and create an indicator variable for larger than 30MW.We then
augment Eq. (1) by including an interaction term between the FHD
variable and the size indicator variable. Analogously, we augment
Eq. (1) in the fuel source exercise by including an interaction termwith
an indicator variable for the fuel source type (e.g., coal, gas, oil, or
biomass). We then perform separate OLS estimations of each aug-
mented version of Eq. (1) and compute the marginal effects, i.e., the
impact of FHD on PM2.5 for each subgroup.

Robustness checks: We validate the robustness of our findings
across a diverse array of assumptions andmethodological choices.Our
analysis confirms that our results are not contingent on model speci-
fication. For instance, by employing the post-double selection
methodology60, we establish that our estimates remain robust even
after we relax the benchmark model’s assumptions of linearity and
additivity, opting instead to control for higher-order polynomials of
the elements of X0

icmy and their pairwise interactions. To account for
confounding influences from wildfires and dust storms, we also con-
duct sensitivity analyses that exclude plant-month observations
potentially affected by fire or dust emissions within radii of 50, 75, and
100 km. Results from these restricted samples yield very similar
results, further supporting the robustness of our findings.

Additionally, we confirm the reliability of our confidence intervals
by demonstrating consistent conclusions when standard errors are
derived using the wild cluster bootstrap and the Conley error
technique61,62. Furthermore,we conduct several exercises showing that
we obtain similar results when we use ground-based PM2.5 measure-
ments and when defining the dispersion area as a 10 km radius around
the power plant.

We also show that using alternative methodologies for aggregat-
ing drought measures at the market level leads to consistent results.
These robustness exercises fall into two categories. First, we test
alternative definitions of the FHD variable. These exercises include
varying the averaging windows for hydrological droughts (1, 6, 9, and
12 months), using alternative definitions of drought occurrence (e.g.,
anomalies below one standard deviation), testing different weighting
schemes (such as arithmetic means and weighting by generation
capacity), and accounting for regional market structures by integrat-
ing neighboring countries into single markets. Across these variations,
the results remain consistent, with only slight differences in point
estimates.

Second, we conduct a series of exercises using the mean runoff
anomaly in a market as an alternative measure of hydrological
drought. Results from using this measure of drought intensity align
with our benchmark findings. For example, an average drought leads
to similar increases in PM2.5 concentrations. Moreover, using this
drought intensity measure alongside a spline specification allows us
to test for differential effects of positive and negative runoff
anomalies. We find that negative anomalies result in slightly larger
increases in pollution than the reduction caused by positive
anomalies, highlighting an asymmetry consistent with operational
and infrastructure limitations of hydropower plants that may restrict
their ability to fully utilize additional water resources. Furthermore,
we leverage this measure to perform an additional placebo exercise,
confirming that the relationship between PM2.5 and hydrological
drought is only observed inmarkets heavily reliant on hydropower. A
detailed explanation of these robustness checks is provided in the
Supplementary Methods 1.

Calculation of lives lost due to excess PM2.5

To compute premature deaths, we combine a concentration-response
function (CRF) with our estimate of excess PM2.5 induced by drought
and counts of exposed population. Our counterfactual calculation
involves several steps. In the first step, we compute excess PM2.5 by
multiplying our benchmark estimate (Fig. 1a) by the observed FHD.
The resulting market-by-month-year variable measures the additional
air pollution observed in response to hydrological droughts shifting
electricity generation to combustion power plants.

In the secondstep,we transformexcessPM2.5 intoprematuredeaths
using the CRF estimated by Deryugina et al.35. We selected this CRF for
ourmain estimates due to its robust causal identification strategy, which
leverages variation in daily wind direction to isolate the causal effect of
PM2.5 exposure on mortality. This approach minimizes the effect of
potential confounders, ensuring the estimates reflect the health impacts
attributable to air pollution. According to this CRF, a day of exposure to
1μg m−3 leads to 0.69 excess deaths per million US adults 65 or older
(Medicare beneficiaries).We transform this CRF tomonthly frequencyby
multiplying it by 30. For robustness, analogous calculations using global
and regional CRFs are detailed in the Supplementary Methods 2.

In the third step, we compute the counts of the exposed popu-
lation. Specifically, for each combustion power plant, we compute the
count of the population 65 or older residing within 50km by multi-
plying the all-age population counts by the fraction of the population
65 or older. The age distribution data63 is available at the country-year
level. Accordingly, our calculations assume a uniform age distribution
within each country.

In the fourth step, we derive counts of premature deaths at the
plant-month-year level by multiplying the variables described in steps
one to three. Next, to account for uncertainty in our estimate of excess
air pollution, in the first step, we draw our coefficient from a normal
distribution with amean equal to the estimated coefficient (1.55) and a
standard deviation equal to the standard error (0.31). We then repeat
1000 times steps one to four, taking a new draw each time. In sum, we
compute the number of premature deaths per plant-month-year for
each draw with the following calculation: 0.69 (CRF) × 30 (days) ×
FHD × draw of FHD coefficient from � N ð1:55,0:31Þ × exposed
population65or older. To construct Fig. 2b,we aggregate the resulting
dataset to the plant level and compute the mean. To construct Fig. 2c,
we aggregate the same dataset to the LAC-year level.

Calculation of monetized lives lost due to excess PM2.5

To monetize the cost of the lives lost previously documented, we
estimate the Value of a Statistical Life (VSL) at the country-year level in
two steps. In the first step, we follow Banzhaf 64 to compute a base VSL
from ameta-meta analysis of US VSL estimates. In the second step, we
follow Viscusi and Masterman65 and calculate an income-adjusted
extrapolation for each country and year. We assume that the income
elasticity of the VSL is equal to one and use our base VSL together with
GNI per capita data66. Next, we compute the monetized losses in 2019
USD by multiplying our plant-month-year level dataset on premature
deaths by the country and year-specific VSL estimates. To construct
Fig. 2a, we aggregate the resulting dataset to the country level and
compute the mean. To construct Fig. 2c, we aggregate the same
dataset to the LAC-year level.

Construction of future scenarios
We assemble a projection dataset to study the expected exposure of
hydropower plants and the cost of drought-induced excess PM2.5.
This analysis extends through 2059, aligning with the expected
operational duration of existing combustion power plants. We use
three scenarios constructed as combinations of the Shared Socio-
economic Pathways (SSPs) and the Representative Concentration
Pathways (RCPs). These SSP-RCP scenarios are SSP1–2.6, SSP2–4.5,
and SSP3–7.0. The first exercise is based on monthly runoff
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projections from 22 climate and earth system models from the
CMPI667 with available information under the scenarios considered
(see Supplementary Table 2). We compute runoff anomalies for each
model using the projections and runoff climatologies from the IEA51

(same as in our main analysis). We then calculate the FHD for each
market using the same methodology. To assess future exposure, we
use the resulting FHD series and compute, for LAC and each IEA sub-
region, the percent change in mean FHD 2020–2059 relative to the
mean between 2000 and 2019. This calculation results in 66 FHD
projections (22 models × 3 scenarios).

To estimate premature deaths for each scenario and model, we
modify the methodology used to calculate premature deaths in three
ways. First, we compute excess PM2.5 using the FHD projections instead
of the observed FHD. Second, we allow for the population exposed to
adjust following the SSPs demographic projections of KC and Lutz68.
Third, when aggregating premature deaths by market and year, we
incorporate the retirement of combustion power plants based on IEA
forecasts69. Each retirement schedule is aligned with the most closely
matching SSP-RCP scenario based on the expected temperature rise by
2100. Specifically, for SSP1–2.6,weuse theAnnouncedPledges Scenario
(APS), which assumes that generation fromcoal, gas, and oil will decline
according to country pledges. For the SSP2–4.5, we use the Stated
Policies Scenario (STEPS), which assumes that generation declines
based on IEA’s assessment of current and announced policies. For
SSP3–7.0, we construct a Reference Electricity Scenario (RES), which
assumes no combustion power plant retirements. All scenarios rule out
the introduction of new combustion power plants and thus assume that
any growth in electricity demandwill bemet with generation from non-
combustion power plants. To present themost optimistic scenarios for
PM2.5 reduction, we also assume that plants with the largest exposed
population are retired first. Our calculations also assume that combus-
tion power plants do not benefit from technological change that would
allow pollution reductions. We also assume that the concentration-
response function is constant, thus ruling out that populations adopt
protective measures to limit their exposure to pollution.

To estimate the monetized losses corresponding to premature
deaths, we perform a calculation analogous to that performed pre-
viously but allow the country-year VSL estimates to change following
the SSPs economic growth projections of Cuaresma70.

Additionally, to isolate the contributions of each factor driving
our projections (runoff, demographic and economic trends, and
combustion plant retirement schedules), we systematically construct
projections for each energy scenario across all SSP-RCP combinations.
These results are presented in Supplementary Fig. 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available in the openICPSR repository
under accession code 21720171 (https://www.openicpsr.org/openicpsr/
project/217201). Source data are provided with this paper.

Code availability
The code to reproduce the results is available in the openICPSR
repository under accession code 217201.
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