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Unravelling the transcriptome of the human
tuberculosis lesion and its clinical
implications
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The tuberculosis (TB) lesion is a complex structure, contributing to the overall
spectrum of TB. We characterise, using RNA sequencing, 44 fresh human
pulmonary TB lesion samples from 13 TB individuals (drug-sensitive and
multidrug-resistant TB) undergoing therapeutic surgery. We confirm clear
separation between the TB lesion and adjacent non-lesional tissue, with the
lesion samples consistently displaying increased inflammatory profile despite
heterogeneity. Using weighted correlation network analysis, we identify 17
transcriptional modules associated with TB lesion and demonstrate a gradient
of immune-related transcript abundance according to spatial organization of
the lesion. Furthermore, we associate themodular transcriptional signature of
the TB lesion with clinical surrogates of treatment efficacy and TB severity. We
show that patients with worse disease present an overabundance of immune/
inflammation-related modules and downregulated tissue repair and metabo-
lismmodules. Our findings provide evidence of a relationship between clinical
parameters, treatment response and immune signatures at the infection site.

Tuberculosis (TB) is an infectious disease caused by Mycobacterium
tuberculosis (Mtb), and a major cause of ill-health and mortality
worldwide. Globally, TB chemotherapy is successful in 85% of drug-
sensitive (DS) TB cases1. Nevertheless, there is a fraction of patients
who will fail treatment and are therefore prone to disease relapse and
death, especially in multi drug-resistant (MDR) TB cases1. The forma-
tion of granulomas is a hallmark of TB and is crucial for containing and
controlling the spread of Mtb within the host2, involving numerous
immune cell types3. The existing literature has demonstrated a high

degree of heterogeneity in TB granulomatous lesions3. Animal studies
involvingmacaques have provided valuable information ongranuloma
nature andevolution, showinghighdiversity evenwithin the samehost
with different grades of bacteria clearance4. Moreover, this diversity is
observed over the course of infection5. Preclinical studies are key to
understanding how TB lesions evolve, as human studies cannot pro-
vide this information unless using surrogates, such as 18-F-
fluorodeoxyglucose positron emission tomography-computed tomo-
graphy (18F-FDG-PET-CT), as demonstrated by Malherbe et al. when
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correlating images of individuals with TB obtained using this method
with bacillary load6,7. Additionally, mycobacterial culture from resec-
ted granuloma tissue demonstrated that a subset of individuals still
harboured live Mtb bacilli despite preoperative microbiological clear-
ance in sputum, in both DS- and MDR-TB8,9.

The development of lung cavitary lesions from granulomas is a key
aspect of the TB pathogenesis, associated with increased transmission
rates and poor outcomes10. Human lung biopsies from TB lesion are
limited11 and the host factors that drive cavitary lesion formation or
indicate poor clinical outcomes remain unknown. The resection of
human pulmonary lesions during therapeutic surgeries or autopsies has
provided insights into TB lesion architecture, and local immunopathol-
ogywhichmay contribute to the emergence ofMDRMtbpopulations8,12.

Several studies on human TB granuloma tissue imaging and the
computerized quantification of cells and molecules at RNA and protein
levels haveprovided valuable insights into granuloma structure, cellular
composition, and immune responses13–16. Recently, Carow and collea-
gues compared human pulmonary TB lesions to those in patients with
sarcoidosis, revealing significant differences in immune cell distribution
and, consequently, in their immunological microenvironments17. Sub-
bian et al demonstrated a molecular correlation of immune responses
to the heterogeneity of granuloma samples from four MDR-TB cases,
diversity that the authors linked to lesionmaturation18. Marakalala et al.
suggested that the response toMtbmight be shaped by the anatomical
localizationwithin the granuloma19. Dhedaet al.were thefirst authors to
characterize the transcriptional response at anatomically different
locations within the granulomas of 14MDR-TB cases11. They showed the

cavitywall as themain source of pro-inflammatory activity compared to
the lesion centre. Finally, a recent study constructed a spatial cell atlas
using 6 patients’ samples (two DS-TB and one MDR-TB patient under-
going surgery, and three autopsies) to map granuloma structure and
composition and contrast it with the peripheral immune responses20.

In this study we characterize the cellular of human TB pulmonary
lesions from DS-TB and MDR-TB patients who underwent surgery and
show their link to clinical andmicrobiological surrogates of TB severity
and treatment response (Fig. 1).

Results
The human TB lesion signature shows a distinct and hetero-
geneous transcriptional profile as compared with non-lesional
lung tissue
In our study, outlined in Fig. 1, we collected 48 samples from 14 indi-
viduals and analysed 44 paired samples from 13 individuals (6 DS-TB
and 7 MDR/XDR-TB) to evaluate the human TB lung granuloma tran-
scriptomic changes by RNA sequencing.

Although the patients included in this study exhibited normal to
high BMI, low CRP levels, relatively low SGRQ scores and were con-
sidered microbiologically cured, they nonetheless required lung
resection surgery due to the persistence of TB cavities.

We analysed total RNA from three different sections: Central
Lesion (C; n = 6), Internal Wall (I; n = 12) and External Wall (E; n = 13)
collected from each patient’s lesion biopsy. Fewer C- samples could
be analysed compared to I and E, due to poorer RNA recovery.
Additionally, surrounding non-lesional (NL) tissue from the involved

RNA-sequencing of 48 samples from 14 patients (DS-
TB=6/ MDR/XDR-TB=8) from the SH-TBL cohort
(Figures 2a & b)

Tissue transcriptional changes 
in TB lesion compared to non-

lesional lung tissue

Tissue transcriptional 
response across TB lesion

Differential expression analysis of genes in the TB
lesion compartments versus non-lesional tissue.
(Figures 3a, b)

Whole TB lesion and TB lesion compartments
modular analysis (WGCNA)
(Figure 3c)

TB lesion modular 
transcriptional signature 
according to TB individuals’ 
clinical characteristics

Evaluation of modular signature in whole TB lesion
versus non-lesional tissue, stratifying patients
according to clinical surrogates of treatment response
efficacy and disease severity.

(Figures 4a, b & c)

Sputum culture conversion SGRQ symptoms score
Fast (SCC < 2 months) SGRQ score ≥ 20

SGRQ score ≤ 20Slow (SCC > 2 months) 

Immunohistochemistry validation of representative
genes associated to TB severity in TB lung lesion
samples (n=14) compared to non-TB control (n=3).
(Figures 5a, b, c & d)

Protein Validation in TB Lung 
Lesion Tissues

Fig. 1 | Overall study plan. Overview of the analysis undertaken in the study. Figures associated with each objective are stated.
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lung was collected as a comparator (n = 13) (Fig. 2a). Patients were
matched according to their sex andMtb drug-sensitivity classification
to avoid potential confounding factors (Supplementary Table 1).
Moreover, clinical and demographic data, and resected TB lesion
characteristics and pathology were assessed at the time of surgery
and are reported for each participant (Supplementary Table 1 and
Supplementary Data 2).

We found a total of 4630 significantly differentially expressed
genes (DEGs), using DESeq2 with adjusted p ≤0.05 (Supplementary
Fig. 1a). Of these, 2496 genes were over-expressed in lesion tissues,
whereas 2134 were under-expressed, as compared to NL lung tissue
(Supplementary Fig. 1a). The top 40 ranked DEGs clearly separated
lesion samples from NL lung samples (Fig. 2b), showing distinct tran-
scriptional profiles for the two tissues. Among them, genes involved in
immune system/cytokine signalling (IRF4, CCL19, LTB, JAK3, INPP5D,
FCER2, MMP1) and B cell activation and differentiation (CD22, BLNK,
CARD11) were over-expressed, suggesting an inflammatory signature
in the TB lesion.

Seven TB lesion samples clustered together with NL tissue sam-
ples, consisting of six samples from the external compartment andone

from the internal compartment. This observation may suggest a
transitional transcription profile across the lesions, particularly evi-
dent in the external tissue due to its proximity to the NL samples, but
also not discarding the heterogeneity in the transcriptional profiles of
the lesions (Fig. 2b).

Altogether, our data show a distinct segregation of the TB lesion
when compared to the NL lung tissue with respect to an inflammatory
profile, as previously proposed11. Our findings also indicated a range of
molecular diversity within the TB lesion samples, prompting our deci-
sion to delve deeper into the heterogeneity at a transcriptional level.

Compartments within the TB lesion reveal distinct gene
expression profiles with an enriched inflammatory response
across the lesion
To further explore the TB lesion heterogeneity and investigate the
contribution of each compartment, we first performed an enrichment
analysis derived from single sample Gene Set Enrichment analysis
(ssGSEA) using the top 40 DEGs discriminating the TB lesion from the
NL lung tissue. The expression of these genes in the different tissue
compartments revealed a more pronounced enrichment score of

a b
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Fig. 2 | The human TB lesion signature shows a distinct and heterogeneous
transcriptional profile as compared with non-lesional lung tissue. TB lesion
samples were collected from each patient included in the SH-TBL cohort: central
lesion (C), internal wall (I) and external wall (E) and, altogether, samples from each
patient represent the human TB lesion. An additional sample from surrounding
non-lesional lung tissue (NL) was also collected from the same patient as control
(a). 48 samples from 14 patients (6 DS-TB and 8 MDR/XDR-TB) were RNA
sequenced to evaluate the human TB lung lesion transcriptomic changes. A set of
4630DEGswas identified after comparing the humanTB lesion countswithNL lung

tissue expression, using DESeq2 with adjusted p <0.05. b heatmap depicts the top
40DEGs ranked by the adjusted p-value comparing the human TB lesion versus NL
lung tissue expression profiles (44 paired samples from 13 patients). The intensity
of each colour denotes the standardized ratio between each value and the average
expression of each gene across all samples. Red pixels correspond to an increased
abundance of mRNA in the indicated sample, whereas blue pixels indicate
decreasedmRNA levels. Source data are provided as a Source Data file. Image in (a)
was created in BioRender. Vilaplana, C. (2025) https://BioRender.com/x16o926.
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these DEGs in central and internal lesion samples, suggesting that
these two compartments might be the main contributors for the
overall TB lesion transcriptional signature (Fig. 3a).

Next, we compared the expression profiles derived from each TB
lesion compartment with the NL tissue. The list of DEGs (DESeq2 with
adjusted p ≤0.05) for the C, I and E vs NL tissue comparisons respec-
tively constituted3228 (1539geneswereover-expressed,whereas 1689
were under-expressed); 5275 (2676 over-expressed and 2599 under-
expressed); and 1045 genes (552 over-expressed and 493 under-
expressed) (Supplementary Fig. 1b). For central and internal com-
partments, the hierarchical clustering of the 40 most significant DEGs
showed an evident separation when compared each compartment
against the NL lung tissue (Fig. 3b). Though less noticeable, the

external compartment was still distinguishable from the NL tissue.
Therefore, the magnitude of differential expression relative to NL
decreased gradually towards the edge of the TB lesion structure,
including between adjacent compartments (Fig. 3b and Supplemen-
tary Fig. 2).

Among the highly variable genes in central lesion, we found genes
involved in the immune system/cytokine signalling (CCL19, CXCL10) to
be upregulated in comparison to the NL tissue (Fig. 3b). On the other
hand, we found extracellular matrix organization-related genes to be
downregulated (LRP4, MUC15), while others were upregulated
(ADAM12, CTSK). Moreover, collagen-encoding genes (COL1A1,
COL3A1, COL11A1) were upregulated in the central compartment,
which could reflect the fibrosis observed in all patients’ lesions
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Fig. 3 | The human TB lung lesion compartments have different gene expres-
sion profiles and are enriched for immune inflammatory response pathways.
a show the enrichment score derived from single sample analysis GSEA using the
top 40 genes discriminating TB lesion (G) from NL lung tissue. Data on the
enrichment for each compartment (C, I, E and NL) are represented as medians with
an interquartile range (IQR). Boxplots show minimum and maximum values, the
interquartile range (IQR, 25th to 75th percentile), and the whiskers representing 1.5
times the interquartile range. Outliers are indicated as individual points outside the
whiskers. Statistical analysis was performed by applying the two-sided t-test. Sta-
tistical differences refer to a p-value < 0.05. In (b) the heatmaps show differences in
the top 40 ranked genes from DESeq2 with adjusted p <0.05 by separately

comparing the central (C), internal (I) and external (E) compartments with the NL
lung tissue gene expression derived (). The intensity of each colour denotes the
standardized ratio between each value and the average expression of each gene
across all samples. Red pixels correspond to an increased abundance of mRNA in
the indicated sample, whereas blue pixels indicate decreased mRNA levels.
cpicturesmodular transcriptional of the seventeenmodules of co-expressed genes
derived from WGCNA for our TB lesion dataset separated by compartment. Fold
enrichment scores derived using QuSAGE are depicted, with red and blue indicat-
ingmodules over or under expressed compared to the control. Only modules with
fold enrichment (FDR) < 0.1 were considered significant. Source data are provided
as a Source Data file.
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(Supplementary Data 2); as well as of genes associated to immu-
noglobulin heavy and light chains (IGHV4 − 61, IGKV1 − 39, IGKV1D − 39,
IGHV1 − 18, IGHV3 − 74, IGLV1 − 40, IGHV4 − 34, IGHV1 − 3, IGLV1 − 51,
IGLV2 − 18, IGHV6 − 1, IGHV4 − 55), related to humoral immunity
(Fig. 3b). Furthermore, genes involved in complement fixing (C1QA,
C1QB, C1QC) were significantly upregulated, although not among the
top 40 DEGs (Supplementary Data 1). For the internal compartment,
genes involved in the immune system/cytokine signalling (LTB, FCMR,
AIM2, CXCL10, IRF8, IRF4) were upregulated compared to NL (Fig. 3b).
Furthermore, immune system/cytokine signalling genes (LTB, CCL19,
CXCL9, TNFAIP3, TNFRSF13C, FCMR, AIM2, CXCL10) were over-
expressed in the external compartment relative to NL (Fig. 3b), evi-
dencing an inflammatory signature throughout the lesion.

We then applied weighted gene co-expression analysis (WGCNA)
to perform a modular analysis of co-expressed genes in the TB lesions
and in the three compartments separately, comparing all samples to
NL control tissues. We identified 17 modules from co-expression net-
works related to the whole human TB lesion (Fig. 3c and Supplemen-
tary Data 2). The identified TB lesion modular signature showed that
neutrophil degranulation, cell signalling, adaptive/humoral immunity,
extracellular matrix, interferon/cytokine signalling, and innate/patho-
gen recognition receptors (PRR) modules were overabundant. These
observations were consistent throughout the compartments, except
for the neutrophil degranulation and innate/PRRmodules, which were
apparent in the total lesion and the internal lesion only, but not in the
central or external lesions (Fig. 3c). Conversely, the Epithelial to
Mesenchymal Transition (EMT), cholesterol biosynthesis and meta-
bolism modules were found to be underabundant in the whole lesion
and external and internal, but not in the central compartment. In
addition to cholesterol and metabolism, the organelle biogenesis
module was underrepresented, across all compartments, suggesting
that some pathways present in the healthy lung are diminished in the
lesion (Fig. 3c).

To broaden our understanding on the distribution of the immune
response among the modular signature in the whole lesion and its
compartments, we have used the LM22 signature matrix to profile
the distinct humanhematopoietic cell populations21.We found that the
adaptive/humoral and the innate/PRR modules presented most of the
genes related to the immunepopulations (Supplementary Fig. 3a), with
said populations also varying in proportions across TB lesion com-
partments (Supplementary Fig. 3b). By expanding these modules, we
found thatmost of the submodules composing themwere significantly
differently enriched when comparing the compartments, particularly
for the adaptive/humoral submodules (Supplementary Fig. 4a).

In summary, our results showed a significant enrichment of
modules related to inflammation, including pathways of innate
immunity in the TB lesion, the central and internal compartments,
and of adaptive/humoral immunity across all compartments. Mean-
while a decrease in modules related to extracellular matrix organisa-
tion and cholesterol biosynthesis andmetabolismwas observed in the
lesion. Furthermore, profiling of the LM22 populations as well as the
expansion of the adaptive/humoral and innate/PRRmodules revealed
a differential distribution of the immune cells in the different com-
partments, contributing to the identified modular signature.

Patients’ clinical status is associated with differential modular
transcriptomic profiles in TB lesions
The heterogeneity in the host immune response to infection, con-
sidering the involvement and contribution of physically distinct com-
partments, together with the bacteria and the inflammatory
environment, defines granuloma fate and disease manifestation19,22.
Hence, we next aimed to associate the modular signature changes in
the TB lesion (considering the three compartments together) with
clinical data (Supplementary Data 2), using surrogates of treatment
response and disease severity (SGRQ symptoms sub-score; being a fast

or slow sputum culture converter; DS vs MDR-TB case; being a relapse
or new TB case and number of lesions present in the CXR). We quan-
titatively tested the association of each clinical parameter with each of
the significant module’s eigengene (ME) expression patterns (Wil-
coxon p ≤0.05).

Regarding the sputum culture conversion (SCC), the modular
signature of the TB lesion revealed a significant association of DNA
binding and interferon/cytokine signallingmodules with SCC, with the
enrichment of these modules being significantly higher in those indi-
viduals converting the sputum culture later (FDR <0.1; Fig. 4a, b). No
significant modular expression was found to be associated with Mtb
drug sensitivity of the individuals, relapsed or new cases, or number of
lesions (Supplementary Data 2).

When considering the severity of TB disease, in terms of a higher
presence and severity of symptoms, we found that DNA binding, neu-
trophil degranulation, interferon/cytokine signalling, cholesterol
biosynthesis and myeloid activation modules were significantly over-
abundant and associatedwith higher SGRQ symptoms score (FDR<0.1;
Fig. 4a and c), pointing to higher inflammation status with more severe
disease manifestation. In contrast, the EMT module was significantly
underabundant in these individuals’ TB lesions (Fig. 4c). When strati-
fying against the clinical data, results showed that there was no clus-
tering of the clinical surrogates with neither the central nor the internal
compartments (Supplementary Fig. 5).

Further examination of the associations between submodules and
severity correlates revealed that only three submodules exhibited
statistically significant differences among clinical surrogates (Supple-
mentary Fig. 4b), derived from the innate/PRRmodule: the submodule
Response to inflammation, linked to neutrophils and granulocytes,
with genes related specifically to response to IL-1 and type II IFN and
neutrophil chemotaxis; and the Innate response regulation sub-
module, linked to neutrophil, monocytes and macrophages, with
genes related specifically to immune response activation and regula-
tion. We also observed an enrichment in the CD4 +T helper lympho-
cyte response submodule. derived from the Adaptive/humoral
module, linked to antigen-presenting cells and CD4 T cells, with genes
specifically related to the regulation of T cell activation, lymphocyte
differentiation and regulation of the adaptive immune response.

To gain further insights into the differences found between clin-
ical surrogates, we next identified a set of seven transcription factors
differentially expressed (ETV7, STAT1, AR, SOX5, ERG, ASCL2 and
PRDM5) between fast and slow SCC and patients with less severe or
more severe symptoms. Transcription factors corresponding to the
IFN/cytokine signallingmodulewereoverexpressed in slow converters
and/or more severe patients, whereas transcription factors belonging
to the EMT module had higher expression in patients with less severe
symptoms, complementing the modular analysis (Supplementary
Fig. 6a, b and Supplementary Table 2).

To support RNA sequencing data, we validated by immunohis-
tochemistry the protein products of three genes significantly expres-
sed between TB lesion and NL tissue. In our data set, CXCL9, GBP5 and
STAT1 are representative genes from the module with the highest
enrichment in the whole TB lesion associated with TB surrogates of
severity. We quantified the presence of the respective proteins in TB
patient lesions compared to non-TB controls and found a significantly
higher expressionof theseproteins in theTBpatient lesions (Fig. 5a–d).

All these data reinforce our findings from the transcriptional
comparison between TB lesion and NL tissue, showing that a slower
SCC, reflecting a poorer response to treatment and slower clearanceof
Mtb, and severer TB cases are associated to an increased inflammatory
response at site.

Discussion
The immune response to Mtb constitutes a complex and dynamic
interaction between the host immune system, the bacteria and lung
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microenvironment. Throughout infection, the inflammatory response
leads to granuloma formation primarily for bacterial containment,
while causing extensive tissue remodelling and destruction, which
contributes to the clinical spectrum of TB20. In our study, we tran-
scriptionally characterised the host response in human pulmonary TB
lesions frompatients undergoing therapeutic surgery. Fresh humanTB
lesion specimens obtained from these lung resections (without for-
malin fixation or paraffin embedding) were transcriptionally profiled
using RNA-Seq. Our study provides various advances over previous
approaches18,20,23. Firstly, we have used a more robust data set with
increased individuals numbers, which included 44 TB lesion samples
from 13 DS- and MDR-TB patients from the SH-TBL cohort. Secondly,
we confirmed a distinct demarcation between the TB lesion and
adjacent non-lesional tissue from the same patient lung. Thirdly, we
have identified a transcriptional modular signature within TB lesions
and linked our findings to clinical/microbiological parameters used as
surrogates of TB severity and response to treatment. In individuals
with more severe disease, our results showed an increased eigengene
expression of pro-inflammatory-related modules and a decreased
eigengene expression of tissue organizationmodules. Strikingly, those
individuals with a delayed response to treatment showed an increased
DNA binding and interferon/cytokine modular response.

In our view, establishing a link between a slower culture conver-
sion rate (persisting beyond 8weeks post-treatment initiation) and the
presence of more inflamed lesions at treatment’s end opens up the
potential for refining TB treatment during clinical management.

Granuloma heterogeneity in TB is a well-accepted concept and
has been reported in non-human primate models of infection and
human lesions13,14,19,24. Besides the heterogeneity among samples, we
were able to identify a clear pattern across all TB patients compared to
their own NL control lung tissue. Among the top 40 DEGs, we found
genes predominantly encoding for proteins involved in the

inflammatory processes that orchestrate the antimycobacterial
response, as previously reported25–27. This included genes as CCL19,
which expression was found to be increased inmouse lungs post-Mtb-
infection to induce lymphoid structures25; FCMR, considered a target
for host-directed therapies26, and the transcription factor IRF4, pre-
viously found to be required for the generation of Th1 and
Th17 subsets of helper T cells and follicular helper T-like cellular
responses27. Additionally, the overexpression of immunoglobulin
genes in the TB lesion suggests their involvement in complement
fixation processes, since C1QA, C1QB and C1QC transcripts were also
found to be upregulated in our TB lesion samples. Previously pub-
lished blood signatures found upregulated levels of C1QC28,29, when
comparing baseline to end-of-treatment samples. Moreover, the
expression of this gene has been proposed as a disease severity
biomarker30 and linked to poor treatment response31.

The pro-inflammatory transcriptional signature observed in the
TB lesion was eminently due to its central and internal compartments,
in line with Dheda’s and Marakalala’s studies11,19 Dheda et al. described
the pathways involved in different parts of cavitary lesions from 14
failed MDR-TB participants that underwent surgery, pointing to the
cavity wall as the main source of pro-inflammatory activity11. In line
with our findings, they showed that pro-inflammatory pathways were
especially over-represented in the cavity wall, including nitric oxide
production, reactive oxygen species, IL-1, IL-6, IFN-γ and NF-κβ tran-
scriptional signatures. Furthermore, Marakalala et al. demonstrated a
pro-inflammatory centre and an anti-inflammatory surrounding tissue
by mass spectrometry and lipid quantification. These authors worked
with different types of granulomata from six MDR-TB patients and
highlighted the heterogenicity of the lesions19. Additionally, Subbian
et al. demonstrated using four granuloma samples, the involvement of
immune cell signalling and activation, interferon response and
tissue remodelling processes in the complex TB granuloma
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Fig. 4 | TB lesionmodular transcriptional signature correlates with TB clinical
and microbiological characteristics revealing differential responses between
patient’s group. Modular analysis of RNA-seq data from TB lesions of 14 patients.
Patients were clinically defined accordingly to sputum culture conversion (SCC)
and TB disease impact on lung function, measured using the Saint George’s
Respiratory Questionnaire (SGRQ) symptom score, as surrogates of treatment
response and TB severity. Heatmap represent the key TB lesion modules sig-
nificantly associated to individual’s’ clinical surrogates of TB severity and treatment
response (a). Fold enrichments were calculated for each WGCNA module using
hypergeometric distribution to assess whether the number of genes associated
with each clinical status is larger than expected. Fold enrichment scores derived
using QuSAGE are depicted, with red and blue indicating modules over or under

expressed compared to the control. The colour intensity represents degree of
perturbation. Modules with fold enrichment scored FDR p-value < 0.1 are con-
sidered significant. b, c show TB individuals’ stratification according to SCC (fast
n = 28 or slow converters n = 20) and SGRQ symptom score (low impact if
SGRQ< 20 with n = 23 or high impact if SGRQ> 20 with n = 25), respectively, and
the significant association using their corresponding derived WGCNA significant
eigengene modules (ME) (p <0.05). Data are represented as median with an
interquartile range (IQR). Boxplots show minimum and maximum values, the
interquartile range (IQR, 25th to 75th percentile), and the whiskers representing 1.5
times the interquartile range. Outliers are indicated as individual points outside the
whiskers. Statistical analysis was performed by applying the two-sided Wilcoxon-
rank sum test. Source data are provided as a Source Data file.
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microenvironment18. TheTB lesionmodular signature thatwedescribe
herein, provides comparable and additional data, albeit in aa inde-
pendent and representative patient cohort and including DS-TB.

We identified 17 modules from co-expressed networks and map-
ped a TB lesion modular signature, consisting of increased neutrophil
degranulation, cell signalling, adaptive/humoral immunity, extra-
cellular matrix, interferon/cytokine signalling and innate/PRR. In our
cohort, patients presented advanced TB disease with cavitary TB. We
found the neutrophil degranulation module increased in whole TB
lesion but not in the central or external lesions, possibly explained by
more necrosis in this region, coupled with relatively low RNA abun-
dance in neutrophils. Moreover, theMMP1 gene was overexpressed in
the TB lesion as compared to NL tissue, which might suggest the
involvement of neutrophils through the activity of matrix metallo-
proteinases. In previous studies, MMP-1 was found to be increased in
the respiratory secretions from TB patients and to drive extracellular
matrix remodelling in a TB murine model32, and to be differentially
expressed in human TB lymph node biopsies compared to control
samples in a study by Reichmann et al.33. In humans, neutrophil

accumulation in the lungs of individuals with TB and has been corre-
lated with increased lung pathology and consequent disease
progression34,35. The role of neutrophils in TB disease progression and
pathology has been well documented in experimental mouse
models34–37. Additionally, the extracellular matrix, interferon/cytokine
signalling and innate/PRR modules have been reported to be upregu-
lated in blood from individuals with TB38,39.

Interestingly, we found that the adaptive/humoral module was
increased in whole TB lesion samples, corroborating the expression of
immunoglobulin heavy and light chains transcripts in both central and
internal compartments, as well as the higher proportion of effector B
cells across the TB lesion. The enrichment of the adaptive/humoral
module, along with increased lymphocytes—particularly effector B cells
—in TB lesions, suggests an elevated antibody response. This is con-
sistent with recent findings by Krause et al., who reported abundant B
cells and high levels of Mtb-reactive antibodies in these lesions40. By
expanding the adaptive/humoral and innate/PRR modules, we identi-
fied genes associated with B and T lymphocyte responses, and innate
response regulation. Furthermore, we showed that these responses and
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Fig. 5 | Immunohistochemistry staining of representative genes associated
with TB severity reveals higher protein expression in TB compared to non-TB
controls. a shows representative immunohistochemistry staining for CXCL9, GBP5
and STAT1 from the TB lesion of a representative patient (TB-05) compared to a
patient presenting bullous emphysema (TB-42), as non-TB control. The top row
corresponds to whole sections of the TB lesion (at the left of the images) and of
non-lesional tissue (at the right of the images). Scale bars correspond to 1000 µm.
NC necrotic core, M macrophage region, F fibrotic region, L lymphocyte-enriched
region, AS alveolar space. b–d show the quantification of CXCL9, GBP5 and STAT1

protein levels respectively in lesion sections of all TB patient (n = 14) compared to
the non-TB control tissue sections (n = 3). n refers to biologically independent
tissue sections from different individuals. Data on the percentage of stained area
are represented as median with an interquartile range (IQR) Boxplots show mini-
mum and maximum values, the interquartile range (IQR, 25th to 75th percentile),
and the whiskers representing 1.5 times the interquartile range. Outliers are indi-
cated as individual points outside the whiskers. Statistical analysis was performed
by applying the two-sidedWilcoxon-rank sum test. Statistical differences refer to a
p-value < 0.05. Source data are provided as a Source Data file.
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the proportions of their related immune cells are distributed in a gra-
dual manner across various compartments, which appears to play a
central role in the modular signature of TB lesions here unveiled.
Overall, the enrichment of immune-related modules mostly in the
central and internal compartments and the observed cell distributions
suggest that, although the central compartment is predominantly
necrotic, it may still harbour a lymphocyte component from adjacent
tissue. However, due to the lower overall cellularity in this central
compartment, the relative abundance of these populations appears
higher, reflecting a greater proportion of T cell-associated signals rather
than an increased absolute number of T cells. The relative proportions
of each cell population across compartments align with previous
studies16,20,41, as the outer portion of the lesion exhibits a higher abun-
dance of lymphocyte populations, whereas macrophage populations
are more prevalent in the inner compartments.

Conversely, the EMT, cholesterol biosynthesis and metabolism
modules were decreased in TB lesion relative to NL parenchyma. The
EMT is linked to wound healing but also to fibrogenesis and scarring42.
Furthermore, several transcription factors associated with this module
were differentially expressed based on disease severity. These include
SOX5, involved in chondrocyte differentiation43; PRDM5, which has a
role in proper extracellular matrix development44; ERG, essential in
normal hematopoietic stem cell function45; and AR, which is involved in
the reduction of pro-inflammatory responses in monocyte and macro-
phages and their M2 polarization46. The downregulation of this module
in TB lesion along with its transcription factors, and its decreased
enrichment in more severe TB cases compared to those with milder
symptoms, might suggest a disruption in critical processes needed for
tissue repair. We also observed increased cholesterol synthesis in indi-
viduals experiencing more severe disease in terms of presenting more
pronounced symptomatology. Kim et al. proposed dysregulation of
host lipid metabolism caused by Mtb, tracing the progression of
TB granulomas to caseation, cavitation, and eventual disease
transmission23. The authors suggested that bacterial components could
trigger the host’s innate immune system, potentially augmenting the
synthesis or storage of host lipids. Consequently, in line with these
findings23 the upsurge in cholesterol synthesis which we observe herein
might mirror the impact of Mtb on the host lipid metabolism.

The major outcome of our work is the use of unbiased modular
analysis to link the transcriptional signature generated fromTB lesions
with patients’ clinical surrogates of TB severity and the time taken to

clearMtb in sputum, and thus response to treatment, as summarized in
Fig. 6. Our results show an important inflammation component in
lesions from individualspresentingwith greater severity of disease and
slower response to treatment. Inflammation has been described as key
for tissue damage and linked to a blood transcriptional signature in
individuals suffering from active TB disease evenmonths before being
diagnosed47, and radiographic lung disease extension5,34,38, decreasing
upon treatment38,48. Tabone et al. revealed differential responses in the
blood transcriptional signature among various clinical TB subgroups
following treatment, observing a reduction in the inflammation and
IFNmodules alongside B and T cell modular signatures accompanying
successful treatment39. In our study, we found an overabundance of
the IFN/cytokine signalling and DNA binding modules associated with
severe disease, characterized by worsened symptoms and slower
bacterial clearance. The overabundance of the IFN/cytokine signalling
module is accompanied by the differential expression of the STAT1
and ETV7 transcription factors in both patients with worse symptoms
and slower response to treatment and ASCL2 in patients with worse
symptoms. STAT1 plays a main role in TB pathogenesis via the acti-
vation of IFN responses38,49. On the other hand, ETV7 has been identi-
fied as a regulator of inflammatory responses by repressing IFN-
induced genes50,51. Meanwhile, ASCL2, which initiates the development
of T follicular helper cells, has been shown to suppress IFN-γ52. This
simultaneous differential expression emphasizes the increased
inflammatory component characteristic of a worsened disease state,
along with the counter-response that attempts to limit the side effects
of this devastating inflammation. Additionally, immunohistochemistry
showed that the representative genesCXCL9, GBP5 and STAT1 from the
IFN/cytokine signalling module had significantly higher protein levels
in TB patient lesions compared to the non-TB control samples, sup-
porting our RNA-seq findings.

Our observations also hint at a potential connection between
heightened neutrophil degranulation in severe cases and the dama-
gingmechanisms associatedwith neutrophil-mediated inflammation53,
suggesting a plausible role for this process in exacerbating the severity
of the condition. As our study samples were collected after the end of
treatment, all cases examined here could be considered difficult or
inadequate responders to treatment. This inadequate response may
result in a sustained pro-inflammatory profile at the lesion site or be
the consequence of it, and our findings may thus help in future man-
agement of disease treatment.

Fig. 6 | Overview of the main conclusions of this study. This figure summarizes
the key findings of our study. We obtained a modular transcriptomic signature for
the TB lesion that follows a gradual increase of differential expression relative to
non-lesional tissue towards the center of the lesion, including the enrichment of
gene modules associated with the immune response and inflammation within the

lesion. The association of a worsened local status of the lesion with clinical and
microbiological surrogates contributes to the immunopathological understanding
of the disease and may aid in the clinical management of the disease by opening a
window of opportunity for the adjustment of treatment. This figure was created in
BioRender. Vilaplana, C. (2025) https://BioRender.com/f17r368.
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The results suggest that the clinical picture mirrors the inflam-
mation happening at the site of infection and confirms what has been
previously seen by others indirectly, both in humans and in experi-
mental animal models. Malherbe et al., showed through 18F-FDG-PET-
CT lung scans that some patients still have an increased FDG uptake in
the lesions when compared to surrounding healthy tissue after six
months of treatment6, and more recently, the authors have related
both a larger burden of disease and a slower rate of reduction in scan
metrics with delayed sputum coversion54. Our data showed that slow
sputumconverters present differentmodular expressionprofiles inTB
lesions when compared to fast sputum converters. To date, the SCC
constitutes the only tool endorsed by the WHO to monitor treatment
response55 and can be considered a surrogate of disease severity.
Therefore, achieving SCC after two months of starting treatment has
been associated with TB cavity persistence9 and poor prognosis56,57,
and has been proposed and used as a surrogate marker for TB out-
comes. Now, thanks to our study,wedemonstrate that a sustainedpro-
inflammatory profile at the lesion site is linked to delayed culture
conversion (persisting beyond 8 weeks post-treatment initiation)
focusing on a cohort of patients with severe immunopathological
disease who underwent therapeutic surgery. This finding implies that
delayed culture conversionmay serve as a proxy for heightened lesion
inflammation and, by extension, worse clinical outcomes. It may thus
facilitate the identification of patients who could benefit from
enhanced therapeutic strategies, including the incorporation of anti-
inflammatory host-directed therapies into standard treatment regi-
mens. Interestingly, measures of microbiological treatment success
and clinical severity of disease have also been associated with Mtb
transcriptional profiles in patient sputa58, suggesting that the lesion
immunopathology described here also impact Mtb lung phenotypes.

Our study has some limitations. These TB individuals presented
advanced TB disease rendering them candidates for lung resection
surgery despite being microbiologically cured. Notably, the surgery
was performed not because of treatment failure but to address per-
sistent cavitary lesions, which may limit the generalizability of the
findings to the entire spectrum of TB disease. In countries with a high
prevalence of MDR-TB, adjunctive surgical resection is a common
therapeutic tool which, despite being a major invasive procedure,
reduces the transmission burden of MDR-TB and results in favourable
outcomes for the patients59. However, this approach is uncommon in
most countries, thus our results help to understand TB host response
but may have a direct impact on TB treatment at short term only in
high burden countries where resection is practised. Furthermore,
given that individuals with TB may have several lesions at varying
stages, which can evolve and recede (as shown in experimental animal
studies2,5,60,61), expanding the sample size to include several lesions
from the same individuals would be beneficial. However, achieving this
is practically unfeasible without conducting a complete pulmo-
nectomy or lung section resection. Consequently, working with sam-
ples collected post-mortem could offer a viable solution, offering
substantial insights and information in this regard, although this is
limited by the number of TB patients from whom post-mortem sam-
ples would be available and the quality of the samples collected.
Another limitation is that given the source and status of the human TB
lesion samples, it was required to lower the RINe cut-off to four,
acknowledging this a potential bias in RNA-seq experiments. Finally,
although we used uninvolved lung parenchyma from our cohort par-
ticipants as controls, this approach does not eliminate the possibility
that immunological influences from the TB lesion environment could
affect these uninvolved areas, potentially biasing our results. Never-
theless, our findings clearly distinguish non-lesional tissue from TB
lesion tissue, particularly within the central and internal
compartments.

In conclusion, we have defined a robust signature for human
advancedTB lesions, despite the inter-lesion heterogeneity.Moreover,

this is a study showing different modular transcriptomic signature
patterns, integrating and co-analysing our findings with TB patients’
clinical/microbiological characteristics, including severity and
response to treatment. Our study provides a considerable dataset on
TB lesions gene expression which will undoubtedly be of broad utility,
interest and significance to the scientific community, contributing to
an increase in knowledge on TB immunopathology. A better under-
standing of disease processes and host protective immune responses
may help in the clinical management of TB and development of
treatment strategies. Most importantly, our findings provide evidence
of the clinical picture with a relationship between clinical parameters,
treatment response and immune signatures at the infection site.

Methods
Ethics
This study is part of the SH-TBL project (ClinicalTrials.gov Identifier:
NCT02715271). The protocol, researchmethodology and all associated
documents (informed consent sheet, informed consent form) were
reviewed and approved by both ethics’ committees at the National
Center of Tuberculosis and Lung Diseases (NCTLD) (IRB00007705
NCTLD Georgia #1, IORG0006411) and the Germans Trias i Pujol Uni-
versityHospital (EC: PI-16-171).Written informed consent was obtained
from all study participants before enrolment.

Study design and patient cohort
The 14 individuals (7males and 7 females) included in this projectwere
recruited from the SH-TBL cohort, a cross-sectional study conducted
at the National Center for Tuberculosis and Lung Diseases (NCTLD) in
Tbilisi, Georgia, from May 2016 to May 2018. This study enrolled 40
adult patients who had received an indication for therapeutic surgery
for pulmonary TB (ClinicalTrials.gov NCT02715271). All volunteers
received standard anti-TB treatment (ATT) regimen according to
Georgia national guidelines, and were microbiologically cured, as per
WHO definition. Patients were indicated for surgery due to persistent
radiological signs of cavitary lesions on Chest X-Ray (CXR) and com-
puted tomography scan, disregarding the drug-sensitivity pattern of
the strain responsible and following the official Georgian National
Guideline “Surgical Treatment of Patients with Pulmonary
Tuberculosis”59. Thoracic surgery decisions were made by the NCTLD
Tuberculosis Treatment Committee, composed of two surgeons and
18 pulmonary TB specialists.

Data and sample collection
Anonymised data regarding the socio-epidemiological factors, clinical
aspects, and information referring to the current TB episode for the
SH-TBL cohort were collected using an electronic case report form.
Data available were: demographic (self-reported biological sex, age);
clinical data (BMI, presence of symptoms assessed using SGRQ
symptom sub-score to evaluate the frequency and severity of key
respiratory symptoms, C-Reactive Protein (CRP) value); data on TB
episode (relapse or new TB case); microbiological data (drug sensi-
tivity, SCC); radiological data (number of lesions in CXR and lesion
localization within the lung); data on resected TB lesion and pathology
analysis data (Supplementary Data 2).

During surgery, TB lesions were removed (median of 3.2 cm in
diameter), and cut to obtain: (1) one piece containing all compart-
ments and non-lesional tissue for pathology studies; and (2) 48 biopsy
fragments (~0.5 cm3) of tissue samples in RNAlater solution (Qiagen) at
4 °C overnight, before storage at −80 °C for further RNA-Seq analysis.
These biopsy fragments were collected from each differentiated zones
of the TB lesion by macroscopic examination by a pathologist: Central
Lesion (C), Internal Wall (I), External Wall (E). In addition, surrounding
non-lesional (NL) lung parenchyma tissue, unaffected, by eye and by
palpation, was collected from the same patient (Fig. 2a). Samples were
processed in BioSafety Level 3 (BSL-3) laboratory.
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Total RNA extraction
For an optimal RNA recovery, TB lesion biopsy samples were divided
into 0.16–0.21 g single pieces and placed into new tubes. Samples were
reduced to powder bymechanical cryofracturing using a BioPulverizer
device (Biospec Products) after being cooled in liquid nitrogen. The
powdered tissue was then transferred to 2mL Lysing Matrix D tubes
together with lysis solution for homogenization by FastPrep® instru-
ment (MP Biomedicals). RNA was purified using the mirVana miRNA
Isolation Kit (Thermo Fisher Scientific, AM1560), followed by genomic
DNA digestion using the DNA-free DNA Removal Kit (Thermo Fisher
Scientific, AM1906) according to manufacturer’s instructions. Quanti-
tative and qualitative RNA integrity number equivalent (RINe) values
were obtained by Agilent Bioanalyzer 2100 (Agilent Technologies). In
general, a standard RINe score for good quality RNA is set at seven.
Considering the source and status of the human TB lesion samples,
and our samples ranging from 4 to 7.4 (Supplementary Data 2), a
minimum RINe cut-off of four was established.

RNA-Sequencing library preparation, sequencing, and gene
alignment
Purified RNAwas diluted to 25ng/µl per aliquot and then shipped ondry
ice toMacrogen (Seoul, South Korea), where the RNA-sequencing (RNA-
Seq) was performed. Libraries were constructed using the TruSeq
Stranded Total RNA LT Sample Prep Kit (Human Mouse Rat) (Illumina,
RS-122-220X) following the TruSeq Stranded Total RNA Sample Prep
guide (Part#15031048Rev. E), includingprior removal of ribosomalRNA
using the RNA Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illu-
mina). RNA-Seq was performed on an Illumina platform HiSeq 4000
(Illumina), at 50 million reads per sample, 100bp stranded paired-end
reads. Pre-processing of raw data included quality control through
FastQC (v.011.7) and MultiQC (v.1.9)62. Before further steps in read pre-
processing, Illumina adapters were trimmed off with Trimmomatic
(v.0.39)63. The human genome sequence GRCh38.89 and human gene
annotations were downloaded from the ENSEMBL web repository. Files
from each sample were aligned to the human reference genome using
the Spliced Transcripts Alignment to a Reference (STAR) package
(v.2.7.5b)64, with the built-in gene counts quantification mode for
stranded RNA-Seq data. BAM files were generated, and the SAMtools
package applied to calculate the percentage of successful read align-
ment against the reference human genome (v.1.10)64.

RNA-seq data analysis
The overall pipeline for data handling, plotting and statistical analysis
was conducted in R (v.4.3.3). After STAR mapping, a gene count data
table was obtained including C, I, E andNL samples. Genes with a lower
than 50 counts among all the samples were discarded to avoid con-
founding the differential gene expression analysis, as they had low
expression to be reliably quantified. Paired statistical analyses were
done globally and separately for each compartment. The set for the
RNA-Seq experiments comprised 48 samples from14patients. Samples
from patient SH-TBL03 weren’t taken into consideration for the paired
comparisons between the whole TB lesion and separated compart-
ments as the NL tissue sample control was missing. The differential
expression analysis from tissue count tables was conducted using the
DESeq2 Bioconductor package (v.1.28.1)65. Genes were considered as
significant DEGs when the Benjamini–Hochberg adjusted p-value was
equal to or less than 0.05 (p ≤0.05). The R package heatmap (v.1.0.12)
was used to generate heatmaps and dendrograms for the genes and
samples by hierarchical clustering after DESeq2 depth normalization.
Heatmaps describe the Euclidean distances between samples.

Enrichment score for the different tissue compartments
The expression across compartments of upregulated selected genes
differentiating granuloma from non-lesional tissue was performed
using ssGSEA. ssGSEA is a variation of the GSEA algorithm that instead

of calculating enrichment scores for groups of samples and sets of
genes, it provides a score for each sample and gene set pair66.

Weighted gene co-expression network analysis and functional
annotation
Weighted gene co-expression network analysis (WGCNA) was per-
formed to identifymodules using the R packageWGCNA (v.1.72-1). The
TB granuloma modules were constructed using the 10,000 most vari-
able genes across all TB samples collected (log2 RNA-seq expression
values). To satisfy the scale-free topology criteria and the recommen-
dations forWGCNA use, we chose an optimal soft-threshold (β = 23) to
obtain an adjacency matrix from a signed weighted correlation matrix
containing pairwise Pearson correlations, generating the correspond-
ing topological overlap measure. To detect the modules, we applied a
dynamic hybrid tree-cut algorithm to detect the computedmodules of
co-expressed genes (minimum module size of 20, and deep split = 1).
Module colours represent distinct clusters of genes that are grouped
together based on similarity in their expression profiles. Finally, 21
modules were obtained. An additional “grey”module was identified in
TBgranulomamodules, consistingof genes thatwerenot co-expressed
with any other genes. The grey module was discarded from further
analysis. Moreover, only modules with more than 40 genes were
annotated.We computed their intramodular connectivity and selected
the top five most interconnected genes67. Significantly enriched Gene
Ontology and canonical pathways from the MSigDB website68 were
computed using clusterProfiler R package69. Modules were annotated
based on representative biological processes from pathways and pro-
cesses from all three reference databases. Fold enrichment for the
WGCNAmodules was calculated using the quantitative set analysis for
gene expression with the Bioconductor package QuSAGE70. To identify
the modules of genes over or underabundant in TB granuloma, com-
pared to the respective non-lesional lung tissue using log2 expression
values using the three compartments. Only modules with enrichment
scores with FDR p-value < 0.1 were considered significant.

Sub-modules representative of immune populations analysis
The LM22 immune population transcriptomic signature21 was used to
know the location of genes associated to immune populations within
the WGCNA modules, while the CIBERSORT deconvolution function
from the IOBR package71 was used to estimate the proportions of the
LM22 populations across TB lesion compartments. The two largest
immune-associated modules with the highest number of genes, the
adaptive/humoral and innate/PRR modules, were then expanded by
retrieving the unmerged modules contained within them before the
module merging step from the WGCNA analysis. The clusterProfiler R
package69 was used to compute the significantly enriched Gene
Ontology terms and annotate the sub-modules. Fold enrichment was
calculated using the quantitative set analysis for gene expression with
the Bioconductor package QuSAGE, employing the three compart-
ments compared to non-lesional tissue as before and considering as
significant an FDR <0.1.

Association between modules and clinical characteristics
TB individuals were classified and categorised taking into considera-
tion clinical surrogates of disease severity, using the following para-
meters: SGRQ symptoms sub-score > 20 or <20; being a fast
(SCC< 2 months) or slow sputum culture converter (SCC> 2 months
after the start of ATT); DS vs MDR-TB case; being a relapse or new TB
case; number of lesions present in theCXR. The SGRQsymptomsscore
comes fromaneight-itemquestionnaire with aweighted score ranging
from 0 to 100, with higher scores indicating higher effects, frequency
and severity of respiratory symptoms (Supplementary Data 2). To
divide the patients for the analysis hereby presented we used a cut-off
defined by the median SGRQ symptoms value, >20 being considered
more severe.
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We computed the eigengene for each module, defined as the
first principal component of the module representing the overall
expression level of the module. The relationship of the tran-
scriptomic modules with clinical surrogates of TB severity (SCC and
SGRQ symptoms score) was tested using Wilcoxon-rank sum test.
Nominal p-values were adjusted using the Benjamini–Hochberg
approach72.

Identification of transcription factors
Transcription factors were identified from the list of differentially
expressed genes between TB lesion (G) vs NL filtered by genes
belonging to modules associated with TB severity (SCC and SGRQ
symptoms score) by using the BioMart R package73 and filtering by the
Gene Ontology term GO:00037000, which corresponds to DNA-
binding transcription factor activity74. This yielded a list of 92 tran-
scription factors which was then tested using the Wilcoxon-rank sum
test. Nominal p-values were adjusted using the Benjamini–Hochberg
approach72.

Immunohistochemistry validation
The module with the highest enrichment within the TB lesion and
association to TB severity (SCC and SGRQ symptoms score), the IFN/
cytokine signalling module, was used to generate a protein-protein
interaction (PPI) network with the STRING 12.0 website75 set at the
highest confidence interaction score (<0.9). The CytoHubba plugin for
Cytoscape 3.10.2 was used to identify the top 5 hub genes with 12
topological analysis methods. The three genes that were selected the
most by the 12 methods and which overlapped with the top 10 hub
genes ranked bymodulemembership from the IFN/cytokine signalling
module were selected for immunohistochemistry validation. Immu-
nohistochemistry analysis was carried on paraffined sections of lesion
samples and lung samples from individuals who had undergone sur-
gery for bullous emphysema (as non-TB controls). The staining was
performed with antibodies against CXCL9 (rabbit polyclonal 22355-1-
AP; Proteintech, dilution 1:100), GBP5 (rabbit polyclonal 13220-1-AP;
Proteintech, dilution 1:200), and STAT1 (rabbit polyclonal 10144-2-AP;
Proteintech, dilution 1:300). Slides were scanned with an AxioScan 7
and Zen 3.10 imaging software (Zeiss). Image analysis was performed
using ImageJ and applying colour deconvolution for haematoxylin and
DAB. Thresholding was used to quantify the stained areas, with
thresholds set from 0 to 175 for haematoxylin and 0 to 140 for DAB.
Total stained area was measured for each colour and the results were
expressed as a percentage of DAB staining per total tissue area. Sta-
tistical analysiswas performedby applying theWilcoxon-rank sum test
and adjusting nominal p-values with the Benjamini–Hochberg
approach72.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metadata and sequencing data generated in this study have been
deposited in the National Center for Biotechnology Information Gene
Expression Omnibus (GEO) database under accession code
GSE184537. The remaining data generated in this study are provided
within the Article, Supplementary Information, Supplementary
Datas 1 and 2, and Source Data file or from the corresponding author
on request. These patient data used in this study are freely available in
theMendeley database under the following (https://doi.org/10.17632/
knhvdbjv3r.1)76. Source data are provided with this paper.

Code availability
The code used in this study is available on GitHub, https://doi.org/10.
5281/zenodo.1532254177.
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