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Nuclear quantum effects inmolecular liquids
across chemical space

Baris E. Ugur & Michael A. Webb

Nuclear quantum effects (NQEs) influence many physical and chemical phe-
nomena, particularly those involving light atoms or occurring at low tem-
peratures. However, their impact has been carefully quantified in few systems-
like water-and is rarely considered more broadly. Here we use path-integral
molecular dynamics to systematically investigate NQEs on thermophysical
properties of 92 organic liquids at ambient conditions. Depending on chemical
constitution, we find substantial impact across thermal expansivity, com-
pressibility, dielectric constant, enthalpy of vaporization, and notably molar
volume, which shows consistent, positive quantum-classical differences up to
5%; similar, less pronounced trends manifest as isotope effects from deu-
teration. Using data-driven analysis, we identify three features-molar mass,
classical hydrogen density, and classical thermal expansivity-that accurately
predict NQEs and facilitate understanding of how characteristics like branch-
ing and heteroatom content influence behavior. This work highlights the
broad relevance of NQEs in molecular liquids, while also providing a con-
ceptual and practical framework to anticipate their impact.

The quantum nature of nuclei influences every material and chemical
process. Resulting nuclear quantum effects (NQEs) can arise as zero-
point energy,1 quantum tunneling2,3, and quantization of proton
energy levels. NQEs are generally expected to be substantial under
certain conditions, such as processes occurring at low temperature or
involving light nuclei. They have been found to be consequential in
genetic stability of DNA4,5, zeolite catalysts6–9, superconductor
materials10,11, and enzymatic reactions12–15. NQEs also directly impact
experimental studies that investigate or depend on isotope
substitution16–22. Therefore, NQEs are important for many biological,
chemical, and physical processes, even those containing heavier atoms
or strong interactions6,10,23–26, yet their extent and significance remain
not well characterized for many systems.

Nuclear quantum effects are often deduced through equilibrium
or kinetic isotope effects. In classicalmechanics, kinetic isotope effects
are expected but depend solely on the mass differences between iso-
topes; deviations from such results highlight quantum mechanical
phenomena-such as nuclear tunneling. This is common in enzymatic
reactions13,27–32; for instance, isotope substitution can alter the oxida-
tion rate of yeast alcohol dehydrogenase by up to 33%.15 In a very

different scenario, the conductivity of deuterated versus normal
phosphoric acid differs by orders of magnitude, while classical
expectations suggest a ratio of ca. 1.433. Meanwhile, classical statistical
thermodynamics does not predict isotope-dependent changes in
equilibrium properties, yet isotope effects on such properties are
widely observed34–39. For example, the solid-vapor isotope fractiona-
tion ratio between deuterated and normalwater reaches values as high
as 1.20835. Replacing H2O with D2O similarly impacts the structure and
properties of biopolymer solutions40,41, despite D2O being chemically
equivalent to H2O under classical assumptions. The temperature-
dependence of intramolecular isotopic equilibria has even been used
to estimate dinosaur body temperatures via isotope-ratio mass spec-
trometry measurements on fossilized sauropod teeth42. The presence
of such isotope effects signals the relevance of NQEs but does not fully
characterize them.

Path-integral molecular dynamics (PIMD) enables explicit treat-
ment of NQEs and calculation of isotope effects. This is in contrast to
conventional classical MD, which treats nuclei as point particles evol-
ving on a potential energy surface. Meanwhile, electronic structure
methods, like density functional theory, provide a quantum
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mechanical treatment of electronic degrees of freedom but generally
rely on the Born-Oppenheimer approximation, under which the nuclei
are held fixed or propagated classically. PIMD incorporates NQEs via a
mathematical isomorphism, mapping each quantum nucleus to a
classical ring polymer, thereby capturing quantum delocalization and
thermal fluctuations by sampling in an extended phase space43. For
water, PIMD has demonstrated how intramolecular zero-point motion
and intermolecular tunneling affect properties like translational dif-
fusion and orientational relaxation rates44,45. PIMD has also revealed
the significance of NQEs in DNA base pairs, acetylene:ammonia co-
crystals, and electrolyte transport in confined aqueous systems46–48.
Nevertheless, in addition to the computational overhead of the
extended phase space, PIMD can be practically limited by the avail-
ability of force fields that accurately represent the Born-Oppenheimer
potential energy surface. Most conventional classical MD simulations
typically use efficient force fields based on analytical equations.
However, these force fields have parameters often calibrated to
experimental data, implicitly including NQEs in uncontrolled ways,
such that their use in PIMD risks “double counting” NQEs44,49. As a
result, broad application of PIMDremains limited, and the role ofNQEs
across many systems and conditions is still largely unexplored.

Here, we characterize NQEs in 92 molecular liquids, spanning a
wide organic chemical space, at ambient conditions. In particular, by
comparing classical and path-integral MD simulations, we quantify
NQEs on several thermodynamic properties including molar volume
(vm), thermal expansion coefficient (αP), isothermal compressibility
(κT), static dielectric constant (εr(0)), and enthalpy of vaporization
(Δhvap). Equilibrium isotope effects on the same systems are also
examined by simulating deuterated systems. This investigation spans a
diverse set of chemistries-including amines, ethers, ketones, alcohols,
alkanes, and more-and is enabled by the Topology Automated Force-
Field Interactions (TAFFI) framework50, an efficient analytical force
field parameterized solely from quantum chemical calculations at the
ωB97X-D3/def2-TZVP level. Because TAFFI does not utilize

experimental calibration, it is well-suited for conducting PIMD across
the numerous systems studied. We find a meaningful influence of
NQEs for every substance and highlight key chemical features that
correlate with NQEs using unsupervised and supervised machine
learning. This reveals competing effects between system stability and
hydrogen-atom densities on NQEs, which particularly explains trends
related to hydrogen-bonding groups and molecular branching. By
combining physics-based simulation and data-driven analysis, this
work provides a deeper understanding of NQEs in common liquid
organic systems and the conditions underwhichexplicit consideration
of NQEs may be needed.

Results
Varied effects across molecules and properties
To understand howNQEsmanifest across chemical space, we simulate
92 organic molecules at ambient conditions. Of the 92 molecules
studied, 87 were previously simulated using classical MD with various
force fields51, including TAFFI50. Benchmarking against experimental
thermophysical properties showed that TAFFI compared favorably to
other widely used empirical force fields in terms of reproducing
experimental thermophysical properties across this set,which features
amines, ethers, nitriles, ketones, alcohols, aldehydes, esters, amides, as
well as some sulfur- and halogen-containing compounds. We further
augmented this setwithfive n-alkanes (C9, C10, C11, C14, andC15) to have
representation of nonpolar hydrocarbons. The extent of NQEs is then
quantified via

Δλð%Þ= 100× λPI�λcl

λPI
ð1Þ

where λcl and λPI are the properties calculated via classical and path-
integral MD simulations.

Figure 1 summarizes the results, with Fig. 1A qualitatively orga-
nizing all systems based on influence onmolar volume, vm. While it is
clear and expected that heavy atoms like chlorine, bromine, and

Fig. 1 | Impact on thermophysical properties. A Molecular structures of studied
systems. Molecules are categorized into deciles based on Δvm

. Within each decile,
higher vertical position indicates higher Δvm

. Atoms are colored as follows: carbon
(gray), hydrogen (white), oxygen (red), nitrogen (blue), sulfur (yellow), chlorine
(green), bromine (brown), iodine (purple). Structures were rendered with PyMOL
(v3.1.0)82. The same data are shown with skeletal formula in Supplementary Fig. 1.
B The magnitude of NQEs on molar volume, thermal expansion coefficient, iso-
thermal compressibility, static dielectric constant, and enthalpy of vaporization of
each system. C The calculated isotope effects on each property. The gray regions

around y =0 under each plot indicate the average standard error of the mean for
the magnitude of NQEs on each property obtained from four independent simu-
lations. The violin plots in (B, C) represent the distribution of Δλ and ΔλD!H values,
with the white dot representing the median, the black box representing the inter-
quartile range, and the inner lines representing the 1.5× interquartile range. The
spread along the x-axis represents the density obtained from Gaussian kernel
density estimation. All displayed properties are calculated at 298.15 K and 1 atm.
Source data are provided as a Source Data file.
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sulfur lead to smaller NQEs, other relativistic organizing principles
based on molecular constitution are less evident. More quantita-
tively, NQEs affect all systems and properties (Fig. 1B). Accounting
for NQEs markedly increases molar volume by up to 5.5% and also
increases κT for most systems, with an average effect of nearly 8%.
These systematic increases may signify weaker cohesive inter-
molecular interactions due to nuclear delocalization, in line with
prior studies on water and other liquid organic systems52–59. In prior
investigation featuring linear alkanes, the NQEs were found to
decrease density by as much as 11%;56 for water, NQEs induce a much
smaller effect on the density, but its direction is consistent with our
observations56,60,61. For reference, trends in density are opposite but

similar in magnitude to molar volume, as analytically Δρ = � Δvm
1�Δvm

�
�Δvm

(Supplementary Fig. 2). Quantum treatment of nuclei yields

less consistent directional changes from classical results on the
thermal expansion coefficient, enthalpy of vaporization and the
static dielectric constant. For these properties, the average effect is
small but also comparable to the statistical error in their calculation.
These average effects are slightly positive for αP and negative for
εr(0) and Δhvap. Overall, these results indicate that NQEs can sig-
nificantly and detectably influence certain thermodynamic proper-
ties across diverse molecular chemistries.

For the original TAFFI framework, all bonds are fit to purely har-
monic functions, but anharmonicity in the potential energy surface-
especially in bond-stretchingmodes-has been identified as a key factor
influencing the magnitude of NQEs44,62–64. For example, in water,
anharmonicity in the O-H bond contributes to competing effects:
intermolecular zero-point energy and tunneling weaken hydrogen
bonding, while intramolecular zero-point motion enhances the dipole
moment and strengthens interactions, resulting in relatively small net
NQEs44.

To evaluate then whether the harmonic description in TAFFI
may be responsible for the large NQEs relative to water, we re-
parameterized bonds involving hydroxyls, amines, and thiols (29
molecules) with an anharmonic Morse potential44 based on expan-
ded mode scans at ωB97X-D3/def2-TZVP level of theory. We then
evaluated Δvm

with this anharmonic bond description and compared
it to the harmonic results (Supplementary Fig. 3). Overall, we find
that anharmonicity in bond-stretching slightly suppresses NQEs,
though the overall magnitudes remain comparable to the harmonic
description. We speculate that this mitigating effect is weaker in the
organic molecules studied than in water, likely due to smaller dipole
moment changes and correspondingly less enhancement of inter-
molecular interactions following introduction of anharmonicity.
Intuitively, as most of the molecules in this study are larger than
water, they are expected to exhibit smaller overall changes in dipole
moment due to anharmonicity, as local bond distortions contribute
less to the total molecular polarization. Although anharmonicity
appears to have little impact for the molecules and conditions stu-
died, its role in other phases, molecules, or force fields warrants
careful consideration.

Isotope effects versus nuclear quantum effects
Building on the preceding results that directly compare quantum and
classical systems, we probe isotope effects of deuteration using

ΔλD!H ð%Þ= 100× λPI�λPI, D

λPI,D
ð2Þ

where λPI,D is the property for a fully-deuterated system simulated via
PIMD; deuterated systems are often expected to approximate classical
behavior. The quantity ΔλD!H is equivalent to 1� λH

λD
where λH

λD
is often

noted as the (experimentally accessible) equilibrium isotope effect.
Trends in ΔλD!H (Fig. 1C) align directionally with Δλ (Fig. 1B) but with
reduced magnitudes. However, beyond consistent shifts in molar

volume, the effect of deuteration is often within the range of statistical
error. This change is most notable for κT, where the average effect
shifts from 7.8% when comparing to purely classical systems to 3.5%
when comparing to quantum mechanical but deuterated ones. This
highlights that deuteration does not fully replicate a purely classical
treatment. A system with a negligible isotope effect may still display
significant NQEs, which partially cancel between the isotopically
normal and deuterated systems.

Key molecular determinants
We next identify key molecular features that influence the strength of
NQEs in liquid systems. Given its consistent and statistically resolvable
effects, in addition to vm being a fundamental thermophysical prop-
erty relevant to equations of state and other material properties, our
discussion focuses on Δvm

, while analyses of other properties are
included in Supplementary Fig. 4.

To visualize how NQEs vary across a broad chemical space, we
apply dimensionality reduction from a high-dimensional molecular
feature space to twodimensions using unsupervisedmachine learning.
Specifically, we use the Uniform Manifold Approximation and Projec-
tion (UMAP) algorithm65,66 on a dataset that includes our 92 investi-
gated molecules and an extended set of 2874 molecules from the
ChEMBL database67,68. Each molecule is initially represented by a
34-dimensional atom-type feature vector generated using the Merck
Molecular Force Field (MMFF94)69, and then UMAP constructs a
neighborhood graph from the collection of such vectors, models
pairwise relationships probabilistically, and optimizes a low-
dimensional embedding that preserves both local and global struc-
ture. The resulting collective variables, Z1 and Z2, are non-linear
transformations of the high-dimensional feature values, which obfus-
cates facile interpretation. Nevertheless, Z1 and Z2 define a coordinate
space that can be easily visualized and for which chemical similarity
trends with distance.

Within the broader chemical context of the ChEMBL database, we
find that the simulated substances indeed span a wide chemical space
(Fig. 2A). In terms of readily identifiable trends, chemical structures
displaying lower Δvm

are seemingly clustered in the Z1-Z2 space in the
vicinity of molecules with generally higher molecular weights, such as
chloroform. In contrast, molecules with larger Δvm

are distributed
across the manifold, indicating that diverse molecular features may
enhance NQEs. This is further supported by the fact that different
functional groups can be associated with population-level effects on
Δvm

(Supplementary Fig. 6). For instance, molecules with amines tend
to exhibit higherΔvm

, and thosecontainingheavier atomsexhibit lower
Δvm

. At the same time, there is significant variation of Δvm
within each

population of functional groups, such that attributing NQEs purely to
functional groups is difficult. This highlights the necessity to consider
additional factors to ultimately understand the manifestation of NQEs.

To gain insight into what factors correlate with NQEs, we create a
data-driven model for Δvm

from simple descriptors, with the rationale
that an effective model would highlight the importance of those
descriptors. We find that a model using just three inputs-average
atomic mass (mw), hydrogen density (ncl

H), and thermal expansion
coefficient (α cl

P )-accurately predicts Δvm
(Fig. 2B). The coefficient of

determination over all predictions is R2 = 0.881 ± 0.002. Here, predic-
tions aremade as Δ̂vm

= T̂vm
αcl
P , where T̂vm

=RFðmw,n
cl
H Þ is theoutput of

a random forest (RF) regressor trained to predict a defined quantity
Tvm

� ðαcl
P Þ

�1
Δvm

, and the RFmodel is trained on all data except that of
the molecule being predicted. We empirically find that this approach
outperformsmodels formulated as Δ̂vm

= RFðmw,n
cl
H,α

cl
P Þ, likely due to

the large variability inα cl
P acrossmolecules and its nature as a response

function, unlike themore intrinsic descriptorsmw andncl
H. As a point of

possible interest, we note that Tvm
has units of temperature and, to

leading order, can be interpreted as the temperature shift required for
a classical system to match the molar volume of its quantum
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counterpart (i.e., v cl
mðT +Tvm

Þ � vPIm ðTÞ). This interpretation does not
imply a true physical equivalence between the quantum system and a
classical system at elevated temperature-a comparison that has been
cautioned against as potentially misleading in prior work70. Across the
molecules studied, Tvm

ranges from a few to several tens of degrees
(Supplementary Fig. 7).

We use Shapley Additive Explanations (SHAP) analysis71 to
attribute feature contributions to predictions made by our
machine learning model. This technique assesses the impact of
each feature by computing the difference in model output with
and without its inclusion for all feature combinations. This ana-
lysis reveals some intuitive trends: abundance of hydrogens and

greater ncl
H enhance Δvm

(Fig. 2C). These effects reflect a general

dependence on molecular composition, as systems with low
mass-density or hydrogen-rich systems would generally imply
greater sensitivity to NQEs due to the presence of lighter nuclei.

However, α cl
P correlates positively with Δvm

. SHAP analysis also

indicates that α cl
P and ncl

H features have greater impact on model
output than mw, which has a non-monotonic relationship with
Δvm

. Although variable importance was established within the

context of 92 organic molecules, it is useful to consider how
these principles translate to a well-studied system, like water.
Using classical simulation data from the q-TIP4P/F water model44

Fig. 2 | Correlation of chemical features with the magnitude of NQEs. A A two-
dimensional manifold organization of the 92 organic molecules (blue, larger mar-
kers) and 2874 small molecules (tan, smaller markers) obtained from the ChEMBL
database. The coordinates Z1 and Z2 are derived by applying the UniformManifold
Approximation and Projection (UMAP) algorithm to a 34-dimensional input vector
based on MMFF94 atom typing69. Inset lines highlight representative molecules
from different regions of the manifold. B Comparison of predicted versus simu-
lated effect of NQEs on molar volume (Δvm

). Predicted values are obtained from a
data-driven model with three chemically interpretable input features: average
atomic mass (mw), hydrogen density (nclH ), and thermal expansion coefficient
(αclP ); the latter two are determined from classical MD simulations. Error bars

reflecting the standard error of the mean, determined using four independent
simulations and from five different training and testing cycles for the data-driven
model, are generally smaller than the symbol size. Themarkers (blue) use the same
color scale as those in (A). C Impact of feature contributions based on Shapley
Additive Explanations (SHAP) analysis. The position on the x-axis indicates the
impact of each feature on themodel output, and themarker color indicates feature
value. Feature values (λi) are displayed following a Yeo-Johnson power transfor-
mation, denoted by ψ, to present data on similar scales83. For visual clarity, the
SHAP data are shown over a restricted range; Supplementary Fig. 5 depicts the full
observed range of data. Source data are provided as a Source Data file.
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as input, the data-driven model predicts Δ̂
RF
vm

=0:47%, in good

agreement with the simulation result Δvm
=0:25%. Despite water

being chemically distinct from the other molecules studied, the
model captures the small impact on vm due to NQEs-an outcome
largely driven by its low αP.

Overall, these results indicate a complex interplay between NQEs,
fluid composition, and its stability that is yet predictable through
simple properties readily computed with classical simulation.

Competing effects of system stability and hydrogen density
At first glance, the trends for nH and αP appear to reflect competing
effects: higher nH suggests stronger intermolecular forces, which
would typically reduce αP. To explore this trade-off, we leverage the
dataset to create controlled comparisons by fixing either nH or αP and
examining the effect of the other on Δvm

. This is accomplished
through k-means clustering to group molecules with similar nH
values and examining correlations of the groups with Δvm

(Fig. 3).
Within groups with similar nH, a decrease in fluid stability (indicated
by higher αP) tends to enhance NQEs. Conversely, across groups with
comparable stability (similar αP), an increase in nH (and thus more
light nuclei) leads to stronger NQEs. Nevertheless, the overlapping αP
ranges across different nH groups (with some weak negative corre-
lation) suggest that both properties facilitate predicting the magni-
tude of NQEs.

Trends with hydrogen bonding and branching
To elucidate how Δvm

correlates with molecular constitution, we sys-
tematically compare groups of molecules varying in hydrogen bond-
ing (Fig. 4A) and branching (Fig. 4B) and examine how key descriptors,
nH and αP, are affected.

In Fig. 4A, comparing 1-bromobutane (i), 1-chlorobutane (ii),
butane-1-thiol (iii), and butan-1-ol (iv) highlights the positive impact of
hydrogen bonding on nH and Δvm

. Among these molecules– which
share the same number of heavy atoms, the same chemical topology,
and comparable αP–the hydrogen-bonding thiol and alcohol exhibit
higher nH. However, nH and Δvm

do not scale monotonically with
additional hydrogen-bonding groups. This is revealed by comparison
of butan-1-ol (iv), butane-1,4-diol (v), pentane-1,5-diol (vi), and pro-
pane-1,2,3-triol (vii). Among these alcohols, increasing the number of
hydrogen-bonding groups minimally affects hydrogen density but
increases the stability of the fluid (decreases αP). Evaluation of

different hydrogen-bonding groups reveals similar trends (Supple-
mentary Fig. 9) where the balance of nH and αP elucidates the resulting
Δvm

. For example, relative to alcohols with similar nH, amines display
larger NQEs and associated larger αP.

In Fig. 4B, comparing multiple linear molecules and their bran-
ched analogues, we observe consistent impact on NQEs. In particular,
the branched molecule exhibits larger Δvm

than the linear one. Across
all four pairs, branching reduces nH, but there is a coupled increase in
αP. For thesemolecules, the net result is strongerNQEs in the branched
molecules. We therefore suggest that NQEs, at least as manifested
through Δvm

, are likely to be more substantial in branched molecules
owing to relatively diminished fluid stability. This observation is
reminiscent of an expected trend: boiling points for branched mole-
cules are typically lower than those of linear molecules of comparable
molecular weight and composition.

Detailed physics of linear versus branched systems
The conventional rationale for the trend involving boiling tempera-
tures is that branched molecules have reduced surface area and less
efficient packing, which weakens intermolecular forces and impacts
the magnitude of NQEs. Intriguingly, the linear and branched mole-
cules studied here exhibit comparable interaction patterns with
respect to the number of hydrogen bonds, their strength, and average
nearest-neighbor distances (Supplementary Fig. 10). This renders the
importance of hydrogen-bonding groups on trends in αP, and thus
their impact on Δvm

, unclear.
Resolving interaction patterns as a function of distance between

neighboring molecules, however, illustrates key differences between
butan-1-ol with its branched analogue, 2-methylpropan-2-ol (Fig. 5).
The distribution of hydrogen bonds (Fig. 5A) shows that butan-1-ol
forms bonds over a broad range of intermolecular distances, while
methylpropan-2-ol, with less conformational flexibility, forms bonds
only at separations of approximately 4.6Å. A further distinction
emerges in energetics of molecular interactions within the fluid
(Fig. 5B): 2-methylpropan-2-ol exhibits a pronounced minimum in
interaction energy near the distance associated with hydrogen
bonding, while butan-1-ol shows steadily diminishing attractive
interactions with distance. These nuanced changes in intermolecular
interactions due to branching result in a pronounced increase in αP,
which tends to enhance Δvm

. Notably, the minimum interaction
energy for butan-1-ol occurs at a distance where few or no hydrogen
bonds form. Additionally, butan-1-ol lacks a strong preference for
relative molecular orientation, unlike 2-methylpropan-2-ol (Fig. 5C).
These findings suggest that the cohesive energy of 2-methylpropan-
2-ol relies more heavily on hydrogen bonding whereas butan-1-ol
exhibits overall stronger dispersion forces. This comparison also
serves to demonstrate the sensitivity of NQEs to subtle changes in
nanoscale interactions.

Discussion
Nuclear quantum effects (NQEs) are present in all physical systems,
but their significance is rarely known beyond certain well-studied
systems (e.g., water) or expected scenarios (e.g., low temperatures).
In this study, we quantified the impact of NQEs at ambient conditions
on various properties across 92 organic molecules spanning diverse
chemical space. By comparing path-integral and classical simula-
tions, we observed that NQEs tend to significantly and measurably
enhance molar volumes and isothermal compressibilities. Effects on
thermal expansion coefficients, dielectric constants, and enthalpies
of vaporization lack clear general directional trends relative to the
uncertainty of the calculations themselves, though individual sys-
tems can still be significantly impacted. Simulations of deuterated
systems reveal similar but reduced effects, with isotope-induced
changes generally within the statistical uncertainty, except for molar
volume. This suggests deuteration often underestimates the full

Fig. 3 | Analysis of hydrogen density and thermal expansion coefficient. Four
groups of data are generated with k-means clustering algorithm on the respective
hydrogen densities nH; the marker colors indicate being within the range specified
by the color bar. The colored regions are distinguished by support vector machine
(SVM) margin lines. Error bars (black) represent the standard error of the mean
obtained from four independent simulations. For visual clarity of trends, the data
are shown over a restricted range; Supplementary Fig. 8 depicts the full observed
range of data. Source data are provided as a Source Data file.
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extent of NQEs, as a quantum treatment of deuterium still impacts
properties.

We further identified physical properties that effectively
correlate with the magnitude of NQEs. This was particularly
demonstrated by a data-driven model with interpretable inputs of
the average mass of composite atoms, hydrogen densities, and
thermal expansion coefficients. We posit this as a pragmatic
approach to anticipate the relevance of NQEs and the necessity of
computationally intensive path-integral simulations. Beyond
prediction, these property trends highlight key physical factors,
some intuitive and others less so, affecting NQEs. An intriguing
finding from the analysis is the competing effect between
hydrogen density and fluid stability (linked to the thermal

expansion coefficient), where both factors enhance NQEs but are
somewhat inversely correlated.

By exploiting the chemical diversity of our dataset, molecular-
level insights were obtained by examining sets of molecules with var-
iations in hydrogen content, hydrogen-bonding capabilities, and
comparisons between linear and branched topologies. Grouping data
based on functional groups revealed that NQEs are generally more
significant in amines compared to ethers and alcohols, for example.
Broadly, systems with high hydrogen density (and therefore light
nuclei) but weaker interactions, leading to lower stability, exhibit the
largest NQEs. This explains a potentially unintuitive result that systems
with multiple hydrogen-bonding groups may not necessarily exhibit
strong NQEs because the hydrogen bonding tends to enhance fluid

Fig. 4 | Impact of hydrogen bonding and branching on the extent of NQEs.
A Hydrogen densities and thermal expansion coefficients for systems of various
hydrogen-bonding groups and counts. Visualized molecules are labeled as (i) 1-bro-
mobutane, (ii) 1-chlorobutane, (iii) butane-1-thiol, (iv) butan-1-ol, (v) butane-1,4-diol,
(vi) pentane-1,5-diol, (vii) propane-1,2,3-triol for reference. B Comparison between
four pairs including linear molecules and their branched analogues of chemically
similar structures. The impact of branching on the thermal expansion coefficient and
hydrogen density is shown on the y- and x-axis, respectively. The marker color

intensity denotes the magnitude of NQEs, indicated by the color bars and arrow
directions in each panel. Visualized molecules are labeled as (I) butan-1-amine, (II) 2-
methylpropan-2-amine, (III) propan-1-amine, (IV) propan-2-amine, (V) pentan-1-ol, (VI)
2-methylbutan-2-ol, (VII) butan-1-ol, (VIII) 2-methylpropan-2-ol. It should be noted
that while the two color bars have different bounds, the range of the bounds is equal.
Error bars (black) represent the standard error of the mean obtained from four
independent simulations. Source data are provided as a Source Data file.
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stability, reflected in a smaller thermal expansion coefficient. By con-
trast, molecular branching has a general tendency to both reduce fluid
stability andhydrogendensity. This study advances our understanding
of NQEs in commonly used substances, guiding experimental and
computational approaches and providing a framework for when
explicit treatment of NQEs is necessary to capture essential physical
phenomena.

Methods
General simulation protocols
Systems were modeled with the quantum chemistry-based Topology
Automated Force-Field Interactions (TAFFI) framework50 with
Waldman-Hagler mixing rules. The TAFFI framework was chosen for
this study due to its efficiency as an analytical force field, its strict
parameterization using quantum chemical calculations at the ωB97X-
D3/def2-TZVP level, and the generally good agreement for a range of
thermophysical properties, comparing values calculated fromclassical
simulations and those reported experimentally50. Real-space non-
bonded interactions were truncated at 14Å, unless otherwise noted.
Long-range electrostatics calculations used the Particle Mesh Ewald
(PME) algorithm; tail corrections were applied for Lennard-Jones
interactions beyond the real-space cutoff, unless otherwise noted. All
PIMD simulations used a ring-polymer bead count of P = 32. All simu-
lations used a timestep of 0.5 fs. Constant-temperature conditions of
298.15 K were achieved using a Langevin thermostat for classical
simulations and the path-integral Langevin equation (PILE)
thermostat72 for path-integral simulations; both utilize a friction
coefficient of 1 ps−1. Constant-pressure conditions at 1 atm were

achieved using a Monte Carlo barostat with an attempt frequency
of 25 fs.

The force field in tandem with aforementioned settings enables
accurate reproduction of liquid-phase experimental densities51 for
87 systems with available empirical data (Supplementary Fig. 11).
Benchmarking of classical and PIMD simulation results also shows that
path-integral treatment of most systems brings predicted molar
volumes closer to experiment. To gain quantitative insight, we apply a
one-tailed paired t-test on the differences with experiment and report
p = 4.8 × 10−17 <0.05, indicating that PIMD results are systematically
closer to experiment. These results, along with good alignment
between force-field intramolecular normal-mode frequencies and DFT
results, suggest that TAFFI can effectively represent and discriminate
the chemically diverse set of systems in this study.

Property calculations and analyses were performed for four
independent classical and path-integral MD simulations of each
molecular system. Each simulation contained theminimumnumber of
molecules to reach 5000 atoms, initialized with random positions and
orientations within a simulation cell of V = 50 nm3. The initial config-
urationwas subjected to energyminimizationwith an energy tolerance
of 10 kJ/mol followed by 0.1 ns simulation in the microcanonical
ensemble. The systemwas then equilibrated in the canonical ensemble
at 400K for 0.2 ns and cooled to 298.15 K over 0.8 ns with a linear
temperature schedule. Subsequently, systemswere equilibrated in the
isothermal-isobaric ensemble at 1 atm for 3 ns followed by a produc-
tion run of 10 ns, during which thermodynamic data were collected,
and system configurations were saved every 10 ps. Simulations of
q-TIP4P/Fwater systems followed a similar procedure with 1000water

Fig. 5 | Effect of branching on intermolecular interactions through comparison
of linear butan-1-ol with branched 2-methylpropan-2-ol. Ensemble averages of
(A) the hydrogen-bond density, (B) pairwise intermolecular interaction energies,
and (C) interaction orientations as a function of distance between molecules. The
inset images of panel (C) illustrate calculations of the interaction distance and

orientation; the renderings adjacent to the y-axis illustrate configurations con-
sistent with the nearest tick marks. Error regions indicate the standard error
obtained from four simulations for each bin. All molecular renderings were gen-
erated using the Visual Molecular Dynamics (VMD) software84 (version 1.9.4).
Source data are provided as a Source Data file.
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molecules and with a real-space non-bonded cutoff distance of 10Å.
The above procedure was found to be insufficient to equilibrate C14

and C15 systems. For these, initial structures were generated using a
100ns classical simulation in the isothermal-isobaric ensemble at
298.15 K and 1 atm, followed by 3 ns of additional equilibration and
10 ns production runs using either classical MD or PIMD. These pro-
tocols were sufficient to achieve adequate energy conservation and
effectively converge the system density (see Supplementary Figs.
12 and 13).

All simulations were performed using the GPU implementation of
the OpenMM 7.7.0 software package73. PIMD simulations were per-
formedonNVIDIAA100andP100GPUs,withmeansimulation timesof
46.5 and 89.3 h, respectively, in contrast with classical MD simulations
of 1.7 h on A100GPUs. Total simulation time throughout the studywas
55,383 GPU hours.

Gas-phase simulations
Single-molecule simulations of each systemwere used to calculate the
gas-phase energy to obtainΔhvap. Amolecule was placed in a large box
with a volume of 125 nm3 and simulated in the microcanonical
ensemble for 1 ns, followed by the canonical ensemble at 298.15 K for
0.4 ns using an Andersen thermostat with a collision probability of
10 ps−1. For these simulations, all pairwise interactions were evaluated
in real-space and restricted to within 15Å to ensure that there are no
interactions with periodic images. Linear and angular momenta of
each system were removed, the particle velocities were rescaled, and
the potential energies were saved every 1 ps.

Analysis of system properties
Molar volumes were calculated using

vm = M
hρi ð3Þ

where M is the molar mass of the molecule and 〈ρ〉 is the average
(mass) density.

Thermal expansion coefficients, αP, were calculated using

αP =
1

hV i
∂V
∂T

� �
P ð4Þ

where ∂V
∂T

� �
P was numerically approximated using average volumes

from simulations at 293.15, 298.15, and 303.15 K. The additional simu-
lations at 293.15 and 303.15 K were performed using the equilibrated
configurations from 298.15 K. The systems were equilibrated in the
isothermal-isobaric ensemble at for 0.5 ns, followed by 1.5 ns produc-
tion runs where the system volume was saved every 1 ps.

Isothermal compressibilities, κT, were calculated using the fluc-
tuations in the system volume using

κT =
hV2i�hV i2
kBThV i ð5Þ

where kB is the Boltzmann constant. Similarly, static dielectric con-
stants, εr(0) were calculated using

εrð0Þ=
1
P

XP

i = 1

1 +
4π
3

hM2
i i � hMii2
VkBT

ð6Þ

where M is the total dipole moment of the simulation box (P = 1 for
classical MD simulations).

Molar heats of vaporization, Δhvap, were calculated using

Δhvap =
1
P

PP

i= 1
EðgÞ
i +kBT � 1

P

PP

i= 1
EðlÞ
i ð7Þ

where E(ν) is the total internal energy per mole (including both poten-
tial and kinetic energy) in phase ν, either liquid or gas. This expression

assumes the ideal gas approximation and that the vapor-phase molar
volume is much greater than that of the liquid. Often, the kinetic
energy contributions in the gas and liquid phases are expected to
cancel, allowing Δhvap to be approximated from potential energies
alone51. However, in PIMD simulations, quantum kinetic energy-arising
from harmonic coupling of systems in the extended phase space-can
differ between phases. Therefore, we retain all energy contributions in
the calculation for simplicity.

Unsupervised Learning
Unsupervised learning via Uniform Manifold Approximation and Pro-
jection (UMAP) dimension reduction was performed using the Python
umap-learn package (version 0.5.3), with MMFF94 atom types to
describe the 34-dimensional feature space. The MMFF94 atom types
were obtainedusing the rdkit Pythonpackage (version 2022.9.3)74. The
UMAP analysis includes additional small organic molecules obtained
from the ChEMBL database. Molecules containing rings, net charge,
fluorine atoms, or more than two double or triple bonds were exclu-
ded, resulting in 2874 molecules. For the UMAP hyperparameters,
the analysis used 100 for the size of local neighborhood, 1.0 for the
minimum distance between embedded points and Euclidean dis-
tances. The k-means clustering algorithm to categorize the systems
into four groups based on their nHwas generated using the scikit-learn
Python package (version 1.0.2) with default hyperparameters75.

Supervised Learning
Supervised learning via random forest regression used the scikit-learn
Python package. Model inputs included mw and nH from classical MD
simulations. Model training and assessment used a leave-one-out split.
Each molecule was tested by training the model on the other 91
molecules. This process was repeated for all 92 molecules. The
reported R2 value and its associated error were calculated from five
iterations with different random seeds. Each random forest model
used 20 decision trees and required two samples per split. Shapley
Additive Explanations (SHAP) analysis was performed using the shap
Python package (version 0.44.1) on each of the three input parameters
for the data-driven model.

The LIBSVM implementation of C-Support Vector Classification
algorithm76,77 in scikit-learn Python package (version 1.0.2) was used to
generate support vector machine boundary lines for four groups of
molecules based on their nH. A linear kernel type and a regularization
parameter of 1.0 were chosen as the algorithm hyperparameters.

Analysis of molecular interactions
All interaction analyses were performed and averaged over config-
urations sampledevery 1 ns from four independent simulations of each
molecule. The interaction distance, rCM, was defined as the distance
between the centers ofmass of twomolecules. The array of interaction
distances was discretized into 50 bins between 3.3 and 9Å. Hydrogen-
bonddensities (nHB) were defined as the number of hydrogen bonds in
each bin per volume. Hydrogen bonds were defined using geometric
criteria with a cutoff distance of 3.6Å between the donor and the
acceptor and a cutoff angle of 150 degrees between the three partici-
pating atoms. These calculations were facilitated using theMDAnalysis
Python library (version 2.1.0)78,79. Interaction energies, Eint, were com-
puted as the sum of all pairwise non-bonded energy contributions
between two molecules. Interaction orientations, cosðθÞ, were calcu-
lated based on the angle (θ) between the bond vectors adjoining the
carbon to the oxygen on the alcohol.

Impact of force field
As previously discussed, TAFFI is used because it relies purely on
quantum chemical calculations for its parameterization and compu-
tational efficiency; however, we acknowledge that the reported mag-
nitudeofNQEs coulddiffer basedon theunderlying forcefield. Togain
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some insight into the sensitivity of NQEs, classical and PIMD simula-
tions using twodifferent forcefields–the all-atomoptimizedpotentials
for liquid simulations (OPLS-AA) force field and the Open Force Field
(OpenFF, version 2.0.0 with unconstrained bonds)–were also per-
formed and analyzed for a subset of 11 molecules, following the pro-
cedures described in Methods.

Relative to the TAFFI results, OPLS-AA and OpenFF consistently
find larger Δvm across all systems (Supplementary Fig. 15). It is
important to note that OPLS-AA and OpenFF include empirical
adjustments, potentially inherited from prior developments, making
them strictly unsuitable for PIMD simulations. As a result, this analysis
is merely suggestive rather than definitive regarding differences from
alternative representations of the Born-Oppenheimer potential energy
surface. However, the results do not indicate significant exaggeration
of effect sizes fromTAFFI. Futurework could explore variations arising
from entirely different interaction models, such as machine learning
potentials.

Data availability
The processed data generated in this study80 have been deposited in
the Zenodo database under accession code https://doi.org/10.5281/
zenodo.15236880.

Code availability
Analysis scripts and source code used in this research are publicly
accessible at https://github.com/webbtheosim/chem-space-nqes,
including instructions for reproducing the results. The code81 has been
deposited in the Zenodo database under accession code https://
zenodo.org/records/15465591.
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