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Negativeome characterization and
decontamination in early-life virome studies

Nataliia Kuzub , Alexander Kurilshikov , Alexandra Zhernakova &
Sanzhima Garmaeva

Contaminant sequences of external origin complicate the study of host-
associated viromes, particularly in low-biomass samples obtained through
viral-like particle (VLP) enrichment. However, the prevalence and impact of
external contaminants on low-biomass samples are under-studied. Here, we
analyze 1321 gut virome samples and 55 negative controls (NCs) from four
early-life virome studies. Virus sequences identified in NCs, termed negati-
veome, were used as a proxy for the contamination assessment. We show that
61% of samples share at least one identical strain with negativeome, likely
representing external contamination. While the median abundance of con-
taminant strains in these samples is only 1%, it ranges from 0 to 99% and
exceeds 10% in 11% of infant samples. We further demonstrate that con-
tamination is largely study-specific and has a greater impact on infant samples
than on maternal samples. Based on our results, we propose a contamination
assessment method using a publicly available database of sequences detected
in NCs and a strain-level decontamination strategy.

Viruses are the most abundant biological entities on Earth, and they
constitute a significant component of the human gutmicrobiome. The
number of viruses in the human gut has been estimated to exceed 1012,
roughly equal to the number of bacteria1. Despite this quantity, the
totalweight of the humangut virome’s geneticmaterial can be just ~50
micrograms1. This makes virome extraction and annotation challen-
ging, particularly for low-diversity samples like those from early life2–5.
A major issue here is distinguishing genuine sample signals from
external or environmental contamination5,6, and this has been a topic
of recent debate in relation to the microbiome of the placenta7,8 and
blood9. To address this issue, proper no-template controls or negative
controls (NCs), processed alongside biological samples, are essential
at every step of sample processing. Best practices include sequencing
NCs alongside the samples and removing sequences identified in NCs
during data analysis2–5,10,11. Previous studies have linked the environ-
mental contamination identified in virome samples to various labora-
tory components used for nucleic acid extraction and sequencing,
including individual reagents6, entire extraction kits12, and laboratory
plastics5. However, the impact of contamination on virome samples, its

sharedness across different studies, and appropriate decontamination
strategies remain under-studied.

Here, we aimed to assess the impact of environmental con-
tamination on the low-biomass samples obtained using viral-like
particle (VLP) enrichment protocols and elucidate the level of
genomic resolution necessary for virome decontamination. To do
so, we annotated the viral composition of NCs, termed the nega-
tiveome, and tracked the negativeome sequences in biological
samples as a proxy for environmental contamination. We
employed publicly available data from four early-life virome
studies2–4,13 that had used VLP enrichment protocols and deposited
raw sequencing data for both biological samples and NCs in public
archives. Together, these studies include 1321 biological samples
(1175 infant samples from 0 to 5 years and 146 maternal samples)
and 55 NCs (Supplementary Data 1 and Supplementary Fig. 1), in
which we identified 971,583 putative virus sequences that clustered
to 193,970 viral operational taxonomic units (vOTUs), providing a
general representation of species-level viral clusters (see “Meth-
ods”, Supplementary Fig. 2a, b).
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Results
NCs and samples cannot be reliably distinguished using key
genomic and ecological features
We first aimed to determine if specific features (number of reads and
reconstructed contigs, virus sequences, viral genome completeness,
viral diversity and richness) differed between NCs and biological sam-
ples. While clean reads and Shannon diversity were similar between
groups (p-value >0.2, Supplementary Data 2 and 6, Fig. 1a, b, and Sup-
plementary Fig. 3), the number of reconstructed contigs, viral sequen-
ces, viral genome completeness, and viral richness were generally lower
in NCs compared to biological samples (p-value <0.04, Supplementary
Data 3−5 and 7, Fig. 1a, b, and Supplementary Fig. 3). However, both the
direction and significance of associations varied across the studies for all
features tested except the number of reconstructed viral sequences. For
example, viral richness was significantly different between NCs and
biological samples in all three tested studies (FDR <1e-02; Supplemen-
tary Data 6), but the direction of this difference was inconsistent
(Fig. 1b). This inconsistency likely reflects both study-to-study variability
in vOTU richness (intraclass correlation coefficient (ICC) =0.2, Supple-
mentary Data 8) and large variation among biological samples (median:
230 vOTUs, interquartile range (IQR): 64–594).

Next, we tested whether NCs could be distinguished from biolo-
gical samples without prior knowledge using the genomic and ecolo-
gical features that differed between NCs and biological samples (i.e., the
number of reconstructed contigs and viral sequences, genome com-
pleteness, and richness). We hypothesized that if these features reliably
capture biological signals, then a model constructed based on them to
predict a quantifiable variable—sampling age—would assign implausible
or outlier-like ages to NCs, which by definition do not have a biological
age. To test this, we built a linear model to predict sampling age from
these four features in two longitudinal studies. In the Liang et al. dataset,
the inferred sampling age of NCs averaged 1.3 ±0.6 months, which falls
within the observed range for biological samples. Similarly, for the
Garmaeva et al. dataset, the NC was assigned an age of 7.9 months,
which is also within the dataset’s observed range (1−12 months). These
results suggest that the combined technical and ecological features,
while differing in group comparisons, do not provide a strong enough
signal to reliably separate NCs from biological samples.

We next investigated differences in virome composition between
NCs and biological samples, categorizing vOTUs with ≥ 50% genome
completeness by nucleic acid type (dsDNA, ssDNA, RNA) based on
their assigned taxonomy. Here, we observed a significantly lower
proportion of ssDNA viruses in NCs compared to samples across all
studies (beta = −14.9, FDR = 1e-04, Supplementary Data 9), driven
mainly by a significant difference in one of the studies (Liang et al.,
FDR = 2e-02). When further tested separately, samples from Shah et al.
had fewer RNA viruses than NCs (beta = −1.6, FDR = 2.3e-05, Supple-
mentary Fig. 4a and Supplementary Data 9).

At the level of the predicted host domain, prokaryotic viruses
dominated all datasets (p-value = 2.4e-129, Supplementary Fig. 4b and
Supplementary Data 10), consistent with previous findings14,15, with no
difference between NCs and samples (FDR >0.1, Supplementary
Data 11 and Supplementary Fig. 4b). Study-specific testing revealed a
lower proportion of prokaryotic viruses in NCs compared to samples
in one study (Shahet al., FDR = 2e-05). At the genus level of prokaryotic
viruses’ hosts, NCs primarily contained viruseswith hosts typical of the
human gut microbiota, such as Alistipes, Bacteroides, Bifidobacterium,
and Escherichia (Supplementary Fig. 5).

Wenext assessed the similarity in compositionbetweenbiological
samples and NCs at the vOTU level (1—Bray–Curtis dissimilarity,
“Methods”). Overall, unrelated biological samples showed a high
degree of individual specificity and low inter-similarity, in agreement
with previous studies14–16 (Supplementary Fig. 6). In three of the four
studies, the similarity between unrelated samples was greater than the
similarity between samples and NCs (p-value < 0.0004). In the

remaining study, biological samples were more similar to NCs than to
other biological samples (Supplementary Fig. 6, p-value < 0.0004,
Supplementary Data 12). Overall, the similarity of NC composition to
that of biological samples was low but comparable to that between
unrelated biological samples. We also observed NCs clustering with
the samples at both the vOTU level and the level of host-based vOTU
aggregates (Fig. 1c, d and SupplementaryData 13). Notably,most of the
NCs clustered with infant samples collected during the first four
months of life, indicating that the early-life human gut virome exhibits
similarity to the NC virome.

Overall, while the composition of NCs and biological samples
differed, the variation between NCs and samples was similar to the
variation observed between unrelated samples. Although we observed
differences between NCs and biological samples in some genomic and
ecological features, the direction and significance were often incon-
sistent across the studies. Additionally, we demonstrated that NCs
could not be reliably distinguished from biological samples based on
genomic and ecological features.

Properties of NC-associated contaminants across the four early-
life studies
We further investigated whether external viral contaminants varied
across the datasets by comparing the viruses identified in NCs from
different studies. In total, 5984 vOTUs were found in NCs from all
four studies (Supplementary Fig. 7), with the majority (N = 5339)
identified in the NCs from Shah et al. While no vOTUs were shared
across all NCs, two vOTUs were found in NCs from three studies, 44
vOTUs were shared between NCs from two studies, and 5938 vOTUs
were study-specific (Fig. 2a). At strain level (see “Methods”), only
three viruses were shared between NCs and samples from two stu-
dies. Of note, two Caudoviricetes phages that were shared between
two studies from the U.S2,3. are predicted to infect Burkholderia
cepacia complex species (Fig. 2b), which are common environmental
contaminants often shared across U.S. hospitals11,17,18. Another strain-
level virus that was shared across two studies, phiX174, is commonly
used as a positive sequencing control5,19 (Fig. 2c).

We also compared the sequences detected in NCs to the genomes
of viral taxa reported to be laboratory-component-associated (LCA)
viral sequences6 by Asplund et al. (2019). Of the 5984 NC sequences,
only 34 (0.6%) matched the previously reported LCA viral sequences
(see “Methods”). Of these, 60.1% (N = 20) belonged to Bordetella
phage, EBPR podovirus, and sewage-associated circular DNA viruses
(Supplementary Data 14). Among the 677 NC sequences with NT (non-
redundant nucleotide database) viral taxonomic assignments that did
not overlap with the LCA taxa, 529 were linked to metagenomically
reconstructed viral genomes forwhich taxonomywasonly resolvedup
to the class level. Interestingly,within the subset of sequences assigned
to isolate viral genomes, we identified a few previously reported
reagent-associated CRESS-like viruses20 (Supplementary Data 15).

In line with the limited vOTU-sharing we observed across NCs from
different datasets, we found that NC vOTU compositions were more
similar within the same study than across different studies (FDR <3e-04,
Fig. 2d and Supplementary Data 16). NCs also showed higher similarity
to samples within their study than to samples from other studies (FDR
<4e-04, Fig. 2d and Supplementary Data 16). While these results suggest
that contamination is more likely to be study-specific, the overlap of
some NC-detected viral species with previously reported contaminants
and the presence of a few viral strains that were shared across studies
reflect common environmental and technical contamination.

Early-life gut virome samples are more susceptible to
contamination
We then quantified sample contamination by analyzing the proportion
and abundance of vOTUs shared with NCs within each study. Only
20.3% (N = 256) of all biological samples did not share any vOTUs with
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Fig. 1 | Comparison of sequencing depth, richness, and viral community com-
position between negative controls and samples. a Number of clean reads in
negative controls (NCs) vs samples. b Viral operational taxonomic unit (vOTU)
richness in NCs vs samples. In (a, b), data are shown for 1313 samples and 55 NCs,
distributedby study as follows: Garmaeva et al. (NCs = 1, samples = 205); Liang et al.
(NCs = 38, samples = 383); Maqsood et al. (NCs = 8, samples = 78); Shah et al.
(NCs = 8, samples = 647). c, d Non-metric multidimensional scaling analysis utiliz-
ing Bray–Curtis dissimilarity, computed at: c the vOTU level; d predicted host level.
In (c), data are shown for 33 NCs and 1228 samples: infants <5 months (n = 372),
infants >5months (n = 710),mothers (n = 146). In (d), data are shown for 25NCs and

1147 samples: infants <5months (n = 290), infants >5months (n = 711), andmothers
(n = 146). For (c and d), a list of outliers not depicted in the plots can be found in
Supplementary Data 13. In (a–d), every dot is a sample, and the dot color indicates
age: infant samples (age <5 months) in yellow, infant samples (age > 5 months) in
orange, maternal samples in red, and NCs in dark blue. In (a–d), boxplots visualize
the median, hinges (25th and 75th percentiles), and whiskers extending up to
1.5 times the interquartile range from the hinges. Asterisks denote
Benjamini–Hochberg-adjusted statistical significance values: *FDR < 0.050,
***FDR < 0.001, ns not significant. ‘NA’ is used when significance cannot be
calculated.
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any NCs, while some shared up to 100% of their composition at the
vOTU level. 71.5%of the samples shared vOTUswithNCs from the same
study, with a median of 4.9% (IQR: 1.9–12.9) vOTUs per sample. The
median abundance of all vOTUs shared with NCs per sample was 1.7%
(IQR: 0.3–8.7). In two of the three studies tested, the abundance of
individual NC-shared vOTUs was consistently higher in NCs compared
to samples, with 48.3% (N = 28) and 98.9% (N = 2613) of tested NC-

shared vOTUs more abundant in NCs in the Liang et al. and Shah et al.
studies, respectively (Supplementary Fig. 8 and Supplementary
Data 17). InMaqsood et al., none of the six NC-shared vOTUs we tested
were differentially abundant between samples and NCs, and five of
these also showed no differences between NCs and samples in the
Liang et al. study. For these overlapping vOTUs, Burkholderia bacteria
were predicted as hosts.
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Given the lower gut viral diversity reported for infants compared
to adults4, we investigated whether contamination levels differed
betweenmaternal and infant samples and across infant ages. In the two
studies where both infant and maternal samples were available, we
found that both the proportion and number of vOTUs sharedwith NCs
from the same study were significantly higher in infants than in
mothers (beta = 2.5, FDR = 5.1e-06 in Garmaeva et al.; beta = 11.6,
FDR = 2.3e-07 inMaqsood et al.; Supplementary Data 18 and Fig. 3a, b).
The estimated contamination decreased with infant age but was sig-
nificant in only one of the two longitudinal studies (beta = −0.1,
FDR =0.3 in Garmaeva et al.; beta2 = −7.7, FDR = 2e-04 in Liang et al.;
Fig. 3c and Supplementary Data 19). These observations suggest that
environmental contamination is more likely to be sequenced and
detected in early-life gut virome samples due to their low diversity and
low overall viral load.

Strain-level decontamination from NC-shared viruses
We next assessed whether the overlap identified at the vOTU level
extends to strain level, i.e., whether NCs and samples share the same
viral strains.We therefore estimated the proportion of samples sharing
identical strains with their study’s NCs. To do so, we reconstructed
virus strains for 5635 vOTUspresent inNCs andbiological samples (see
“Methods”). We found that only 32.6% of these vOTUs (N = 1838) were
shared between NCs and at least one biological sample at the strain
level, suggesting that the strain detected in the samplemight originate
from environmental contamination. Furthermore, within each study,
7.7–23.9% of the NC-detected vOTUs were identical to those found in
biological samples at strain level.

Across the entire dataset, 71.5% (N = 944) of samples share at least
one vOTU with the NCs of their own study, and 85.4% (N = 806, 61.0%
of the total number of samples) of those shared at least one strain
identical to one detected in NCs. While the median number of strains
shared between biological samples and NCs was 2 (IQR: 0–28), the
abundance of contaminants exceeded 10% in 11% of infant samples
(Fig. 3d, e). Additionally, infant samples shared significantly more
strains with NCs than didmaternal samples (beta = 3.5, p-value = 1.5e-5,
Supplementary Data 20 and Fig. 3f), confirming that early-life gut vir-
ome samples are more susceptible to contamination.

In infant samples, a median 34.8% (IQR: 20.0–51.1%) of the vOTUs
shared with NCs were identical to the NC strains, whereas the median
was0 (IQR: 0–18.5%) inmaternal samples. Therefore,more than half of
the vOTUs sharedbetween samples andNCsdiffered at strain level and
likely represented true biological signals. For example, in the Shah
et al. study, a Bacteroides phage L6428 from the family Microviridae
was representedbymultiple strains. Although somebiological samples
shared an identical strain of L6428 with the NCs, more than half of the
samples had different strains (Fig. 3g), likely representing Bacteroides
phages that are naturally present in the infant gut. We therefore con-
clude that decontamination of NC-detected viruses from the dataset
should be performed at strain rather than vOTU level.

After performing strain-level decontamination, the richness of
vOTUs, which represents species-level resolution, dropped by an
average 1.5% (IQR: 0.5–5.0) in samples that shared vOTUs with NCs.
The number of vOTUs shared with own NCs decreased by 33.3% (IQR:
14.9–50.0) and comprised amedian of 2.9% (IQR: 1.0–7.8) of all vOTUs

detected per sample. Next, we compared the decontamination results
at strain- versus species-level. For the latter, all vOTUs shared with NCs
were excluded, leading to a median of 4.9% (IQR: 1.9–12.9) drop in
vOTU richness per contaminated sample, which was significantly
higher compared to the strain-level decontamination. These results
further demonstrate that strain-level decontamination preserves key
ecological features of the samples, such as richness.

Contamination estimation using the NC-associated vOTU
catalog
We next investigated whether biological samples share strains with
NCs from other studies, but found that this was rarely the case. Spe-
cifically, only 14.5% of the samples (N = 192) shared at least one strain
with external NCs. Nonetheless, we did observe moderate con-
cordance in the proportion of strains shared between biological
samples and both their own NCs and external NCs (rho =0.37,
p-value = 1.9e-41, Fig. 4a and Supplementary Data 21). However, the
sample strains shared with own and external NCs overlapped only by
11.2% on average.

Given the limited amount of strain-sharing with external NCs, we
tested if the proportion of vOTUs shared with external NCs could
provide an estimate of contamination for studies where NCs are not
available and direct decontamination is not possible. Of all the biolo-
gical samples, 41.1% of samples shared a median of 0.7% (IQR: 0.2–4.8)
of vOTUs per samplewith NCs fromother studies, although this vOTU-
sharing was significantly lower than that with own NCs in two out of
four studies (Supplementary Data 22 and Supplementary Fig. 9a). The
proportion of vOTUs shared with external NCs showed moderate to
high correlation to the proportion of strains shared with own NCs in
three out of four studies (0.34≤ rho ≤0.82, Fig. 4b and Supplementary
Data 23). We also tested if a proportion of the reads mapped to the
genome sequences of vOTU representatives identified in external NCs
could be used to estimate contamination, but this provided lower
concordance (0.11 ≤ rho ≤0.57, Supplementary Fig. 9b and Supple-
mentary Data 24).

These results suggest that sample contamination could be esti-
mated using the proportion of vOTU-sharing between samples and
NCs from independent studies, and this estimate could potentially be
used as a correction factor in downstream statistical analysis. To
facilitate the use of available NCs in quality control of future studies,
we have made the database of the negativeome vOTU sequences
identified in NCs publicly available21.

Discussion
Our results show that viral environmental contaminants detected
using NCs affectedmost of the biological samples in the dataset (61%).
Even though samples generally shared a limited number of con-
taminant viral strains with NCs, the impact of such contamination
varied across samples and was greater in infant samples than in
maternal ones. This increased susceptibility to contamination in infant
virome samples is likely linked to their lowviral load3 anddiversity4 and
corresponds with earlier findings linking the contamination impact
and sample biomass in other metagenomic samples5,22,23.

We also showed that biological samples and NCs did not differ in
several technical and ecological features, including the number of clean

Fig. 2 | NC-associated contaminants across the four early-life studies.
a Distribution and overlap of vOTUs detected in NCs across studies. The lower-left
panel displays the total number of vOTUs identified in NCs per study, while the
upset plot on the right illustrates the number of unique and shared vOTUs across
studies’ NCs. b, c Reconstructed ultrametric trees for (b) the Burkholderia phage
L41225 (‘L’ followed by a number represents the genome length) and (c) phiX174. In
(b, c), every point is a sample, and the point shape indicates the sample type: infant
(circle) and NC (triangle). Point color indicates the study. Cases of identical strain
sharing between NCs and samples are highlighted in pink rectangles. d vOTU level

compositional similarity betweenNCs (left panel) andNCs vs. samples (right panel)
within and across studies. Each dot represents the similarity index between two
samples, calculated as 1—Bray–Curtis dissimilarity index (Y-axis is log10-trans-
formed). Data points depicted per category: NCs–NCs (same = 246, different =
840); NCs–Samples (same = 12,485, different = 33,913). In (d), boxplots visualize
the median, hinges (25th and 75th percentiles), and whiskers extending up to 1.5
times the interquartile range from the hinges. Asterisks denote statistical sig-
nificance: ***FDR < 0.001.
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reads and overall diversity. However, features like viral richness and the
number of discovered viruses were generally lower in NCs. Despite
these differences, infant samples could not be reliably distinguished
from NCs using predictive models based on the combined ecological
and technical features, echoing findings from bacteriome studies that
compared the compositions of NCs and infant meconium samples24.
This suggests that, while certain metrics capture differences between

NCs and biological samples, they are insufficient for robust classifica-
tion. Moreover, the significance and direction of feature-based differ-
ences often varied across studies, likely reflecting the large variation
across studies due to differences in virome extraction, nucleic acid
processing, and sequencing methodologies, as well as the overall dis-
parity in the number of NCs and biological samples and age-related
variation in the composition and diversity of biological samples.
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Although the contamination was largely study-specific, we did
identify a few previously reported contaminants5,6,20, but with rather
low overlap. The viral sequences identified in NCs in our study thus
extend existing catalogs of lab-associated environmental con-
taminants, and we have made them publicly available to aid other
researchers in assessing contamination21. It should benoted that 89.2%
of the vOTUs detected inNCs originated froma single study by Shah et
al., skewing the catalog toward that dataset. This study also had the
highest total number of raw and clean reads per sample and the
highest number of vOTUs detected, with 5% of them found in NCs,
compared to 0.4–2.8% in the other studies. This slightly elevated
proportionmay be explainedbydeeper sequencing andby differences
in VLP extraction protocols between studies. The latter could be
influenced by the pore size of the membrane filter used for bacterial
and large particle removal, the number of filtration steps used, the
methods used for VLP concentration, variations in nuclease treatment
and DNA extraction kits across the four studies, and the use of the
multiple displacement amplification (MDA), which is known to

increase sequence sensitivity by amplifying both biological signals and
contaminants5,25.

We also identified that using strain-level rather than vOTU-level
decontaminationwith internal studyNCshelps preserve key ecological
metrics such as sample richness. We therefore recommend that
decontamination be performed at the strain level because this pro-
vides higher precision for removing the exact sequences of con-
taminating viruses and preserves true biological signals. We have also
developed a pipeline for strain-level decontamination26 (https://
github.com/GRONINGEN-MICROBIOME-CENTRE/NCP_VLP_project/).

We acknowledge the existence of scenarios when proper NCs are
not available, such as the reuseofpreviouslygenerateddatasets. In this
study, we have shown that strain-level decontamination using
sequences from external NCs has a lower concordance and efficiency
than using internal NCs. However, the contamination level estimated
using the proportion of vOTUs shared with external NCs correlates
with the proportion of contaminant strains shared with internal NCs.
Therefore, vOTU-sharing with the negativeome vOTU catalog from

Fig. 3 | Estimation of sample contamination based on vOTU and strain sharing
with NCs. a Percentage of sample richness represented by NC-shared vOTUs from
the same study in maternal samples compared to infant samples. b Number of
vOTUs shared with NCs from the same study in maternal samples compared to the
infant samples. c Percentage of sample richness represented by NC-shared vOTUs
per infant timepoint. On the X-axis, timepoints are represented by the abbrevia-
tions M0, M1, M2, M3, M4, M6, and M12, corresponding to the infant’s age in
months at the time of sampling (M=month). Data are shown for: Garmaeva et al.:
M1 (n = 11), M2 (n = 16), M3 (n = 16), M6 (n = 20), M12 (n = 23); Liang et al.: M0
(n = 20), M1 (n = 20), M4 (n = 20). d, e Study-wise distribution of infant samples
categorized by the percentage of (d). richness and (e) abundance of strains shared
with NCs. The Y-axis shows the percentage of infant samples with different con-
tamination levels, derived and color-coded based on strain sharing with NCs. The

dashed blue line indicates 10% of samples. f Number of strains shared with NCs
from the same study in maternal samples compared to infant samples.
g Reconstructed ultrametric tree for a Bacteroides phage L6428 (‘L’ followed by a
number represents the genome length). Every point is a sample, and the point
shape indicates the sample type: infant (circle) and NC (triangle). Point color
indicates the study. Cases of identical strain sharing between NCs and samples are
highlighted in pink rectangles. In (a−c, f, g), each dot represents a sample. Boxplots
visualize themedian, hinges (25th and 75th percentiles), andwhiskers extending up
to 1.5 times the interquartile range from the hinges. Asterisks denote statistical
significance: ***FDR <0.001, ****FDR<0.0001, ns not significant. In (a, b, f) data are
shown for Garmaeva et al.: maternal (n = 119), infant (n = 86); Maqsood et al.:
maternal (n = 27), infant (n = 51).
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Fig. 4 | Contamination levels estimation using NC-detected sequences from
external studies. a Correlation of the percentage of strains shared between sam-
ples and internal versus external NCs. b Correlation of the percentage of strains
shared between samples and internal NCs with the percentage of vOTUs shared
between samples andNCs fromexternal studies. In (a,b), each dot is a sample. Data
are shown for 1254 samples. Per study distribution: Garmaeva et al. (n = 205), Liang

et al. (n = 324), Maqsood et al. (n = 78), and Shah et al. (n = 647). The percentage of
strains and vOTUs shared with NCs is calculated per sample as the number of
strains or vOTUs shared with NCs divided by the sample richness. The solid line
represents the fitted linear regression, and the shaded band denotes the 95%
confidence interval of the model. Spearman correlation rho’s are depicted in the
upper right corner of each panel.
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this study provides a rough estimate of the general sample con-
tamination level. While this method cannot replace direct deconta-
mination with internal NCs, the estimate of contamination levels it
offers can support sample quality control and the inclusion of con-
tamination as a correction factor in statistical analyses.

Overall, our study shows best practices in decontamination using
internal NCs, provides a database of sequences detected in the NCs
from publicly available gut virome studies for future reuse, and iden-
tifies scenarios in virome studies where this resource is critical for
assessing and addressing contamination. Given our results regarding
the higher susceptibility of early-life virome samples to contamination,
we emphasize that NCs from multiple sources and processing stages
must be included in future virome studies. We anticipate that public
data-sharing of NCs from such studies will enhance the NC database
and improve the quality of early-life gut virome data for future reuse.

Methods
Publicly accessible datasets of VLP-enriched early-life human
gut samples
To explore the impact of contamination on early-life gut virome stu-
dies, we selected studies that: (1) were focused on the early-life infant
gut virome, (2) employed VLP sequencing, and (3) had publicly avail-
able sequencing data, including NC sequencing data, as of January
2024. Detailed descriptions and metadata of the studies mentioned
below can be found in the original articles2–4,13. Here, we briefly sum-
marize the set-up of each study.

Garmaeva et al.4 was based on samples collected longitudinally
from 32mother–infant pairs of the Dutch LLNEXT cohort27. In total, 86
VLP samples were recovered from 32 infants (including two twin pairs)
during the first year of life. One hundred nineteen maternal samples
from 30 mothers were collected longitudinally from 28 weeks of
pregnancy to 3 months postpartum. Four negative buffer controls
were isolated with the samples: three failed sequencing and the fourth
is included in the current study.

Liang et al.3 was carried out in PennsylvaniaHospital, Philadelphia,
USA, and includes VLP data for 185 samples collected longitudinally
from 144 infants from 0 to 4 months and 21 samples collected from 21
children from 2 to 5 years. For all infant samples, both DNA and RNA
VLP sequencing was done. For samples of children from 2 to 5 years,
only DNA VLP sequencing was done. We included both the DNA and
RNA sequencing samples in our study and analyzed them as separate
samples. The Liang et al. study included 19 NCs of different origins,
including empty diaper samples, empty stool container samples, and
reagent-only samples. For each NC, both DNA and RNA sequencing
were performed, further doubling the number of NC samples to 38.
While all these NCs were initially included in our study, we did not
discover any putative viral sequences in 12 out of 38 NC and did not
detect any vOTU in 18 out of 38 NC samples.

Maqsood et al.2 is a study conducted in St. Louis, Missouri, USA
that analyzed the birth stool of twins alongside samples collected from
their mothers. Samples from 51 infants and 27 mothers were available
for this study. Two different types of NCs were included: buffer NCs
(N = 4) isolated to describe general contamination andNCswith added
Nematoda virus (Orsay NC, N = 4) to assess levels of cross-
contamination. Both types of NCs were isolated along with the sam-
ples and were analyzed in our study.

Shah et al.13 is a study done in Copenhagen, Denmark that used
samples collected as part of the COPSAC2010 cohort28. Samples were
collected from 647 one-year-old infants cross-sectionally and isolated
along with 8 buffer NCs.

Sequencing reads: quality control and assembly
We carried out read quality control and assembly, adjusting for study
specifications such as the presence of MDA during the VLP library
construction.

Garmaeva et al. Raw reads underwent adapter trimming with the
bbduk.sh script from BBTools29 (v39.01) using the following flags:
ktrim= r k = 23min = 11 hdist = 1 tpe tbo. Human read removal and read
quality trimming and filtering were performed using kneaddata30

(v0.10.0) and human reference genome (GRCh38p13), followed by
quality trimming with the option –trimmomatic-options “LEADING:20
TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:50”. Quality-trimmed
and filtered reads were assembled using SPAdes31 (v3.15.3) with
“–meta” mode. For the one NC sample, SPAdes failed to perform
internal sequencing read processing. We therefore performed read
error correction with tadpole.sh (parameters: mode = correct, ecc = t,
prefilter = 2) from BBTools29 (v39.01). Error-corrected and dedupli-
cated reads of NC were assembled with SPAdes31 (v3.15.3) using the
“–meta” and “–only-assembler” modes.

Maqsood et al. and Liang et al. First, we excluded samples
SRR8653201, SRR8800143, and SRR8800149 from the Liang et al.
study, following the original article authors’ recommendations. Raw
read quality control and filtering were then performed as described
above. Next, to maximize MDA-treated samples’ de novo assembly
performance, we performed read deduplication and assembly in the
uneven coverage-aware mode32. Briefly, read error correction was
done with tadpole.sh, as described above, and read deduplication was
performed using clumpify.sh (dedupe = t, subs = 0) from BBTools29

(v39.01) to remove identical sequences. Read assembly was done with
SPAdes (v3.15.3) using “–sc” mode33,34.

Shah et al. No quality control of the sequencing reads was performed
since the deposited samples were already filtered for low-quality and
human reads and deduplicated. Assembly was performed with SPAdes
(v3.15.3), using “–sc” mode33,34.

Putative virus sequence prediction from the metaviromes
Putative virus sequences were predicted per sample using assembled
contigs >1000 bp. To maximize the likelihood of virus sequence
recognition, we applied four different tools: (1) VirSorter235 (v2.2.4)
with the flag “–include-groups “dsDNAphage,RNA,NCLDV,ssDNA,lavi-
daviridae””, (2) DeepVirFinder36 (v1.0) with a threshold for the score of
≥0.9437, (3) geNomad38 (v1.7.4) in “–end-to-end” mode with enabled
score calibration, and (4) VIBRANT39 (v1.2.1) with the open reading
frames predicted using prodigal-gv38,40 (v2.9.0-gv) as an input. All
contigs identified as viral by at least one of these tools were selected
for further analysis.

We also attempted to extend identified putative virus sequences
using COBRA41 (v1.2.3) to recovermore complete viruses. To trim host-
associated regions from provirus sequences, we subsequently
employed geNomad38 (v1.7.4) and CheckV42 (v1.0.1). Sequences con-
taining direct or inverted terminal repeats identified by geNomadwere
exempted from running through CheckV. Genome completeness was
estimated for all sequences after prophage-pruning using CheckV.

vOTU processing and RPKM table creation
971,583 viral contigs were further dereplicated using the Minimum
Information about an Uncultivated Virus Genome recommended cut-
offs for the species-level rank: 95% average nucleotide identity (ANI)
over 85% alignment fraction (relative to the shorter sequence)43,
resulting in 307,938 vOTU representatives. To estimate vOTU abun-
dances, we used Bowtie244 (v2.4.5) in ‘end-to-end’mode to align reads
to the vOTU-representative genomes, followed by count table gen-
eration using SAMTools45 (v1.18) and BEDTools46 (v2.30.0). Read
counts with a breadth of coverage less than 1 × 75% of a contig length
were set to 0 to remove spurious Bowtie2 alignments47. Final read
counts were transformed to reads per kilobase per million reads
mapped (RPKM) values, which were subsequently used for down-
stream analyses. We further removed vOTU representatives from the
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RPKM table if they were shorter than 1000bp or had fewer viral genes
than host genes based on CheckV assignment. Sequences identified as
plasmids by geNomad38 (v1.7.4) were also removed from the table. The
final RPKM table included 193,970 vOTU representatives detected in
1368 samples, including 55 NCs.

vOTU taxonomic profiling and host prediction
We used geNomad38 (v1.7.4) taxonomic assignment for the resulting
vOTU representatives. Using the taxonomic assignment, we derived
information about viral nucleic acid type and predicted host domain
(eukaryote or prokaryote) from ICTV48. The iPhoP49 (v1.3.3) framework
with database “Aug_2023_pub_rw” was used for host prediction for
vOTU representatives. For this analysis, we excluded vOTU repre-
sentatives identified as eukaryotic viruses via taxonomy assignment.
The genus-level host prediction with the top confidence score per
vOTU representative of at least 50% genome completeness, as pre-
dicted by CheckV, was selected for further analysis. We carried out
species-level host prediction for two phages predicted to infect Bur-
kholderia using a combination of the iPhoP host genome assignment
and blastn against nt database (update from 2024/08/14) with BLAST
+50 (v2.13.0), as BACPHLIP51 (v0.9.6) predicted one of the phages to be
temperate. Based on the identified ANI of >96% and 76% query cov-
erage, the host was narrowed down to B. cepacia complex species.

Sequences identified in the NCs were queried against the NT
database (updated 25 November 2023) using blastn search with an e-
value of 1 × 10−³. The best hit was selected based on e-value, query
coverage, percent identity, and alignment length. These hits were then
compared with the LCA viral sequences reported by Asplund et al.6 to
identify overlapping hits. Hits with query coverage <30% were dis-
carded as potentially spurious matches. NT-hits to viral taxa that did
not match LCA are reported in Supplementary Data 15.

Virus strain reconstruction and comparison
For the 5635 vOTU representatives present in the biological samples
and at least one NC, we reconstructed consensus sequences using
inStrain52 (v1.9.0). Briefly, the sorted sequence alignment map files of
samples and NCs where the vOTU representative of interest was
identified were processed with the ‘profile’ module of inStrain in the
“–database_mode” with a minimum coverage requirement for variant
calling of 1 (“–min_cov 1”). Next, we used the ‘compare’ module of
inStrain to estimate the pairwise genome similarity among all recon-
structed consensus sequences. Only regions with a minimum of 1×
coveragewere included in the analysis. Consensus sequence pairs with
less than 75% of the genome available for comparison were excluded
from the analysis. Population-level ANI (popANI) values were used to
compare the similarity between strains belonging to the same vOTU.
Virus strains were considered to be shared between samples if their
compared genomic regions exhibited ≥ 99.999% popANI52.

Virus sequence decontamination from NC sequences
To remove virus sequences shared between biological samples and
NCs at strain level, we zeroed out the RPKM values of the relevant
vOTU representatives. To account for potential limitations due to
varying sequencingdepthbetween samples andNCs,we considered all
cases of strain-sharing, including those with less than 75% of the gen-
ome available for comparison. For the comparison of strain- and
species-level decontamination, vOTUs detected in the NCs and sam-
ples from the same study were zeroed out.

Contamination estimation using sequences from the NC-
associated vOTU catalog
To assess the feasibility of using the negativeome vOTU-based
catalog21 to estimate contamination in the absence of internal NCs,
we compared two metrics: (1) the percentage of reads from the
biological samples that mapped to the catalog and (2) the

percentage of vOTUs shared with the catalog per biological sample.
We evaluated the reliability of these metrics by assessing their
concordance with the percentage of sample richness shared with
the studies’ internal NCs at strain level. In the first approach, for
each study, we created a sub-database of vOTUs detected in the NCs
of the other three studies and mapped reads from biological sam-
ples to these vOTUs using Bowtie244 (v.2.5.1) with “–very-sensitive”
flag. The contamination metric was calculated as the proportion of
reads mapped to contigs with more than 50% or 75% breadth cov-
erage. This approach showed low to moderate concordance with
the percentage of sample richness shared with studies’ internal NCs
at strain level (0.11 ≤ rho ≤ 0.57, Spearman correlation), likely due to
spurious mapping or artificially inflated mapping coverage due to
multimapping artifacts. In the second approach, we calculated the
percentage of vOTUs shared per biological sample with the catalog
using the vOTU table. Specifically, for each study, we determined
the percentage of richness in a biological sample that overlapped
with NCs from the other three studies. This approach demonstrated
moderate to high concordance with the percentage of sample
richness shared with studies’ internal NCs at the strain level for three
out of four studies (0.34 ≤ rho ≤ 0.82, Spearman correla-
tion, Fig. 4b).

Data visualization
Results were visualized in graphical form using a set of custom R
scripts (R v4.2.3), including calls to functions from the packages
ggplot253 (v3.5.0), tidyverse54 (v. 2.0.0), ggrepel55 (v.0.9.6), ggforce56

(v.0.4.2), and patchwork57 (v.1.3.0). All boxplots were prepared using
ggplot2 and represent standard Tukey type with IQR (box), median
(bar) and Q1—1.5 × IQR/Q3 + 1.5 × IQR (whiskers). Phylogenetic trees
were built based on the estimated pairwise genome dissimilarity (1—
popANI), using only consensus sequence pairs for which at least 75%
of the genome was available for comparison. Hierarchical clustering
was applied to the matrices of genome dissimilarity using the
function hclust() from the R package stats58 v.4.2.1. Clustering trees
were then converted into phylogenetic trees with the function
as.phylo() from R package ape59 v.5.7.−1. Phylogenetic trees were
visualized using the ggtree() function from the R package ggtree60 (v
3.14.0). The results for the differential abundance of the vOTUs
between NCs and biological samples were visualized using the R
package EnhancedVolcano61 (v1.24.0).

Statistics and reproducibility
The current study uses biological samples and NC samples from
publicly available datasets. No prior selection was applied to the
samples, and no statistical method was used to predetermine sample
size. Of the 1321 biological samples and 55 NCs retrieved, we used 1313
and 55, respectively, for the statistical analyses.

Statistical analyses were performed using R62 (v4.2.3). For detailed
information regarding the tests used to assess the significance of
results, see Supplementary Data. To estimate differences between
samples (N = 1313) andNCs (N = 55) in features such as number of clean
reads, reconstructed contigs, discovered viral sequences, viral rich-
ness, and viral diversity, we used linear mixed models (lme463, v1.1-23,
and lmerTest64, v3.1-3) (Supplementary Data 2–4, 6–7). In each com-
parison, the studieswere analyzedboth together and separately.When
analyzed together, themodelwas corrected for the typeof nucleic acid
used as the template for viral sequencing (‘RNA’ vs. ‘DNA’). The study
and subject group were included as nested random factors. For the
biological samples, the subject group was defined as the subject ID to
account for the repeated measurements, while NCs were grouped by
the source within each study (Supplementary Data 1). When analyzed
separately, the subject group was used as a random factor. The model
used for Liang et al. was also corrected for the nucleic acid type of the
sample. The study by Garmaeva et al. was excluded from the per-study
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analysis due to the availability of only one NC. All data for the features
were subjected to inverse-rank transformation prior to analysis. We
then used the same approach to estimate differences in the proportion
of reconstructed viruses with at least 50% completeness to the total
number of all reconstructed viruses per sample between the samples
(N = 1254) and NCs (N = 37), taking into account only viruses with at
least 50% completeness (Supplementary Data 5).

To assess whether genomic and ecological features can distin-
guish NCs from biological samples based on their hypothetical sam-
pling age, we used data from the longitudinal studies by Garmaeva
et al. and Liang et al. We constructed a linear model with age (in
months) as the outcome variable, using only infant biological samples.
For the Liang et al. dataset, we only included samples collected at
months 0, 1, 3, and 4. The predictors included the number of recon-
structed contigs, discovered viral sequences, genome completeness,
and viral richness. All predictor features were inverse-rank trans-
formed prior to model fitting.

For composition difference analysis, only vOTUs represented by
viruses with at least 50% genome completeness were considered
(Supplementary Data 9 and 11). Significance was assessed using linear
mixed-effects models as described above. Proportional composi-
tional features were log-transformed prior to analysis. A linear
model, rather than linear mixed-effects models, was used for the
studies byMaqsood et al. and Shah et al. P-values were adjusted using
the Benjamini–Hochberg correction method. Viral diversity (Shan-
non index) was calculated using the diversity() function in the vegan65

package v2.6-4.
For the viral composition analysis, the proportions of vOTUs with

assigned nucleic acid type and predicted hosts were calculated using
only vOTU representatives with at least 50% completeness, based on a
binary RPKM table (presence/absence data). These data were log-
transformed prior to calculations (Supplementary Data 9 and 11).

Beta diversity analysis was performed at the vOTU and host-
based vOTU aggregate levels using Bray–Curtis dissimilarity. The
Bray–Curtis dissimilarity between samples was calculated using the
function vegdist() from R package vegan65 (v2.6-4). Visualization of
sample beta diversity was performed with non-metric multi-
dimensional scaling using the function metaMDS() from R package
vegan65 (v2.6-4) with two dimensions. To assess the similarity
between NCs and samples, we subtracted Bray–Curtis dissimilarity
indices from 1. A two-sided Wilcoxon rank sum test, conducted
through a permutation approach with N = 10,000 iterations, was
performed to determine the significance of differences observed
between groups (Supplementary Data 16).

The percentage of vOTUs shared between biological samples
and NCs was calculated as the proportion of shared vOTUs to the
total number of viruses detected per sample. A two-sided Wilcoxon
rank sum test, conducted through a permutation approach with
N = 10,000 iterations, was performed to determine the significance
of observed differences in sample vOTU-sharing with NCs from the
same study versus NCs from different studies (Supplementary
Data 22). To assess the correlation between sample strain-sharing
with same-study NCs versus sample vOTU and strain-sharing with
different studies’ NCs, we calculated a study-wise Spearman corre-
lation coefficient (Supplementary Data 21, 23, and 24). P-values were
adjusted using the Benjamini–Hochberg correction method.

For the analysis relating sample vOTU-sharing with the same-
study NC to participant type (infant versus mother), we used only
biological samples from Garmaeva et al. (N = 205) and Maqsood et al.
(N = 78), as maternal samples were only available in these studies
(Supplementary Data 18). For Garmaeva et al., significance was esti-
mated using linear mixed-effects models, with the subject group
added as a random factor. For Maqsood et al., we used a linear model
because only one timepoint was available per participant. P-values
were corrected using the Benjamini–Hochberg method.

For the analysis of vOTU-sharing with same-study NCs over time,
we used only the two studies with multiple timepoints per subject
(Supplementary Data 19): Garmaeva et al. (N = 205) and Liang et al. In
Liang et al., only one cohort had multiple timepoints per infant avail-
able, so only this cohort’s samples (N = 146) were used for the analysis.
The RNA samples from Liang et al. were excluded from this analysis.
Significancewas assessed separately for each study using linearmixed-
effects models, with the subject group included as a random factor. P-
values were corrected using the Benjamini–Hochberg method.

For the identification of vOTUs that were differentially abundant
between NCs and biological samples, we included only the vOTUs
detected in at least two samples and two NCs to ensure robust com-
parisons. This filtering reduced the number of vOTUs analyzed and led
to the exclusion of the Garmaeva et al. study, which had only one NC.
The final dataset comprised 6 vOTUs from Maqsood et al., 58 vOTUs
from Liang et al., and 2914 vOTUs from Shah et al. The analysis was
done separately for each study using linear mixed models (lme463 and
lmerTest64) with the subject group included as a random factor (Sup-
plementary Data 17) to assess significance and using log2 fold change
to evaluate differences in abundance.

Data availability
All data used in this study are publicly available, with sequencing data
for Maqsood et al., Liang et al., and Shah et al. accessible via the Eur-
opean Nucleotide Archive (project numbers PRJEB33578,
PRJNA524703, and PRJEB46943, respectively). For Garmaeva et al.,
sequencing data are available in the European Genome-Phenome
Archive (EGA) repository (study ID: EGAS00001005969). The source
and processed data generated in this study, including redundant virus
sequences and vOTU representatives, along with their metadata, and
the database of virus sequences identified in the negative controls
(v1.0.0), have been deposited in the FigShare repository under https://
doi.org/10.6084/m9.figshare.27170739.v2. Other datasets or data-
bases used in the present study are: Human reference genome
GRCh38.p13 [https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_
000001405.39/] and iPHoP database (Aug_2023_pub_rw) [https://
portal.nersc.gov/cfs/m342/iphop/db/iPHoP.latest_rw.tar.gz].

Code availability
The code used in this study can be found at: https://github.com/
GRONINGEN-MICROBIOME-CENTRE/NCP_VLP_project and https://doi.
org/10.5281/zenodo.1568269526.
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