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Immunometabolism and oxidative stress:
roles and therapeutic strategies in cancer
and aging
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Immunometabolism, encompassing metabolic processes within the immune system, plays a pivotal
role in modulating the development, activity, and function of immune cells. Oxidative stress, resulting
from an imbalance between pro-oxidants and antioxidants, is a critical factor in the pathogenesis of
various diseases, including cancer and aging. This review synthesizes current knowledge on the
interplay between immunometabolism and oxidative stress, highlighting their mechanisms in cancer
progression and the aging process. We discuss how metabolic reprogramming in our body can
influence immune cell function and promoting ageing and cancer development. Additionally, we
examine the impact of aging on immune metabolism, leading to a decline in immune function and a
predisposition to chronic diseases. The review also explores the potential of traditional Chinese
medicine in targeting oxidative stress to delay aging and combat cancer, underscoring the need for
further research to elucidate themolecularmechanismsunderlying theseeffects.Our findings suggest
that interventions targeting immunometabolism and oxidative stress could offer novel therapeutic
avenues for cancer and aging-related diseases.

Immunometabolism refers to the metabolic processes and molecular reg-
ulation involved in the immune system, playing a crucial role in regulating
the development, activity, and function of immune cells. It involves various
aspects, including energy production, substance transport, signal trans-
duction, andmolecular regulation, all of which are essential formaintaining
the normal functions of immune cells. The key processes include: glucose
metabolism(immune cells, especially activatedT cells andmacrophages, are
highly dependent on glucose. The regulation of lipid metabolism is critical
for immune cell function and response), and amino acid metabolism
(certain amino acids, such as glutamate, arginine, cysteine, etc., play
important roles in anti-tumor, anti-aging, antioxidant, and anti-infection
responses)1–4.

Biochemical reactions in metabolism are closely linked with redox
reactions. In biological systems, redox reactions occur through the transfer
of electrons fromreduceddonormolecules (includingNADPHand thiols in
reduced glutathione (GSH) and the amino acid cysteine found in many
proteins) to acceptor molecules (such as NADP+ and disulfide bonds in
cysteine, the oxidized dimeric form of cysteine)5. During oxidative phos-
phorylation (OXPHOS) metabolism, the electron transport chain (ETC)

delivers electrons to molecular oxygen, a process that drives energy pro-
duction in aerobic organisms’ mitochondria. This process inevitably gen-
erates oxygen radicals (also known as reactive oxygen species (ROS), such as
hydrogen peroxide and superoxide). Since radicals can induce damage to
DNA, proteins, and lipids, aerobic organisms have developed complex
antioxidant systems, such as thioredoxin (TRX), GSH, and the NF-E2-
related factor 2 (NRF2) system, to balance oxidant levels in each cell and
maintain redox homeostasis6.

Normal immunometabolism is often accompanied by redox reactions,
but when the balance between oxidation and antioxidant defense is dis-
rupted, oxidative stress occurs7.OS is a state of imbalancebetweenoxidation
and antioxidant defense in the body, tending towards oxidation, leading to
neutrophil inflammatory infiltration, increased protease secretion, and the
productionof large amounts of oxidative intermediates8.Oxidative stress is a
negative effect caused by the generation of free radicals in the body and is a
significant factor contributing to aging and disease9,10. In immunometabo-
lism, ROS can damage lipids, nucleic acids, and proteins, altering their
functions. When the balance between ROS production and antioxidant
defenses is disrupted, oxidative stress ensues, leading to various diseases11,12.
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This review focuses on the interaction and regulatory mechanisms
between immunometabolism and oxidative stress in aging and tumor
promotion research, summarizing existing reports on the intervention of
active components of traditional Chinese medicine (Fig. 1).

Fundamental definition and core mechanisms of
oxidative stress
Oxidative stress refers to a pathological state in which the rate of ROS and
reactive nitrogen species (RNS) production exceeds the scavenging capacity
of endogenous antioxidant systems, leading to oxidative damage of bio-
molecules (e.g., DNA, proteins, lipids)7,13. Its core characteristic is the

disruption of the dynamic balance between oxidation and antioxidant
systems, resulting in the accumulation of free radicals that cause cellular
dysfunction or even death. When the body is under oxidative stress, the
generation rate of ROS and RNS surpasses the clearance capacity of endo-
genous antioxidant systems (e.g., the glutathione system), resulting in
excessive ROS production, which serves as a key driver of tumor initiation,
progression, metastasis, and drug resistance14.

Reactive oxygen species and reactive nitrogen species are not only
effectors of oxidative damagebut also critical cellular signalingmolecules.At
physiological concentrations, ROS/RNS regulate processes such as cell
proliferation, differentiation, and immune responses through reversible

Fig. 1 | Oxidative stress-immunometabolic crosstalk as a shared axis in aging and
tumorigenesis, and its therapeutic targeting by traditional Chinese
medicine (TCM). This schematic elucidates the mechanistic convergence of oxi-
dative stress and immunometabolic dysregulation in aging and cancer pathogenesis,
alongside TCM interventions bridging both diseases. The upper panel illustrates
anti-aging TCM formulations (e.g., Astragali Radix, Lycii Fructus), while the lower
panel highlights anti-tumor TCMagents (e.g., Astragalus polysaccharides, Baicalin),
with overlapping components (e.g., Astragali Radix-derived compounds) empha-
sizing their dual therapeutic potential. Physiological redox balance (left): Con-
trolled oxidative eustress (ROS/antioxidant equilibrium) sustains redox-sensitive
signaling and immunometabolic homeostasis in innate/adaptive immune cells (NK
cells, T cells, macrophages). This enables efficient immunosurveillance against
damaged or transformed cells through balanced glycolysis and mitochondrial
respiration. ROS sources (middle):Mitochondrial dysfunction, NADPH oxidases,
and xenobiotics generate ROS subtypes (e.g., O2−, H2O2) that disrupt redox sig-
naling. Notably, aging-associated mitochondrial decay and cancer-driven Warburg
effect synergistically amplify ROS production. Pathological crosstalk (right): Sus-
tained oxidative stress triggers a vicious cycle: Immunometabolic paralysis: Exces-
sive ROS impair immune cell metabolic adaptation (e.g., suppressed glucose
utilization, defective lipid oxidation), compromising cytotoxic activity and antigen

presentation. Redox signaling collapse: Dysregulated redox networks deplete anti-
oxidant defenses (e.g., SOD, CAT) while amplifying pro-inflammatory cytokine
release, fostering a chronic inflammatory microenvironment. Disease convergence:
This dual failure enables the survival of redox-damaged cells, driving senescent cell
accumulation and malignant clone expansion through oxidative DNA damage and
impaired repair mechanisms, thereby accelerating both tissue aging and tumor
progression. Anti-aging interventions (top): Classical formulations (e.g., Astragali
Radix, Lycii Fructus) ameliorate age-related pathologies by modulating oxidative
stress-immunometabolic crosstalk, particularly through mitochondrial ROS reg-
ulation and metabolic reprogramming of senescent immune cells. Anti-aging
interventions (bottom): Multi-herb formulations (e.g., Bu Shen Huo Xue Decoc-
tion) and bioactive compounds (e.g., Baicalin) counteract tumor progression via
dual regulation of redox homeostasis and immunometabolic rewiring in tumor-
associated immune cells. TCM therapeutic advantages: TCM leverages shared
components (e.g., Astragali Radix, Huangqi Baihe Granules) to concurrently miti-
gate oxidative damage in aging tissues and tumormicroenvironments through redox
homeostasis regulation, rejuvenate immunometabolic function. This synergistic
strategy positions TCM as a unique paradigm for managing aging-cancer comor-
bidities, particularly in elderly patients with age-related malignancies.
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modifications of target proteins (e.g., thiol oxidation or nitrosylation of
cysteine residues)15–17. For example, low concentrations of H₂O₂ promote
cell survival by inhibiting the phosphatase PTEN and activating the PI3K/
Akt pathway, while superoxide anions (O₂⁻) produced by NOX2 in mac-
rophages induce pro-inflammatory cytokine expression via NF-κB signal-
ing to enhance antimicrobial immunity18–20. However, when ROS/RNS
production surpasses the antioxidant system’s clearance capacity, irrever-
sible oxidative damage (e.g., DNA strand breaks, lipid peroxidation) dom-
inates the pathological process, leading to oxidative stress. The effects of
ROS/RNS must also be dynamically assessed based on their concentration
andmicroenvironment. In the tumormicroenvironment, chronic oxidative
stress promotes PD-L1 upregulation and T cell exhaustion, while localized
low levels of ROS may enhance angiogenesis via HIF-1α signaling. During
aging, mitochondrial ROS (mtROS) accumulation triggers DNA damage
and senescence-associated secretory phenotype (SASP) secretion, whereas
physiological ROS fluctuations may delay aging through Nrf2 activation21.

When the pathological progression of oxidative stress surpasses the
cellular repair threshold, the resulting lipid peroxidation cascade may drive
an iron-dependent cell death modality—ferroptosis, a molecular-level
causal nexus that manifests divergent biological destinies in aging and
tumorigenesis. Ferroptosis is an iron-dependent, non-apoptotic formof cell
death characterized by lipid peroxidation-driven loss of plasma membrane
integrity, primarily mediated through three interconnected mechanisms:
iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactiva-
tion with concomitant glutathione depletion, and lipoxygenase (LOX)-
catalyzed lipid peroxidation. Iron metabolism dysregulation involves labile
Fe²⁺ ions catalyzing lipid peroxidation via the Fenton reaction, generating
hydroxyl radicals (·OH) that attack polyunsaturated fatty acid (PUFA)
double bonds to initiate a self-propagating lipid peroxidation chain
reaction22. Concurrently, GPX4—the sole enzyme responsible for repairing
membrane lipid peroxidation—loses activity when its cofactor GSH is
depleted, such as through inhibition of the cystine-glutamate antiporter
SystemXc⁻ (SLC7A11/SLC3A2), leading to irreversible lipidperoxide (LPO)
accumulation23. Additionally, LOXs (e.g., ALOX15) directly oxidize PUFAs
into lipidhydroperoxides (PUFA-OOH), accelerating ferroptosis execution,
a process that can be pharmacologically inhibited by LOX blockers like
zileuton or mitigated through structural PUFA modifications such as bis-
allylic deuteration24.

Mechanisms of oxidative stress in aging
Functional changes induced by aging
Human aging is a complex physiological process characterized by the gra-
dual deterioration, damage, and even loss of tissue and organ functions over
time. This process involves various molecular functions and cellular chan-
ges, including mitochondrial dysfunction, DNA damage, telomere short-
ening, lipid peroxidation, and protein oxidation modifications. These
changes not only accelerate the aging process but also serve as significant
risk factors for age-related diseases such as cancer, type II diabetes, auto-
immune diseases, infections, and cardiovascular diseases25.

Nuclear DNA damage is a critical mechanism of aging, with signaling
accumulating in the activation of p53, leading to cell cycle arrest. Prolonged
DNA damage response (DDR) promotes aging26. Persistent activation of
DDR at telomeres is sufficient to trigger replicative senescence27. Addi-
tionally, the upregulation of p21 and p16 halts the cell cycle, influencing the
aging process28. Furthermore, the accumulation of senescence-associated
β-galactosidase (SA-β-gal) due to increased lysosomal content indicates
metabolic changes associated with aging29. Different levels of post-
transcriptional regulatory pathways influence aging, including the actions
of mRNA-binding proteins (RBP) and non-coding RNAs30, and dysregu-
lation of splicing factor expression31. Oncogene activation, partially deter-
mined by reactive oxygen species production, alters proliferation and DNA
replication profiles26. As cells age, there is a notable increase in lysosomal
mass, which is accompanied by marked changes in the activity of
β-galactosidase within lysosomes. The subsequent buildup of lipofuscin,
characteristic of lysosomal aggregates, is associated with metabolic

disruptions and impaired autophagic function, establishing it as a key
biomarker for cellular aging29. all contribute to accelerated aging. Immu-
nosenescence is another crucial factor in aging, where the secretion of pro-
inflammatory cytokines, chemokines, proteases, and growth factors affects
neighboring cells, weakening the immune system’s resistance to tumors and
pathogens, increasing the risk of autoimmune diseases, and leading to
chronic inflammation32.

As people age, the immune systemgradually declines, often resulting in
a chronic inflammatory state known as “inflammaging.” This is char-
acterized by a reduction in the number and function of immune cells, aswell
as a decrease in immune response and regulation. The senescence-
associated impairment of clearance mechanisms results in the pathological
accumulation of senescent cells, extracellular debris, and infectious patho-
gens. This process, coupled with the exhaustion of myeloid and lymphoid
cells, synergistically induces a significant upregulation in the production of
pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α). This phenomenon is linked to age-related
thymic atrophy, resulting in diminished thymopoiesis and a reduced T cell
repertoire, which hampers effective immune responses to new antigens33.
Thymic atrophy, imbalance in the ratios of naive tomemory cells,metabolic
dysregulation, and epigenetic alterations are significant features of immu-
nosenescence. Disrupted T cell pools and chronic antigen stimulation lead
to premature aging of immune cells, which develop a pro-inflammatory
senescence-associated secretory phenotype, exacerbating inflammaging34.
Older adults are unable tomount sufficient immune responses tomicrobial
infections and tumors, leading to the accumulation of senescent T cells, B
cells, and myeloid cells. Age-associated B cells can efficiently produce
autoantibodies. T cell senescence promotes the accumulation of terminally
differentiated effector T cells with potent cytotoxic and pro-inflammatory
capabilities, while senescentmyeloid cells contribute to a state of low-grade,
sterile chronic inflammation (inflammaging)35. Additionally, the dete-
rioration of macrophage function is a key factor in immunosenescence, as
the ability of macrophages to effectively clear senescent cells from tissues
declines with age. Senescent macrophages exhibit a significant increase in
Pro-inflammatory and immunomodulatory cytokines and chemokines
(including TNF-α, IL-6, and IL-1β), diminished autophagic function,
impaired antiviral capabilities, and downregulation of glycolysis and
mitochondrial oxidative phosphorylation, ultimately leading to a state of
energy depletion36. Such immune dysfunction and excessive inflammatory
mediators reduce the body’s ability to recognize and eliminate pathogens,
such as the decline in CD28 expression and the increase in senescence
markers like CD5737,38. These changes elevate the risk of infections and
diseases, leading to tissue damage and functional impairment39. During
aging, the immune system’s ability to recognize self-tissues declines,
increasing the likelihood of autoimmune reactions and the development of
autoimmune diseases37. Aging cells are critical drivers of the aging process,
characterized by cell cycle arrest and the development of chronic inflam-
mation. They primarily induce damage to adjacent tissues by secreting a
variety of pro-inflammatory cytokines and chemokines. These inflamma-
tory mechanisms are implicated in the pathogenesis of various age-related
disorders, including autoimmune diseases. With advancing age, the
immune system undergoes a functional decline—termed immunosenes-
cence—characterized by a reduced ability to effectively respond to patho-
gens and eliminate malignant cells. This decline includes altered ratios of
naive to memory T cells, disruptions in the CD4/CD8 balance, impaired
calcium signaling, and thymic involution40.

Inflammaging fundamentally differs from acute inflammation in
triggers, molecular mechanisms, and functional outcomes. Acute inflam-
mation is transiently activated by pathogens or tissue damage via TLRs/NF-
κB, leading to a burst of pro-inflammatory cytokines (e.g., IL-1β, TNF-α) to
eliminate threats, followedby rapid resolution via anti-inflammatory signals
(e.g., IL-10, TGF-β)18. In contrast, inflammation arises from persistent
accumulation of senescent cells, mitochondrial dysfunction (e.g., excessive
mtROS), and immunometabolic dysregulation, characterized by chronic,
low-level secretion of pro-inflammatory factors (e.g., IL-6, TGF-β)41.
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Inflammation, a maladaptive chronic inflammatory state distinct from the
self-limiting acute inflammatory response, is primarily driven by three
interconnected mechanisms. Senescent cells contribute through the
senescence-associated secretory phenotype (SASP), which involves the
sustained secretion of pro-inflammatorymediators such as IL-6 andmatrix
metalloproteinases (MMPs)42. These factors perpetuate inflammation by
activating NF-κB and JAK-STAT signaling pathways, creating a self-
amplifying feedback loop. Concurrently, mitochondrial dysfunction and
oxidative stress exacerbate inflammaging viamitochondrial reactive oxygen
species (mtROS), which not only trigger NLRP3 inflammasome activation
and IL-1βmaturation but also suppress SIRT1 deacetylase activity, further
reinforcing NF-κB-driven inflammatory cascades43. Additionally, age-
related immunometabolic dysregulation to diminish glycolytic flux and
enhanced fatty acid oxidation in aging T cells promotes the expansion of
pro-inflammatory Th17 subsets while impairing regulatory T cell (Treg)
function44. Collectively, these mechanisms drive tissue damage and accel-
erate age-related pathologies, including cancer and atherosclerosis, under-
scoring the systemic harm caused by chronic inflammation in aging.

The impact of oxidative stress on aging
The free radical theory of aging suggests that free radicals generated by
external factors and internal metabolism can damage cellular structures,
disrupt cellular functions, and ultimately trigger apoptosis and organismal
aging. OS, as a physiological process induced by free radicals, is a key factor
in causingoxidative damage to cells and tissues andamajordriverof aging45.
Oxidative stress occurs when the excessive production of reactive oxygen
species and reactive nitrogen species overwhelms the antioxidant system’s
ability to eliminate them31. Oxidative stress results from the excessive pro-
duction of free radicals and oxidants within cells, surpassing the cell’s
antioxidant defenses and leading to oxidative damage that hinders cellular
proliferation46.

The oxidative damage and DNA damage induced by oxidative stress
can also trigger apoptotic stress, leading to a reduction in cell numbers. As

shown in Fig. 2, the oxidative stress state of cells can influence the tissue
microenvironment through various pathways, exacerbating telomere dys-
function andaccelerating cellular aging.Keypathways include iNOS-related
oxidative damage and Nrf2-associated mitochondrial dysfunction, which
also mediate pathways related to cell death. Additionally, failure of anti-
oxidant cascades, influenced by defects in the transcription factor Nrf247,
and the activation of redox-sensitive pathways regulated by the transcrip-
tion factor NF-κB contribute to this process48 This activation triggers
molecular cascades associated with p53/p21 (due to persistent double-
strand breaks and telomere shortening) and p16/Rb (due to epigenetic
modifications)49. In summary, cellular aging results from a multifaceted
interplay of these factors.

Immune cells also produce inflammatory compounds to perform their
defense functions. However, if their production is not well controlled by
anti-inflammatory compounds, it can lead to inflammatory responses.
Additionally, chronic inflammation can accelerate the aging of immune
cells, resulting in impaired immune function that is unable to clear senescent
cells and inflammatory factors, thus establishing a vicious cycle of inflam-
mation and aging25,40. In addition, studies have shown that inflammatory
stimuli can lead to irreversible damage to hematopoietic stem cell (HSC)
function, which does not recover to pre-inflammation levels even one year
after the resolution of inflammation in mice. Moreover, sporadic and
temporally disjointed inflammation can cumulatively exacerbate harm to
HSC function, leading to a series of aging-related changes at both the
molecular and cellular levels in HSCs25. Since oxidation and inflammation
are interconnected processes with many feedback loops50, excessive pro-
duction of ROS and RNS by leukocytes can also trigger inflammatory
responses in these immune cells. Studies have found that high oxidative
stress levels (e.g., increased intracellular superoxide anion, oxidized glu-
tathione, XO activity, etc.) and oxidative damage (e.g., elevated mal-
ondialdehyde, 8-oxodeoxyguanosine levels) in leukocytes from aged mice
and peripheral blood immune cells from elderly humans are consistent with
impaired immune responses. In contrast, healthy centenarians and long-

Fig. 2 | The impact of oxidative stress on senescence. Oxidative stress influences
cellular aging through various mechanisms and signaling pathways, resulting in a
decline in cellular function and physiological impairment. This phenomenon is
primarily characterized by elevated levels of ROS and RNS, which surpass the
capacity of the antioxidant defense system50. The ROS generated during oxidative
stress can directly damage cellular DNA and lead to mitochondrial dysfunction,
exhibiting features of mitochondrial apoptotic stress, which ultimately results in

decreased cellular functionality51. Oxidative stress also activates key signaling
pathways, such as p53 and ATM/ATR, promoting cell cycle arrest and apoptosis.
The modulation of AMPK and mTOR signaling pathways further impacts cellular
metabolism and survival. Then, oxidative stress can trigger chronic inflammation by
activating inflammatory factors such as IL-1β, thereby accelerating the aging pro-
cess. These signaling pathways represent critical mechanisms through which oxi-
dative stress affects aging.
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lived mice maintain preserved immune function, with low expression of
pro-inflammatory genes and well-controlled oxidative stress in their
immune cells, which may explain their delayed aging51. Rich lipofuscin
granules have been observed in lymphocytes from aged mice, and it is
known that lipofuscin may act as a danger signal, stimulating the release of
pro-inflammatory chemokines and cytokines and activating macrophages,
thereby leading to a chronic oxidative-inflammatory process52. Recent
research has indicated that the removal of lipofuscin significantly reduces
neuroinflammation and neuronal apoptosis, suggesting its potential role in
mitigating age-related neurodegenerative processes53. Therefore, if the
immune system fails to regulate the “oxidation-inflammation-aging” pro-
cess effectively, it will further accelerate the aging process.

Telomerase, composed of TERT and TERC subunits, is a reverse
transcriptase that extends telomeres53. DNA damage caused by oxidative
stress can activate ATM/ATR kinases, which in turn activate Chk1/Chk2.
Telomere shortening leads to cellular senescence, which is associated with
the activation of the p16INK4a/Rb signaling pathway that inhibits cell cycle
progression. Both telomere shortening and oxidative stress can activate
inflammasomes, resulting in the release of inflammatory factors, which is
related to the chronic inflammatory state observed in the aging process53,54.

Furthermore, mitochondrial dysfunction may lead to increased ROS/
RNS levels, causing telomere damage and epigenetic modifications. Finally,
alterations in theNAD+/sirtuin pathwaymay induce aging via the p53/p21
pathway but could also negatively affect the specific functions of forkhead
boxO(FOXO)andperoxisomeproliferator-activated receptorγ coactivator
1α (PGC-1α), leading to increased ROS and mitochondrial dysfunction55.
These diseases include retinal diseases, neurodegenerative diseases,
osteoarthritis, cardiovascular diseases, cancer, and various reproductive
disorders, significantly impacting the quality of life and lifespan of the
elderly56.

Critical role of oxidative stress in tumorigenesis
Oxidative stress promotes tumorigenesis
The relationship between oxidative stress and tumors includes: ① oxidative
stress can cause DNA oxidative damage, leading to gene mutations and
cancer initiation; ② it can interfere with apoptotic mechanisms, allowing
abnormal cells to evade programmed cell death, thus promoting tumor
development;③ high levels of oxidative stress may lead to immune evasion,
protecting tumor cells from immune system attacks. (①Causes cancer➔②

Promotes cancer➔ ③ Immune evasion)
When the body is under oxidative stress, it leads to excessive pro-

duction of ROS, which is one of the key drivers of tumor initiation, pro-
gression, metastasis, and drug resistance57,58.

① Excess ROS in the TME attacks biomolecules such as lipids,
proteins59, and DNA. This produces mutagenic and carcinogenic bypro-
ducts, including 8-hydroxy-2’-deoxyguanosine (8-OHdG), 4-hydroxy-
nonenal (4HNE) modifications, and malondialdehyde (MDA), resulting
in lipid peroxidation, protein modification, and DNA oxidative damage60.

②Tumor growth and survival dependon angiogenesis, and tumor cells
release endothelial growth factors that play a crucial role in tumor
angiogenesis61,62. Research has shown that in prostate cancer tissues, vas-
cular endothelial growth factor-A (VEGF-A) regulates the Rac1 pathway
through VEGFR2 on the cell membrane, inducing NOX2 oxidase activa-
tion.Other cytokines, such asfibroblast growth factor (FGF) andhepatocyte
growth factor (HGF), also act after inducing ROS, and ROS itself may affect
growth factor receptor signaling, further promoting tumor development63.
Additionally, ROS promotes tumor metastasis by interacting with VEGF
under the influence of hypoxia-inducible factor-1 (HIF-1), inducing
angiogenesis and facilitating tumor spread64.

③ Intracellular ROS primarily consists of mtROS65. MtROS can cause
oxidative damage tomtDNAand induce IFNsignaling, upregulatingPD-L1
expression, thereby inhibiting T cell activation, DCs, and M1 macrophage
functions. Under ROS stimulation, cancer cell mitochondrial Lon (a
mitochondrial protease) triggers NF-κB-dependent inflammatory cytokine
secretion (IL-6, IFN-γ, TGFβ, VEGF, IL-4, and IL-10) via the mtROS-NF-

κB pathway, inducing immune suppression in macrophages and DCs and
promoting T cell differentiation into Tregs66–69. ROS-induced Lon enhances
downstream signaling through the NF-κB axis, accelerating tumor
progression70.The expression of mitochondrial Lon protease is directly
regulated by the NF-κB signaling pathway66,71. In the tumor micro-
environment, chronic inflammatory factors (e.g., TNF-α, IL-1β) or ROS
activate NF-κB, which binds to the promoter region of the Lon gene to
enhance its transcription, forming a “NF-κB→ Lon upregulation” positive
feedback loop. Overexpression of Lon further exacerbates mtROS produc-
tion, leading to the leakage of oxidatively damaged mtDNA into the cyto-
plasm. The released mtDNA activates the cGAS-STING-TBK1 pathway,
inducing the secretion of type I interferons (IFN-α/β), which subsequently
upregulate PD-L1 and IDO-1 expression via JAK-STAT signaling, directly
suppressing the antitumor function of CD8+ T cells. Additionally, Lon-
dependent mtROS accumulation promotes the secretion of extracellular
vesicles (EVs) carrying oxidized mtDNA and PD-L1. Upon uptake by
tumor-associated macrophages (TAMs), these EVs trigger IFN-γ and IL-6
release through the TLR9-MyD88 pathway, inhibiting T cell activity and
driving polarization ofmacrophages toward theM(IL-4) phenotype71. ROS-
induced Lon enhances downstream signaling through the NF-κB axis,
accelerating tumor progression.

Moreover, the hypoxia factor HIF-1α induces upregulation of mito-
chondrial Lon and promotes IL-6 secretion through indirect effects on
STAT372. ROS and hypoxia-induced upregulation of Lon lead to the
secretion of extracellular vesicles (EVs) carrying mtDNA and PD-L173.
MtROS further induces macrophages to produce IFN-γ and IL-6, weak-
ening T cell cytotoxicity in the TME74. Simultaneously, ROS significantly
affects the expression of programmed cell death protein 1 (PD-1) and
programmed death-ligand 1 (PD-L1)70,75.

The dual role of ROS in tumors: balancing arrest and pro-
tumorigenic effects
The cell cycle arrest induced by ROS is closely associated with tumor-
igenesis and progression, representing a critical mechanism through
which ROS regulates tumor development. This process highlights the
dual role of ROS in tumors76: while they may promote tumor evolution
under specific conditions (e.g., inducing DNA damage, facilitating
angiogenesis, and activating immunosuppressive pathways), they may
also exert anti-tumor effects by triggering cell cycle arrest. For instance,
reactive oxygen species (ROS) regulate the arrest of various cell cycle
phases (G0-G1-S-G2-M) through multi-layered molecular
interactions77 (Fig. 3). ROS levels fluctuate during the cell cycle, peaking
during mitosis78. During the G0 phase, ROS activate the NRF2 and
p53 signaling pathways79, induce CDKN1A (p21) expression80, inhibit
CDK4/6 and Cyclin D1 activity, and maintain G0 phase arrest via the
involvement of p27 and p3880–83 In the G1 phase, ROS activate the PI3K/
AKT84,85 and SIRT1/FOXO3 signaling pathways86–88, thereby inducing
the expression of p27, p53, and p16INK4A86, suppressing CDK4/6 and
Cyclin D activity89, and preventing cell entry into the S phase. During the
S phase, ROS activate the ATR/Chk1 signaling pathway90, inhibit
CDC25A91 and PCNA activity92, and block progression to the G2 phase
through the involvement of ATM93 and MTH192. In the G2 phase, ROS
activate the WEE1/Myt1 and Chk1/2 signaling pathways, suppress
CDC25C and CDK1/Cyclin B activity, and prevent transition to the M
phase via the participation of p38, p53, p21, SAC, and APC/C²¹⁻²³. These
mechanisms collectively maintain cell cycle homeostasis, thereby pre-
venting cellular damage and aberrant proliferation.

Oxidative stress impacts post-transcriptional and protein
modifications
Post-transcriptional modifications refer to a series of chemical processes
that occur after RNA synthesis, including RNA splicing, RNA editing, and
RNA methylation. These modifications can influence RNA molecule sta-
bility and translation efficiency, thereby affecting protein expression and
function. Protein modifications involve a series of chemical processes
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occurring after protein synthesis, including phosphorylation, glycosylation,
methylation, acetylation, sulfation, andpalmitoylation. Thesemodifications
affect protein activity, stability, conformation, and interactions, thereby
impacting protein function94.

In tumor cells, extensive oxidative stress processes generate peroxides
that attack guanine nucleotides in RNA molecules, converting them to
8-oxoguanine nucleotides95. This affects mRNA stability and translation
efficiency. Peroxides also attack amino acid residues in proteins, causing
oxidative damage. For example, peroxides can target tyrosine residues in
proteins, converting them to hydroxylated tyrosine. This oxidative damage
impacts protein activity, stability, conformation, and interactions, thereby
affecting protein function.

Oxidative stress: a central player in aging and
tumorigenesis
In the pathological processes of aging and cancer, oxidative stress and
changes in immune metabolism are two critical factors. Both aging and
cancer development are associated with the accumulation of ROS. Aging
results in decreased antioxidant capacity, contributing to ROS accumula-
tion. ExcessiveROSnotonly causesDNAdamageandgenetic instability but
also affects immunemetabolismpathways,weakening the immune system’s
normal function, thus promoting cancer development and progression as
well as cellular aging and tissue function decline96.

Oxidative stress drives shared pathological processes in aging and
tumorigenesis through multiple mechanisms97. First, ROS directly induce

Fig. 3 | ROS-mediated regulation of cell cycle progression and associated mole-
cular mechanisms. This figure illustrates the regulatory roles of ROS in modulating
cell cycle phases (G0, G1, S, G2, and M) and their complex interplay with p53 and
CDKs. Distinct cell cycle phases are demarcated by color-coded boxes, with detailed
annotations highlighting ROS-mediated activation of specific signaling pathways
and molecules (e.g., p53, CDKs, CKIs) to influence cell cycle progression or arrest.
Examples include: G0 phase: ROS induces G0 arrest via activation of NRF2 and

ATR/Chk1 signaling pathways. G1 phase: ROS triggers G1 arrest through PI3K/
AKT and p53-dependent mechanisms. S phase: ROS promotes S phase arrest via
ATM and p53-mediated pathways. G2 phase: ROS causes G2 arrest by activating
WEE1/Myt1 and p53-related signaling. The schematic underscores ROS as a dual-
functional modulator that orchestrates phase-specific cell cycle checkpoints through
interactions with DNA damage sensors (e.g., ATM/ATR) and CDK inhibitors.
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DNA damage. In aging, ROS activate the p53/p16 pathway via telomere
shortening and DNA damage response (DDR), leading to cell cycle
arrest98–101. In cancer, ROS promote genomic instability, facilitating proto-
oncogene activation (e.g., RAS) and tumor suppressor gene inactivation
(e.g., PTEN), thereby accelerating malignant transformation98,102. Second,
oxidative stress links aging and cancer by modulating inflammatory phe-
notypes: ROS activate NF-κB and mTOR pathways, driving pro-
inflammatory factors (e.g., IL-6, IL-8) in aging103,104; in tumors, ROS stabi-
lize HIF-1α to promote angiogenesis (VEGF) and immune checkpoint
molecule expression (e.g., PD-L1), shaping an immunosuppressive
microenvironment104,105. Additionally, metabolic reprogramming and oxi-
dative stress form a positive feedback loop: enhanced glycolysis in senescent
cells increases mitochondrial ROS accumulation106,107, while cancer cells
sustain high ROS levels via theWarburg effect, promoting proliferation and
inhibiting apoptosis108. Moreover, antioxidant defense system failure
exacerbates pathological progression—declining NAD+ in aging reduces
SIRT1 activity, impairing mitochondrial repair109, whereas tumors upre-
gulate glutathione systems to balanceROS, but excessive oxidative stress still
causes genomic instability104. Finally, strategies targeting oxidative stress
(e.g., senolytics to clear senescent cells, NOX inhibitors to block ROS gen-
eration) show significant potential in delaying aging110 and enhancing
chemosensitivity in cancer therapy111.

Immunometabolism: bridging the gap between aging
and tumorigenesis
The Impact of Immunometabolism on Aging
More importantly, metabolic function declines with age, including energy
metabolism, lipid metabolism, and glucose metabolism. For example,
during aging, the levels of O-GlcNAcylated proteins increase, and the
O-GlcNAcylation of IKKβ protein affects NF-κB activity112, leading to ele-
vated lactate production and glucose consumption113. The tricarboxylic acid
(TCA) cycle, glycolysis, fatty acid metabolism, and nucleotide synthesis are
key metabolic pathways that maintain intracellular homeostasis and reg-
ulate DNA repair mechanisms. Activation of the DDR reduces glutamine
sensitivity while promoting nucleotide synthesis and expanding glucose
metabolism.Metabolic changes further impactDNA replication and repair,
accelerating cellular aging. This decline in metabolic function affects the
function and metabolic activity of immune cells, thereby impairing the
normal operation of the immune system. Recent research has indicated that
IgG accumulates in adipose tissue with aging, leading to fibrosis and
metabolic dysfunction within the adipose microenvenvironment. This
metabolic impairment is closely associated with chronic inflammation and
dysfunction of adipocytes, subsequently affecting the overall function of the
immune system114.

Senescent cells can also produce various pro-inflammatory che-
mokines and cytokines, leading to the accumulation of senescent cells
that impair normal tissue function, including tissue dysfunction,
limited regeneration, and tumor development113. The activity and
function of immune cells are directly influenced by aging. Age-related
damage to the immune system, known as immunosenescence, involves
remodeling changes in both structure and function, negatively
impacting the health of older individuals115. Vida et al. observed that
aging is associated with lower antioxidant defense capacity (catalase
activity and GSH levels), higher levels of oxidative compounds (XO
activity/expression, superoxide, ROS, and GSSG levels), and increased
lipofuscin accumulation, along with impaired immune cell functions
such as macrophages116.

Therefore, immune cells may experience functional decline under
when faced with insufficient energy supply or metabolic disorders, making
the body more vulnerable to infections. Notable features of immunose-
nescence include thymic involution, imbalance in the ratio of naïve to
memory cells, metabolic dysregulation, and epigenetic changes. These
characteristics manifest as increased susceptibility to infections, diminished
vaccine responsiveness, the onset of age-related diseases, and the progres-
sion of tumors34.

Immunometabolism affects the tumor microenvironment
Tumor cells perform aerobic glycolysis under normoxic conditions—a
phenomenon known as the Warburg effect. Glycolysis converts glucose to
pyruvate, leading to the production of lactate and CO2, which results in
lactate accumulation and acidification of the TME117,118. This acidic envir-
onment suppresses mTOR activity, inhibits IFN-γ production, and affects
cancer-related cells. The acidic environment created by the accumulation of
lactate and CO2 degrades IFN-γ, weakening the differentiation of naive
T cells into anti-tumor Th1 cells, while promoting their differentiation into
pro-tumor Th2 cells. Studies have shown that under acidic conditions, IFN-
γ undergoes irreversible conformational changes, reducing its binding
capacity to the IFN-γ receptor (IFNGR)119,120. Simultaneously, the acidic
environment activates G protein-coupled receptors (e.g., GPR65) in T cells,
suppressing themTORC1 signaling pathway, which inhibits the expression
ofT-bet (a key transcription factor forTh1differentiation) and enhances the
activity of GATA3 (a critical transcription factor for Th2
differentiation)121,122. Furthermore, lactate itself acts as a signaling molecule
by inhibiting histone deacetylase (HDAC) activity, thereby promoting the
opening of epigeneticmodifications inTh2-related genes (e.g., IL-4, IL-5)123.
Additionally, CO₂ is converted to bicarbonate (HCO₃⁻), which further
suppresses Th1 differentiation and enhances Th2 polarization124. This
multi-layered regulatory mechanism weakens the differentiation of naive
T cells into anti-tumor Th1 cells while promoting their differentiation into
pro-tumor Th2 cells. TAMs tend to shift towards a pro-tumor M2
phenotype125. Aerobic glycolysis is amajormetabolic pathway for activating
T cells in the TME and is required for the effector functions of activated
T cells126. Different T cell subsets have distinct metabolic pathways. Acti-
vated CD8+ T cells primarily use glycolysis for energy metabolism, while
CD4+ T cells increase both glycolysis and fatty acid (FA) metabolism.
Therefore, aerobic glycolysis can suppress T cell activity and efficacy.

Sialic acids are carbohydrates commonly found as acidic residues on
glycoproteins and glycolipids onmany cell surfaces. In the TME, sialic acids
can help tumor cells evade the immune system by binding to immune cell
surface ligands (e.g., Siglec family), thereby inhibiting immune cell activity
and function (Fig. 4). Additionally, sialic acids can promote tumor cell
proliferation and growth by activating the PI3K/Akt and MAPK pathways
through binding to tumor cell receptors127, or indirectly affect tumor growth
and angiogenesis by influencing intercellular signaling in the TME.

Different subtypes of TAMs exhibit distinct metabolic processes: M1
macrophages tend toward fatty acid synthesis (FAS), while M2 macro-
phages tend toward fatty acid oxidation (FAO). In the TME, high levels of
fatty acids lead TAMs to polarize towards the M2 phenotype128,129. The
polarization of TAMs is a continuous process and progressively shifts
towards an M2-like state with tumor malignancy, creating a positive feed-
back loop that supports tumor growth andmetastasis. The accumulation of
lipid droplets in tumor-derived dendritic cells (DCs) with tolerogenic
functions leads to impaired antigen presentation and reduced anti-tumor
activity130,131. Increased cholesterol levels in theTMEcan lead toTIL (tumor-
infiltrating lymphocyte) exhaustion and weaken T cell anti-tumor
responses131,132 (Fig. 5).

Tumor cells in the TME require more exogenous non-essential amino
acids for cellular activities133. Glutamine is themost abundant amino acid in
circulation after glucose and is one of the fastest-depleted nutrients inmany
cultured cancer cells134,135. It is crucial for cell biosynthesis, maintaining
redoxbalance, and regulating cell signalingpathways.Glutamine enters cells
via transporters SLC1A5 and SLC7A5, is converted to glutamate by gluta-
minase (GLS). Gln-derived glutathione helps maintain ROS balance136.
Tumor cells competitively acquire Gln, which inhibits T cell IFN-γ secre-
tion. Gln deficiency in tumor cells induces PD-L1 expression through the
EGFR/ERK/c-Jun pathway, leading to immune evasion. GLS deficiency
promotes the proliferation, differentiation, and tumor-killing efficacy of
Th1 cells and CD8+ cytotoxic T lymphocytes (CTLs), while GLS absence
inhibits Th17 cell differentiation137. Under the catalytic action of IDO1/2
and TDO, tryptophan is metabolized to kynurenine (Kyn). Intermediate
cells in the TME (e.g., endothelial cells, TAMs) express high levels of IDO
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and TDO, leading to tryptophan depletion, which inhibits T cell pro-
liferation and function, causing cell cycle arrest at the G1 phase. Addi-
tionally, the accumulation of Kyn promotes Treg differentiation, enhancing
immune suppression.

Commonmechanisms of aging and cancer in antioxidant
systems
Aging and cancer share common features of immunometabolic
dysregulation97. First, both drive disease progression through chronic
inflammation: senescent cells secrete the pro-inflammatory chemokines
and cytokines (e.g., IL-6, IL-8) to trigger “inflammaging,“103 while cancer
cells and stromal cells in the tumor microenvironment release pro-
inflammatory factors via similarmechanisms, forming immunosuppressive
inflammation138. Second, immunosuppressive cells like regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) are significantly
expanded in both contexts. In aging tissues, Tregs suppress immune
responses by inducing senescence in effectorT cells139,140, whereasMDSCs in
tumors block T cell activation through molecules like IL-1RA138,141. Third,
metabolic reprogramming exhibits shared characteristics. Both senescent
cells and cancer cells rely on glycolysis, with senescent cells showing
increased glucose consumption and cancer cells exhibiting the Warburg
effect. Mitochondrial dysfunction in immune cells further drives metabolic
exhaustion, manifested as declined OXPHOS in aged T cells andmetabolic
suppression in tumor-infiltrating T cells. Finally, amino acid metabolic
imbalance exacerbates immunosuppression. For example, elevated activity
of ARG1 (arginase 1) and IDO1 (indoleamine 2,3-dioxygenase 1) in aging
and cancer restricts T cell function, establishing “metabolic checkpoints”
that collectively weaken immune surveillance.

In the tumor microenvironment, significant metabolic changes occur
in immune cells, with tumor cells using metabolic reprogramming to sup-
press the antitumor functions of immune cells, thereby achieving immune
escape (Fig. 6). Similarly, during aging, changes in immunemetabolism lead
to weakened immune function, characterized by a chronic inflammatory
state and a decreased response to pathogens. Persistent elevation of
inflammation levels in organs such as the bone marrow, liver, and lungs, if
not resolved promptly, can result in organ damage and the development of
age-related diseases. Consequently, targeting inflammation for resolution is

regarded as a promising strategy for aging intervention25. Both cancer and
aging are associated with inflammatory responses. In cancer development,
inflammatory cells and factors (e.g., IL-6, TNF-α) play roles in the tumor
microenvironment, promoting tumor cell proliferation, invasion, and
metastasis, leading to chronic inflammation. In aging, chronic low-grade
inflammation (“inflammaging”) impairs tissue function andmaycontribute
to age-related diseases such as atherosclerosis, diabetes, and cancer142.

The metabolic pathways of immune cells are closely related to their
functions, including glycolysis, the tricarboxylic acid cycle, OXPHOS, and
fatty acid metabolism. The redox reactions generated during metabolism
inevitably produce ROS, leading to oxidative stress. There is a reciprocal
regulatory relationship between oxidative stress and immune metabolism.
NADPH is a critical reductant produced during immune metabolism,
maintaining the function of intracellular antioxidant systems (e.g., thior-
edoxin and glutathione systems) and bidirectionally regulating ROS pro-
duction and clearance in certain cells such as macrophages143–146.

The crosstalk between oxidative stress and immuno-
metabolism represents a shared mechanistic nexus in
both aging and tumorigenesis
The role of antioxidant systems in oxidative stress
A.TRX1 maintains nucleotide biosynthesis. The rate-limiting step in
nucleotide biosynthesis during the final phase of the PPP is catalyzed by
ribonucleotide reductase (RNR), which reduces ribonucleotides to the
corresponding 2’-deoxyribonucleotides (dNTPs), which are essential
components of DNA147–149. Due to the very low expression of GRX1 in T
cells, which does not upregulate upon activation, the GSH/GRX system
cannot compensate for the loss of the TRX1 pathway, making TRX1 the
sole electron donor for dNTP production in proliferating T cells.
Therefore, the TRX1 system is crucial for rapid T cell proliferation.
Aerobic glycolysis fuels the PPP to produce NADPH, which in turn
provides reducing equivalents to the TRX1 system, ultimately promoting
the maintenance of RNR activity in the PPP to regenerate dNTPs, thus
completing a full cycle.

B.TXNIP plays a central role in negative regulation of glucose
metabolism. TXNIP is another component of the TRX1 system,
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Fig. 4 | Sialic acid induces tumor immune escape. In the tumor microenvironment, sialic acid binds to antibodies on the surface of immune cells, thereby inhibiting their
function and enabling tumor cells to evade immune surveillance.

https://doi.org/10.1038/s41514-025-00250-z Review

npj Aging |           (2025) 11:59 8

www.nature.com/npjamd


negatively regulating TRX1 function by inhibiting reduced TRX through
intermolecular disulfide bond interactions150,151. While it remains to be
confirmedwhether TXNIP also plays a key role in the negative regulation
of glucosemetabolism in immune cells, increasing evidence supports this
idea152. These complexes can sense glycolytic metabolite levels, and
increased glycolysis has been shown to deplete complex formation,
leading to reduced TXNIP gene transcription153. Furthermore, in acti-
vated T cells, increased aerobic glycolysis and glucose uptake result in
rapid downregulation of TXNIP, further promoting glucose uptake and
metabolism154. Additionally, TXNIP also plays a gatekeeping role in acute
lymphoblastic leukemia B cells by inhibiting GLUT1 expression and
glucose uptake. The transcription factor PAX5 regulates TXNIP
expression and directly suppresses glucose transporters154. The down-
regulation of TXNIP and PAX5 in activated B cells and plasma cells
promotes glucose uptake to drive glycolysis and enhance the PPP, which
is crucial for B cell development and response155.

C.GSH buffers ROS and regulates cellular metabolism. The GSH
system plays a crucial role in buffering ROS in every cell. Increased
metabolic activity in activated T cells leads to ROS production by the
mitochondrial ETC, which, if not properly cleared, can result in DNA
damage and cell death156–158. To maintain redox balance and increase

GSH uptake, T cell activation induces the upregulation of the
glutamate-cysteine ligase catalytic subunit (GCLC), which primarily
catalyzes the rate-limiting step of GSH biosynthesis. Conditional
knockout of the GCLC gene in T cells leads to defects in metabolic
reprogramming. ROS accumulation occurs in GCLC-deficient T cells,
where excessive ROS impairsmTOR activation, affecting the expression
of c-MYC and nuclear factor of activated T cells (NFAT), and adversely
impacts T cell metabolic reprogramming. mTOR integrates signals
related to energy and nutrient levels, stress pathways, andTCR signaling
to play a central role in reprogramming T cell metabolism, increasing
glycolysis and glutamine catabolism158. For example, mTOR promotes
the induction of c-MYC and HIF-1α, which supports aerobic glycolysis
and glutamine catabolism. NFAT directly controls the expression of key
metabolic regulators, including c-MYC159–161. Calcineurin, a phospha-
tase that activates NFAT, can also be inhibited by ROS161. In GCLC-
deficient T cells, excessive ROS accumulation due to impaired GSH
biosynthesis inhibits calcineurin function, thus suppressing NFAT
activation and impairing T cell metabolic reprogramming. Overall, T
cell activation leads to upregulation of the GSH pathway to prevent
excessive ROS accumulation, ensuring the activation of mTOR and
NFAT, and facilitating proper T cell metabolic reprogramming and cell
fate decisions.

Fig. 5 | Immune metabolites of tumor cells affect the tumor micro-environment.
Tumor cells generate ROS and other metabolites that facilitate the differentiation
and proliferation of immune cells toward pro-tumorigenic phenotypes within the
tumor microenvironment, while simultaneously suppressing the anti-tumor func-
tions of specific immune cell populations, ultimately leading to immune evasion.
Through metabolic reprogramming, neoplastic cells deplete critical nutrients
including glutamine and arginine to produce glutamate, which induces the

differentiation of TAMs and DCs into M2-polarized macrophages and DCregs.
Hypoxia-induced alterations in the TCA cycle result in excessive lactate and CO2

production by tumor cells. Concurrently, ROS-mediated signaling promotes T cell
differentiation into immunosuppressive regulatory T cells andThelper 2 (Th2) cells.
Furthermore, tumor-derived fatty acids in abundance significantly impair the
release of anti-cancer-related cytokines from natural killer (NK) cells216.
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How does immune metabolismmaintain homeostasis against
oxidative stress?
A.NADPH provides reductive power to maintain the function of
antioxidant pathways including TRX and GSH systems. NADPH is a
crucial product of the immune metabolic pentose phosphate pathway
(PPP) and has been shown to maintain redox homeostasis in immune
cells while reducing ROS production. NADPH acts as an electron donor
for antioxidant pathways including the TRX and GSH systems162. An
important component of the TRX system is TRX-interacting protein
(TXNIP), which acts as a negative regulator. TXNIP binds to TRX
through intermolecular disulfide bonds, inhibiting its reducing activity
and thus negatively regulating the TRX system. After T cell stimulation,
TXNIP is rapidly downregulated, relieving the inhibition on the
TRX1 system.

GSH is regenerated from its oxidized form (GSSG) to its reduced form
(GSH)usingNADPHelectrons providedby glutathione reductase (GSR)163.
TheGSHsystemnot only removesROSbut also provides reductive capacity
for other antioxidant enzymes. For instance, it can reduce glutaredoxins
(GRXs) and glutathione peroxidases (GPXs)164. The GPX4 protein family
clears lipid peroxides, preventing ferroptosis, while GPX1 catalyzes the
reduction of hydrogen peroxide and organic hydroperoxides to water and
alcohol29. Inmacrophages, these systems collectively coordinate tomaintain
cellular redox homeostasis in an inflammatory context.

B.Glutaminemetabolism involvesGSHbiosynthesis. GSH is a widely
present tripeptide composed of glutamate, glycine, and cysteine, with

substrate availability determining the rate of GSH biosynthesis in cells.
After T cell stimulation, glutamine is rapidly taken up through the
upregulation of the transporter SLC1A5 (ASCT2)165. mTORC1 and
c-MYC are key participants in inducing glutamine uptake, promoting T
cell proliferation and effector functions166. Glutamate, derived from
glutamine hydrolysis into α-ketoglutarate167, can serve as a carbon source
for the TCA cycle and as a precursor for de novo synthesis of GSH. T cells
must regulate glutamine flux via glutamine hydrolysis to maintain
effective glutamine synthesis. Recent studies have shown that deletion of
mitochondrial pyruvate carriers in cancer cells disrupts this balance,
reducing GSH synthesis and negatively impacting cell proliferation168.
Glutamine uptake and conversion to glutamate are significantly
increased during B cell activation, and blocking this process negatively
affects B cell growth, proliferation, differentiation, and antibody
responses169.

C.TCA cycle metabolites regulate ROS and reactive nitrogen spe-
cies, inducing NRF2 activation. NRF2 is another major regulator of
cellular antioxidant responses. Macrophages need to adjust their meta-
bolic processes to achieve optimal functional responses to different
pathogens and tissue environments169. Similar to glycolysis, inter-
mediates from the TCA cycle in M1 macrophages also participate in
biosynthesis processes. After LPS stimulation, TCA cycle intermediates
undergo two breaks, leading to the accumulation of succinate and citrate.
The accumulation of succinate stabilizes HIF-1α, promoting the tran-
scription of IL-1β. Additionally, succinate dehydrogenase (SDH)

Fig. 6 |Molecularmechanisms of oxidative stress-induced tumor immune escape.
ROS affects NRF2 activation through PI3K-Akt pathway. ROS can affect the NF-κB
pathway by affecting IκB kinase. ROS also promotes transcription and translation
HIF-1α positive feedback via promoting the phosphorylation of NF-κB and affects
the expression ofNOX to promote the generation and aggregation of reactive oxygen

species ROS. ROS affects the expression of NLRP3 inflammasome through NF-κB,
induces the production of IL-18 and IL-1β, and affects the immune activity of T cells
and dendritic cells. ROS promotes the production of IFN-γ and IL-6 and induces the
expression of PD-L1 through the JAK-STAT pathway to achieve immune
escape217–231.
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catalyzes the oxidation of succinate, resulting in reverse electron transfer
at complex I and the production of ROS170.

Activated macrophages in a high metabolic state use glutamine to
provide nutrients for the TCA cycle, resulting in the accumulation of oxa-
loacetate in the cytosol, which stabilizes HIF-1α and enhances IL-1β
secretion171. NO in inflammatory macrophages also forms a positive feed-
back loop, reducing IDH1 and IDH2 activity and further promoting citrate
accumulation. Furthermore, citrate canbe converted to itaconate, withTCA
cycle intermediate cis-aconitate decarboxylated to form itaconate. Itaconate
can exert anti-inflammatory effects by modifying key glycolytic enzymes
and NLRP3 inflammasome proteins, inducing ATF3 to activate NRF2.
NRF2 activation alleviates cellular oxidative stress by inducing the pro-
duction of GSH, TRX1, and TRXR1. For instance, in T cells, stimulation
leads to ROS generation and activation of the NRF2 pathway. NRF2 target
genes also involve PPP products such as G6PD, 6PGD, transketolase, and
transaldolase, indicating that NRF2 activation is crucial for participating in
and/or maintaining the PPP, especially for producing NADPH to fuel FAS,
TRX, and GSH systems172.

The role and function of traditional Chinese medicine
and its extracts in antioxidant aging and antitumor
effects
Antioxidants are a broad category of substances (bioactive compounds and
enzyme complexes) present in small amounts (micronutrients) in organ-
isms, including both natural (phospholipids, proteins, DNA) and synthetic
(plastics, oils) substances, which protect against free radical damage. All
antioxidants that can inhibit or reduce the formation of free radicals are
considered preventive agents, as they act by preventing the formation of free
radicals173. The human antioxidant defense system comprises endogenous
(enzymatic and non-enzymatic) antioxidants, such as SOD, CAT, and
glutathione peroxidase (GSH-Px), as well as exogenous antioxidantsmainly
from the diet. These exogenous antioxidants include hydrophilic free radical
scavengers (e.g., vitamin C and glutathione (GSH)) and hydrophobic ones
(e.g., tocopherols, flavonoids, carotenoids, and coenzyme Q, which directly
scavenge O₂−•, •OH, and ¹O₂). Endogenous and exogenous antioxidants
work together, often synergistically, to maintain or restore redox balance174.
SOD and CAT are central to the cellular antioxidant defense. The SOD
family (Cu/Zn-SOD1 in the cytoplasm, Mn-SOD2 in mitochondria, and
extracellular SOD3) converts superoxide anions (O₂−•) into H₂O₂ and O₂
via dismutation. Subsequently, CAT, with iron protoporphyrin as a cofac-
tor, decomposes H₂O₂ into water in a two-step reaction175,176. Antioxidants,
as defensive factors, combat free radicals, eliminate reactive oxygen species
(ROS), and modulate cellular redox states, facilitating redox signaling. By
inhibiting initiation and propagation steps, they terminate reactions, delay
oxidation, and counteract oxidative mechanisms in disease
progression177,178.

Many natural and synthetic compounds have been studied for their
anti-aging and antitumor potential in cell and animal models, as well as in
humans, demonstrating antioxidant effects through various mechanisms
and pathways. These compounds reduce intracellular oxidative stress and
free radical damage, thereby helping to slow down the aging process and the
development of tumors179. Traditional Chinese medicine herbs and their
extracts have been found in numerous studies to offer multiple health
benefits. By improving oxidative stress conditions, they can effectively delay
the aging process and protect cells from oxidative stress, thereby reducing
cancer risk. Recent studies have also focused on the role of various TCM
herbs inmodulating oxidative stress to slow aging. To elucidate the potential
applications of TCM in anti-aging and antitumor contexts, this review
summarizes the anti-aging and antitumor effects and mechanisms of TCM
and its effective monomeric components (Table 1). Traditional Chinese
Medicine demonstrates multi-target and multi-pathway mechanisms in
regulating oxidative stress-mediated aging and tumorigenesis. Numerous
studies indicate that TCM and its active components effectively delay aging
and suppress tumor progression by enhancing antioxidant enzyme activity,
modulating immunometabolism, and inhibiting inflammatory signaling

pathways. For example,Wang et al.180 found thatAstragali Radix (Huangqi)
significantly alleviates oxidative stress in a D-galactose-induced aging ani-
mal model by activating the PI3K/Akt signaling pathway, reducing mal-
ondialdehyde (MDA) levels, and elevating superoxidedismutase (SOD)and
catalase (CAT) activity, thereby mitigating age-related damage. Similarly,
Xiong et al.181 demonstrated in a nematode model that Lycii Fructus
(Gouqizi) upregulates SOD and CAT expression while reducing lipofuscin
accumulation, with its antioxidant effects strongly correlating with lifespan
extension. In cancer therapy, TCM components exert antitumor effects by
modulating the redox balance and immunometabolism in the tumor
microenvironment (TME). Tan et al.182 revealed that baicalin induces RelB/
p52-dependent autophagy, promoting the polarization of TAMs from pro-
tumor M(IL-4) to antitumor M(IFN-γ) phenotypes, thereby inhibiting
hepatocellular carcinoma progression. Additionally, Lan et al.183 reported
that saikosaponin A triggers endoplasmic reticulum stress to activate ATF3
expression, depletes GSH, and induces ferroptosis in liver cancer cells,
markedly suppressing tumor proliferation. Mitigation significantly
decreases mitochondrial reactive oxygen species (mtROS) by enhancing
Sirt3-mediated mitochondrial DNA (mtDNA) transcription, leading to
marked increases in ATP synthesis and Complex I activity. It also activates
AMPK and upregulates PGC-1α and Sirt3 protein expression both in vivo
and in vitro184. Ginsenosides Rg3 andRh2 fromginseng suppress breast and
lung cancer growth, inhibit angiogenesis, and enhance chemotherapeutic
drug sensitivity (e.g., cisplatin) by modulating Bcl-2 family proteins185–187.
Ginseng polysaccharides alter gut microbiota and the kynurenine/trypto-
phan ratio to enhance PD-1 therapeutic efficacy188. These mechanisms
highlight thatTCMnot onlydirectly scavengesROSbut also reprograms the
immunosuppressive TME via key metabolic pathways (Fig. 1).

Sharedmechanismsbetweenaging and cancer includeoxidative stress-
induced DNA damage and chronic inflammation. Chen189 showed in
murine models that Bu Shen Huo Xue Tang activates the Nrf2/Keap1
pathway, upregulates HO-1 and NQO1 expression, reduces MDA levels in
premature ovarian insufficiency models, and improves oocyte function.
Similarly, Zeng et al.190 demonstrated that Huangqi Baihe Granules inhibit
the TLR4/NF-κB/NLRP3 inflammatory axis, attenuating ROS production
and alleviating oxidative stress and inflammation in acute lung injury. These
studies illustrate TCM’s dual efficacy in combating aging and cancer
through synergistic regulation of redox homeostasis and inflammatory
signaling networks. Notably, some TCM components influence aging and
tumor progression via epigenetic modifications. Wu et al.191 identified that
dendrobine enhances autophagy and reduces oxidative damage via the
Sch9/Rim15/Msn2 pathway, extending yeast lifespan. In oncology, Lin
et al.192 confirmed that acetylshikonin activates the RIPK1/RIPK3/MLKL
cascade to induce necroptosis in lung cancer cells, a mechanism linked to
ROS-dependent DNA damage. These findings further validate TCM’s
multi-dimensional intervention in oxidative stress-related pathways for
disease modulation. This information can assist clinicians and scientists in
developing new targeted and effective therapeutic drugs, thereby estab-
lishing better treatment strategies to combat aging and cancer.

The treatment strategy of traditional Chinese medicine focuses on
overall conditioning, which can not only improve oxidative stress, but also
regulate the internal immune balance of the body and improve the resis-
tance of the body to tumors193. In summary, TCM has important clinical
application prospects in the treatment of oxidative stress-related aging and
cancer, providing an effective and natural therapeutic option for human
health.

Conclusion
This article provides a comprehensive review of the pivotal roles of
immunometabolismandoxidative stress in cancer and aging, aswell as their
interplay. Immunometabolism involves metabolic processes within
immune cells, including glucose, lipid, and amino acid metabolism, which
are essential formaintaining thenormal functionof immunecells.Oxidative
stress occurs when the balance between pro-oxidants and antioxidants in
the body is disrupted, leading to an overproduction of ROS, causing damage
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to cellular components. In the tumor microenvironment, cancer cells
undergo metabolic reprogramming to meet the demands of rapid pro-
liferation, a process that affects the function of immune cells, particularly
through influencing the polarization of TAMs, thereby promoting tumor
immune evasion and progression. Additionally, oxidative stress plays a
significant role in the initiation and development of cancer by causingDNA
damage, disrupting apoptosis mechanisms, and promoting immune eva-
sion. In the context of aging, changes in immunometabolism lead to a
decline in immune function, a phenomenon known as immunosenescence.
The accumulation of senescent cells and the production of the SASP further
exacerbate the inflammatory state and oxidative stress, accelerating the
aging process. Oxidative stress also promotes cellular aging by affecting the
cellular redox state and post-translational modifications, such as DNA
damage and protein oxidation. Traditional Chinese medicine shows
potential in modulating oxidative stress and immunometabolism, with
various active components of Chinese herbs proven to alleviate the aging
process and inhibit tumor growth through their antioxidant and anti-
inflammatory effects. These components modulate key signaling pathways
and transcription factors, such as NF-κB, NRF2, and SIRT1, to mitigate
oxidative stress and immunometabolic imbalances. In summary, the
mechanisms of action of immunometabolism and oxidative stress in cancer
and aging are complex and interconnected. By regulating these processes,
new strategies may be developed for the treatment of cancer and aging-
related diseases. Future research should further explore the molecular
mechanisms of these processes and develop effective therapeutic
interventions.
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