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We developed a prediction model for postprandial glycemic response (PPGR) in pregnant women,
including those with diet-treated gestational diabetes mellitus (GDM) and healthy women, and
explored the role of gutmicrobiota in improving prediction accuracy. The study involved 105 pregnant
women (77 with GDM, 28 healthy), who underwent continuous glucose monitoring (CGM) for 7 days,
provided fooddiaries, andgave stool samples formicrobiomeanalysis.Machine learningmodelswere
created usingCGMdata,meal content, lifestyle factors, biochemical parameters, andmicrobiota data
(16S rRNA gene sequence analysis). Adding microbiome data increased the explained variance in
peak glycemic levels (GLUmax) from 34 to 42% and in incremental area under the glycemic curve
(iAUC120) from 50 to 52%. The final model showed better correlation withmeasured PPGRs than one
based only on carbohydrate count (r = 0.72 vs. r = 0.51 for iAUC120). Although microbiome features
were important, their contribution to model performance was modest.

Gestational diabetes mellitus (GDM) represents a prevalent condition,
impacting a substantial portion, approximately up to 9–26%, of
pregnancies1. GDMcan lead to pregnancy complications, including but not
limited to increased cesarean section rate, birth trauma, nerve palsy, neo-
natal hypoglycemia in the short-termperiod2, and increased risks of obesity,
type 2 diabetes, and cardiovascular diseases in both mothers and their
offspring throughout life3. It is crucial to uphold normal glycemic levels
during pregnancy to mitigate adverse pregnancy outcomes and disrupt the
cyclical transmission of predisposition to metabolic diseases across
generations3,4.

The most common treatment for GDM is diet and lifestyle mod-
ification, reportedly effective without adding medications for achieving
glucose control in 70–85% of women5. However, according to real-life
observations, many women with GDM do not achieve target glucose

levels, and the rate of pregnancy complications remains high in women
with GDM6.

Nutritional studies and guidelines concerning GDM concentrate on
average characteristics across populations5. The historically prevailing
approach to predicting postprandial glucose responses (PPGRs) to food
involves relying on the carbohydrate content of the meal5, despite evi-
dence suggesting its inadequacy as a predictor7. Alternative methods
include the glycemic index, which assesses the postprandial glucose
response to a specific food, and the derived glycemic load5. Attributing a
singular postprandial glucose response (PPGR) to each food implies that
the response is entirely inherent to the food itself. Yet, recent studies
exploring interindividual variations in PPGRs have revealed significant
variability in how different individuals respond to identical foods7,8. The
distinctive PPGRs of an individual were shown to be influenced by their

1World-Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia. 2Institute of Endocrinology,
Almazov National Medical Research Centre, Saint Petersburg, Russia. 3Institute of Perinatology and Pediatrics, Almazov National Medical Research Center, Saint
Petersburg, Russia. 4Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, Saint
Petersburg, Russia. 5Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia. 6Azrieli Faculty of
Medicine, Bar-Ilan University, Ramat Gan, Israel. e-mail: pvpopova5@gmail.com

npj Biofilms and Microbiomes |           (2025) 11:25 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-025-00650-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-025-00650-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-025-00650-9&domain=pdf
mailto:pvpopova5@gmail.com
www.nature.com/npjbiofilms


biological traits (such as gut microbiome composition and genetic var-
iation) and lifestyle factors7–9.

Several studies integrated gut microbial features into the models pre-
dicting PPGRs in healthy individuals7,8 or patients with type 1 diabetes9.
However, only a few evaluated the impact of microbiome on the prediction
of PPGRs through variance components analyses8 or the SHapley Additive
exPlanation (SHAP) method9, and only one study exclusively concentrated
on investigating the connections between bacterial species and the host
glycemic regulation10. Furthermore, none of these studies directly compared
the accuracymetrics of themodels before and after the addition ofmicrobial
data into the list of the input variables. They compared basic models
including carbohydrates and premeal glucose level with a full model
including multiple individual parameters apart from microbial features7–9.

Moreover, although there is mounting evidence regarding the reg-
ulatory functions of the microbiome in normal and impaired glycemic
responses among non-pregnant individuals7–10, limited knowledge exists
concerning the microbiome’s impact on PPGRs among pregnant women,
both with and without GDM. We have previously developed PPGR pre-
diction models based on multiple individual parameters without micro-
biome for pregnant women with and without GDM11. The performance of
ourmodel in predicting the incremental area under the glucose curve in the
2 h after themeal (iAUC120) (R = 0.7)was comparable to themodel created
by Zeevy et al. for healthy individuals based on individual parameters and
microbiome (R = 0.7)7. However, our past model was inferior to the accu-
racy of themicrobiome-basedmodel subsequently developed by Berry et al.
for iAUC120 prediction in healthy individuals (R = 0.77)8, leaving space for
the improvement of our model, potentially with the inclusion of micro-
biome data. Another distinguishing feature of the Berry model, in com-
parison to both our previous model and the Zeevi model, was the
incorporation of genetic factors. This likely enhanced the predictive accu-
racy, as genetics constituted the second most crucial parameter group after
serum glycemic markers, as indicated by the proportion of variance
explained (R2)8.

The aim of this study was to develop a prediction model for PPGR in
pregnant women, including both those with GDM and normal glucose
tolerance, and to explore the impact of microbial data on the model’s per-
formance.AnaccuratePPGRpredictionmodel holdspromise inoptimizing
personalized diet recommendations to improve glucose control and

pregnancy outcomes in women with GDM. Simultaneously, the identifi-
cation of a distinct gutmicrobial signature affecting PPGR, a secondary aim
of this project, could serve as a basis for the development of potential
therapeutic interventions.

Results
In total, 152 participants were recruited for the study. After the exclusion
of 3 women who did not provide CGM data, 2 women with antibiotics
intake during the study period, 34 womenwith inaccurate food diaries, 2
women with less than 6 meals left after filtering, and 6 microbiota
samples with low read count (<10,000 reads), 105 participants (77
women with GDM and 28 healthy pregnant women) were included in
the final analysis (Fig. 1).

The characteristics of the participants are in Table 1. Women with
GDM did not differ from the control group in terms of age and gestational
age upon initiation of continuous glucose monitoring. Patients with GDM
had higher body mass index (BMI) before pregnancy. As expected, healthy
pregnant women had lower plasma glucose levels during OGTT and
hemoglobin A1C (HbA1C) upon inclusion into the study.

Patients with GDM consumed lower amounts of carbohydrates
(28.4 ± 10.9 vs 36.6 ± 10.8 g) and higher amounts of proteins (17.0 ± 5.2 vs
13.8 ± 2.9 g) per meal compared to healthy women (Table 1). Presumably
due to this fact, iAUC120 and GLUmax levels did not significantly differ
between the groups and even tended to be lower in women with GDM
compared to their healthy counterpartswhowere not dieting (0.52 ± 0.29 vs
0.63 ± 0.28 and 6.2 ± 0.6 vs 6.4 ± 0.6 mmol/L, respectively) (Table 1). For
comprehensive details on lifestyle assessments and baseline blood tests,
please refer to Supplementary Table S3.

Microbial features in women with higher and lower PPGRs
As there was no difference in the levels of GLUmax and iAUC120 between
women with and without GDM during CGM, we combined their data for
selection ofmicrobial features associatedwith higher and lower PPGRs. The
medians for iAUC120 and GLUmax in the cohort were 0.527 and
6.254mmol/L, respectively. Participants with median PPGR indices
(iAUC120 or GLUmax, respectively) below these numbers were considered
to have lower PPGRs, and those with median PPGR indices equal to or
above the cohort median comprised the subgroup with higher PPGRs.

Fig. 1 | Cohort selection.
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Linear discriminant analysis revealed 18 bacterial taxa exhibiting sig-
nificantly higher scores in the subgroup of women with higher iAUC120
and 21 bacterial taxa with higher scores in the subgroup with lower
iAUC120, p < 0.05 for all (Fig. 2). All bacterial taxa distinguished by LefSe
were included as input variables for creation of PPGR prediction models.

When comparingwomenwith higher and lowerGLUmax, 7 taxawere
enriched in the subgroup with higher GLUmax, including Clostridia UCG
014 and “Lachnoclostridium” (Lachnospiraceae), and 8 taxa were enriched
in the subgroup with lower GLUmax, includingMethanosphaera (Metha-
nobacteria), Lachnospira eligens (basonym: Eubacterium eligens) (Lach-
nospiraceae), Butyricicoccus faecihominis (Oscillospiraceae), Intestinibacter
bartlettii (Clostridia, Peptostreptococcaceae), Sellimonas (Lachnospir-
aceae), E. tayi (Lachnospiraceae),Christensenellaceae R-7 group (Clostridia)
(Fig. 3).

Predicting individual postprandial responses
We assessed the overall extent to which different combinations of input
variables predict personal postprandial responses: iAUC120 and GLUmax.
A total of 750 days of concurrent CGM usage and meal logging resulted in
3514 meals to be analyzed with their PPGRs. Meal filtering (see “Research
design and methods: Meal preprocessing”) reduced the dataset to 2706
meals. After the removal of outliers in the target variable, the final dataset
comprised2633mealswithPPGRs forGLUmaxpredictionmodel and2628
meals for iAUC120 prediction. Prediction models for both indices were
developed utilizing gradient boosting algorithms, with the following com-
binations of input variables: (1) only carbohydrate content of the meal
(carbs); (2) clinically available parameters (anthropometric, biochemical,

lifestyle questionnaire, meal content and meal context, CGM data); (3)
model 2 parameters+microbial features (the full model). For the full list of
features please see the Supplementary Table 1. Validation of the model was
performedusing a three-fold cross-validation scheme (see “Research design
and methods”).

In the context of predicting GLUmax, the first model that relied solely
on the amount of carbohydrates in a meal demonstrated the lowest corre-
lation with PPGRs (R = 0.35) and accounted for only 5% of the variation in
glycemic response (Fig. 4a). The second model based on clinically available
parameters achieved a significantly higher correlation (R = 0.62) and
explained 34% of variance (Fig. 4b). Adding microbiome features (Fig. 4c)
further increased the predictive ability with an R of 0.66 and a coefficient of
determination of 42%.

Likewise, in the prediction of iAUC120, a model based solely on the
carbohydrate content of meals demonstrated a relatively weak correlation
(R = 0.51) and explained only 26% of the variation in glycemic response
(Fig. 5a). The addition of parameter groups, as described above, resulted in
an increase in correlation between CGM-measured and predicted values
(R = 0.71, R2 = 0.50). Addition of microbial features to this model slightly
increased the accuracy of prediction (R = 0.72, R2 = 0.52) (Fig. 5b, c).

Because the performance of amodel can also be affected by non-linear
relationships between measured and predicted values, we also assessed
MAE, MSE and RMSE for the models with higher performance (models
2–3, Table 2). As shown in Table 2, adding microbial features decreased
MAE,MSE and RMSE for GLUmax prediction but did not influence these
parameters characterizing prediction of iAUC120.

Exploring factors influencing the prediction of postprandial gly-
cemic responses
Following the examination of different models predicting PPGRs, our
subsequent focus was on understanding the individual factors influencing
prediction accuracy, including microbial features and other parameters
comprising the full model. For this purpose, we conducted feature attri-
bution analysis employing SHAP12.

The features that exerted the greatest influence on iAUC120 predic-
tion, as indicated by the highest mean absolute SHAP value, encompassed
the carbohydrate content of the meal, glycemic load of the meal, amount of
starch in the meal, and CGM-derived parameters characterizing glucose
levels preceding themeal (glucose level 10min before meal and glucose rise
from 240min before the meal to meal start) (Fig. 6a). The most influential
parameters for the prediction of GLUmax were the glucose levels at the
onset of the meal (GLU0), the carbohydrate content of the meal, glycemic
load of themeal, RA of I. bartlettii, and the amount of protein consumed up
to 6 h before the meal (Fig. 6b).

Among the 20 most influential parameters for the prediction of
iAUC120 or GLUmax, the algorithm selected the RA of the following
bacterial taxa: I. bartlettii, “L. edouardi”, B. faecihominis (for iAUC120), and
I. bartlettii, L. eligens (basonym: Eubacterium eligens), and R. champa-
nellensis (for GLUmax) (Fig. 6a, b). Notably, I. bartlettii ranked fourth
among influential parameters for the prediction of GLUmax and was
selected by the algorithm among the top parameters both for iAUC120 and
for GLUmax prediction.

In order to assess the cumulative influence of microbial composition
and other feature groups on the model, we summed the SHAP values of
associated features (Fig. 7). These examinations revealed that the meal
composition had the most significant effect on prediction of iAUC120,
followed by CGM-derived data, meal context, and microbial composition
(Fig. 7a).Оn the contrary, for the prediction ofGLUmax themain predictor
group was the CGM-derived data, followed by meal composition, meal
context, and microbial data also taking the fourth place (Fig. 7b).

Discussion
Recently, a high interpersonal difference in PPGRswas revealed, and the gut
microbiota has been shown to be a factor underlying this variability. Fur-
thermore, the gut microbiota has been used to enhance the accuracy of

Table 1 | Characteristics of the participants

GDM
N = 77
(mean ± SD)

Healthy pregnant
women
N = 28 (mean ± SD)

p-value

Age, years 32.2 ± 4.3 31.4 ± 4.7 0.392

Gestational age (weeks) 30.1 ± 4.0 30.0 ± 2.0 0.947

BMI before pregnancy
(kg/m2)

24.7 ± 5.2 22.1 ± 3.6 0.017

Fasting PG (mmol/L) 5.1 ± 0.5 4.4 ± 0.4 <0.001

1-h postload glucose at
OGTT (mmol/L)

9.5 ± 1.5 6.7 ± 1.6 <0.001

2-h postload glucose at
OGTT (mmol/L)

8.3 ± 1.7 6.0 ± 1.2 <0.001

HbA1C, % 5.0 ± 0.4 4.8 ± 0.3 0.020

Real-time meal logging

Days logged per
participant

7.2 ± 0.6 7.0 ± 0.8 0.78

Meals logged per
participant

26.5 ± 3.7 25.3 ± 4.7 0.72

Energy intake per
meal (kcal)

334.8 ± 99.8 346.3 ± 95.0 0.597

Carbohydrate intake
per meal (g)

28.4 ± 10.9 36.6 ± 10.8 0.001

Glycaemic load per
meal (g)

14.8 ± 7.5 20.4 ± 6.8 0.001

Fat intake per meal (g) 16.4 ± 5.9 15.3 ± 5.9 0.413

Protein intake per
meal (g)

17.0 ± 5.2 13.8 ± 2.9 0.003

CGM-derived indices

Mean GLUmax,
mmol/L

6.2 ± 0.6 6.4 ± 0.6 0.083

Mean iAUC120,
mmol/L

0.52 ± 0.29 0.63 ± 0.28 0.092

Comparisons were performed using the bootstrap hypothesis test.
OGTT oral glucose tolerance test.
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PPGR prediction in healthy volunteers and individuals with type 1
diabetes7–9. However, to our knowledge, no study has explored the impact of
the gut microbiome on PPGRs in pregnant women with or without GDM.

Pregnancy is characterized by substantial alterations in all types of
metabolismaswell as bydynamic changes in gutmicrobial composition13–17.
This fact, in line with the importance of achieving target postprandial glu-
cose levels for improved pregnancy outcomes, underscores the importance
of comprehensive evaluation of factors underlying PPGRs in pregnant

women for the construction of more accurate PPGR prediction models for
personalized dietary advice in this specific population.

Our study has shown that microbiome features are among the top 5
most impactful individual parameters on the PPGR prediction in pregnant
womenwithGDM.The cumulative influence ofmicrobial compositionwas
the fourth among the ten most impactful feature groups following CGM-
derived data, meal composition and meal context for the prediction of
GLUmax and iAUC120.Of note, addingmicrobiome features increased the

Fig. 2 | Results of LefSe analysis comparing relative abundance (RA) of microbial features of participants with PPGR (iAUC120) below and above median. Red
indicates higher RA in patients with iAUC120 equal to or abovemedian, and turquoise indicates higher RA in patients with iAUC120 belowmedian, ranked by the effect size.

Fig. 3 | Results of LefSe analysis comparing relative abundance (RA) ofmicrobial features of participants with GLUmax below and abovemedian.Red indicates higher
RA in patients with GLUmax equal to or above median, and turquoise indicates higher RA in patients with GLUmax below median, ranked by the effect size.

https://doi.org/10.1038/s41522-025-00650-9 Article

npj Biofilms and Microbiomes |           (2025) 11:25 4

www.nature.com/npjbiofilms


predictive ability of theGLUmaxmodelwith the incrementof the coefficient
of determination from 34 to 42%.

However, the addition of microbiome features had a lower impact on
the accuracy metrics of iAUC120 prediction than on the metrics of GLU-
max. This could be a consequence of relatively high accuracy of iAUC120
prediction even before microbiome addition. The addition of the micro-
biome had a lower impact on themodels than the factors related to themeal
(carbohydrates, starch, glycemic load), blood glucose levels at certain time
points, and the foods eaten earlier that day (meal context). The relatively
modest impact of the microbiome’s addition on the performance of the

prognostic models can be attributed to the use of the 16S rRNA gene
amplicon sequencing method or may reflect that the contribution of the
microbiome to the regulation of the postprandial glucose levels is relatively
limited.

The postprandial glycemic predictions in our study (with R = 0.72 for
the model predicting iAUC120) closely resembled those documented by
Zeevi et al. (with anR value of 0.70) in healthy subjects7. The performance of
our models was also superior to that of the models developed by Shilo et al.
for patients with type 1 diabetes (R = 0.72 vs 0.59 for iAUC120 prediction
and R = 0.66 vs 0.61 for GLUmax prediction)9. Furthermore, Shilo et al.
included PPGRs from the same patient in training and validation datasets,
while in our study,we separatedparticipants betweendatasets soPPGRsof a
participant from a training dataset could not be analyzed in the test or
validation datasets. If Shilo et al. followed the same protocol, the difference
in model performance might be even more pronounced. However, type 1
diabetes patients havemuch greater glucose variability and excursions, thus
complicating the task of accurate PPGR prediction in this group of patients.

In the biggest studyof PPGRs inhealthy individuals, to date, Berry et al.
obtained the highest accuracy of iAUC120 prediction with R = 0.75 in the
validation cohort8. They likely reached themaximumaccuracy which could
be anticipated judging by the correlation between PPGRs to repeated
standard meals (intraindividual variability) of 0.7–0.77 reported by Zeevi
et al.7. A potential reason for the lower performance of our model is almost
10-fold smaller sample size and a lower number of included genetic variants
compared to the study by Berry et al.8.

Furthermore, taking into consideration well-known alterations in
carbohydrate metabolism during pregnancy, especially in the third
trimester13, we suppose that PPGRs may differ in a pregnant vs non-
pregnant state. Compared to our previous study on PPGRs prediction

Fig. 5 | The results of iAUC120 prediction with the test set. X scale—CGM-
measured values, Y scale—predicted values. a Baseline model—solely carbohydrate
content of the meal (carbs); b the model based on clinically available parameters

(anthropometric, biochemical, lifestyle questionnaire, meal content, meal context,
CGM data); c full model—clinically available parameters + microbial features.

Table 2 | Accuracy of the models for predicting PPGRs and
peakpostprandial glycaemic levels basedonclinical datawith
and without the addition of bacterial features

GLUmax PPGR (iAUC120)

Without
microbiome

With
microbiome

Without
microbiome

With
microbiome

MAE 0.49 0.46 0.30 0.30

MSE 0.38 0.33 0.15 0.15

RMSE 0.62 0.57 0.39 0.39

Pearson R 0.62 0.66 0.71 0.72

R2 0.34 0.42 0.50 0.52

CGM continuous glucose monitoring, GLUmax peak postprandial glycaemic level, PPGR
postprandial glycemic response, iAUC120 incremental area under glucose curve during 120min
after meal,MAEmean absolute error,MSEmean squared error, RMSE root mean squared error, R
coefficient of correlation for predicted and observed values, R2 coefficient of determination.

Fig. 4 | The results of peak postprandial blood glucose prediction (GLUmax) with
the test set. X scale—CGM-measured values, Y scale—predicted values. a Baseline
model—solely carbohydrate content of the meal (carbs); b the model based on

clinically available parameters (anthropometric, biochemical, lifestyle ques-
tionnaire, meal content, meal context, CGM data); c full model—clinically available
parameters + microbial features.
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Fig. 6 | Significance level of the 20 most impactful variables of the models for
predicting iAUC120 and GLUmax. iAUC120 (a) and GLUmax (b) are predicted
based on full clinical data with the addition of bacterial features. Higher values of the
feature are indicated by colors closer to red, lower values by colors closer to blue. If a
point of a certain color is located on the left side of the central axis, the feature has a
downward effect on the target variable; if the point is located on the right side, the
effect will be the opposite. For example, lower values of GLU0 (the long blue tail on
the left of b) correspond to lower values of the target variable (GLUMax). GLUb—

glucose level before meal initiation. Numbers near «GLUb» represent the minutes
prior to meal initiation in which the measurement was obtained. For example,
«GLUb10» represents the glucose level 10 min prior to the meal; Kcal—the energy
value of the meal; COC—combined oral contraceptive use any time before preg-
nancy (1—yes, 0—no); Sausages 1—frequency of consuming sausage products
before pregnancy. For a more detailed description of the input features, please refer
to Supplementary Table 1.

Fig. 7 | Significance level of the groups of features for the prediction. SHAP values
(linear scale, absolute values) of the groups of features for the prediction of iAUC120,
mmol/L∗h (a) and GLUmax, mmol/L (b). The groups of features are presented as
follows: «meal composition» includes the nutritional content of the meal,
«cgm_data» includes glucose values obtained from CGM devices; «meal_context»

includes the nutritional content of meals consumed up to 12 h prior to the index
meal; «Microbiome» includes RA of bacteria detected from stool samples; «genetics»
includes rs10830963 and rs1387153 variants in MTNR1B gene. The full description
of the parameters included in each feature group is listed in Supplementary Table 1.
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without implementingmicrobiomedata11, our currentmodel exhibitedonly
a slight increase ofR (0.72 vs 0.7).However, for thepreviousmodel,wehad a
larger dataset (3240 records of meals and corresponding PPGRs) making
direct comparisons inappropriate.

Concerning the gut microbiome, our study identified bacterial taxa
differentially enriched in pregnant women with higher and lower mean
PPGR. According to LefSe analyses, most taxa belong to Lachnospiraceae
and Oscillospiraceae, and some families of Bacteroidia. These families are
represented by themost functionally active bacteria involved in dietaryfiber
degradation and short-chain fatty acid (SCFA) biosynthesis18. SCFAs,
especially butyrate, are generally considered beneficial metabolites that
reduce the risk of GDM. However, excess SCFAs can activate gluconeo-
genesis, leading to hyperglycemia and insulin resistance19.

Even though, in general, Lachnospiraceae and Oscillospiraceae are
considered useful symbionts that interact beneficially with the host,
among them, some taxa carry a “dual” function. For example, Anaero-
butyricum hallii and some Blautia species, are considered pathobionts
that can cause harm to the host19. Further, among the taxa with higher
abundance in women with higher iAUC120 or GLUmax, several are of
interest for discussion as taxa potentially contributing to GDM patho-
genesis. Prevotella 9 is now characterized as the new genus Segatellawith
the type species Segatella copri (basonym: Prevotella copri). Although S.
copri is considered to be associated with health20, a significant positive
association between increases in Prevotella 9 and higher GDM risk was
identified21, and an increased abundance of Prevotella was reported in
GDM patients22. Coprococcus comes is a butyrate producer18, usually
considered beneficial. However, in the FINRISK-2002 cohort, the
strongest association with higher statin-associated new-onset type 2
diabetes riskwas observed forC. comes23, which alignswith our results. A
possible explanation for thismay be the ability ofC. comes to produce the
highest butyrate levels18, which can lead to its excess. A. hallii (basonym:
Eubacterium hallii) is also associated with health20. However, GDM
patients who failed to control glycemic levels were characterized by
increased A. hallii24, which corresponds to the results of our study.

Inwomenwith lower iAUC120orGLUmax, some taxa alsohadhigher
relative abundance, conversely suggesting a protective effect against higher
PPGR. Oscillospiraceae UCG-002, previously Ruminococcaceae UCG-002,
was more abundant in the normal glucose tolerance group than in GDM.
Previous research found it was reduced in early pregnancy in women with
subsequent GDM and was negatively correlated with fasting blood glucose
levels25. Oscillospiraceae UCG-002 was also negatively associated with the
homeostasis model assessment of insulin resistance (HOMA-IR) index and
served as a marker of intestinal phytoestrogen enterolactone production26.

Christensenellaceae R-7 group is a beneficial genus: elevated abundance
was associatedwith reduced visceral adipose tissue andahealthiermetabolic
profile27,28.Parabacteroides distasonismayprotect against inflammation and
obesity; however, increased abundance of P. distasonis was previously
reported in GDM22. Sellimonas is an acetate producer, associated with a
reduced type 2 diabetes risk29 and has been linked to low polycystic ovary
syndrome (PCOS) risk30.

Eisenbergiella tayiproduces butyrate, lactate, acetate, and succinate and
is thought to be potentially beneficial. However, E. tayi was associated with
the disease state20. Women who developed GDM showed a significantly
higher abundance of Eisenbergiella in early pregnancy, and Eisenbergiella
was also positively correlated with fasting blood glucose levels25, which
contradicts our results. Bilophila wadsworthia is associated with the meta-
bolism of fatty acid esters of hydroxy fatty acids, which improves glucose
homeostasis, stimulates insulin sensitivity, and has anti-inflammatory
effects31.

After including bacterial taxa distinguished by LefSe as input variables
for the creation of PPGR prediction models, microbiome features were
categorized as either advantageous or disadvantageous. As the RA of these
taxa increased, the algorithm projected a decrease or increase in post-
prandial glucose response, respectively. Among bacterial features, the
greatest contribution to iAUC120 prediction was made by the RAs of I.

bartlettii, B. faecihominis, and “L. edouardi”. The most impactful bacterial
features for the prediction of GLUmax were I. bartlettii, R. champanellensis,
and L. eligens. A higher abundance of these bacteria was associated with
lower PPGRs.

Notably, I. bartlettii was selected by the algorithm both for the
prediction of iAUC120 and GLUmax among the top 20 parameters. I.
bartlettii can produce indoleacetic and phenylacetic acids, acetate, iso-
valerate, and isobutyrate. Due to the latter’s production, Intestinibacter
might be beneficial to host lipid and glucose metabolism and intestinal
barrier integrity, which may explain the inverse association of Intesti-
nibacter with diabetes32.

L. eligens produces butyrate, acetate, and lactate, and promotes the
production of the anti-inflammatory cytokine IL-10. L. eligens was
reduced in early pregnancy in women with subsequent GDM25. The
abundance of L. eligens was significantly higher in the healthy controls
than in the obese individuals33. Additionally, L. eligens was positively
associated with adherence to a Mediterranean diet34. B. faecihominis is a
butyrate producer and was included in the stool-derived microbial
ecosystem therapeutics to combat Clostridioides difficile infection as a
beneficial bacterium35. R. champanellensis is a cellulose-degrading
bacterium36. The strongest association with lower statin-associated
new-onset type 2 diabetes risk was observed for R. champanellensis23. “L.
edouardi” was associated with an increased risk of GDM21 and heigh-
tened type 2 diabetes risk29.

The limitation of our study is a relatively small sample size. Further
studies in other cohorts and populations of pregnant women are needed to
confirm our findings concerning certain bacterial taxa associated with
PPGRs.Another limitationof our study is the inability to confidently classify
taxa at the species levelwhich is due to sequencingonlypart of the16S rRNA
gene. Additionally, the participants of our study were women with GDM
treated with diet only and women with normal glucose tolerance during
pregnancy. Thus, our model may not be representative of pregnant women
with GDM treated with insulin or other pharmacological glucose-lowering
agents. Further studies are needed to explore PPRG prediction models for
insulin-treated women with GDM.

There is further room for improvement, such as conducting more
comprehensive assessments of contextual factors than those employed in
the current study. For example, includingdata onphysical activity preceding
meals and integrating extensive ‘omics’ data could improve the predictive
capacity of these algorithms.

It is essential to delve deeper into understanding the functional roles of
bacterial taxa that were the most influential for PPGR prediction in our
study. Additionally, circulating SCFA levels should be measured in future
studies as this could have conveyed an insight into whether the SCFA
actually are the important metabolites for the regulation of blood glucose
levels or whether its regulation is modified by other bacterially associated
metabolites. The insights gained from this data could pave the way for the
future advancement of probiotic or autoprobiotic therapies aimed at
enhancing glycemic regulation. Probiotics with metabolic effects that target
functionally active bacteria, predominantly belonging to Clostridia and
Bacterodia, which play a key role inmaintaining the balance of the intestinal
microbiota, seem promising37.

Our study highlights the role of the gutmicrobiota in the interpersonal
variability of PPGRs. While previous research extensively utilized micro-
biota for PPGR prediction in healthy individuals and those with type 1
diabetes, our studyfills an important gap by examining its impact onPPGRs
in pregnant women, particularly those with GDM.

Our findings indicate that microbiome features rank among the top
parameters influencing PPGR prediction in pregnant women with GDM,
although the addition of the microbiome has a relatively modest impact on
the performance of the prognostic models, especially for iAUC120. Speci-
fically, certain bacterial taxa were identified as significantly associated with
variations in PPGRs, highlighting the potential of microbiota-based inter-
ventions for optimizing glycemic control which should be validated in
future interventional studies.
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Research design and methods
Study design
We recruited pregnant women who participated in the randomized
controlled trial “Genetic and Epigenetic Mechanisms of Developing
Gestational Diabetes Mellitus and its Effects on the Fetus” (GEM-
GDM), and consented to be connected to a continuous glucose
monitoring (CGM) system (CGMS) for at least 7 days, tracked
information on food consumption in a designated mobile app, and
provided stool samples. The parent GEM-GDM study aimed to
compare different glycemic targets for women with GDM. It was
registered at ClinicalTrials.gov (Identifier: NCT03610178), and its
design is described elsewhere38. Briefly, gravidas with GDM were
randomly assigned into two groups according to their glycemic goals:
the first group had strict glycemic goals (<5.1 mmol/L for fasting blood
glucose (BG) and <7.0 mmol/L for 1-h postprandial BG), and the
second group had less strict glycemic goals (<5.3 mmol/L and
<7.8 mmol/L, respectively). For this study, the women from both
groups were combined to create the GDM group. GDMwas diagnosed
using a single-step 75-g OGTT according to the recommendation of
the International Association of Diabetes and Pregnancy Study
Groups (IADPSG)39.

Apart from women with GDM, we also included healthy pregnant
womenwith normal values of plasma glucose during oral glucose tolerance
test (OGTT) (controls).

At study initiation, a physician acquired informed consent,
recorded medical history and took anthropometric measurements
(weight, height, waist circumference, blood pressure and heart rate).
Pregestational body mass index (BMI) was calculated by dividing self-
reported pregestational weight (in kilograms) by the square of height
(in meters). Blood tests, including fasting plasma glucose, lipid profile
and HbA1c, were performed in the Almazov National Medical
Research Centre laboratory. Participants filled out questionnaires
concerning their lifestyle before and during pregnancy and were then
connected to CGMS for 7–14 days during which they tracked infor-
mation on meal consumption in the proprietary mobile app Dia-
Companion, as described elsewhere40,41. The CGM and meal-related
data were processed using a previously described algorithm41. The
study was approved by the local ethics committee of the Almazov
National Medical Research Centre, Russia (protocol no. 119).

Inclusion and exclusion criteria
Participation in this study was optional for participants of the GEM-
GDM trial.

TheGDMgroup includedpregnantwomenwithGDMandgestational
age of ≥24 weeks at the start of CGM. The control group comprised preg-
nant women with normal glucose tolerance, confirmed by OGTT between
24 and 32 weeks of gestation.

In addition to the inclusion criteria used in the GEM-GDM study, for
this particular study, consent to be connected to a CGMS for 7 days and a
capability to work with a mobile phone app for the recording of dietary
intake in real time were required.

Exclusion criteria included an active inflammatory or neoplastic dis-
ease, any known medical condition affecting glucose metabolism (with the
exception ofGDM), current use of insulin and othermedications that could
affect glucose metabolism, antibiotic usage 2 months prior to participation
in the study, failure to provide a stool sample and submission of inaccurate
food diaries through the app. Taking into account that accurate logging is
crucial for analysis of PPGRs to food, a set of rules was formulated by the
authors to filter negligently filled-in andmisreported diaries: (1) more than
50% of the logged meals comprised of a single dish or a single dish with a
single beverage; (2) the average amount of logged calories per day was less
than 1000 kcal; (3) more than 50% of the logged weights of food items were
rounded to the hundreds (excluding beverages); (4) the amount of logged
snackswas less than 10%of allmeal records11. Participantswithmisreported
diaries were excluded.

Lifestyle questionnaire
The questionnaire comprised several sections covering various aspects: fre-
quencyof consuming staple itemsperweek (such as fruits, pastries, skimmed
dairy products, legumes, meat, sausage products, dried fruits, fish, whole-
grain bread, sauces, vegetables, alcohol, sweet drinks, and coffee), levels of
physical activity (daily walking duration categorized as <30min/day,
30–60min/day, or >60min/day; daily frequency of stair climbing
categorized as <4 flights/day, 4–16 flights/day, or >16 flights/day; frequency
of engaging in sports activities categorized as <2 days/week, 2–3 days/week,
or >3 days/week), and smoking habits before and during pregnancy. Each
section of the questionnaire was structured in a semi-quantitative manner.
This questionnaire has been previously documented41. For the description of
the parameters from the lifestyle questionnaire included in the final dataset,
please refer to Supplementary Table S1.

Blood samples were collected by a certified nurse after 8–12 h of
fasting. The blood panel included measurement of glycosylated hemo-
globin (HbA1c%), plasma glucose, total and HDL cholesterol, trigly-
cerides, insulin, and leptin. and fructosamine levels in the central lab of
the Almazov National Medical Research Centre. Plasma glucose con-
centration was determined by the glucose oxidase method in fresh
plasma samples. HbA1c was measured in fresh whole blood samples
using high-performance liquid chromatography (HPLC) (D10 HbA1c).
Blood for genotyping of pregnant women and serum for other bio-
chemical analysis were stored at−80 °C until the analysis. Serum fasting
insulin levels were measured using the electrochemiluminescence
immunoassay (Roche Diagnostics, GmbH, Germany). The homeostatic
model assessment (HOMA) index was calculated using the following
formula: fasting serum insulin (m IU/L) × fasting plasma glucose
(mmol/L)/(22.5) as an insulin resistance indicator. Total cholesterol,
HDL-C, LDL-C, VLDL-C, and triglyceride levels were measured uti-
lizing enzymatic colorimetric methods with diagnostic reagent system
designed for the Cobas Integra Autoanalyzer. Fructosamine was mea-
sured in the serum using the colorimetric nitro-blue tetrazolium assay
(Roche Diagnostics Corporation, Indianapolis, IN) and the Roche cobas
c 311 instrument. Serum leptin levels were measured using an enzyme-
linked immunosorbent assay (ELISA) as recommended by the manu-
facturer (Diagnostics Biochem Canada Inc., Canada).

Continuous glucose monitoring (CGM) was conducted using the
iPro2TMsystem fromMedtronic,MN,USA. This systemutilizes EnliteTM
sensors placed subcutaneously tomeasure interstitial glucose levels. To align
CGM readings with blood glucose levels, participants also utilized finger-
prick measurements with the Accu Chek Performa from Roche, Germany.
Participants were instructed to perform four daily blood glucose measure-
ments. To enhance accuracy, participantswere specifically asked tomeasure
blood glucose levels before meals, following recommendations outlined in
the iPro2manual. Calibration of CGMmeasurements was performed using
the CareLink online software from Medtronic, following the guidelines
provided in the iPro2 manual.

Food diary tracking was facilitated through our proprietary mobile
app DiaCompanion. Each consumed food item was recorded by
selecting it from a database created by the authors on the basis of
reference books of the Russian Academy of Medical Sciences and the US
Department of Agriculture (USDA) Food Composition Databases
(Release 28) with the expansion of additional items by certified die-
titians. The distinctive feature of this food database, in addition to a wide
selection of foods (more than 5500 items), is the presence of glycemic
index (GI). Each food item in the database was assigned a dietary GI41.
Participants were instructed to meticulously log their daily activities
using this platform. They were required to document precise details,
including the components and weights of each meal, sleep and wake-up
times. Participants were informed of the importance of accurate logging,
particularly emphasizing the correct timing ofmeal logging and accurate
recording of food components. Research physicians conducted weekly
reviews of each participant’s loggings. Any uncertainties in the logs were
addressed directly with the participants.
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Meal preprocessing
Before ameal and correspondingPPGRwere added to the dataset formodel
training, the following filters were implemented (mainly to exclude
recordings with incorrect timing): (1) ameal followed by a subsequentmeal
less than 60min after its start; (2) a meal on the peak of a CGM-curve: an
increase in glucose levels bymore than 1mmol/L during an hour preceding
the indexmeal; (3) ameal on the falling edge of a CGMpeak; and (4) ameal
with inadequately low PPGR (iAUC120 ≤ 0.3mmol/L∗h) to a considerable
amount of carbohydrates (>40 g)11. Glucose level at baseline was considered
as the lowest glucose valuewithin±15min fromself-reporting of themeal in
the app.

DNA and genotyping of blood samples
GenomicDNAwas extracted fromblood samplesusing theFlexiGeneDNA
Kit fromQiagen (Hilden, Germany). Genotyping of the following variants:
HKDC1 (rs10762264), MTNR1B (rs10830963 and rs1387153), GCK
(rs1799884), KCNJ11 (rs5219), IGF2BP2 (rs4402960), TCF7L2
(rs7903146), CDKAL1 (rs7754840), FTO (rs9939609), and IRS1
(rs1801278), was conducted through real-time PCR utilizing custom kits
fromApplied Biosystems, based in theUSA. The procedures recommended
by the manufacturer were followed meticulously. Each primer tube con-
tained a concentrated mixture of SNP Genotyping Assay Mix, comprising
polymorphism-specific direct and reverse primers, along with two TaqMan
MGB probes: one tagged with VIC dye for allele 1 identification and the
other tagged with FAM dye for allele 2 identification. Following replication
of 10% of the samples, the discordance rate was determined to be less
than 0.1%.

Microbiome: DNA extraction
DNA was extracted from all collected samples using the PowerSoil DNA
Isolation Kit (MO BIO, Carlsbad, CA, USA) according to the manu-
facturer’s instructions and following a 2min bead beating step (BioSpec,
Bartlesville, OK, USA). Next, the variable V4 region was PCR-amplified
using the 515F and 806Rbarcodedprimers following the EarthMicrobiome
Project protocol42. Each PCR reaction contained 25 µL with ~40 ng/µL of
DNA, 2 μL 515F (forward, 10 μM) primer, 2 μL 806R (reverse, 10 μM)
primer, and 25 µL PrimeSTAR Max PCR Readymix (Takara, Mountain
View, CA, USA). PCR conditions were as follows: 30 cycles of denaturation
at 98 °C for 10 s, annealing at 55 °C for 5 s, and extension at 72 °C for 20 s,
followed by a final elongation at 72 °C for 1min. Amplicons were purified
using AMPure magnetic beads (Beckman Coulter, Indianapolis, IN, USA)
and quantified using the Picogreen dsDNA quantitation kit (Thermofisher,
Waltham,MA,USA). Equimolar amounts ofDNAfrom individual samples
were pooled and sequenced using the Illumina MiSeq platform at the
Genomic Center at the Bar-Ilan University, Azrieli Faculty of Medicine.
Appropriate negative and positive controls were included at all stages of
analysis.

Bioinformatics and microbiome analysis
The quality of raw reads was assessed with FastQC v. 0.11.943 andMultiQC
v. 1.1444. Reads were trimmed and filtered with Trimmomatic v. 0.3945

(SE -phred 33 HEADCROP 31 ILLUMINACLIP:2:30:10 SLI-
DINGWINDOW:4:15MINLEN:150). The remaining readswere processed
with the DADA2 pipeline v. 3.6.2.46, including additional trimming,
denoising, and error correction. Thederived sequences - amplicon sequence
variants (ASVs) were clustered usingMMseqs2 v. 13.4511147 (identity 99%,
coverage 80%). The resultant representative sequences were treated as
operative taxonomic units (OTUs). We clustered ASVs to OTUs to reduce
the number of sequencing errors inherent inASVs and avoid false diversity.
TheOTUswere returned toDADA2 for taxonomy assignmentwith SILVA
SSU database v.138.148. Sequences classified as eukaryotes were removed.
Only samples containingmore than 10,000 readswere used for downstream
analysis. The bioinformatics analysis was conducted using R packages.
Permutational multivariate analysis of variance (PERMANOVA) was
performed with vegan v2.6.449. PCoA (Principal coordinates analysis) and

alpha-diversity were performed with phyloseq v1.42.050 and ggplot2 v. 3.3.6
(https://github.com/tidyverse/ggplot2). Linear discriminant analysis Effect
Size (LefSe) was conducted using microbiomeMarker v1.4.051 with default
parameters.

Models for the prediction of postprandial glucose response
We used twomeasures of PPGR characteristics: iAUC1207 and the peak
glucose level within 120 min after the meal start (GLUmax, mmol/L).
The latter indicator was chosen because the recommended timing of
blood glucose self-monitoring for pregnant women is established in the
time interval when glycemic levels are highest. The peak glycemic level
in pregnant women with diabetes mellitus is reached 45–75 min after a
meal, which is the reason for the recommendation to measure glycemia
1 h after a meal52. However, the peak blood glucose (BG) level is less
sensitive to inaccurate logging of meal start time than 1-hr
postprandial BG.

Outliers in the target variable were removed using Tukey’s Inter-
quartile Range method53 resulting in the final dataset of 2633 meals with
PPGRs for GLUmax prediction model and 2628 meals for iAUC120
prediction.

We used the gradient boosting algorithm LightGBM54 to predict both
indices and improved its performance with Optuna hyperparameter
optimization55.

Within Optuna, we adopted the Tree-structured Parzen Estimator
(TPESampler) for sampling within the hyperparameter space, and the
Asynchronous Successive Halving Algorithm (SuccessiveHalvingPruner)
was implemented to eliminate underperforming trials efficiently. The
optimal configuration of hyperparameters that emerged from our analysis
included a “num_boost_round” of 4700, a “learning_rate” of 0.0015,
“max_depth” of 11, “num_leaves” of 30, “min_sum_hessian_in_leaf” at
0.12, “bagging_fraction” of 0.55, “bagging_freq” of 10, “feature_fraction” of
0.4, “lambda_l1” at 0.006 and “lambda_l2” at 0.007. The data was divided
into training and test sets with a ratio of 70:30, ensuring that records from
the same patient were only included in one set to prevent data leakage and
potential bias in performance metrics. To enhance the robustness of the
training process, we employed 3-fold cross-validation.

Thefinalmetrics, includingmeanabsolute error (MAE),mean squared
error (MSE), root mean squared error (RMSE), Pearson’s correlation
coefficient (R), and the coefficient of determination (R2), were calculated on
the held-out test sample in the Python scikit-learn library.

Other statistical analyses. To describe the patients in our data frame,we
employed the bootstrap hypothesis test56. The main idea behind this
method is to repeatedly draw random subsamples of the data with
replacement in order to estimate the distribution of the test statistic and
make decisions about the significance of differences. The bootstrap test
does not require any assumptions about the underlying distribution of
the original data, making it more robust compared to parametric tests
such as the t-test.

Feature selection and evaluation of input parameters
We selected 164 features as model inputs, including features characterizing
meal content, anthropometric measures, gynecological data, blood test
results, CGM-derived features, lifestyle questionnaire data, and genetic and
microbiome features (Supplementary Table S1).

In order to avoid model overfitting, we used several approaches to
decrease the number of input variables. From the original lifestyle ques-
tionnaire characterizing the consumption of certain product groups and
physical activity, described elsewhere11,57, we selected the parameters with
significant Spearman correlations with iAUC120 and/or GLUmax (Sup-
plementary Table S2).

Microbial features were selected based on the results of LefSe analysis.
For this purpose, all participants were divided into two groups based on the
average levels of PPGR indices: group 1—below the median and group 2—
equal or above the median for the group. The relative abundances (RA) of
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bacterial taxa differentially enriched in these groups were used as input
variables.

Among genetic factors, we selected rs10830963and rs1387153 variants
inMTNR1B previously shown by our group to be associatedwith the results
of OGTT in pregnant women57.

SHAP methods were utilized for enhancing model interpretability12.
SHAP values were computed in two ways. First, calculations were made
individually for each feature to denote the average alteration in the model’s
output when conditioning on that specific feature. Second, the additive
nature of SHAP valueswas employed to assess the impact of various feature
groups on the model.

Data availability
The datasets generated and analyzed in the current study are available in a
GitHub repository https://github.com/artemisak/MicrobesAndGlucouse
Analysis?tab=readme-ov-file.

Code availability
The code generated in the current study is available in a GitHub repo-
sitory https://github.com/artemisak/MicrobesAndGlucouseAnalysis?
tab=readme-ov-file.
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