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Integrated multi-omics reveals different
host crosstalk of atopic dermatitis-
enriched Bifidobacterium longum Strains

Check for updates

Hoon Je Seong1,14, YoonMee Park2,14, Bong-SooKim 3,13, Hyun Ju Yoo4, Taeyune Kim 5, SunMi Yoon6,
Jeong-Hyun Kim7, So-Yeon Lee8, Yun Kyung Lee9, Dong-Woo Lee 10, Myung Hee Nam11 &
Soo-Jong Hong12

The infant gut microbiome is essential for long-term health and is linked to atopic dermatitis (AD),
although the underlying mechanisms are not fully understood. This study investigated gut
microbiome-host interactions in 31 infants with AD and 29 healthy controls using multi-omics
approaches, including metagenomic, host transcriptomic, and metabolomic analyses. Microbial
diversity was significantly altered in AD, with Bifidobacterium longum and Clostridium innocuum
associated with these changes. At the strain-level, only B. longum differed significantly between
groups, with pangenome analyses identifying genetic variations potentially affecting amino acid and
lipid metabolites. Notably, B. longum subclade I, which was more prevalent in healthy controls,
correlatedwith host transcriptomic pathways involved in phosphatidylinositol 3-kinase-AKT signaling
and neuroactive ligand-receptor pathways, as well as specific metabolites, including
tetrahydrocortisol and ornithine. These findings highlight the role of B. longum strain-level variation in
infants, offering new insights into microbiome-host interactions related to AD.

Atopic dermatitis (AD), a prevalent, chronic inflammatory skin disorder,
affects approximately 20% of children globally, often continuing into ado-
lescence and adulthood1,2. Its development is characterized by a complex
andmultifactorial pathogenesis involving genetic predisposition, innate and
adaptive immune response, compromised skin barrier function, and
environmental exposures3. The hygiene hypothesis specifically suggests that
reduced microbial exposure in early life contributes to the increasing inci-
dence of AD. Recent studies have highlighted the significance of the gut
microbiome and its metabolic activities in relation to human health,
strongly associatedwith several allergic diseases, including asthma andAD4.
Furthermore, the Th1/Th2 response of the adaptive immune system is
influenced by the gutmicrobiome, with the Th2 response being particularly
dominant in AD and associated with increased immunoglobulin E (IgE)
synthesis5.

Given that the physiological systems of an infant are not fully devel-
opeduntil after birth, thefirst fewyears of life are critical.During this period,
the gutmicrobiome plays a crucial role in thematuration of both the central
nervous system and immune system, alongside the regulation of the stress
response, all of which can have lifelong implications6. Recent studies have
identified a significant association between the gut microbiome and neu-
robehavioral outcomes, such as anxiety, depression7, and autism spectrum
disorders8, further increasing interest in gut-brain communication9. Fur-
thermore, clinical reports often associate these neurobehavioral findings
with skin inflammation, suggesting that the gut-brain-skin axis is a vital
communication pathway influenced by neurotransmitters modulated by
the gut microbiota10–12. The probiotic Bifidobacterium longum has been
shown to effectively modulate central nervous system function in both
animal models13 and human studies14 while alleviating AD through
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interactions along the gut-skin axis associated with tryptophan
metabolism15. Bifidobacterium is one of the predominant microorganisms
in the infant gut microbiome, making the establishment of a symbiotic
relationship with healthy Bifidobacterium crucial for future neurodevelop-
ment and skin health.

Recent analyses of the microbiome at the strain-level have gained
prominence in understanding human health, including aspects of infection,
immunity, nutrition, anddisease16,17. Themetabolic capabilities ofmicrobial
species vary significantly among strains based on their genetic
composition16. Consequently, understanding microbial communities with
strain-level variations and the associated metabolome is essential for elu-
cidating interactions with the host immune system. Therefore, this study
aims to investigate the host–microbial crosstalk associated with AD in
infants through comprehensive strain-level resolution metagenomics,
metabolomics, andhost transcriptomics at 6months of age. Exploiting these
multi-omics aspects could offer insights into the complex relationship
between host and microbiome associated with AD.

Results
Effect of the infant gut microbial diversity on atopic dermatitis
Ametagenomic analysis was conducted on 60 fecal samples, including 31
from individuals diagnosed with AD and 29 from healthy controls. This
analysis incorporated clinical variables, including feeding type, mode of
delivery, and family history (Supplementary Table 1 and 2). No sig-
nificant differences were observed between the groups concerning clin-
ical variables, except for the immunological markers related to the
number of samples (p > 0.05, Supplementary Table 1) and the number of
sequence reads (p = 0.941, mean = 7,158,967 reads, Supplementary Table
3). These findings support the continuation of further analyses. The
predominant microbial species identified by mean relative abundance
across all sampleswasB. longum (37.6%), followed byB. bifidum (15.0%),
Escherichia coli (10.6%), and Veillonella parvula (5.9%) (Fig. 1A).
However, B. longumwas the only species detected in all samples (relative
abundance > 0.01%, Fig. 1A).

Although no significant differences in the relative abundance of
microbial species were observed between the AD and healthy groups
(Wilcoxon rank sum; p > 0.1), significant differences in microbial diversity
were observed. The microbial species composition (β-diversity), assessed
using unweighted UniFrac distance, revealed substantial differences
between groups (Fig. 1B, PERMANOVA; p = 0.023), with principal com-
ponent 1 (PC1) explaining 22% of the variance in taxonomic composition.
Furthermore, α-diversity richness (the number of observed species) was
significantly higher in healthy controls compared to infants with AD (Fig.
1C, Wilcoxon rank sum; p < 0.05).

The significant association between microbial diversity and AD
prompted an investigation into the specific microbial species influencing
this diversity. The analysis revealed a strong correlation between microbial
richness and PC1 values (Pearson correlation; p < 10−10), with several
microbial species exhibiting correlations with both α- and β-diversity
indices, particularly with respect to richness and PC1 values. The relative
abundanceofB. longum,C. innocuum, andErysipelatoclostridiumramosum
exhibited a significant correlation with both diversity indices (Fig. 1D, false
discovery rates (FDR) < 0.05). In contrast, B. breve, Flavonifractor plautii,
and Enterococcus faecaliswere correlated solely with the PC1 value (Fig. 1D,
FDR < 0.05).

Subsequently, formalmediationanalyseswere conducted to investigate
the effects of microbial species on AD through microbial diversity. The
mediation analyses indicated thatB. longum,C. innocuum, andE. ramosum
were not directly related to AD. However, these taxa were associated with
variations inmicrobial diversity, which in turnwas associatedwithAD (Fig.
1E). Among these, B. longum and C. innocuum exhibited full mediation by
microbial diversity, demonstrating significant indirect effects on AD.
Notably,C. innocuumwas fullymediated by both diversity indices (Fig. 1E).
While the relative abundance of B. longum and C. innocuum did not sig-
nificantly differ between the AD group and healthy controls, both species

showed a strong association with microbial diversity, suggesting a potential
indirect role in AD (Fig. 1E, p < 0.05).

Distinct subclades of Bifidobacterium longum subspecies
infantis are enriched in different skin phenotypes
To investigate the colonization of infants with AD and healthy controls
through different bacterial strains, a strain-level analysis was conducted on
three predominant species: B. longum, E. coli, andV. parvula. These species
were adequately sequencedacross all groups (Fig. 1A).Among these, onlyB.
longum exhibited strain-level stratification based on skin phenotype, with
subclades I and II associated with healthy controls and infants with AD,
respectively (Fisher’s exact test, p < 0.05; Fig. 2A and Supplementary Fig. 1).
Both subclades were classified as B. longum subsp. infantis, while other
strains showed no specific association with disease status.

To validate strain differentiation, B. longum metagenome-assembled
genomes (MAGs) were reconstructed for each individual, yielding high-
quality and medium-quality MAGs (mean completeness: 93.3%, con-
tamination: 2.6%, Supplementary Table 4, https://doi.org/10.6084/m9.
figshare.27367887) in 55 out of 60 individuals (91.7%). The reconstructed
MAGs were classified into B. longum subsp. infantis subclades I and II.
Phylogenetic analyses and average nucleotide identity (ANI) comparisons
differentiated these subclades within B. longum subsp. infantis (Fig. 2B).
Subsequent pangenome analysis revealed distinct gene distributions across
the subclades, suggesting differential functional potential.

Overall, 258 KEGGorthologs (KOs) were evaluated using PanPhlan
analysis to identify genes enriched in each subclade of B. longum subsp.
infantis. Twenty-four genes exhibited significant differences between
subclades I and II (FDR < 0.05; Fisher’s exact test), indicating distinct
functional profiles compared to other B. longum subsp. infantis strains
outside these subclades (Fig. 2A). Genes associated with bacterial defense
mechanisms showed variation between the subclades, with subclade I
possessing the CRISPR-associated protein Cas1 (K15342), Cas3
(K07012), Cas5d (K19119) and subclade II containing elements of the
Restriction-Modification (RM) system (K03427) along with a toxin gene
(K06218). Furthermore, three genes were identified as potential con-
tributors to amino acid metabolism. The gene specific to subclade I
encoded an asparagine synthase (glutamine-hydrolyzing enzyme;
K01953), which catalyzes the conversion of aspartate to asparagine while
converting glutamine to glutamate. In contrast, the subclade II pan-
genomes contained a proline/betaine transporter (K03762), a glutamate
transport system (K10008), a branched-chain amino acid (BCAA)
transporter (K01997, K01998), an amidohydrolase (metallo peptidase:
K01436), and dipeptidyl-peptidase IV (K01278).

MAG-basedpangenomeanalysiswas conducted to capture strain-level
variations more precisely than reference-based methods. Through this
approach, 777 gene clusters with significant differentiation between sub-
clades were identified (FDR < 0.1), with 16 of these gene clusters showing
significant associations with AD status and the healthy control group
(Supplementary Table 5). Principal Coordinate Analysis (PCoA) based on
the presence or absence of these 16 genes demonstrated significant differ-
ences associated with AD status and B. longum subclades (Fig. 2C, PER-
MANOVA; B. longum type: p = 0.001, AD: p = 0.002).Most gene variations
observedwere related toprotein (dap4, dipeptidyl-peptidase IV;p = 0.0001),
amino acid (proC, Pyrroline-5-carboxylate reductase; p = 0.0006), lipid
(group_1991, short-chain dehydrogenase; p = 0.0004), and lactose meta-
bolism (purR, lactose operon repressor; p = 0.0005), highlighting pathways
potentially influencing host metabolic processes. Additionally, variations in
the serine/threonine-protein kinase gene (pknB; p < 0.0002) and forkhead-
associated domain-containing genes (group_104, group_1440, group_220;
p < 0.0005) may differentially influence bacterial signaling pathways across
B. longum subclades by modulating protein interactions. In the reference-
based PanPhlan analysis, dap4 was prevalent only in subclade II, while the
MAG-based pangenome analysis confirmed that different gene clusters of
dap4 were present between each clade, suggesting potential differences in
peptidase substrates between the two clades.
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Fig. 1 |Gutmicrobial community composition and diversity. AHeatmap showing
the distribution of the top 25 enriched species between AD patients and healthy
controls. B PCoA plot illustrating β-diversity (unweighted UniFrac distance) to
compare microbial communities between patients with AD and healthy controls.
C Comparison of α-diversity between AD patients and healthy controls. D Pearson

correlation between microbial diversity and microbial species (FDR < 0.05).
E Structural equation model to assess the mediating effect of microbial diversity on
the causal role of B. longum in the AD development (*p < 0.05, **p < 0.01,
***p < 0.001). AD atopic dermatitis, PCoA Principal Coordinate Analysis, PC1
principal component 1.
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Multi-omics analysis reveals potential crosstalk between Bifi-
dobacterium longum subclades and host interactions
The colonocyte transcriptome associated with B. longum was further
examined based on its subclades. Tominimize confounding effects, feeding
type, mode of delivery, and family history were adjusted as fixed effects
before calculating the correlationbetweenB. longum relative abundance and
host transcripts. Overall, 71 and 53 transcripts were significantly correlated
with clade I and II, respectively (Fig. 3, p < 0.01, |r | > 0.5). Enrichment
analysis was performed on these transcripts to identify the pathways
involved (FDR < 0.05). For subclade I,most transcriptswere associatedwith
multiple pathways; however, a distinct positive correlation was observed
with the neuroactive ligand-receptor interaction pathway (GABRR2,
GPR156, HTR1B, GRM4, ADRA2B). Additionally, subclade I exhibited a
negative correlation with monoamine oxidase B (MAOB), an enzyme that
catalyzes the breakdown of monoamine neurotransmitters into inactive
metabolites18, suggesting apotential link to the gut-brain axis. Subclade Iwas
correlated with transcripts involved in several cellular processes, including
autophagy, mammalian target of rapamycin (mTOR) signaling, and T cell
receptor signaling pathway (AKT2, TNF,MAPK9). In contrast, subclade II
was associated with transcripts linked to the longevity-regulating pathway,
while other transcripts exhibited no significant enriched pathways
(FDR > 0.05).

Further untargeted metabolomic analyses were performed on fecal
samples classified by the B. longum subclade group for additional inter-
pretation. However, the nature of the cohort limited the availability of
identical samples for further study (subclade I: 8, subclade II: 17). This
analysis identified five and 15 metabolites differentially correlated with
subclades I and II, respectively (Fig. 3, SupplementaryTable 6, p < 0.01, |r | >
0.5), with no overlap between the metabolites of the two subclades. Meta-
bolites were correlated with the human transcriptome; however, no sig-
nificant correlations were identified that warranted integration of all omics

results. The only metabolite found to correlate with both the human tran-
scriptome and subclade I wasm/z 132.02 (1-benzothiophene).

Some metabolite associations appeared to be influenced by pange-
nomic differences between subclades. Most metabolites associated with the
subclades were related to lipid metabolism, with correlation directions
differing by subclade. Subclade II exhibited positive correlations with nine
lipid-related metabolites (Fig. 3, Supplementary Table 6), while subclade I
demonstrated negative correlations with m/z 294.22 (13-L-hydro-
peroxylinoleic acid, tetrahydrocortisol, 13-oxoODE, 9(S)-HPODE, and
stearidonic acid). Thesefindings suggest that the presence of the short-chain
dehydrogenase gene (group_1991) in subclade II is positively associated
with various lipid-related metabolites, while subclade I exhibits fewer lipid
metabolites and demonstrates negative correlations. Furthermore, subclade
I showed a positive correlation with the only metabolite related to amino
acid metabolism, m/z 132.10 (ornithine, 2,4-diaminopentanoate). Orni-
thine serves as a precursor to glutamate and proline, with this association
potentially attributed to genetic differences inK10008, K01953,K03762 and
proC between the subclades.

Discussion
This study reevaluates the role of Bifidobacterium in the gut microbiome of
6-month-old infants, emphasizing its association with AD. While previous
research indicated that variability in Bifidobacterium is influenced by
feeding type19, this analysis has been expanded to include species-, and
strain-level differentiation. Specific strains of B. longum subsp. infantis
exhibit distinct phylogenetic and genetic patterns of colonization in indi-
viduals with AD compared to healthy individuals, independent of feeding
type (Fig. 2A).

Previous studies investigating the relationship between the infant
microbiome and AD have primarily relied on 16S rRNA sequencing.
However, this approachhas some limitations, including reduced taxonomic

Fig. 2 | Phylogenetic and functional gene characterization of Bifodobacterium
longum strains between AD and healthy controls. A Phylogenetic analysis based
on StrainPhlan3, derived from marker genes of SNVs in B. longum, reveals two
distinct subclades corresponding to AD and healthy controls, along with the pan-
genome distribution of KO via PanPhlan3. Feeding types are indicated with
superscripts: b for breastfeeding, f for formula feeding, and no superscript for mixed

formula. B Comparison of ANI values among B. longum MAGs, showing cluster
patterns within and between subclades. C PCoA plot based on pangenome clusters
generated using Panaroo, illustrating differences in genetic profiles between sub-
clades and AD.AD atopic dermatitis,KOKEGG orthologs,ANIAverage Nucleotide
Identity.
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resolution20, the potential for diversity inflation21, and bias issues22 during
amplification. Furthermore, host interactions have been inferred primarily
from gut microbiome profiles and metabolic pathway analyses19, without
incorporatingmulti-omics data to directly assess crosstalk, thereby limiting
the understanding of ADdevelopment. To address these limitations, strain-
level metagenomic analysis was used to compare healthy infants and those
with AD, integrating findings with metabolomics and host colonocyte
transcriptomics to clarify host associations. The findings suggest that B.
longum is a major species associated with microbial diversity, with the
enrichment of specific B. longum subsp. infantis strains closely related to

host interactions. These changes appear most pronounced within the
immune and nervous systems of the gut, suggesting they may be mediated
through shifts in strain-specific metabolite profiles. Given that disruptions
in the infant gut microbiome can significantly affect early biological,
immune, and psychological development, these findings hold particular
relevance for understanding allergic diseases.

Bifidobacterium iswidely recognized as a beneficial probiotic; however,
its association with AD has historically been overlooked19,23. Recent
reports24,25 indicate an overrepresentation of Bifidobacterium in the gut
microbiome of children, which may correlate with allergies. Considering

Fig. 3 | Association between Bifodobacterium longum subclades and host-
exfoliated transcriptome and gut metabolome profiles. Correlation network
showing the relationships between B. longum subsp. infantis subclades, host colo-
nocyte transcripts, and gut metabolites. Octagonal, circular, rectangular, and tri-
angular nodes represent B. longum subclades, colonocyte transcripts, pathway

names, and metabolites, respectively. Nodes connected to subclades are highlighted
with a thick outline. Edges indicate significant Spearman correlations (p < 0.01 and |
r | > 0.5; positive: blue and negative: red) between the residuals of species, transcripts,
and metabolites, adjusted by a generalized linear regression model using feeding
type, delivery mode and family history as fixed effects.
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that even beneficial gutmicrobes can occasionally induce disease-associated
imbalances26, the findings suggest that B. longum may be indirectly asso-
ciated with AD through its modulation of microbial diversity. In this study,
AD-associated diversification, specifically at the strain-level within B.
longum, was identified in this study.However, additionalmediation analysis
revealed that B. longum strain type could directly explain AD directly (total
& direct effect, p < 0.001) rather thanmediating throughmicrobial diversity
(indirect [diversity] effect, p = 0.377). Subsequent pangenome and multi-
omics analysis further suggests that varying colonization strategies among
subclades may influence the different host response directly associated
with AD.

The two B. longum subclades exhibited distinct bacterial defense
mechanisms, encompassing CRISPR, RM, and toxin-antitoxin (TA)
systems27. These variations suggest potential differences in phage suscept-
ibility andhost range27, whichcould bepivotal for niche-specific adaptations
within the infant gut microbiome. Subclade II contains a toxin gene
(K06218) associated with the type II TA system. TA systems regulate host
cell death, the formation of persister states28, and responses to environ-
mental changes28,29, which could represent another genetic determinant
influencing colonization strategies.

Infants,with their still-developinghypothalamic-pituitary-adrenal axis
and gut microbiome, demonstrate increased sensitivity to stressors. This
vulnerability can disrupt the composition of their gut microbiome, poten-
tially leading to conditions such as leaky gut syndrome30. The examination
of healthy infants enriched with B. longum subclade I revealed correlations
with the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway in the
host transcriptome, further complemented by associations with theMAPK
pathway. These signaling cascades play a critical role in regulating intestinal
epithelial cell proliferation, differentiation, and survival31. Furthermore, they
stimulate themTOR,modulating various cellularmetabolic processes. TNF
within intestinal epithelial cells can activate both survival and apoptotic
pathways32. Additionally, TNF can induce PI3K-AKT expression in
response to survival signaling, with cell fate dependent on the specific cel-
lular context32. These findings are consistent with those of previous studies
that the PI3K-Akt pathway is more pronounced in the microbiome meta-
bolic pathways of healthy infants than in those with AD19. These findings
highlight that the expression of transcripts involved in this pathway is
associated with the colonocyte of the host, suggesting that specific strains of
B. longummaymodulate the vitality and activity of intestinal epithelial cells.
The increased relative abundanceof subtype I, alongside thedecreased levels
of tetrahydrocortisol and increased transcripts forTNF,AKT2, andMAPK9
in host colonocytes, appears to positively influence intestinal immune
maturation.

BCAAs are essential for neonatal nutrition, supplying a significant
portion of the vital protein requirements33,34. They are involved in various
metabolic functions, such as glucose metabolism, the promotion of the
innate immune system, and the suppression of harmful gut microbes35,36.
Additionally, BCAAs, along with glutamate—an essential excitatory
neurotransmitter37— directly and indirectly affect brain function by
stimulating the synthesis of aromatic amino-acid-based
neurotransmitters33,38. Hormones in the gut significantly influence the
gut-brain axis via the vagus nerve39 and can be influenced by genes such
as bacterial dap4 and host MAOB. In accordance with evidence indi-
cating that different Bifidobacterium strains can differentially regulate
the gut-brain axis40–42, this study suggests that genetic variations among
B. longum strains, alongside corresponding differences in host transcript
expression, may lead to alterations in gut hormones and neuro-
transmitter levels, ultimately resulting in distinct regulatory effects on the
gut-brain axis. B. longum infantis subclade I exhibits genetic differences
that may influence metabolite production, specifically affecting the
enteric nervous system. This subclade has been positively correlated with
ornithine and associated with various neurotransmitter receptor tran-
scripts in the host. This finding suggests that distinct commensal bacteria
produce hormones30 that activate the enteric nervous system and stabi-
lize the gut-brain axis in response to diverse signals.

Psychological factors are closely linked to allergic conditions such as
asthma and AD, suggesting potential bidirectional relationships3,43. Differ-
ent Bifidobacterium strains can affect various aspects of microbiome
development44, which may extend to gut-brain axis regulation. These
findings highlight the need for further research to clarify if and how psy-
chological factors during early childhood contribute to AD development.

In this study, the small sample sizes from subclades in each group
restricted the performance of relevant multi-omics analyses. Furthermore,
due to the complex composition of feces, analyzing fecal metabolites may
yield inconsistent interpretations. Consequently, although it was challen-
ging to identify correlations across all three omics layers (metagenome,
human transcriptome, and metabolome), the genomic and metabolomic
analysis of subclade I—characteristic of a healthy population—followed by
interpretation of the human transcriptome, demonstrates the potential for
meaningful biological insights. This approach underscores the value of a
comprehensive, multi-omics strategy for uncovering novel insights.

In essence, we identified significant differences in microbial diversity
between healthy infants and those with AD, with dominant B. longum
strains playing key roles. Furthermore, distinct B. longum strains clustered
into two separate subclades, corresponding to either infants with AD or
healthy infants, though this requires validation in larger, independent
cohorts. These subclades exhibited unique genetic profiles, metabolite
associations, and correlations with host transcriptomes. Our findings
underscore the significant influence of specific B. longum strains on gut
immune development and the stability of the enteric nervous system.
Additionally, early colonization by these strains may be crucial in shaping
the skin health of the host.

Methods
Participants and clinical assessments
The study included patients from the Cohort for Childhood Origin of
Asthma and Allergic Diseases, a longitudinal, general population-based
birth cohort, and the Childhood Asthma Atopy Center at Asan Medical
Center22. The study population consisted of sixty 6-month-old infants,
including 29 healthy controls and 31 infants with AD. Baseline character-
istics are provided in Supplementary Table 1 and 2. This study was con-
ducted in accordance with the Declaration of Helsinki and approved by the
Institutional Review Board (IRB) of Asan Medical Center (IRB No. 2008-
0616 and 2015-1031). Written informed consent was obtained from the
parents of all participants.

Pediatric allergists diagnosed AD based on the criteria of Hanifin and
Rajka45. The severity of AD was evaluated using the Scoring Atopic Der-
matitis index. Total and specific serum IgE levels (for egg white and milk)
(IU/mL)weremeasured using the ImmunoCAP-CAP 1000 system (Phadia
AB, Uppsala, Sweden). Blood eosinophil percentages were measured at
6months of age using an automatic blood cell counter (XE-100; SysmexCo.,
Kobe, Japan).

Preprocessing of metagenomic data
Metagenomic sequencing was performed on the gut microbiota from 60
fecal samples of 6-month-old infants. DNA was extracted using the
RNeasy PowerMicrobiome Kit (Qiagen, Valencia, CA, USA) and then
fragmented with NEBNext dsDNA Fragmentase (Cat #0348 L, New
England Biolabs, Ipswich, MA, USA). The sequencing library was pre-
pared using ACCEL-NGS 2S PLUS DNA Library Kits (Cat #21096, Swift
Biosciences, Ann Arbor, MI, USA) following the instructions of the
manufacturer. After verifying the metagenomic library size with a
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA), we
prepared the library as previously described by Lee et al. 22. Equimolar
concentrations (2 nM) of each library were quantified through quanti-
tative real-time PCR using a TaKaRa PCR Thermal Cycler Dice Real
Time System III (TaKaRa Bio, Inc., Shiga, Japan) and the GenNext NGS
Library Quantification Kit (Cat #NLQ-101, Toyobo, Osaka, Japan).
Sequencing was conducted using the Illumina HiSeq 2500 system, pro-
ducing 250 bp paired-end reads.
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Quality control of shotgun metagenomic raw reads was completed
usingFaQCs46, using the -q 30flag indefaultmode to trim low-quality reads.
Following this, host-derived sequences were removed using BWA-MEM47

against the human reference genome GRCh38.p13. We also employed
FastUniq48 to correct duplicate paired-end read errors occurring from the
Illumina pattern flow cell method. Supplementary Table 3 shows the basic
statistics of quality-filtered metagenomic data.

Metagenome profiling
Taxonomic profiling at the species level was conducted usingMetaPhlAn349

with default settings (Supplementary Table 7). Microbial diversity was
calculated (Supplementary Table 8) using the “calculate_diversity.R” script,
available on the MetaPhlAn GitHub repository. To compute unweighted
UniFrac distances, we employed the precomputed phylogenetic tree pro-
vided by MetaPhlAn3 (mpa_v30_CHOCOPhlAn_201901_species_-
tree.nwk). The unweighted UniFrac distance was then utilized for
subsequent PCoA analysis. A PERMANOVA test comparing AD and
healthy control groups was performed using the Vegan package50 in R.

Mediation analysis of the AD phenotype was conducted using the B.
longum relative abundance (transformed with an arcsine square root) and
microbial diversity, utilizing the lavaan package in R. Additionally, we
performed a mediation analysis using B. longum subclades instead of rela-
tive abundance to assess the influence of each subclade on AD, as repre-
sented by the formula below.

# Direct effect: Disease ~ c*(Blongum_abundance or subclades) +
b*diversity (observed species or PC1 value)

# Mediator: diversity (observed species or PC1 value)~ a* (Blongu-
m_abundance or subclades)

# Indirect effect: (a*b)
We utilized StrainPhlAn (default option)49 for strain-levelmicrobiome

analysis. Consensusmarker sequenceswere screened frommapped reads to
the MetaPhlAn marker database, extracting only the marker sequences of
abundant microbial species per sample. B. longum, Escherichia coli, and
Veillonella parvula (Supplementary Fig. 1) were the most abundant species
across samples. Their marker sequences were used to calculate strain-level
phylogenetic comparisons with db_markers provided by MetaPhlAn3.
PanPhlAn (default option)49 was also used to identify genetic differences
between these strains and independently generated the presence or absence
profiles of functional genes for each sample using the reference pangenome
database. Finally, genetic differences across lineages were visualized using
iTOL51, based on data produced by StrainPhlAn and PanPhlAn.

Pangenomic analysis of B. longum recovered by metagenome-
assembled gnomes
Quality-filtered metagenomic reads were assembled into contigs using
MEGAHIT52 (v1.2.9; with themeta-sensitive option). Genome binning was
subsequently performed with MetaBAT253 (v.2.12.1; default settings),
CONCOCT54 (v.1.0.0; default settings), and VAMB55 (v.3.0.3.2; default
settings). Further refinement of eachgenomebinwas conductedwithACR56

(v.0.2; default settings) to improve bin quality, followed by a dereplication
step using dRep57 (v.3.2.0; options -comp 50 -con 10) to select the highest-
quality MAGs from each sample. Taxonomic classification was carried out
using the Genome Taxonomy Database Toolkit58 (GTDB-Tk, v.2.0.0;
default settings), from which B. longum was selected for subsequent pan-
genome analysis. Pangenome clusters were identified using Panaroo59

(v1.4.0; with the -clean-mode strict option), and each MAG was compared
using fastANI60 (v1.33; default settings) to calculate ANI values.

For additional strain-level pangenome differences, we first filtered the
presence of gene clusters occurring in over 25%of all samples. Fisher’s exact
test was then conducted to compare the AD and healthy control groups, as
well as the B. longum subsp. clades. After applying the subsequent FDR test,
we selected significant genes that discriminate between AD and B. longum
subsp. clades. The number of gene clusters present in each sample was used
to calculate a distancematrix usingBray-Curtis distance. PCoAanalysis and
PERMANOVA tests were then performed using the Vegan package50 in R.

Human transcriptome processing
Exfoliated colonocytes were isolated from 60 fecal samples and stored at
-70°C until analysis, using the Percoll-density gradient centrifugation
method, as described in previous studies61–63. Briefly, thawed fecal samples
(0.5 g) were vortexed with 10mL of phosphate-buffered saline (PBS) and
filtered through a 40 μm cell strainer (SPL, Seoul, Korea). The filtrate was
carefully layered ontoHistopaque-1077 (SigmaAldrich, St. Louis,MO) and
centrifuged at 400 × g for 30min at room temperature. The resulting pellets
were then washed twice with 10mL PBS. Total mRNA was isolated from
these colonocytes using an RNeasy Mini Kit (Qiagen, Hilden, Germany).
The synthesized cDNAwas hybridized onto aGeneChip®HumanGene 2.0
ST Array (Affymetrix) per the protocol of the manufacturer, using the
GeneChip WT Pico Reagent kit (Affymetrix, Santa Clara, CA). After array
scanning with the GCS3000 Scanner (Affymetrix), raw data were normal-
ized using the Robust Multichip Analysis algorithm within Affymetrix
Power Tools. As the experiment involved two datasets, batch effect cor-
rection was applied using the ComBat package64.

Global metabolome profiling
Thirty-four fecal samples were collected and immediately stored at -80°C
until metabolite analysis. Fecal metabolites were extracted using a standard
liquid-liquid separation technique65,66. Briefly, a 2:1 mixture of chloroform
and methanol was added to the frozen feces, followed by centrifugation for
15min. Polar metabolites were collected from the upper aqueous phase,
while nonpolar, lipid-containing metabolites were obtained from the lower
organic phase. Liquid chromatography-mass spectrometry (LC-MS) ana-
lysis was performed using anUltimate 3000 (Dionex) and an LTQOrbitrap
XL (ThermoFisher).A reverse-phase column(Pursuit 5; 150 × 2.0mm)was
employed for separating nonpolar metabolites, whereas a HILIC column
(HILICPlus; 100 × 2.1mm)was used for polarmetabolites. LC-MS analysis
was conducted for each sample solution in positive and negative ionmodes.
Metabolite features, including mass-to-charge ratios (m/z) and retention
times, were extracted using Compound Discoverer 2.0.

Correlations between Bifidobacterium longum subclades and
multi-omics data
We constructed a generalized linear model usingMaAsLin267 to determine
the significant associations between multi-omics and B. longum subclades.
In this model, each omics dataset—metagenomic species (60 samples),
human transcriptome (60 samples), and metabolome (34 samples) —was
adjusted for factors including the feeding type, mode of delivery, family
history, and AD phenotype of the infant. Subsequent analyses were per-
formed according to the B. longum subclade (-I: 12 samples and -II:
29 samples), although for the metabolome, only 8 and 17 samples were
available for subclade-I and -II, respectively. Pearson residuals from this
model were used to evaluate correlations between the relative abundance of
each B. longum subclade and the human transcriptome and metabolome.
We utilized the Spearman method to determine correlations, selecting
features with a p-value of < 0.01, an absolute r value of > 0.5 for host
transcripts and fecal metabolites. Gene enrichment analysis was then per-
formedusingEnrichr68 to identify pathways significantly associatedwith the
host transcriptome, considering KEGG pathways with an adjusted p-value
of < 0.05 as significant. Finally, Cytoscape was used to visualize these
identified correlations and significant pathways69.

Data availability
The raw metagenome sequencing data generated during the current study
are available in the NCBI SRA under BioProject accession number
PRJNA979436 and in the ENA SRA under accession number PRJEB45443
(SupplementaryTable 2).B. longumMAGshave beendeposited in Figshare
under the following: https://doi.org/10.6084/m9.figshare.27367887.
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