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Thermodynamics of order and randomness in dopant
distributions inferred from atomically resolved imaging
Lukas Vlcek 1,2✉, Shize Yang 3, Yongji Gong4, Pulickel Ajayan5, Wu Zhou 1,7, Matthew F. Chisholm6, Maxim Ziatdinov 6,
Rama K. Vasudevan 6✉ and Sergei V. Kalinin 6✉

Exploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for
solid solutions. However, such theories that work well for semiconductors tend to fail in materials with strong correlations, either in
electronic behavior or chemical segregation. In these cases, the details of atomic arrangements are generally not explored and
analyzed. The knowledge of the generative physics and chemistry of the material can obviate this problem, since defect
configuration libraries as stochastic representation of atomic level structures can be generated, or parameters of mesoscopic
thermodynamic models can be derived. To obtain such information for improved predictions, we use data from atomically resolved
microscopic images that visualize complex structural correlations within the system and translate them into statistical mechanical
models of structure formation. Given the significant uncertainties about the microscopic aspects of the material’s processing history
along with the limited number of available images, we combine model optimization techniques with the principles of statistical
hypothesis testing. We demonstrate the approach on data from a series of atomically-resolved scanning transmission electron
microscopy images of MoxRe1-xS2 at varying ratios of Mo/Re stoichiometries, for which we propose an effective interaction model
that is then used to generate atomic configurations and make testable predictions at a range of concentrations and formation
temperatures.
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INTRODUCTION
Condensed matter physics and materials science are both
predicated on tuning physical and chemical functionalities via
changes in chemical composition. Paradigmatic examples of this
approach are the doping of silicon and other semiconductors that
underpins virtually all aspects of the semiconductor industry and
electronics1, compositional tuning of oxides that underpin
catalysis, energy technologies, and electroceramics2–4, alloying
of metals, and many others. From a fundamental perspective,
most physical studies are performed (and hence functionalities
defined) for single crystal solid solutions, a fact which propelled
single crystal growth to be a key enabling component of modern
research.
The relationship between the atomistic mechanisms of

materials doping and emerging functionalities is highly non-
trivial. For many materials, such as metals and silicon, the electron
wavefunctions are sufficiently delocalized that the doping effects
can be interpreted within effective mean-field models, e.g., via the
shift of Fermi level or chemical potential of corresponding mobile
species. The residual effects of chemical inhomogeneities can then
be described via increased scattering rates and reduced mean free
paths for electrons and phonons, or effective resistance, whereas
exact positions of dopant species are less relevant. Overall, in
these cases, doping effects are well-described through an effective
change of bulk material parameters5.
This approach however does not hold for materials with higher

levels of disorder, giving rise to intriguing physical behaviors
such as Anderson localization6. The latter is associated with

macroscopically disordered ground states resulting in the
localization of electronic wavefunctions. Similarly, in systems with
localized interactions such as strongly correlated materials7–11,
complex behaviors emerge that are dependent on the strength
and directionality of local interactions12. Correspondingly, electro-
nic and functional properties will depend not only on average
dopant concentrations but also on the exact configurations of
dopant atoms13. For phenomena such as phase transformations,
including the nucleation and transformation of domains and
associated movement of interfaces during the transformation, the
details of local atomic arrangements also become important—
here, they determine the magnitude of the pinning of the
interface, affect the transformation front geometry and account
for roughness, and can thus greatly affect other relevant
behaviors14,15.
Notably, the statistics of atomic configurations of dopant atoms

in real space, and hence the effects of the doping on materials
behaviors strongly depend on the interactions between the
dopant atoms. The effective attractive interactions between the
same type of solid solution components can lead to dopant
clustering and, above a certain threshold, to segregation of the
second phase below the spinodal line. Similarly, repulsive
interactions can lead to the formation of additional periodicity
on the length scales determined by dopant concentration. These
atomic configurations will correspondingly affect the electron,
phonon, ferroelectric, or quantum behaviors of the material. The
dopants interactions are strongly temperature-dependent as
determined by the entropic term of free energy. Hence, in realistic
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materials dopant distributions can be significantly different from
the thermodynamic minimum and determined by the preparation
history. Furthermore, nanoscale confinement effects can signifi-
cantly affect even the equilibrium thermodynamics, leading to
stabilization of higher-energy phases, the emergence of new
phases, broadening the regions of solid solution, and other
changes.
These considerations necessitate understanding the thermo-

dynamics and effective dopant interactions in real materials.
Advances in atomically resolved techniques such as scanning
transmission electron microscopy (STEM)16–18, scanning tunneling
microscopy (STM)19,20 and non-contact AFM (NC-AFM)21, and
atom probe tomography (APT) have allowed insight into atomic
configurations on an atom by atom level. However, quantitative
information extracted from these observations has been limited,
usually because it is difficult to perform appropriate theory-
experiment matching at the length scales of both simulation and
experiment. Furthermore, while these experiments can in principle
produce libraries of possible atomic configurations and structures,
the throughput and hence the statistics of these experiments is
generally limited.
Here, we analyze the structure of solid solutions from the series

of atomically resolved images in scanning transmission electron
microscopy and infer the microscopic thermodynamic interactions
at the formation temperature. This approach allows us to avoid
the statistical bottleneck and develop microscopic and thermo-
dynamic generative models for the solid solution formation that
can be used to test the alternative hypothesis about the formation
of the observed structures and provide extrapolations to multiple
concentrations and temperatures.

RESULTS
Modeling approach
Atomically resolved images provide a wealth of information about
the interactions and history of the investigated material. In
principle, each atom’s chemical identity and position within the
structure contains a piece of useful information about the system’s
physics. However, it is not immediately clear what this information
may be and how we can use it. We approach this problem, which
requires dealing with potentially large and noisy imaging data
sets, by applying statistical and machine learning (ML) techniques
to develop physically interpretable statistical mechanical models.
Specifically, we use model selection and optimization methods
that operate in the space of measurement outcomes.
As an illustration relevant for the current task, we consider the

solid solution (exemplified here by MoxRe1−xS2) extending over N
metal atoms on a regular lattice, where N ~ 400. Ignoring
structural defects, there are k= 2N possible elementary outcomes
corresponding to different atomic configurations, where each can
be represented as a unit basis vector in a k-dimensional real-
valued Hilbert space, Hk 22. We note that for classical systems and
in the absence of experiment-specific errors (e.g., misidentified
atoms), the space of measurement outcomes is equivalent to the
space of the system’s coarse-grained states corresponding to all
distinguishable lattice configurations of Mo/Re metal atoms. For
large sample numbers, the relative frequency of different
configurations collected from repeated measurements converges
to the probability distribution of the system surface configura-
tions, where each distribution can be represented as a unit vector
on the probability space of all possible distributions.
As shown by Wootters for pure quantum states and by

Braunstein and Caves for density matrices23,24, the angle between
probability vectors, typically referred to as statistical distance,
presents the natural metric for quantifying distinguishability of

physical systems. It is defined as,

s2 ¼ arccos2
Xk

i¼1

ffiffiffiffiffiffiffiffi
piqi

p� �
(1)

where pi and qi are the probabilities of states i in systems P and Q,
and the argument represents a scalar product between k-
dimensional probability vectors. We have recently proposed to
use this metric to measure model quality and used it as an
optimization loss function that avoids the pitfalls of other
commonly used functions, such as the Kullback–Leibler diver-
gence, simple least squares, or various energy and force matching
methods for force field optimization25.
We have shown earlier that a convenient loss function for D

independent data sets in the form of histograms collected from
multiple sources, such as images at different conditions, can be
written as22,

S2 ¼ 1
nTot

XD

d¼1
nds

2
d (2)

where s2d is squared statistical distance for data set d, nd is the
number of samples in data set d, and nTot is the total number of
samples in all data sets.
The practical challenge in dealing with microscopic imaging

data using the outlined formalism is the enormous dimension of
the Hilbert space and a limited number of samples (individual
images), which may often amount to just one. In this situation, it is
impossible to obtain an accurate estimate of the limiting
probability distribution P that should be matched by a model.
According to the maximum likelihood approach, the probability
distribution estimate is equal to the distribution of relative
frequencies, which would imply zeros for nearly all states26.
Consequently, there is virtually no chance of a model matching
the particular observed configuration.
An alternative estimate of P more suited for dealing with zero

counts is to use a non-informative Jeffreys prior over the states,
which is a uniform distribution on the probability space and
whose effect is equivalent to assigning an extra 1/2 of a sample to
each state. The estimate of the system’s probability distribution P
is then26,

pi ¼ xi þ 1=2
nþ k=2

(3)

where pi is the estimated probability of state i of a k-state system,
xi is the number of counts in the histogram bin corresponding to i,
and n ¼ Pk

i¼ 1 xi is the total number of samples. It is easy to see
that in the case of large k and small n the estimated P will be
nearly uniform for any measurement, and the optimal model will
be therefore random with not enough data to support a more
complex model.
To overcome this obstacle and obtain more discriminative

information from an image, we can first consider the crystalline
system as composed of a large number m of subsystems, each
with l dimensions, l � k. The original Hilbert space can be then
expressed as a direct product of the subsystem spaces,
Hk ¼ Hlm ¼ �m

i¼ 1H
l
i . In case the subsystems are uncorrelated

because of their spatial separation, a lower-dimensional space
obtained as the direct sum of subsystem spaces can be formed,
Hm ´ l ¼ �m

i¼ 1H
l
i , which can represent the full physically relevant

information. If we further assume that the subsystems are
statistically identical as a result of translational symmetry,
we can collect all relevant statistics in a single l-dimensional
space spanning only the states of the subsystem. For a single
image, we obtain a larger number of samples, equal to the
number m of subsystems, and lower dimension l of the
subsystem state space. The maximum likelihood or Eq. (3) will
therefore provide a much more accurate estimate of the limiting
probabilities that still capture the full relevant information.
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We note that this approach is equivalent to the presence of
translational statistical invariance in the system and assumes the
absence of long-range fields (such as depolarizing field in
ferroelectrics). A similar approach was used in the statistical
analysis of structural and electronic order parameters using sliding
transforms, as reported by Vasudevan et al.27.
The optimal choice of the subsystems is a feature selection

problem. In the limit of large subsystems, we end up with a single
sample per image, as discussed above. In the opposite limit of
subsystems of the size of a single atom, we can collect a large
number of samples, but the two-state (Mo/Re) subsystems will
provide only a minimal amount of information to discriminate
between candidate models because many plausible models can
easily fit a binomial distribution (i.e., average concentration). The
ideal subsystems that balance the number of samples and the
number of distinguishable states l (resolution) will therefore lie in
between these extremes and depend on the amount of data. The
choice of the most discriminative features will also influence the
maximum model complexity that can be supported by the data.
As a general rule, when developing models based on microscopic
images, we select features that can support the most complex
models. Physical considerations of the locality of interactions may
guide us to consider features (subsystems) in the form of local
configurations that contain information about the direct correla-
tions between atoms that roughly span the range of direct
atom–atom interactions28. Typically, these may contain the
nearest and next-nearest metal atom neighbors. The statistics of
such configurations in the form of histograms represent a natural
signature, or fingerprint, of the observed structure, which the
model should reproduce. We note that this approach to feature
selection is a variation of the bag-of-visual-words ML method used
for image classification29–31.
Statistical distance, as the geodesic on the probability space, is

directly related to the statistical hypothesis testing. In this
interpretation, a model of structure formation can be considered
a testable hypothesis about the origin of the observed data. While
we cannot prove the correctness of the model, we can rule out
possible scenarios that are not compatible with the experimental
data. For instance, it may not be clear whether configurations
observed in microscopic images result from an equilibrium
process and can be therefore directly related to interatomic
interactions, or whether they represent history-dependent sam-
ples from a non-equilibrium distribution.
The target and model distributions of repeated measurement

outcomes form multinomial distributions centered around the
limiting probability distributions P and Q, defined on the
probability space. In the large sample limit, these distributions
are well approximated by normal distributions with variance equal
to ¼. In this setting, statistical distance can be considered an
instance of a Mahalanobis distance M defined on the k− 1-
dimensional probability space. We can then use the relation of M2

to p-value32, which quantifies the probability that the model
generates a distribution that is at least as different as the target
distribution. Since s2 follows the χ2k�1 distribution for k− 1 the
degrees of freedom, p-value can be determined as,

p ¼ 1� CDF χ2k�1; 4ns
2

� �
(4)

where CDF denotes the cumulative distribution function of χ2k�1
evaluated at 4ns2. Minimizing s2 then results in a model
representing a hypothesis that is most difficult to reject using
the significance test, i.e., the model distribution is the most
difficult to distinguish from the experimental one.
As an alternative to classical statistical significance testing,

which evaluates individual models, we can also employ relative
model selection criteria. Ideally, we would want to employ
the minimum description length (MDL) criterion33, which can be
interpreted as penalizing model complexity based on the number
of distinguishable configurations the model can generate34. This

criterion is fully consistent with the ideas of the statistical distance
framework utilized here. However, for practical reasons we use the
simplified version valid in the large sample limit, which coincides
with the Bayesian information criterion (BIC)35, defined here as,

BIC ¼ 2ns2 þ r
2
ln n (5)

where the first term is the negative log-likelihood of the model
generating the observed distribution, r is the number of model
parameters, and the rest of the symbols have the same meaning
as before.

Imaging segregation and phase transition in RexMo1−xS2
As a model system, we have chosen the RexMo1−xS2 solid
solutions for varying Re concentrations synthesized as described
in “Methods” section36,37. The atomically resolved images across
the composition series for x = 0.05, 0.55, 0.78, and 0.95 were
acquired on the Nion UltraSTEM100 microscope and are shown in
Fig. 1. The Re atoms are clearly visible as bright dots, as expected
given the higher atomic number of Re.
To analyze the images, we adopt the atom finding algorithm

based on the procedure outlined by Somnath et al.38. Briefly, this
involves the first image denoising step via a sliding window
reconstruction with principal components, followed by motif-
matching and thresholding to find sub-lattices of distinct types
and isolate the individual atoms. This functionality is available
through the open-source python package PyCroscopy39,40. Sub-
sequent Gaussian fitting enables sub-pixel accuracy of the atomic
coordinates to be determined. Notably, this approach allows not
only positional identification of all the atoms in the image, but also
classifies them as Mo or Re based on simple thresholding given
the change in contrast expected due to higher Z number of Re
(details are included in SI document). The identified atom types
are shown superimposed on the atomic contrast in Fig. 1. Thus,
obtained data sets contain the information on the atomic
configuration of cations in the 2D triangular lattice, i.e., composi-
tional fluctuations. The latter, in turn, can be related to the
thermodynamics of the solid solution via the formalism
described above.

Models of dopant segregation
Here, we restrict our modeling to Mo/Re atom distribution on an
idealized hexagonal lattice and ignore defects such as sulfur
vacancies. As the first step, we select structural descriptors on this
lattice, whose statistics will serve as the target structural
fingerprint for model optimization and statistical significance
testing. Given the limited amount of data, we constrain our
analysis to the statistics of local configurations consisting of an
atom and its six nearest neighbors (Fig. 2a). Assuming the
translational symmetry of the sample, the seven atoms of two
possible types can result in 27 configurations. Taking further into
account rotational and reflective symmetries, the total number of
distinct configurations reduces26. The statistics of these config-
urations in the form of relative frequencies collected from four
images at different stoichiometries are shown in Fig. 3.
The complexity of the models reproducing the statistics of local

configurations can theoretically range from a null model with zero
adjustable parameters and single probability distribution to a
model with 4 × 25 parameters, each of which controls the
statistics of individual histogram bins collected from the four
images. Such a model, which is in effect equivalent to that
described by Eq. (3), achieves the maximum complexity with
possible probability distributions spanning the entire probability
space. Clearly, such a model will overfit and therefore possesses
limited predictive power. Physically motivated constraints are thus
needed to select a lower-dimensional subspace of possible
distributions.
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As the simplest possible model, the null hypothesis for the
observed statistics, we assume that the MoxRe1−xS2 configurations
collected from the four images are completely random. Physically,
such a distribution of metal atoms may result from random
deposition of Mo and Re atoms without subsequent thermal
equilibration. Alternatively, a random distribution of metal atoms
could be formed in an equilibrium system in which the differences
in the effective energetics of Mo–Mo, Mo–Re, and Re–Re
interactions are very weak.
The random model statistics are compared with the target data

in Fig. 3. A quick visual comparison of the two histogram sets
suggests that most of the variation in the configuration
probabilities can be attributed to their symmetry numbers. To
make this comparison more quantitative, we calculated the

statistical distances between the target and model distributions
and the corresponding p-values for data based on individual
images as well as for the combined data sets. The results,
summarized in Table 1 under model R, show that while the
random model would pass the significance tests at the typical
levels of α ¼ 0:01 or 0.05 for the images with very low and very
high Re concentrations, we can reject it for the intermediate
concentrations, as well as for the combined data set. It does
appear that the distributions are non-random, and detectable
ordering happens at the intermediate concentrations. The BIC
criterion, Eq. (5), with r = 0, attains the value of 73.4.
To probe the segregation hypothesis further, we test a model

assuming that the images present equilibrium structures that can
be described by a class of models with a simple pair-additive

Fig. 1 STEM images of RexMo1-xS2 at different values of Re concentration. a x = 0.05, b x = 0.55, c x = 0.78, and d x = 0.95. Identified Mo
and Re atoms are indicated by red and black dots, respectively. At x = 0.05, the material adopts the MoS2 lattice structure (e), while for higher
Re ratios it adopts the ReS2 lattice (f). Color code: Mo (pink), Re (cyan), and S (yellow).

Fig. 2 Local atom configurations and the topology of direct atom–atom interactions. a An example from a set of 26 local surface
configurations whose statistics are to be matched by a model; Mo (pink), Re (cyan). b Nearest (blue) and next-nearest (red) neighbor metal
atom pairs considered in the lattice Hamiltonian of Eq. (6). c The triplets of Mo and Re atoms connected to individual sulfur (yellow) atoms
define the many-body Hamiltonian of Eq. (7).
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Hamiltonian that includes the first- and second nearest-neighbor
interactions (Fig. 2b). Both of these interactions effectively account
for bonds between Mo and Re atoms mediated by sulfur bridges.
The energy of configuration i can be written as,

ui ¼ w1

X
NNf g δMoRe þ w2

X
NNNf g δMoRe (6)

where w1 and w2 are interaction energies between Mo and Re
atoms in the nearest (NN) and next-nearest neighbor (NNN)
positions, respectively; the summation runs over all nearest and
next-nearest atom pairs with δMoRe ¼ 1 a for Mo–Re pairs and
δMoRe ¼ 0 otherwise. This class contains our null hypothesis as a
special case with the interaction parameters set to zero, and also a
subclass of nearest neighbor models with w2 = 0.
The interaction parameters were optimized to minimize the

statistical distance between the target histograms and those
collected from equilibrium Monte Carlo simulations with the model.
As described in “Methods” section, we combined five reference
simulations with tentative models to construct the profile of

the combined squared statistical distance S2 as a function of
interaction parameters (Fig. 4a). The minimum of this profile was
found at w1=−0.1 and w2=−0.06. Examples of configurations
generated by the equilibrium model at different stoichiometries are
presented in Fig. 5. While at the low and high Re ratios x the
configurations appear random, ordering of like atoms into smaller
clusters seems present at the intermediate concentrations. Even
though the profiles of Helmholtz free energy and excess entropy in
Fig. 6 indicate increased order at x ~ 0.5 (negative excess entropy),
they are essentially featureless and do not indicate any phase
separation, as can be expected from the attractive effective
interactions between Mo and Re atoms (or, equivalently, the
repulsion between like atoms).
To quantify the agreement between these structures and the

target images, we performed hypothesis testing. The p-values
summarized in Table 1 (under model P2) show that the
equilibrium model is more difficult to reject using standard
hypothesis testing. Similar to the random model, it would also

Fig. 3 Comparison of experimental and model-generated statistics of local configurations. Square roots of relative frequencies,
ffiffiffiffi
pi

p
, of

unique local configurations in the target images (yellow), random model (red), and equilibrium model (blue) for four compositions studied in
the present work. Plots for different values of x: a 0.05, b 0.55, c 0.78, and d 0.95. The configuration numbers are assigned identification
numbers in Supplementary Fig. 1.

Table 1. Statistical significance tests and BIC scores of the different models: random (R) and pair additive with one (P1) and two (P2) parameters, pair
additive with one parameter (P1), and many-body (M).

Data set N S2 (R) PV (R) S2 (P1) PV (P1) S2 (P2) PV (P2) S2 (M) PV (M)

x= 0.05 464 0.0062 0.9899 0.0067 0.9829 0.0070 0.9771 0.0073 0.9680

x= 0.55 466 0.0325 0.0001 0.0283 0.0009 0.0288 0.0007 0.0284 0.0009

x= 0.78 434 0.0298 0.0013 0.0263 0.0069 0.0247 0.0143 0.0275 0.0040

x= 0.95 471 0.0124 0.5602 0.0129 0.4976 0.0121 0.5852 0.0121 0.5864

Total 1835 0.0200 0.0015 0.0184 0.0107 0.0180 0.0168 0.0187 0.0079

BIC 73.4 71.4 73.6 76.1

The columns list the values of sample numbers (N), statistical distance (S2), and p-value (PV) for individual and combined data sets.
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pass as a generator of configurations at the two extreme
concentrations, x = 0.05 and 0.95, but performs better for the
intermediate concentrations with p-values approximately an order
of magnitude larger. This improvement means that the model
would pass the test for x = 0.78 at the significance level of
α ¼ 0:01. However, it would still fail to explain the configuration
statistics at x = 0.55. Given the closeness of the random and
equilibrium models, we can be also certain that any transition
between these two that would represent partial equilibration from
the random state would not pass the significance tests. The BIC for
the equilibrium model, Eq. (6), with r = 2, attains the value of 73.6,
which is nearly identical to the random model. Therefore, the
improvement in the statistical distance (Table 1) does not fully
justify the two-parameter pair-additive equilibrium model. A
simpler pair-additive model can be easily obtained by restricting
the interaction parameter to the nearest neighbors by setting
w2 = 0 and optimizing only w1. The optimum of s2 is then found at
w1 = −0.08, as indicated in Fig. 4a. While this choice slightly
deteriorates the p-value and s2, the BIC for this lower-complexity

model with r =1 is found to be 71.4, which is more favorable than
both the two-parameter and random models. Therefore, accepting
this criterion, the amount of available data can justify the choice of
the simple nearest-neighbor model.
We may speculate that the overall poor agreement of our pair-

additive models stems from their inability to capture the correct
form of physical interactions across the range of stoichiometries.
In particular, they do not explicitly account for the different
bonding topologies of the MoS2 and ReS2 lattices identified at low
and high x values, respectively. To test an alternative model of
bonding interactions within the system, we constructed a model
with a simple many-body Hamiltonian that reflects bonding
between triplets of metal atoms sharing the same sulfur atom.
Since we are using simulations in the canonical ensemble, which
keeps the number of particles of each type constant, we can set
the pure-phase energies to zero and only optimize interactions
responsible for the mixing of Mo–Re atoms. Within this model, the
energy of configuration i can be written as,

ui ¼ w1

X
Sf g δMoMoRe þ w2

X
Sf g δMoReRe (7)

where w1 and w2 are interaction energies of sulfur with Mo2Re and
MoRe2 neighbors; the summation runs over all S atoms with
δMoMoRe ¼ 1 for S with two Mo and one Re bonds, and δMoMoRe ¼ 0
otherwise; similarly for δMoReRe with two Re and one Mo. As in the
pair-additive model, this model class contains the null hypothesis
as a special case with the interaction parameters set to zero.
We followed the same optimization procedure as in the pair-

additive model to find the two interaction parameters. The profile
of combined squared statistical distance S2 as a function of
interaction parameters is shown in Fig. 4b, with the minimum
found at w1=−0.14 and w2=−0.07. As in the previous cases, the
negative interaction coefficients indicate favorable mixing of Mo
and Re. The statistical distances and p-values summarized in Table
1 show that the many-body model is more difficult to reject than
the random model based on standard hypothesis testing but
performs worse than the simple nearest-neighbor model. Taking
model complexity into account, the BIC criterion for the
equilibrium model, Eq. (6), with r = 2, attains the value of 76.1,
which is slightly worse than even the random model.
While we were able to find a simple pair-additive model of

elemental segregation in MoxRe1−xS2, the overall agreement with
the imaging data is not completely satisfactory. This indicates that
not all physically important effects are captured by the current
equilibrium and random models. One possibility to further
improve the equilibrium models is to include elastic contributions
in the Hamiltonian. A more likely explanation of the discrepancies

Fig. 4 Statistical distance profiles as a function of interaction parameters. The profiles of statistical distance based on a data set combining
all four images, Eq. (2), as a function of parameters w1 and w2 of the effective Hamiltonian defined by Eq. (6) on the left (a), and Eq. (7) on the
right (b). Darker colors denote lower values of the loss function, with the minimum for each of the two-parameter models indicated by a red
cross, for the single parameter model by a yellow cross, and the random model by a white cross.

Fig. 5 Simulated Mo and Re atom distributions for different
stoichiometries. Configurations generated by two-parameter next-
nearest neighbor model, Eq. (6), for different Re fractions x. a x =
0.05, b x = 0.55, c x = 0.78, and d x = 0.95. Mo (red), Re (cyan).

L. Vlcek et al.

6

npj Computational Materials (2021)    42 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



seems to be the presence of structures created by non-equilibrium
processes, whose reproduction would require adequate models.
For instance, a model of spinodal decomposition could be tested
in a similar manner. However, more data in the form of additional
images would be needed to justify selecting a more complex
model (equilibrium or dynamic) capable of explaining the
observed structures.

Data limitations and uncertainty estimates
Since we only have a single STEM image available for each
concentration, it is possible that the visible area is not fully
representative of the overall atom distribution. One way to estimate
the effect of concentration heterogeneity and its effect on model
uncertainty is to evaluate atom–atom correlations within an
observed area and derive a corresponding Gaussian process model.
Subsequently, analyzing the model’s uncertainties and generating
synthetic images using conditional simulations can give us an idea
about the error caused by spatial correlations. As described in more
detail in the Supplementary Information document, we have
performed such an analysis and simulations, finding only a very
limited range of correlations not extending beyond the nearest
neighbors, which is consistent with the absence of clear large-scale
patterns. Nevertheless, the effective number of samples, estimated
from the variance of local configuration histogram values collected
from 100 conditional simulations, suggests that the models with
optimized interactions (P1, P2, and M) would pass the significance
test at the level of α ¼ 0:01 or better (Table 2).

DISCUSSION
We have used atomically resolved STEM images of compositional
fluctuations in MoxRe1−xS2 to develop statistical models of
elemental distribution at different stoichiometries. Using these
thermodynamic models, we tested alternative hypotheses about
the origins of observed structures. While the random model,
which ignores any interaction effects (ideal solid solution), appears

sufficient to explain the structures observed at low and high ends
of the Re relative concentrations, it does not pass the commonly
accepted significance levels for the intermediate concentrations,
at which the Mo and Re atoms appear to be structured. Alternative
equilibrium models with a simple effective pair-additive and
many-body Hamiltonians improved the agreement with the
observed data relative to the random model, even though only
passing the statistical significance test at 0.01 level for the
medium range of Re and Mo concentrations (x ~ 0.5). Based on
this analysis, we conclude that the investigated material is close to
an ideal solution at forming temperature with weak attractive
interactions between the Mo and Re atoms, i.e., the tendency for
chemical mixing.
We note that while it is difficult to prove that the observed sets

of configurations are samples from an equilibrium distribution,
and in fact, the results indicate that it is unlikely that the structures
are not influenced by the material’s history, it is possible to test
different statistical mechanical models that incorporate both
equilibrium and non-equilibrium effects, with the complexity of
these models only limited by the amount of available data.
Overall, this approach greatly increases the value of STEM data by

allowing it to be connected to the thermodynamic or more complex
properties of the system. By the same token, it necessitates the
acquisition of much larger data volumes41,42. While previously a
single image provided qualitative information on the system
properties, the use of more data enables more statistics, which in
turn facilitates improved understanding and discrimination ability
between competing models. Furthermore, this approach can be
used with data from other experimental tools, including atomic
probe tomography, etc., and necessitates the development of
automated workflows for data analysis and extraction.
The presented analysis, which integrates statistical mechanics

principles with statistical learning methods and statistical hypothesis
testing can be easily incorporated into materials science workflows
for materials design. In general, the presented work follows the path
towards seamless integration of physical theory, machine learning,
and experiments. Future work will focus on the further development
of the unsupervised learning methods for automated feature
selection and structure analysis, as well as on expanding the
approach to dynamic data and kinetic Monte Carlo modeling.

METHODS
Sample growth
Molybdenum oxide powder (99%, Sigma Aldrich), sulfur powder (99.5%,
Sigma Aldrich), and ammonium perrhenate (99%, Sigma Aldrich) were used
as precursors for CVD growth. A selected ratio of molybdenum oxide and
ammonium perrhenate was added to an alumina boat with a Si/SiO2

(285 nm) wafer cover. The furnace temperature was ramped to 550 °C in
15min and then kept at 550 °C for another 15min for the growth of the
RexMo1−xS2 alloy materials. Sulfur powder in another alumina boat was
placed upstream where the temperature was roughly 200 °C. After growth,

Fig. 6 Thermodynamic properties predicted by the next-nearest neighbor model. a Helmholtz free energy, F, and b excess entropy, Sex, of
the equilibrium model as a function of Re fraction x and inverse reduced temperature β.

Table 2. Adjusted p-values based on the effective number of pseudo-
experimental samples, Neff, from conditional simulations.

Data set Neff PV* (R) PV* (P1) PV* (P2) PV* (M)

x= 0.05 148 0.9999 0.9999 0.9999 0.9999

x= 0.55 365 0.0043 0.0211 0.0177 0.0204

x= 0.78 300 0.0746 0.1700 0.2367 0.1301

x= 0.95 248 0.9839 0.9788 0.9865 0.9865

The columns list the adjusted p-values (PV*) obtained from Eq. (4) using
Neff for each data set (notation follows Table 1).
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the furnace was cooled to room temperature using natural convection. The
growth process was carried out with 50 SCCM argon at atmospheric pressure.

Electron microscopy characterization
The RexMo1−xS2 flakes were transferred to TEM grids by spin-coating PMMA
to support the flakes and etching with KOH to release them from the
substrates (by dissolving the SiO2). The annular dark-field images (ADF) were
collected using a Nion UltraSTEM100 microscope operated at 60 kV. The as-
recorded images were filtered using a Gaussian function (full width half
maximum = 0.12 nm) to remove high-frequency noise. The convergence
half angle of the electron beam was set to 30 mrad and the collection inner
half-angle of the ADF detector was 51 mrad. The samples were baked in a
vacuum at 140 °C overnight before STEM observation. During STEM
observation, the probe current was controlled between 10 and 60 pA to
reduce beam damage.

Monte Carlo simulations and model optimization
Simulations with the effective interaction models were performed on a 2-
dimensional hexagonal lattice with periodic boundary conditions along with
the MoxRe1−xS2 plane directions. The simulation cell contained N= 2048
metal atoms which were equilibrated at reduced temperature T* = 1. After
equilibration, a total of 105 ´ N individual MC steps consisting of swaps of Mo
and Re atoms were performed in each simulation. The search over the model
parameter space to minimize the statistical distance loss function was
accomplished with the perturbation technique25,43, which allowed us to
minimize the number of MC simulations in the optimization process and
reduce thus the computational cost of the inverse problem solution. In the
present case of target data with poor statistics, the basic version of the
technique based on reweighting the results of a single MC simulation
provided inaccurate estimates. Therefore, we used the multistate Bennett
acceptance ratio (MBAR) method44 to combine the results of 5 reference
system simulations performed with models with interaction parameters (w1,
w2) set to (0, 0), (0.2, 0.0), (−0.2, 0.0), (0.0, 0.2), and (0.0, −2.0).

DATA AVAILABILITY
The data used for the analysis of atomic configurations and Gaussian process
simulations is is located along with the processing code on materialscloud.org,
https://doi.org/10.24435/materialscloud:w8-k3. The rest of the data that support the
findings of this study are available from the corresponding author upon request.

CODE AVAILABILITY
The code used to perform the analysis of atomic configurations is available on
materialscloud.org, https://doi.org/10.24435/materialscloud:w8-k3.
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