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Dynamical phase-field model of cavity
electromagnonic systems
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Shihao Zhuang 1,5, Yujie Zhu 1,5, Changchun Zhong 2, Liang Jiang 2, Xufeng Zhang 3,4 &
Jia-Mian Hu 1

Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons
(quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent
energy transduction among different physical systems down to single quantum level. Here we report a
dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic
waves, magnetization, and strain in 3D multiphase systems. As examples of application, we
computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons),
Floquet-inducedmagnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and
relative phase control (Ramsey interference) between the twomagnonpolaritonmodes. The simulation
results are consistentwith analytical calculationsbasedonFloquetHamiltonian theory. Simulations are
also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-
magnon-photon resonance, where the resonant excitation of a chiral, fundamental (n = 1) transverse
acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling
strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using
fundamentalmaterials parameters as the inputs, the present dynamical phase-fieldmodel represents a
valuable computational tool to guide the fabrication of the cavity electromagnonic system and the
design of operating conditions for applications in quantum sensing, transduction, and communication.

One main goal of the cavity electromagnonics is to realize strong and
dynamically tunable coupling between magnons (quanta of spin waves)
and cavity photons (quanta of confined electromagnetic waves)1–3, with
application potential in quantum storage4,5, quantum transduction6,7

and quantum sensing8. The strong coupling between the Kittel mode
magnon (spatially uniform precession of magnetization) and the cavity
photon was theoretically predicted by Soykal and Flatté9,10 and experi-
mentally observed in hybrid systems that involve yttrium iron garnet
(YIG) bulk crystals 11,12, permalloy thin-film stripe13, YIG film14,15

mounted on a coplanar microwave resonator, or YIG bulk crystal
sphere(s)/slab inside a three-dimensional (3D) microwave cavity4,16–25.
One key feature of such strong coupling is the mode frequency splitting
with an avoided crossing in the frequency spectrum, which indicates the
hybridization of magnon and photon into a new quasiparticle called
magnon polariton14,19,26. In the time-domain, the energy of magnon
polaritons is constantly exchanged between the magnon and the photon
system with 100% conversion efficiency.

To realize practical quantum operation such as mode swapping and
storage27, it is necessary to dynamically control the exchange process
between the two hybrid modes of magnon polaritons upon the completion
of transferring a single quantum of excitation2. For example, Floquet
engineering28—which herein refers to the simultaneous application of a
periodic driving magnetic field—has been successfully implemented to in
situ control the transition between the two hybrid modes and even induce
further splitting of each mode into two energy levels associated with dif-
ferent Floquet modes21, analogous to the Autler-Townes splitting in atomic
physics.

In addition to the studies on magnon-photon resonance, tripartite
coupling among the photons, magnons, and phonons have also been
demonstrated experimentally in a cavity electromagnonic system15,22–25,
which can also be called a cavity electro-magno-mechanical system in this
case. For example, Zhang et al. reported a resonant coupling among the
Kittel mode magnons, cavity photons, and high-overtone bulk acoustic
phonons—all having the same frequency of a few gigahertz (GHz)—in a
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Gd3Ga5O12(GGG, substrate)/YIG(film, 200-nm-thick) mounted on a split-
ring resonator15. In a 0.25-mm-diameter YIG sphere placed in a 3D photon
cavity, Zhang et al. 22 demonstrated a coherent coupling between a GHz
magnon polariton (with a frequency ω+ or ω-) and a megahertz (MHz)
acoustic phonon (frequency:ωp) by parametrically driving the cavity with a
strong microwave signal at a frequency ωd, with ωd-ω-=-ωp or ωd-ω+=ωp.

The main objective of this article is to report a 3D dynamical phase-
field model that enables simulating and predicting the coupled dynamics of
photons, magnons, and acoustic phonons in a cavity electromagnonic
system comprised of a magnon/phonon resonator placed in a bulk 3D
photon cavity, which is one of themost used structures in experiments4,16–25.
In contrast to the fact that Hamiltonian-based theoretical analyses (e.g. 21,29)
need to take the mode coupling strength as the input and are therefore not
predictive, the present dynamic phase-field model allows for predicting the
spatiotemporal evolution of coupled modes in 3D photon cavity and
magnon resonators of arbitrary size and geometry under various operation
conditions, using only the fundamental materials parameters as the input.
Therefore, it can be used to guide the design of cavity structure and control
conditions for realizing desirable quantum operation.

The dynamically evolving physical parameters in a cavity electro-
magnonic system include the magnetic-field component (HEM) of the
electromagnetic (EM)wave in themicrowave cavity, themagnetization (M)
and elastic strain (ε) of themagnon resonator (e.g.,YIG).Thepropagationof
HEM is governed by the Maxwell’s equations, while dynamical evolution of
M and ε, which represent the magnon and phonon subsystem, are usually
described by the Landau-Lifshitz-Gilbert (LLG) equation and elastody-
namic equation, respectively. Crucially, the dynamics ofM is modulated by
the HEM via the Zeeman torque, while the M and ε are coupled via the
magnetoelastic interaction30. Therefore, a complete, direct numerical
simulation of the dynamical processes in a cavity electromagnonic system
requires the simultaneous solution of the coupled LLG, elastodynamic, and
Maxwell’s equations.

Thus far, there are only a few advanced computational models that
include coupled dynamics of M and EM wave31–34 but excludes either the
exchange coupling field (i.e., macrospin approximation) in the LLG
equation31,33,34 or the displacement current in the Maxwell’s equations32.
Recently,models that include coupled dynamics of ε,M, and EMwave have
also appeared35–39, but these models are limited to 1D36–38 or 2D39 system or
employ the Newton’s equation35 as a simplification of the elastodynamic
equation. Furthermore, these models35–39 have not yet been applied to a
cavity electromagnonic system. The present dynamical phase-field model
addresses the coupled dynamics of ε, M, and EM wave in a 3D cavity
electromagnonic system by solving the coupled LLG, elastodynamic, and
Maxwell’s equations (see “Methods”). All numerical solvers are accelerated
by graphics processing unit (GPU) to increase the computation throughput.
As examples of application, we use the dynamical phase-field model to
simulate the dynamics of excitation and control ofmagnonpolaritonmodes
in a cavity electromagnonic system comprised of a YIG magnon resonator
placed in a 3D photon cavity. Typical coherent gate operations including
Rabi oscillation and Ramsey interference are computationally demon-
strated. Furthermore, we design a cavity electro-magno-mechanical system,
which contains a bilayer YIG/SiN membrane placed in a 3D photon cavity
and permits a resonant interaction between the magnon polaritons and the
acoustic phonons.We then use the dynamical phase-fieldmodel to simulate
the coupled mode dynamics under such triple phonon-magnon-photon
resonance condition.

Results
Simulation system set-up
Figure 1a schematically shows the cavity electromagonic system.YIG,which
has been widely used in hybrid magnonic systems16–18,22,40–44 due to its
ultralow magnetic damping, is used as the magnon resonator. The
3D microwave cavity has a dimension of 45×9×21 mm3, which supports
the TE101 mode of the standing EM waves with a frequency
ωc/2π = 7.875 GHz. To excite the TE101 cavity mode, a point charge current

pulse Jc(t) in the form of a Gaussian function te�t2=2σ20 is applied along the y
axis (i.e., only the Jcy component is nonzero) at the position (22.5 mm,
1.5mm,10.5mm)of the cavity,whereσ0 is a freeparameter that controls the
pulse duration and chosen to be 70 ps so that the frequency window of the
pulse covers the ωc. The simulatedHEM has a vortex-like distribution in the
xz plane, as shown in Fig. 1a. The YIG resonator is placed at 1.5mm below
the top surface center of the cavity, where themagnitude ofHEM is relatively
large. At the initial equilibrium state, the magnetization in the YIG m0 is
along +z ([001]) due to a bias magnetic field Hbias ¼ ð0; 0;Hbias

z Þ applied
along the same direction. Note that energy dissipation of both the cavity
photon (arising from the imaginary component of the relative dielectric
permittivity tensor εr) and magnon (arising from the effective magnetic
damping) are both set to be zero to study the magnon-photon coupling
under the most ideal situation.

The entire system is discretized into three-dimensional (3D) compu-
tational cells with a cell size Δx =Δy =Δz = 2 nm. Numerically, a nm-scale
computational cell is necessary to ensure spatial uniformity of the magne-
tization (i.e., the formation of Kittel mode magnon) via the Hexch (propor-
tional to |∇m | 2) between neighboring spins. Moreover, a basis for any
micromagnetic simulation is that the cell size needs to be smaller than

the exchange length lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aex=ð0:5μ0M2

s Þ
p

, which is about 16.3 nm for
YIG with an exchange coupling coefficient Aex of 3.26 pJ/m and
Ms = 140 kA/m45.However, discretizationof a 45×9×21mm3 systemusing a
cell size of Δx =Δy =Δz = 2 nm would lead to a total of about 1021 cells,
which is computationally unaffordable. To address the issue, the εr is tuned
to scale down the EM wavelength and hence the size of the microwave
cavity. For example, in the case of 1 × 1 × 1mm3 YIG cube, we set all three
diagonal components of the εr to be 6.25 × 1010 for both the YIG cube and
the microwave cavity, thus the EM wavelength is scaled down by 2.5 × 105

ð¼ ffiffiffiffi
εr

p Þ times.Accordingly, the sizeof themicrowave cavity can be reduced
from 45 × 9 × 21 mm3 to 180×36×84 nm3 (i.e., 68,040 cells) without chan-
ging the spatial profile and the frequency of the TE101 mode EM wave.
Meanwhile, the size of the 1 × 1 × 1mm3YIGcube should be scaled down to
4 × 4 × 4 nm3 to maintain a constant volume ratio of the YIG cube to
microwave cavity. Although such size down-scalingmakes it not possible to
simulate the high-order magnon modes (spatially non-uniform precession
of local magnetization) that may occur in a mm-scale YIG, it would not
influence the present work on the interaction betweenKittel modemagnon
and cavity photon. Importantly, although the larger εr leads to a smallerEEM,
the magnitude of HEM, which interacts with the magnetization, remains
constant (see Eqs. (6)–(7) in “Methods”). As a result, the simulated coupled
magnon-photon dynamics remains the same as that in the original mm-
scale system. Furthermore, the use of a larger εr allows using a larger time
step which significantly reduces the computation time in long-term
dynamics simulation (see Methods).

Magnon-photon coupling
To demonstrate the validity and high numerical accuracy of our compu-
tational model, we first simulate the formation of the commonly observed
k = 0 mode magnon polariton (k is wavenumber), which features the
hybridization between the k = 0 (Kittel) mode magnon m̂ and k ≈ 0 mode
cavity photon ĉ. As illustrated in Fig. 1a, theHEM, which is perpendicular to
the initial equilibrium magnetization m0 (see Fig. 1a), drives the magneti-
zation precession. Due to the exchange coupling, all local magnetization
vectors m in the YIG precess in phase, resulting in the excitation of the
desirableKittelmodemagnon. SinceHEM is largely uniformaround theYIG
cube (i.e., wavenumber k ≈ 0) and the magnon-photon interaction time is
sufficiently long in the present 3D cavity, the k = 0 mode magnon
polariton should form if the angular frequency of the Kittel mode
magnon ωm, or the ferromagnetic resonance (FMR) frequency, can be
magnetically tuned to match the angular frequency of the cavity ωc. Spe-
cifically, for an initial equilibrium magnetization along [001], one has
ωm
2π ¼ γðHbias

z � 1
3Ms þ 2K1

μ0Ms
Þ36, where γ = 27.86 GHz/T is the gyromagnetic
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ratio and K1 = 620 J/m3 is the magnetocrystalline anisotropy coefficient

of the YIG. Accordingly, Hbias = (0, 0, 0.291 T) is applied to have

ωm/2π=ωc/2π = 7.875 GHz.
Figure 1b shows the dynamics of the Kittel magnon mode and the

photon, where Δt = 0 refer to the moment at 20 ns after the injection of the
Gaussian-shaped current pulse Jc(t) at t = 0 ns. Typical behavior of coherent
beating oscillation similar to a two-level system37,46 is observed. Specifically,
the peak amplitudes of the twomodes (indicated by the trend lines) show a
Rabi-like oscillation17 with a period of ~6.9 ns (frequency ~145MHz),
suggesting a back-and-forth energy transfer between the YIG and the
microwave cavity.Note thatwe focuson thepeak amplitudes rather than the
instantaneous values of Δmx and EEM

y , because the energy of the magnon
mode is swapped instantaneously between Δmx and Δmy while the energy
of the cavity photon mode is swapped instantaneously between EEM

y and
HEM

x . For clearer illustration, Fig. 1c shows the simulatedmagnon state and
spatial distribution of the radiation electric field EEM(t) at a few repre-
sentativemoments.As shown in the left panel,when theEEM reaches its peak
amplitude, the magnetization m aligns almost along its initial direction
[001], indicating analmost zero free energy change in theYIG.As the energy
is being transferred from the cavity to the YIG, the amplitude of EEM in the
cavity decreases while the amplitude of the precessing magnetization (or)

jΔmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔmxÞ2 þ ðΔmyÞ2

q
increases, as shown in themiddle panel. After

a half period of the energy transfer (3.45 ns = 6.9 ns/2), almost all the EM
wave energy is absorbed by the YIG, which is indicated by the negligibly
smallEEM in the cavity and relatively large |Δm | , as shown in the right panel

of Fig. 1c. Figure 1d shows the frequency spectrum of the temporal wave-
form Δmx(t) in Fig. 1b, which reveals two peak frequencies at 7.8 GHz and
7.945 GHz, respectively. The two peak frequencies are symmetric with
respect to theωm/2π=ωc/2π = 7.875 GHzwith a frequency gap of 145MHz,
indicating the formation of magnon polariton with two different hybrid

modes d̂þ and d̂�. The frequency gap (denoted as δD) is consistent with the
frequency of the Rabi-like oscillation and defines a magnon-photon cou-
pling strength gcm = δD/2 = 2π×72.5MHz. It is worth remarking that the
magnon subsystem of the YIG is also coupled to the phonon subsystem,
because the precessingm generates dynamical strain via themagnetoelastic
feedback and the dynamical strain in turnmodulates the dynamics ofm via
the Hmel (see Part 1 of the "Methods"). Moreover, the stiffness damping
coefficient β in the elastodynamic equation creates an additional channel for
energy dissipation. However, in the system shown in Fig. 1a, the energy
exchangebetweenmagnonandphonon subsystems isnegligible because the
magnitude of the dynamical strain is negligibly small ( ~ 10−7) due to the
relatively small magnetoelastic coupling constant of the YIG.

Figure 1e shows the numerically simulated mode frequencies (indi-
cated by hollow circles) as functions of the bias magnetic field in three
different hybrid systems where the sizes of the YIG cube are
0.4 × 0.4 × 0.4mm3, 1 × 1 × 1mm3 and 2 × 2 × 2mm3, respectively, and the
cavity size remains to be 45 × 9 × 21mm3. The goal of these simulations is to
computationally verify the theoretical relation of gcm ¼ g0

ffiffiffiffi
N

p
(ref. 16),

where g0 is the coupling strengthof a singleBohrmagneton to the cavity;N is
the total spin number in the YIG and increases linearly with its size. The

Fig. 1 | The excitation of magnon polaritons.
a Hybrid magnon-photonic system that contains a
YIG cube (not to scale) inside a 3D microwave
cavity. The bias magnetic field Hbias is applied along
the+z direction. A Gaussian-shaped charge current
pulse Jc(t) is injected into the cavity to excite the
cavity mode of the standing EM wave. The vectors
indicate the direction of the local microwave mag-
netic field HEM (TE101 mode), where the vector
length is proportional to magnitude of the HEM.
b Dynamics of the on-resonance Kittel mode mag-
non, represented by Δmx= mx(t)-mx(t = 0) and
cavity photon, represented by themicrowave electric
field component EEM

y at the detection point which is
at 1.5 mm above the bottom surface center of the
cavity. Trend lines showing the evolution of the
amplitudes of the two modes are added. The values
of the simulated EEM

y are multiplied by
ffiffiffiffi
εr

p
to show

the electric fields in the cavity of the original size.
c, Spatial distribution of local microwave electric
field EEM and the polar plot of the magnitude of the
precessing magnetization component Δmx and Δmy

at (from left to right) Δt = 2.11 ns, 4.4 ns, and
5.71 ns, respectively. The circles indicate |Δm | =
0.01 (innermost), 0.02, 0.03, and 0.04 (outermost),
respectively. d Frequency spectrum of the Δmx(t) in
(c). e Simulated mode splitting spectra of the mag-
non polaritons as a function ofΔHbias under different
YIG sizes of 0.4×0.4×0.4 mm3 (red circles),
1 × 1 × 1 mm3 (green circles) and
2 × 2 × 2 mm3(blue circles), and their analytical fit-
ting curves (lines).ΔHbias=Hbias-Hbias

0 , whereHbias
0 ¼

0:2315 MA/m (~0.291 T) is the bias magnetic field
that ensures magnon-photon on-reso-
nance (ωm = ωc).
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presence of avoided crossings in all three systems indicate the formation of
magnon polaritons. The corresponding magnon-photon coupling strength
gcm can be extracted from the frequency gap under on-resonance m̂ and ĉ
modes (where ΔHbias = 0), which are 2π×18.3MHz, 2π × 72.5MHz, and
2π × 182.2MHz, respectively. One can evaluate that the gcm is largely pro-
portional to the square root of the cube size and hence the

ffiffiffiffi
N

p
. The gcm in

the case of 2 × 2 × 2mm3 is smaller than the value of 2π × 204.6MHz
obtained from linear extrapolation due to the <100% spatial mode profile
overlapping, which is consistent with experimental observation17. Based on
the extracted gcm, we fit the simulations results via the expression

ω± ¼ 1
2 ðωm þ ωcÞ± 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωm � ωcÞ2 þ 4g2cm

q
, which describe the angular

frequencies of the two hybrid modes ðd̂þand d̂�Þ in a two-level system47.
The excellent fitting indicates the validity of our model set-up and high
numerical accuracy of our dynamical phase-field model.

Floquet-induced magnonic Autler-Townes splitting
Based on the cavity electromagnonic system with a YIG resonator of
1 × 1 × 1mm3, a periodicdynamicalmagneticfieldhD(t) is appliedalong the
same axis (z) with theHbias to implement Floquet engineering. The hD(t)=|
hD|sin(ωDt) is applied uniformly on the YIG resonator, where |hD| and ωD

are the amplitude and the angular frequency of the Floquet drive, respec-
tively. Figure 2a shows the frequency spectra of theΔmx(t) simulated under
a fixed |hD| of 2000 A/m but differentωD/2π varying from 0 to 400MHz. A
static bias magnetic field of 0.2315 MA/m (~0.291 T) is applied to have the
magnon mode on resonance with the cavity photon and generate two
magnon polaritonmodes d̂þ and d̂�, which have frequencies of 7.945 GHz
and 7.8 GHz, respectively. Each polariton mode has several sidebands cre-
ated by the Floquet drive. The frequencies of these sidebands either increase
or decrease as the ωD increases. When ωD is equal to the (cavity and mag-
non) mode splitting frequency ( = 2gcm = 2π×145MHz), the first inner
sideband of the magnon polariton mode d̂þðd̂�Þ resonantly interact with
the othermagnon polaritonmode d̂�ðd̂þÞ. As a result, the two energy levels
corresponding to the d̂þ and d̂� modes split into four energy levels

associated with different Floquet modes (as illustrated in the inset), where
the frequency gap between the two newly split energy levels is denoted as
ΔωAT, with ΔωAT/2π = 34.8MHz. Such magnonic Autler-Townes
splitting21 and the onset of avoided crossing indicate the realization of
strong coupling between the two hybridmodes of themagnon polaritons by
Floquet drive.

To gain further insights on the simulated spectrum, we analytically
calculate the absorption spectrum of the magnon mode based on Floquet
theory described in ref. 21, using the numerically simulated on-resonance
frequencyω0 (=ωm =ωc) and themagnon-photon coupling strength gcm as
the inputs. As shown in Fig. 2b, the main structure of the calculated spec-
trum (shown in Fig. 2b) reproduces the simulation results. The calculated
spectrum can be understood by writing the Floquet Hamiltonian as fol-
lowing (details of derivation are in ref. 21)

Ĥ
_ ¼ ωþd̂þ

þ
d̂þ þ ω�d̂�

þ
d̂� þ gcm

P
n¼odd

Jn
Ω
ωD

� �
d̂þ

þ
d̂�e

i nωDtð Þ þ d̂þd̂�
þ
e�i nωDtð Þh i

:

ð1Þ

Here ω± ¼ ω0 ± gcm, Ω ¼ γjhDj, and ℏ is the reduced Planck’s con-
stant. A list of symbols for various modes and related quantities is provided
in Supplementary Note 1. The Floquet drive creates a series of sidebands of
the d̂þ modes at frequencies ω± ± nωD, where n is the sideband order. The
last termon the right-hand side of Eq. (1) describes the interactions between
different sidebands,where Jn is thenthBessel functionof thefirst kind. From
Eq. (1), one can determine that the coupling strength between the first inner
sidebandof d̂� and the d̂þmode (i.e., themagnonicAutler-Townes splitting
ΔωAT) is approximated asΔωAT≈2gcmJ1 Ω=ωD

� �
. Plugging in the numbers

yields a theoretically predicted value of ΔωAT=2π∼ 34:1MHz, which is in
good agreement with the simulated value of 34.8MHz.Moreover, since the
sum in Eq. (1) only involves odd terms, some of the sidebands (e.g., the first
inner sideband of d̂þ and d̂� modes) are not directly coupled, which is
revealed by the crossing in both the simulated and calculated spectrum.
Detailed discussion on this point can be found in ref. 21.

Fig. 2 | Floquet-inducedmagnonic Aulter-Townes
splitting. a Frequency spectrum of the magnon
polariton as a function of Floquet driving frequency
fD, obtained from (a), dynamical phase-field simu-
lations and (b), Hamiltonian-based theoretical cal-
culations of the absorption spectrum where square
root for each data point is take to make the higher
order sideband visible. The inset shows the energy
level diagram. Evolutions of the magnon (repre-
sented by Δmx, upper panel) and the photon
(represented by Ey, lower panel) at the detection
point under (c), ωD/2π = 300MHz, and (d), ωD/
2π = 145MHz. The magnitude of the Floquet driv-
ing field |hD | =2000 A/m in (a–d).
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As jhDj increases, ΔωAT varies in an oscillatory fashion but always
remain nonzero (see Supplementary Fig. S1a in Supplementary Note 2).
This trend cannot be explained by the analytical approximation
ΔωAT ≈ 2gcmJ1 Ω=ωD

� �
, which is only validwhen jhDj is relatively small. At

large jhDj, the jhDj-dependent ΔωAT can be better quantified by the fol-
lowing analytical expression (see detailed derivation in SupplementaryNote
3),

ΔωAT ¼ 2gcm 1� J0
Ω

ωD

� �� �
ð2Þ

which predicts a repeated occurrence of ΔωAT ¼ 2gcm at J0 ¼ 0 and the
presence of a Floquet ultrastrong coupling regime21 where ΔωAT>2gcm and
J0<0. Both features are shown in the frequency spectrum of the magnon
polaritons (Supplementary Fig. S1a) obtained by dynamical phase-field
simulations.

Our dynamical phase-field simulation results in Fig. 2c further shows
the temporal profile of the Δmx(t) and EEM

y ðtÞ for ωD/2π = 300MHz.
According to the frequency spectra in Fig. 2a, the magnon polariton is still
dominated by the intrinsic hybrid modes d̂þ and d̂� with no magnonic
Autler-Townes splitting. Correspondingly, the amplitudes of both the
Δmx(t) and EEM

y ðtÞ display a Rabi-like oscillation with a period of 6.9 ns,
which is the same as in Fig. 1b. By comparison, for ωD/2π = 145MHz
where the magnonic Autler-Townes splitting is prominent, the corre-
sponding temporal profiles of Δmx(t) and EEM

y ðtÞ, as shown in Fig. 2d,
are clearly composed of components of more than two frequencies.
Specifically, there are four major frequency components at
ωþ þ 0:5ΔωAT;ωþ � 0:5ΔωAT;ω� þ 0:5ΔωAT, and ω� � 0:5ΔωAT,
respectively, corresponding to the four split energy levels as shown inFig. 2a.
Despite the more complex temporal profile, the evolution of the peak
amplitudes of Δmx(t) and EEM

y ðtÞ are still complementary, indicating that
the back-and-forth energy exchange still occurs between the Kittel magnon
mode m̂ and the cavity photon mode ĉ. The beam-splitter type coupling
between the d̂þðd̂�Þ and the first inner sideband of the d̂�ðd̂þÞmode (Fig.
2a) can also be interpreted as the energy exchange (i.e., Rabi-like oscillation)
between the two energy levels (i.e., the hybridized modes
d̂þ and d̂�) through the frequency matching provided by the Floquet
drive, i.e., ωþ ¼ ω� þ ωD. Similar Floquet-driven Rabi-like oscillation
between two hybridized modes has also been demonstrated experimentally
in a two-level photonic system27.

Dynamical control of the energy exchange rate between two
magnon polariton modes
The Rabi-like oscillation between the two magnon polariton modes
ðd̂þand d̂�Þ corresponds to a rotation along the real axis of a Bloch sphere,
as illustrated in Fig. 3a inset.Here, wemodel this process in the time domain
and computationally demonstrate the dynamical control of the energy
exchange rate between the d̂þ and d̂� modes (namely, Rabi flopping fre-
quency) by dynamically varying the amplitude |hD| of the Floque drive. To

this end, the system is initialized by pumping a 15-cycle sinusoidal charge
current pulse Jc(t)=J0sin(ωt) atω = 2π×7.945 GHz along the y axis (i.e., only
the Jcy component is nonzero) to populate (excite) the d̂þ mode. A con-
tinuous Floquet drive hD(t) at the cavity-magnon mode splitting frequency
(ωD/2π = δD/2π = 145MHz) is then applied to the system. Figure 3a shows
the temporal evolution of the magnetization amplitude of the d̂þ mode
magnon polariton ðdenoted as jΔmjd̂þ Þ with |hD | =5000 A/m. Here
Δmj jd̂þ ðtÞ is obtained by first extracting the temporal evolution of ΔmxðtÞ
and ΔmyðtÞ by performing inverse Fourier transform for 7.945-GHz
(±50MHz) peak in their frequency spectra and then calculating its mag-

netization amplitude via
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔmxÞ2 þ ðΔmyÞ2

q
. The Δmj jd̂þ ðtÞ displays a

Rabi-like oscillation with a period of 11.6 ns, corresponding to a flopping

frequency of 86.2MHz. We note that the d̂� mode magnon polariton (at
7.8 GHz) was also excited after the initial current pulse injection, and the
dynamics of Δmj jd̂� ðtÞ complements the Δmj jd̂þ ðtÞ, as shown by Supple-

mentary Fig. S2 in Supplementary Note 4, suggesting a dynamical energy

exchange between the d̂þ and d̂� modes.
Figure 3b further summarizes the Δmj jd̂þ ðtÞ simulated under different

|hD| varying from 1000 to 5000 A/m. As shown, the period of Rabi-like
oscillation decreases as |hD| increases, leading to an increase in the corre-
sponding Rabi flopping frequency (fRabi). By analytically solving the Hei-
senberg equation of the d̂þ and d̂� modes under the rotating wave
approximation (RWA), we obtain the mode square jd̂þ tð Þj2 ¼ cos2 Ω

4 t
� �

(see Supplementary Note 5), yielding f Rabi ¼ Ω=2 ¼ γ hD
		 		=2, which is

only valid when ωD=2gcm = 2π×145MHz. It is worth noting that Fig. 3a
shows a nonzero offset, which differs from the RWA-based prediction and
maybedue to the existenceof othermagnonmodes.As shown in the inset of
Fig. 3b, the analytically calculated fRabi agrees well with the values extracted
from the simulated Δmj jd̂þ ðtÞ with only small deviation at larger hD

		 		
values, where the system’s behavior deviates from the RWA.

As hD
		 		 further increases, it is no longer possible to numerically extract

the Δmj jd̂þ ðtÞ andhence the fRabi becausemultiplemagnonmodes coexist at
7.945 GHz.However, it is expected that that the variation trend of fRabi with
hD
		 		 would deviates significantly from the RWA-predicted linear relation.
Specifically, it is reasonable to speculate that the f Rabi≈ΔωAT=2π because the
present Rabi oscillation is based on beam-splitter type coupling between the
d̂þðd̂�Þ and thefirst inner sidebandof the d̂�ðd̂þÞmode, as discussed above.
In this regard, the hD

		 		-dependent fRabi should follow the hD
		 		-dependent

ΔωAT, which is oscillatory at large hD
		 		 as shown in Supplementary Fig. S1a.

Dynamical control of the relative phase between two magnon
polariton modes
Experimentally, it has also been shown that driving the transition between
two hybridized modes of a two-level photonic system with detuned pulses
enables a dynamical control over the relative phase of the two hybrid
modes27. By analogy to the protocols described in ref. 27, here we compu-
tationally demonstrate the dynamical control of the relative phase between

Fig. 3 | Magnonic Rabi oscillation. a Dynamics of
the magnetization amplitude of the d̂þ mode mag-
non polariton under a continuous Floquet driving
hD(t) with |hD | =5000 A/m and ωD/2π = 145MHz.
Δt = 0 is the moment when the application of hD(t)
begins after the current pulse Jc(t) injection is
complete. The d̂þ and d̂� modes swap at the fre-
quency of ΔωAT/2π along the real axis of the Bloch
sphere (inset). b Dynamics of the magnetization
amplitude of the d̂þ mode magnon polariton under
different |hD| but the same frequency of ωD/
2π = 145MHz.
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d̂þ and d̂� mode magnon polariton modes (namely, magnonic Ramsey
interference). We first excite the system to the d̂þ mode by injecting a 15-
cycle sinusoidal Jc(t) at 7.945 GHz. A π/2 pulse of the Floquet drive field
hD(t) with a frequency ofωD = δD+Δω is then applied to create excitations
in a superposition of both the d̂þ and d̂� modes, which is illustrated by State
‘I’ on the equator of the Bloch sphere (see Fig. 4a). Here, the duration of the
π/2 pulse is 1/4th of theRabi-like oscillation period under the field amplitude
|hD | =5000 A/m, i.e.,τ0 = 1/(4fRabi)=2.9 ns. After the first π/2 pulse is turned
off (hD(t) = 0), the excitation as superposition of d̂þ and d̂� modes would
start to precess along the equator of the Bloch sphere (i.e., free evolution)
with a precession frequency determined by the detuning amplitude Δω.
Upon the completion of the free evolution period, a second π/2 pulse is
applied to project the excitations (State ‘II’ in the Bloch sphere) into the d̂�
mode. The amplitude of the d̂� mode after the completion of second π/2
pulse is determined by the relative phase between the two modes. The
relative phase difference is proportional to both the frequency detuning Δω
and the duration of free evolution τ. To computationally demonstrate this
principle, we record themagnetization amplitude of the d̂� mode ðjΔmjd̂� Þ
after the completion of the second π/2 pulse, as a function of the free
evolution duration τ under Δω/2π = 10,15 and 20MHz. As shown in
Fig. 4b, the frequency for the variation of the jΔmjd̂� with the duration
τ is exactly equal to Δω. The result matches the analytical

expression,jd̂� tð Þj2 ¼ jαj2
2 sin2 Δω

2 τ
� �

(see Supplementary Note 6), where α

is the initial mode amplitude in d̂þ.

Coupled mode dynamics under the triple phonon-magnon-
photon resonance condition
To simulate the coupled mode dynamics under the triple resonance con-
dition, we design an electro-magno-mechanical system which contains a
YIG/SiN bilayer membrane placed in a 3D photon cavity, as shown in Fig.
5a. The cavity hosts a nominal TE100 mode photon (i.e., the EMwave has a
half-wavelength profile along the x axis while is spatially uniform along y
and z), which is a smaller portion of a larger-scaleTE101mode cavity.Details
of the system design and simulation set-up are shown in the Methods
section. The resonant frequency of the cavity photon (~9.1 GHz) is the same
as the frequency of the Kittel mode magnon to enable the formation of
magnon polaritons. In the present set-up, the frequencies of the two mag-
non polariton modes are found to be 9.028 GHz ðd̂�Þ and 9.14 GHz ðd̂þÞ,
respectively. Based on the magnetoelastic backaction, the dynamically
processing magnetization of the Kittel mode magnon in the YIG layer will
generate chiral transverse acoustic (TA) phonons that has a wavevector
along the thickness direction (y) of the bilayer, as has been demonstrated
experimentally in a similar YIG/GGG bilayer22,48. To obtain a large profile
overlap between phonons and magnons, the layer thicknesses of the YIG
(10 nm)/SiN (270 nm) bilayer membrane are designed to host a funda-
mental (n = 1) TA phonon of 9.13 GHz. Because this frequency is close

enough to the frequency of the d̂þ mode magnon polariton, resonant
interaction between the chiral TA phonon and the d̂þ mode magnon
polariton can be enabled. Such triple resonance among the fundamental TA
phonon, the Kittel mode magnon, and the k ≈ 0 mode photon is similar to
the experiment by Zhang et al. 15 where the TA phonon of a much higher
order (n = 2960) interacts with the Kittel mode magnon, resulting in a
smaller mode profile overlap and hence a lower magnon-phonon coupling
strength than the present design.

The vectors in Fig. 5a show the direction and themagnitude of the local
HEM in the cavity. The hybridization of the Kittel modemagnons and cavity
photons alters the local EM fields in the vicinity of the YIG resonator, as
shown more clearly in Fig. 5b. Figure 5c shows the spatial profile of the
fundamental TA phonon across the YIG/SiN bilayer. The right-handed
phononchirality is shown inFig. 5d. Figure 5e, g, i shows the evolutionof the
HEM

z in the cavity, theΔmx in the YIG, and the local εxy in the SiN, and their
frequency spectra are shown in Fig. 5f, h, j, respectively. As shown, the
precessing magnetization of both the d̂� and d̂þ mode magnon polaritons
will generate chiral TA phonons of the same frequencies at 9.028 GHz and
9.14 GHz, respectively.Thepopulations of the d̂� and d̂þmodes are similar,
as indicated by the similar spectral amplitudes of these two peaks in the
frequency spectra of photons and magnons (see Fig. 5f, h). However, the
population of the 9.14 GHz phonon, due to its proximity to the intrinsic
phonon resonance frequency of 9.13 GHz, is significantly larger than that of
the 9.028 GHz phonon (see Fig. 5j). Interestingly, there exists a strong peak
at 9.13 GHz in the phonon frequency spectrum, even though the population
of the driving d̂þ mode magnon polariton is low at 9.13 GHz. More
interestingly, there exist small peaks at 9.13 GHz in the frequency spectra of
both the HEM

z and the Δmx, indicating an energy backflow from the mag-
netically excited 9.13 GHz phonon mode to both the magnon and photon
systems. This energy backflow, which becomes pronounced in this case
mainly because the damping terms for all three systems are turned off (i.e.,
no energy dissipation), is clear evidence of the triple phonon-magnon-
photon resonance. As a control simulation (see Supplementary Fig. S3 in
Supplementary Note 7), we found that turning on the elastic damping for
the YIG and SiN leads to a significantly lower population for the magneti-
cally existed 9.13 GHz phononmode, and that there are no additional peaks
at 9.13 GHz in the spectra of magnon and photons.

Discussion
Wehave developed a 3Ddynamical phase-fieldmodel that incorporates the
coupled dynamics of strain, magnetization, and EM wave in a cavity elec-
tromagnonic system, which integrate magnon/phonon resonator(s) in a
bulk 3Dphoton cavity. By solving the coupled equations ofmotion for these
quantities under appropriate magnetic, mechanical, and EM boundary
conditions, our computational model allows predicting the spatiotemporal
evolution of strain, magnetization, and EM fields under various operating
conditions directly from the fundamental material parameters. As

Fig. 4 |Magnonic Ramsey interference. a (Top) the
temporal waveform hD(t)=|hD|sin(ωΔt) when
0 ≤ Δt ≤ τ0 or τ0+ τ ≤ Δt ≤ 2τ+ τ0, and hD(t)=0
otherwise; (Bottom) Schematic of operation
sequences for Ramsey interference on a Bloch
sphere. b The magnetization amplitude of the d̂�
mode of the magnon polariton obtained after the
completion of the second π/2 pulse. Each data point
in (b) was obtained from an independent simula-
tion, where the free evolution duration τ and
detuning amplitude Δω are different in each
simulation.
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examples, time-domaindynamics of relevantmodes in typical coherent gate
operations (Rabi oscillation and Ramsey interference) are simulated. The
physical validity and high numerical accuracy of the solvers for coupled
magnon-photon dynamics in our dynamical phase-field model were
demonstrated byunderstanding the simulation resultswith analyticalfitting
and rigorous Hamiltonian-based Floquet theory. We have also applied the
dynamical phase-field model to design a cavity electro-magno-mechanical
system that enables the triple phonon-magnon-photon resonance, and
computationally demonstrate the resonant excitation of a chiral, funda-
mental (n = 1) TA phonon mode by magnon polaritons under such triple
resonance condition.

In combination with the high throughput resulting from the GPU
acceleration, the present 3D dynamical phase-field model can be used to
guide the experimental design of themicrowave photon cavity,magnon and
phonon resonator(s) as well as the operating condition for the discovery of
new physical phenomena as well as the optimization of key device features
such as the coupling strength, mode swapping rate (e.g., Rabi flopping
frequency), and cooperativity. The present dynamic phase-field model can
also be extended to design and simulate cavity electromagnonic, magno-
mechanical, and electro-magno-mechanical systems with more complex
structures, such as the on-chip systems integrating a coplanar microwave
resonator and a magnon resonator11–14, by implementing a more detailed
treatment of the current dynamics in the normal/superconducting metal
components (e.g., see a relevant recent modeling work49).

Methods
Part 1: Description of the 3D dynamical phase-field model
incorporating coupled dynamics of strain, magnetization, and
EMwaves in multiphase systems
A phase-field model leverages the symmetry-consistent use of continuum
physical order parameters and their gradients to describe the total free

energyof a spatially inhomogeneous system.The functional derivative of the
total free energy ðFtotÞ with respect to a specific order parameter yields the
thermodynamic driving force that drives the evolution of the order para-
meter. For example, the effective magnetic field that drives the evolution of

M is calculated as Heff ¼ � 1
μ0

δFtot
δM , where μ0 is vacuum permeability. In a

dynamical phase-field model, equations of motion for all key order para-
meters are typically solved in their exact forms36,37,50. This is different from
conventional phase-fieldmodel, where faster-evolving order parameters are
often assumed to reach steady or equilibrium state instantaneously51. A
dynamical phase-field model is particularly necessary for hybrid systems
featuring bidirectional dynamical energy exchange and conversion between
different physical subsystems, as in cavity electromagnonic systems.

As an example, we consider a commonly used system that contains a
bulk magnon resonator in a 3D microwave cavity. The evolution of the
normalizedmagnetizationm =M/Ms in themagnon resonator, whereMs is
the saturation magnetization, is governed by the LLG equation, i.e.,

∂m
∂t

¼ � γ

1þ α2eff
m×Heff � γαeff

1þ a2eff
m× m ×Heff

� �
ð3Þ

where γ is the gyromagnetic ratio; αeff is the effective magnetic damping
coefficient; Heff=Happ+Hanis+Hexch+Hmel+Hd+HEM is the total effective
magnetic field, where the externally applied magnetic fieldHapp(t) includes
both the static bias magnetic field Hbias and a dynamic Floquet driving
magnetic field hD(t);H

anis andHexch are the effectivemagnetic field resulting
from the functional derivatives of themagnetocrystalline anisotropy energy
and exchange coupling energy with respect to m, respectively, and their
expressions are provided in our previous work36; Hmel is the effective mag-
netoelastic field, Hd is the demagnetization field, and HEM is the magnetic
field of the cavity electromagnetic wave. Hmel is calculated as

Fig. 5 | Triple phonon-magnon-photon reso-
nance. a A cavity electromagnonic system that
contains a YIG/SiN bilayer membrane inside a 3D
photon cavity. The arrow indicates the direction
(mostly along z) and the vector length indicates the
magnitude of the local cavity magnetic field HEM.
The schematic on the right illustrates the YIG/SiN
bilayer membrane (not to scale), which occupies the
space where x∈{14.85 mm, 15.4 mm}, y∈{40 mm,
280 nm}, and z∈{2.5 mm, 3 mm}. The biasmagnetic
field Hbias is applied along +y. The lower left corner
of the cavity is defined as coordinate of the origin,
i.e., (x, y, z) = (0,0,0). b Spatial distribution of the
HEM

z at t = 50 ns in the xz plane of the 3D system at
y = 50 nm. c Profile of the strain component εxy
along the thickness direction (y) of the YIG/SiN
bilayer membrane at t = 50 ns. d Evolution of the
mechanical displacement ux and uz from t = 50-
51 ns at 50 nm above the bottom of the YIG/SiN
bilayer membrane (this location is indicated by the
filled circles in c). Under the triple phonon-magnon-
photon resonance condition, evolution of (e), the
TE100 mode cavity photon, represented by the HEM

z

at the point (x, y, z) = (1.65 mm, 50 nm, 3 mm), (g),
the Kittel mode magnon, represented by Δmx=
mx(t)-mx(t = 0), and (i), the standing chiral TA
phonon mode at the detection point, represented by
the εxy at the point indicated by the filled circle in (c).
t = 0 is the moment the planar current pulse is
injected to the cavity. f, h, j Frequency spectra of the
cavity photon, the Kittel mode magnon, and the
chiral TA phonon, respectively.
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Hmel ¼ � 1
μ0

∂f elas
∂M . Here the elastic free energy density

f elas ¼ 1
2 cijklðεkl � ε0klÞðεij � ε0ijÞ, with i, j = x, y, z. Here the cijkl is the elastic

stiffness tensor; for magnets of cubic symmetry, the stress-free strain ε0ii ¼
3
2 λ100 m2

i � 1
3

� �
and ε0ij ¼ 3

2 λ111mimj, where λ100 and λ111 are magnetostric-

tion coefficients. The local total strain εij can be written as
εij tð Þ ¼ εeqij þ Δεij tð Þ, where the εeqij is the total strain at the initial

equilibriumstateand canbeobtainedby solving themechanical equilibrium

equation ∇ � σeqij ¼ ∇ � ½cijklðεeqij � ε0;eqij Þ� ¼ 0. For a stress-free, uniformly

magnetized magnetic material, εeqij ¼ ε0;eqij . The dynamical strain Δεij is

calculated via Δεij ¼ 1
2 ð

∂Δui
∂j þ ∂Δuj

∂i Þ, and the time-varying local mechanical

displacementΔu = u-ueq is obtained by solving the elastodynamic equation,

ρ
∂2Δu

∂t2
¼ ∇ � ðΔσ þ β

∂Δσ

∂t
Þ ð4Þ

where Δσ = σ-σeq is the dynamical stress; ρ is the mass density, and β is the
stiffness damping coefficient. SinceEq. (4) is solved for the entire system, the
material parameters cijkl , ρ, and β vary in different phases, where the con-
tinuity boundary condition foru andσ52 are applied at the interface between
the magnon resonator and the microwave cavity. In this regard, by setting
the cijkl of the microwave cavity to be zero, the stress-free surface of the
magnon resonator is automatically considered. The magnon resonator is
cube-shaped, which is a computationally more tractable geometry because
the entire simulation system isdiscretizedby cube-shaped cells. Basedon the
coupling to the LLG equation solver, this numerical solver of the
elastodynamic equation has previously been applied to simulate coupled
magnon-phonon dynamics both the 1D36,37 and 2D39 magnetic multilayer
system. The highnumerical accuracy of this elastodynamic solver have been
demonstrated through comparison to the analytical solutions in 1D system
or the 2D simulations performed via the commercial COMSOL Multi-
physics® software. Here, we demonstrate the numerical accuracy of this
elastodynamic solver in a 3D elastically inhomogeneous multiphase system
through the comparison to the simulation results obtained from the
COMSOL Multiphysics® (Supplementary Note 8).

The demagnetization (stray) field Hd can be expressed as

Hd
i tð Þ ¼ Hd;eq

i þ ΔHd
i tð Þ. The Hd;eq

i is produced by the magnetization
m0 =m(t = 0) at the initial equilibrium state inside the magnon resonator,
and can be obtained by solving the continuity equation for magnetic flux
∇ � Beq¼∇ � μ0 Hd;eq þm0Ms

� �
 � ¼ 0, which is part of the Maxwell’s
equations. The magnetic boundary condition ∂m/∂n = 0 is applied on the
surfaces of the magnon resonator, where n is normal vector to the surface.
For a cubic or spheric magnet with spatially uniform magnetization,
Hd;eq ¼ � 1

3Msðm0
x;m

0
y ;m

0
zÞ. The dynamically changing ΔHd

i tð Þ, which
emerges whenm starts to evolve, does not need to be calculated separately.
Rather, the magnetic-field component of the EM wave HEM(t), which is
obtained by solving the twodynamical equations in theMaxwell’s equations
via the finite-difference time-domain (FDTD) solver on Yee grid (to be
discussed below), can automatically satisfy the magnetic flux continuity
equation ∇ � B ¼ 0 across the heterointerfaces53. Specifically, the spatio-
temporal evolution of theHEM and the associated electricfield component of
the EM wave EEM are simulated by solving the Maxwell’s equations,

∇×HEM¼ε0εr
∂EEM

∂t
þ Jc ð5Þ

∇×EEM ¼ � ∂B
∂t

¼ �μ0
∂HEM

∂t
þMs

∂m
∂t

� �
ð6Þ

Equations (5)–(6) indicate that the HEM is produced by both the free
charge current pulse Jc(t) via electric dipole radiation and the precessing
m(t) via magnetic dipole radiation. The perfect electric conductor (PEC)
boundary condition is applied on all surfaces of the microwave cavity for

reflecting the EM wave without loss. Specifically, Ei = 0 and Ej = 0 on the ij
surfaces of the cavity for PEC, with i = x, y, z, and j ≠ i. The elastic stiffness
coefficients, the damping coefficient, and the mass density of YIG are listed
in Supplementary Note 8. Other material parameters of YIG used in the
simulations, including the magnetocrystalline anisotropy and the magne-
toelastic coupling coefficients of YIG can be found in ref. 37. Central finite
difference is used for calculating spatial derivatives with a midpoint deri-
vative approximation. Conventional Yee grid and the 3D FDTD method53

are used to numerically discretize the EM wave and solve Eqs. (5)–(6). All
dynamical equations are solved in a coupled fashion using the classical
Runge-Kutta method with a time step Δt = 5 × 10–14 s. The choice of Δt is
subjected to the Courant condition for numerical convergence in conven-
tional FDTD algorithm, which requires Δt ≤ l0=ð

ffiffiffi
3

p
vÞ33, where l0 is the

simulation cell size and v is the EM wave velocity in the medium. Since the
use of a larger εr leads to

ffiffiffiffi
εr

p
times smaller v compared to speed of light in

vacuum, a largerΔt can be used in this work, which significantly reduces the
computational time in long-term dynamics simulation.

Part 2: detailed discussion of the size scaling method
Under the same excitation charge current, a larger εr would also lead to an
EEM that is

ffiffiffiffi
εr

p
times smaller, because the amplitude of EEM is inversely

proportional to the angular wavenumber k of the EM wave, with
k ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrμ0

p ¼ ω=v. This relationship between EEM and k can be quan-
titatively understood by rewriting Jc(t)=∂P/∂t and then analytically solving
the wave equation of the EEM under the plane-wave assumption (see
details in54).

Despite the smaller EEM, the amplitude of HEM would remain
unchanged because the ratio of EEM and theB field is also related by the EM
wave velocity v. For example, let us we focus on the Bx ðHEM

x Þ component,
which is the main component that interacts with the magnon mode in the
system shown in Fig. 1a. We also consider that only the dominant EEM

y
component is nonzero, which is consistent with Fig. 1c. In this case.
Equation (6) can be rewritten as,

∂Bx

∂t
¼ � ∂EEM

z

∂y
�

∂EEM
y

∂z

 !
≈
∂EEM

y

∂z
ð7Þ

If we further write Bx ¼ B0
xe

i ωt�kzð Þ and EEM
y ¼ EEM;0

y ei ωt�kzð Þ under
the plane-wave assumption, Eq. (7) can be further rewritten into,

Bx ¼ �EEM
y

k
ω
¼ �EEM

y
ffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrμ0

p ð8Þ

Therefore, although a larger εr reduces theEEM
y by

ffiffiffiffi
εr

p
times, as shown

in Eq. (8), themultiplication by
ffiffiffiffi
εr

p
leaves the Bx unchanged. TheHEM

x also
remains unchanged, because (i) Bx ¼ μ0H

EM
x in the cavity and Bx ¼

μ0 1þ χm
� �

HEM
x in theYIG resonator ðM ¼ χmH

EMÞ; and (ii) themagnetic
susceptibility tensor χm is independent of the εr.

To demonstrate the applicability of the conclusion above to cases that
aremore general thanplane-wave assumption,we also scaledown the sizeof
the cavity electromagnonic system shown in Fig. 1a from the original size of
45 × 9 × 21mm3 to a fewdifferent sizes, in addition to the 180 × 36 × 84 nm3

used in the main paper (for which εr was increased from 1 to 6.25 × 1010).
These additional sizes include 225 × 45 × 105 nm3, 300 × 60 × 140 nm3, and
450 × 90 × 210 nm3, where the εr was increased from 1 to 4 × 1010,
2.25 × 1010, and 1 × 1010, respectively. We then perform dynamical phase-
field simulations tomodel the excitationofmagnonpolaritons in these three
systems in a similarmanner to those in Fig. 1. As expected, the amplitude of
EEM
y is

ffiffiffiffi
εr

p
times smaller while the HEM

x remains unchanged with the
increasing εr, as shown by Supplementary Fig. S5 in Supplementary Note 9.
By proportionally scaling down the size of the magnon resonator, the
magnon-photon coupling strength would remain unchanged.

Themain reason for scaling down amm-scale system to the nmscale is
to ensure that the magnon resonator only accommodates the Kittel mode
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magnon due to the dominant Heisenberg exchange coupling at the nm-
scale. An alternative approach is to use one single cell to represent the
magnon resonator (i.e., the macrospin approximation, as in ref. 55). We
adopt this approach in the design of cavity electro-magno-mechanical
system with triple phonon-magnon-photon resonance, as will be discussed
below. In this approach, theHeisenberg exchange coupling does not need to
be considered, and the spatial discretization of the system is mainly deter-
mined by the need to discretize an EM wave. This approach allows for
simulating a large-scale photon cavitywith a relatively small number of cells
and for designing the size and shape of the cavity, but does not permit
studying the effect of the size (e.g., as in Fig. 1e) and the shape of themagnon
resonator on the coupled magnon-photon dynamics. If using multiple
simulation cells yet turning off the exchange coupling, then there would be
no force to lock the discrete local magnetization vectors into one giant spin.
As time goes, what we have found for the present cavity electromagnonic
system (Fig. 1a) is that the numerical errorwill accumulate (i.e., the values of
miwill becomemore andmore spatially nonuniform) and eventually lead to
numerical divergence. Applying a stronger bias magnetic field would only
alleviate this numerical issue by delaying, rather than preventing, the
numerical divergence, and would also impose a constraint on the frequency
range of themagnons that can be excited. This issue of numerical instability
is evenworsewhen the size of themagnon resonator is big enough such that
the cavity magnetic field inside the resonator becomes highly
inhomogeneous.

Part 3: Design and simulation set-up of a 3D cavity electro-
magno-mechanical system enabling triple phonon-magnon-
photon resonance
To excite a nominal TE100 photon mode, we consider a cavity that is 16.5-
mm-long (the half-wavelength of the 9.1 GHz EM wave at εr = 1) in the x
axis and apply periodic boundary conditions to the xy surfaces as well as the
PECboundary condition to all theother surfaces.This set-up is equivalent to
placing an array of YIG/SiN bilayer membranes in a large cavity and then
probing the phonon-magnon-photon coupling in one of the repeating units
(see Supplementary Fig. S6a in Supplementary Note 10 for the full-scale
cavity design). To minimize the interaction between the neighboring YIG
resonators, we chose a length of 5.5mmalong the z axis,which is sufficiently
long to ensure that the EM field remains largely uniform in the xz plane
except the region near the YIG, as shown by the spatial distribution of the
HEM

z in Fig. 5b. The simulated photon profile in Fig. 5a can be considered as
a smaller portion of the profile of the TE101 mode photon in a larger-scale
cavity (see Supplementary Fig. S6b in Supplementary Note 10). Along the y
axis of the cavity, which is parallel to thewavevector of the acoustic phonons
and the thickness direction of the YIG/SiN bilayer, we consider a length of
400 nm to ensure the formation of the fundamental (n = 1) TA phonon
mode at theGHz frequency. TheEMfield is always uniformalong y because
the EMwavelength (33mm) is far larger than the 400 nm. Taken together,
the dimensions of the 3D cavity are 16.5 mm (x) × 400 nm (y) × 5.5mm (z).
The size of the YIG/SiN bilayer membrane is 0.55mm (x) × 280 nm (y) ×
0.5mm (z), where the thicknesses of the YIG and SiN layer are 10 nm and
270 nm, respectively.

Simulating theGHzphonondynamicsalong the y axis requires that the
cell size is nm-scale along the y axis. According to the Courant condition for
the FDTD algorithmmentioned above, a time stepΔt on the order of 10−18s
would be required to maintain numerical convergency. It would be com-
putationally prohibitive to simulate the GHz mode dynamics over a time
frame over hundreds of ns using such a small Δt. To address this issue, we
increase the εr from 1 to 108, which allows for using a 104 ð¼ ffiffiffiffi

εr
p Þ times

larger Δt due to the slower EM wave velocity as discussed earlier. In the
meantime, the EM wavelength and hence the size of the photon cavity are
reducedby104 ð¼ ffiffiffiffi

εr
p Þ times.Given that the original cavity is only 400-nm-

long along the y axis, this would result in an impractical size of 0.04 nm.
Alternatively, we consider (i) a 3D photon cavity of 1650 nm (x) × 400 nm
(y) × 550 nm(z)with εr = 108, where the dimensions of the cavity along the x
and z axis were reduced by 104 times yet the dimension along the y axis is

kept the same as the original one; and (ii) a YIG/SiN bilayer of 55 nm (x) ×
280 nm(y) × 50 nm(z) in the simulations,where the in-plane dimensions of
the bilayer were reduced by 104 times yet the thicknesses of the YIG (10 nm)
and SiN (270 nm) layers remain unchanged. This treatment ensures that
both the magnon-phonon and the magnon-photon coupling strength
remain to be the same as those in the original-sized cavity for two reasons.
First, the magnon-phonon coupling strength is determined only by the
thicknesses of the YIG and SiN layer (along y) rather than their in-plane
dimensions (x and z) because both the magnetization and strain vary only
along the y axis. Second, the magnon-photon coupling strength is pre-
dominantlydeterminedby thedimension ratioof theYIG-to-photon-cavity
along thex axis because the cavitymagneticfieldHEM varies largely along the
x axis only (see Fig. 5a).

Because our focus is on the Kittel mode magnon and we are not
interested in studying the size and shape effect of the YIG in this application
example, we use one single cuboid-shaped cell with a size of (Δx, Δy, Δz) =
(55 nm, 10 nm, 50 nm) to represent the YIG (i.e., the macrospin approx-
imation) and a chain of 27 cells of the same dimension aligning along the y
axis to discretize the juxtaposed SiN layer. Cells of the same dimension are
also used to discretize the reduced-sized photon cavity, resulting in a total
number of cells (Nx, Ny, Nz)=(30, 40, 11). A planar source current
Jcy tð Þ ¼ Jc;0y te�t2=2σ20 , which is spatially uniform along the yz plane, is
injected at x = 275 nm to excite the cavity photon, with Jc;0y ¼ 1012A=m2

and σ0 = 7 × 10–11 s. The bias magnetic field Hbias
y is applied along the +y

direction, causing the magnetization to precess around the y axis, as shown
in Fig. 5a. To set up the magnon-photon resonance, we identify the Hbias

y
that makes the FMR frequency ωm equal the ωc = 9.1 GHz by numerically
simulating themode splitting spectra of themagnonpolaritons as a function
of the Hbias

y in the absence of coupling to phonons. A magnon-photon
coupling strength gcm of 2π×56MHz is obtained from the mode splitting
spectra (see Supplementary Fig. S6c in Supplementary Note 10). We have
found that the gcm remains unchanged when using other εr values to reduce
the dimensions of the cavity along x and z to other values (whilefixing the y-
axis cavity dimension to 400 nm) and proportionally reducing the x-axis
and z-axis dimension of the YIG/SiN bilayer (while fixing the y-axis
dimension of the bilayer to 280 nm). The results are shown in Supple-
mentary Fig. S6d in Supplementary Note 10.

Regarding the set-up of the phonon resonator, since the acoustic wave
is spatially uniform in the xz plane, we use one single cell to represent the
YIG/SiN bilayer along their x and z axes. Considering that the phonons are
excited by a uniform magnetization precessing around the y axis and
omitting the elastic damping (β = 0), Eq. (4) can be written as,

ρ
∂2ux
∂t2

¼ c44
∂2ux
∂y2

þ B2

∂ðmxmyÞ
∂y

ð9Þ

ρ
∂2uy
∂t2

¼ c11
∂2uy
∂y2

þ B1

∂ðm2
yÞ

∂y
ð10Þ

ρ
∂2uz
∂t2

¼ c44
∂2uz
∂y2

þ B2

∂ðmymzÞ
∂y

ð11Þ

where B1 and B2 are the magnetoelastic coupling coefficients of the YIG
resonator. Equation (8a-c) indicate that theKittelmodemagnonswill excite
chiralTAphononsof the same frequencywhichhave awavevector along the
y axis (see Fig. 5d). Using procedures similarly to those described in ref. 39,
we analytically derive the frequencies of the standing TA phonon fre-
quencies in the YIG/SiN bilayer as a function of the YIG and SiN layer
thickness ðdYIGand dSiNÞ, i.e.,

cYIG44
vYIG 1þ e2iωn

dSiN

vSiN

� �
�1þ e2iωn

dYIG

vYIG

� �
þ cSiN44

vSiN �1þ e2iωn
dSiN

vSiN

� �
1þ e2iωn

dYIG

vYIG

� �
¼ 0

ð12Þ
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The first nonzero nontrivial solution of Eq. (12) yields the angular
frequency of the fundamental (n = 1) acoustic phononmode (ωn=1), and so

forth for thehigher-ordermodes.Here vYIG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cYIG44 =ρYIG

p
is the velocity of

the TA phonon in YIG and likewise for the vSiN. When dYIG ¼ 10nm and
dSiN ¼ 270nm, the resonant acoustic frequencyωn=1/2π = 9.13 GHz, which

is very close to the frequency (9.14 GHz) of the d̂þ modemagnon polariton.
The elastic parameters of the YIG and SiN are provided in Supplementary
Note 8.

Data availability
Thedata that support the plots presented in this paper are available from the
corresponding authors upon reasonable request.

Code availability
Open-source codes for the present dynamical phase-field model can be
accessed via https://github.com/jhu238/GO-Ferro.
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