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Genetic profiles of 103,106 individuals in the Taiwan Biobank
provide insights into the health and history of Han Chinese
Chun-Yu Wei1,4, Jenn-Hwai Yang1,4, Erh-Chan Yeh1, Ming-Fang Tsai1, Hsiao-Jung Kao1, Chen-Zen Lo1, Lung-Pao Chang1, Wan-Jia Lin1,
Feng-Jen Hsieh1, Saurabh Belsare 2, Anand Bhaskar 3, Ming-Wei Su1, Te-Chang Lee1, Yi-Ling Lin1, Fu-Tong Liu1, Chen-Yang Shen1,
Ling-Hui Li1, Chien-Hsiun Chen1, Jeffrey D. Wall2, Jer-Yuarn Wu1 and Pui-Yan Kwok 1,2✉

Personalized medical care focuses on prediction of disease risk and response to medications. To build the risk models, access to
both large-scale genomic resources and human genetic studies is required. The Taiwan Biobank (TWB) has generated high-
coverage, whole-genome sequencing data from 1492 individuals and genome-wide SNP data from 103,106 individuals of Han
Chinese ancestry using custom SNP arrays. Principal components analysis of the genotyping data showed that the full range of Han
Chinese genetic variation was found in the cohort. The arrays also include thousands of known functional variants, allowing for
simultaneous ascertainment of Mendelian disease-causing mutations and variants that affect drug metabolism. We found that
21.2% of the population are mutation carriers of autosomal recessive diseases, 3.1% have mutations in cancer-predisposing genes,
and 87.3% carry variants that affect drug response. We highlight how TWB data provide insight into both population history and
disease burden, while showing how widespread genetic testing can be used to improve clinical care.
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INTRODUCTION
Over the last two decades, several large, population-based
biobanks have been set up to collect blood and other biospeci-
mens together with a standard set of clinical data to power
genetic studies of many common diseases1–5. The participants are
followed up in regular intervals for further biospecimen collection
and health examinations, for up to 30 years in some biobanking
programs. Several biobanks have completed their cohort collec-
tion and released their data for analysis, leading to many new
insights into the genetic factors associated with common
diseases4. A common focus of the early population-based
biobanks has been to identify genetic variants associated with
disease without considering how the results can be returned to
the participants for their own health management. Since many
disease-causing mutations are rare and population specific6–9, the
genetic basis of disease susceptibility varies across populations,
which in turn has helped motivate the development of biobanks
around the world. As part of the Taiwan Biobank (TWB, established
in 2012), a cohort of 200,000 individuals from the general
Taiwanese population with no cancer diagnosis at the time of
enrollment is being recruited and followed at regular intervals.
The majority of Taiwanese are Han Chinese (over 99%) immigrated
from different provinces of China and minority of them are
Taiwanese aboriginals. Additional facets of the project include an
East Asian-focused reference panel for genotype imputation
based on high-coverage whole-genome sequencing (WGS) from
1445 early TWB participants, and the development of two custom
single nucleotide polymorphism (SNP) genotyping arrays that
generate data not only for future genome-wide association
studies (GWAS) or polygenic risk score (PRS) development,
but also for directly conducting thousands of genetic tests on
the cohort.
In this study, we present the WGS data as well as genotyping

results from the first 103,106 participants of the TWB. This is the

largest publicly available genetic database of individuals with East
Asian ancestry. We document the extent to which the population
is affected by known risk variants, and show how these results
can be used to immediately improve the clinical care of the
participants. Further, we highlight the utility of our reference
panel for imputation, confirm that our samples provide adequate
coverage of genetic diversity across all Han Chinese, and conduct
basic population genetic studies of population structure and
recent changes in population size in the TWB cohort. Overall, the
TWB provides foundational genomic resources that will enable
future large-scale genetic studies in individuals closely related to
Han Chinese.

RESULTS
Overview
The TWB database provides three novel features that increase its
utility: (1) high-coverage WGS data from more than 1400 Han
Chinese individuals, (2) a custom SNP array that utilizes both
previously identified functional variants and the unique linkage
disequilibrium structure of Han Chinese, and (3) SNP array data
(with linked phenotypic data) from 103,106 TWB participants.
We describe the benefits of each of these in greater detail below.

Han Chinese reference panel
To aid in the genotype imputation of East Asian samples in
general and TWB samples in particular, we generated high-
coverage whole-genome sequence data from 1,445 TWB partici-
pants and created a (computationally) phased reference panel
(TWB panel) from these data. We then utilized in silico
experiments with high-coverage whole-genome sequence data
from 137 additional Han Chinese individuals to quantify the
imputation accuracy of the TWB panel for all variants with minor
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allele frequency (MAF) > 0.01. For comparison, we also evaluated
the imputation accuracy of the East Asian subgroup of the 1000
Genomes Project (EAS panel, n= 504) as well as a combined TWB
+ EAS reference panel that included the 1949 genomes from the
two different groups (The 137 test samples were not included in
any of these panels). Figure 1 shows the genotype concordance
and the squared correlation coefficient (r2) between predicted and
actual genotypes, as a function of minor allele frequency. We find
that the TWB panel provides a modest, but consistent, improve-
ment in imputation accuracy over the EAS panel, and that the
TWB+ EAS panel provides a very small improvement over the
TWB panel. These results are consistent with previous studies
showing that imputation accuracy depends on both sample size
and genetic similarity between reference panel and genomes to
be imputed3,10–12. We also find an improvement in imputation
accuracy when the reference panel is fixed but the SNP array used
varies between the custom TWBv2 array (described below) and
the commonly used Illumina GSAv2 array (Supplementary Fig. 1).

Custom SNP array
The structure of linkage disequilibrium is known to vary across
continental populations13,14. As a consequence, commercial SNP
arrays that were developed for European populations are less
effective at detecting true genotype–phenotype associations
when applied to non-European groups. In part because of this,
we developed two custom genotyping arrays using the Thermo-
Fisher Axiom platform. Since the TWBv1 array was described
previously15, we focus below on the TWBv2 array (686,463
markers), which was used on >76,000 TWB participants.
The TWBv2 array utilized WGS data from TWB participants to

choose SNPs optimized for imputation in Han Chinese samples16,
contained 114,000 risk variants in 2831 rare disease genes
selected from published literature and the ClinVar database,
4100 variants associated with drug metabolism and adverse drug
reactions, and 24,865 copy number variation (CNV) probes
corresponding to known chromosomal aberrations and CNV
regions (Supplementary Tables 1 and 2, Supplemental Text). The
array design allowed us to simultaneously assay thousands of
actionable functional variants, while also enabling more efficient
future GWAS. Overall, 660,606 markers of the TWBv2 array passed
quality control, and a comparison of samples with both WGS and
array data found an average concordance rate of 99.75%
(Supplementary Table 3). Furthermore, we successfully detected
40 out of 41 known CNVs, ranging in size from 108 Kb to 26Mb
(Supplementary Table 4, Supplemental Methods). The only CNV
not detected by the TWBv2 array is located at the telomere of
Chr1p. It has been split into multiple pieces in the GRCh38/hg38
genome assembly, which leads to CNV call failure.

Genotyping the TWB cohort
We genotyped 103,106 TWB participants using one or both of our
custom SNP arrays, then used the TWB reference panel to impute
all biallelic SNPs with MAF > 0.01. TWB recruitment did not target
families, but we identified from the genetic data a total of 27,623
relative pairs (3rd degree or closer) involving 34,823 (33.8%)
unique individuals (Table 1). These could be divided into 13,238
family groups, including a relatively even distribution of types of
relative pairs, suggesting that the TWB participants often invited
their close relatives to join the project. This increases the potential
utility of the TWB to study the genetic basis of disease
susceptibility across all diseases included within the self-
reported questionnaire. Our data also include 1171 inferred
parent-child pairs, complete with sex and age information, which
can be used to verify the accuracy of the TWBv2 array for genetic
testing applications.
We then used principal components analysis (PCA) to obtain a

rough overview of population structure within the TWB cohort
(Fig. 2). Our previous work found that over 99% of TWB
participants are Han Chinese, including Taiwanese Minnan,
Taiwanese Hakka, and people with ancestry from across China15.
Here, similar to previous studies17,18, we found that subjects with
both parents from the same province in China clustered together,
and that the TWB participants cover the full range of Han Chinese
genetic variation. Using the same PCA coordinates, 1000 Genomes
Project samples from East Asia (CDX, CHB, CHS, JPT, and KHV)
cluster with the TWB samples (Supplementary Fig. 2a), and one
self-identified Siraya (an indigenous Taiwanese group) individual
from the TWB clusters with known indigenous Taiwanese samples
(Supplementary Fig. 2b). Of note, the PCA results based on TWBv1
and TWBv2 arrays are identical.

Demographic analyses
The availability of high-coverage WGS data from 1445 TWB
participants allowed us to look more closely at population
structure and historical changes in population size in our cohort.
We focused on self-identified Minnan individuals (who speak a
dialect from Southern Fujian province) as representatives of Han
Chinese genetic variation found in Taiwan prior to 1945. Then, for
other sequenced samples where both parents migrated (post
1945) from the same province in China, we tabulated how many
‘novel variants’ (i.e., SNPs not found in the Minnan) were present
(Fig. 3a). We found that individuals with ancestry from Chinese
provinces far from Taiwan had more of these novel variants, and
thus greater genetic differentiation from Taiwanese Minnan.
This trend of isolation-by-distance is highly significant (r2=
0.604, p= 1.74 × 10−26, Fig. S3)
Previous studies have found evidence for exponential (or faster)

population growth in European and African American populations

Fig. 1 Comparison of imputation performance of the TWBv2 array using three reference panels. The average r2 values (a) and concordance
(b) are plotted against the minor allele frequency. EAS: reference panel with EAS from 1000 genome; TWB: reference panel with Taiwan
biobank NGS data.
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using the site frequency spectrum (SFS)19,20. We tabulated the SFS
for 804 unrelated Minnan genomes, and estimated recent
population growth parameters using fastNeutrino21. Assuming a
mean generation time of 29 years, we estimate that exponential
population growth started roughly 15.5 Kya (95% CI 15.2–15.8 Kya)
leading to a current effective population size of 665,443 (95% CI
653–678 thousand, Fig. 3b). This growth model is broadly
comparable to previously estimated growth parameters in other
populations, though the proportion of singletons among our SNPs
(46.5%) is substantially smaller than the proportion predicted
under the widely used Tennessen et al. model6 (57.2%) for
European population growth (as implemented by Vernot et al.22).
This difference likely reflects less extreme very recent population
growth in East Asian populations, as well as methodological
differences between the two studies (e.g., whole-genome vs.
whole-exome data, and taking a well-defined population vs. an
aggregate of multiple, closely related populations).

Massively parallel genetic testing using the TWBv2 array
By design, the TWBv2 array directly genotypes more than 100,000
functional variants, including mutations causing Mendelian dis-
eases, variants associated with complex disease susceptibility,
mutations known to affect drug metabolism, and variants across
the HLA region. After annotation and sequence validation, we
tabulated the genotype frequencies of disease-causing or patho-
genic risk variants with MAF > 0.1% in the TWB participants typed
on the TWBv2 array (Tables 2–4 and Supplementary Table 5).
Surprisingly, we found that 21.2% of the TWB cohort are carriers of
at least one Mendelian recessive disorder. While our dataset
confirms the previously published carrier rate of many diseases,
there are some notable new findings. For example, we observed a
higher than expected carrier rate for mutations in genes associated
with rare diseases, such as Nagashima-type palmoplantar keratosis
(SERPINB7 rs142859678, AF= 0.72%), primary carnitine deficiency
(SLC22A5 rs60376624, AF= 0.28%; rs121908893, AF= 0.18%),
phenylketonuria (PAH rs76687508, AF= 0.24%), sitosterolemia
(ABCG5 rs119480069, AF= 0.33%), and infantile type of Pompe

disease (GAA rs28940868, AF= 0.38%). We also observed higher
allele frequencies for several pathogenic variants in autosomal
dominant diseases than predicted by disease prevalence estimates
(Table 3). One example is the Notch3 rs201118034 (R544C)
mutation, where 0.88% of the people in our cohort carry the
mutation but the autosomal dominant condition it causes,
CADASIL, has an estimated prevalence in Taiwan of 3.8 in 10,000,
which is 23 times lower than expected23–25. In another example, the
frequency of PRSS1 rs387906698 (AF= 0.1%) is also higher than the
reported disease prevalence of hereditary pancreatitis (0.0003%)26.
The TWBv2 array includes deleterious germline variants in

several cancer-predisposition genes. Although TWB excluded
cancer diagnosed subject at the first interview, we still identified
16 pathogenic variants in 13 genes associated with cancer risk
that have an allele frequency of >0.1% in our population,
including 6 in genes classified as reportable ACMG secondary
findings (SF v2.0). For example, 3 pathogenic variants encoding
truncated non-functional BRCA1 and BRCA2 proteins have allele
frequency >0.1% in our population. Overall, 3.1% of TWB
participants carry at least one previously identified cancer-
predisposition mutation, and these putative carriers are likely at
increased risk for developing cancer in their lifetime (Table 4 and
Supplementary Table 5).
We also assessed the allele frequencies of key pharmacoge-

nomic (PG) variants that are known to affect drug metabolism and
drug responsiveness in our dataset. 87.3% of all individuals have
at least one variant that could affect medication choice or dosage
(Table 5 and Supplementary Table 6). As with previous studies27,28,
we find substantial variation between allele frequencies estimated
from the TWB cohort and allele frequencies previously estimated
in other populations. For example, the reduced function allele
UGT1A1*28 is common in Caucasians29,30, whereas the
UGT1A1*27 is common in East Asians and Han Chinese in Taiwan.

Imputation of ABO blood groups and HLA types
The TWBv2 array contains variants that can be used to accurately
impute ABO blood groups and HLA types. We estimate that these

Table 1. Kinship distribution of 34,823 related individuals in the TWB cohort.

Number of members
in each group

Number of kindreds with
each group size

Number of related pairs

MZ twinsa Parent-offspring Full siblings 2nd degree relatives 3rd degree relatives

2 8657 33 1671 2545 2003 2405

3 2686 13 2039 1696 1372 1487

4 1043 11 1518 1037 945 1016

5 415 4 836 657 594 622

6 202 1 492 439 439 440

7 102 0 311 211 284 269

8 54 2 167 121 186 208

9 28 0 102 89 111 148

10 21 0 58 87 117 133

11 12 0 61 34 65 73

12 5 0 31 26 31 33

13 3 1 11 11 15 29

14 4 0 17 18 29 35

15 3 0 16 15 28 32

16 0 0 0 0 0 0

17 2 1 9 7 19 21

18 1 0 6 7 13 10

Total 13238 66 7345 7000 6251 6961

aSome of the genetically identical samples could represent duplicates.
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can be imputed from array data with 99.9% and >97.4% accuracy,
respectively, based on Mendelian consistency of the data of
parent–child pairs in the cohort (Supplementary Table 7).
Furthermore, the cross-validation experiment showed that the

accuracies of estimated HLA alleles were better than 91.4% across
all loci (Supplementary Table 8).
Using the combination of rs8176719, rs8176746, and rs8176747,

we determined that the distribution of genetically determined A,

Fig. 2 Ancestral diversity of the TWB participants. Clustering of samples from a Minnan, b Hakka, c East China, d South Central China,
e North and Northeast China, and f Southwest China+ other East Asian groups.
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B, O, and AB carriers were 26.5%, 24.4%, 43%, and 6% in TWB
cohort, consistent with previous ABO blood-antigen typing
results31. Since the ABO blood groups are suspected to be
associated with various health conditions32,33, we analyzed the
association between predicted ABO blood groups and self-
reported clinical phenotypes in the TWB cohort. We found that
blood type O was less likely to be associated with epilepsy,
consistent with the findings of a previous study34, and that TWB
participants with blood type AB had a significantly higher
incidence rate of epilepsy compared to type O participants (OR
= 1.84, 95% CI ~1.2–2.8).
Several HLA alleles are associated with autoimmune diseases

and adverse drug reactions. We found that 5.3% Taiwanese were
carriers of HLA-B*27:04, a risk factor for ankylosing spondylitis, and
4.1% of our population had HLA-B*15:02, known to be associated

with carbamazepine-induced Stevens–Johnson syndrome (Table 5
and Supplementary Table 6)35,36. In addition, we found significant
regional variation in some HLA allele frequencies, consistent with
previous results using hybridization or the sequencing-based
typing method (The Allele Frequency Net Database, see Web
Resources). For example, HLA-A*02:06 and HLA-B*31:01 are found
predominantly in individuals from Northern China, while HLA-
A*02:07 and HLA*B33:03 are common in those from Southern
China (Supplementary Fig. 4).

DISCUSSION
Recently, there has been an increased appreciation for the fact
that the public health benefits of genetic studies are greatest in
the populations that are directly studied, and that equitable

Fig. 3 Population substructure and population growth estimates. a Number of novel (non-Taiwanese Minnan) variants for each additional
sample stratified by province (axes markings represent latitudes and longitudes). Adapted from the Digital Map Database of China, 2020,
“Provincial Boundary”, https://doi.org/10.7910/DVN/DBJ3BX, Harvard Dataverse, V1. b Estimated past population sizes for Taiwanese Minnan.
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“personalized medicine” will require the development of large-
scale genomic resources in a wide range of ancestry groups35,36.
The Taiwan Biobank was created in part to catalyze future medical
genetics studies in Taiwan, and the sample size of individuals with
dense SNP array data in the TWB (n= 103,106) is several times
larger than from comparable Biobanks in Japan and China1,3. In
addition, our generation of a large reference panel and develop-
ment of a custom SNP array makes the resulting TWB genotype
data much more valuable than comparable studies that rely on
existing European-biased SNP arrays and reference panels for
genotyping and imputation4. In particular, the Taiwan Biobank
array includes thousands of Mendelian disease mutations and
known pathogenic variants. So, we can cheaply and efficiently
conduct thousands of genetic tests on the participants while
simultaneously collecting genetic profiles that can be used for PRS
calculations for common diseases and future GWAS.
Our analyses highlight the potential utility of including

commercial SNP genotyping (using a custom array) into the

standard practices of clinical care. We demonstrate that ABO
blood types and HLA types can be accurately inferred from an
inexpensive commercial SNP array, which may help their inclusion
in future Phewas studies. Surprisingly, we found that 21.2% of the
population are carriers of known gene mutations responsible for
recessive genetic diseases, 4.7% have known gene mutations
causing autosomal dominant diseases, and 3.1% carry known
gene variants causing cancer susceptibility. Further, 87.3% of the
population carry variants that alter their ability to metabolize
commonly prescribed drugs or mark them for susceptibility for
severe adverse drug reactions (ADRs). All of this information is of
obvious utility for both clinicians and patients. For example, with
imputed HLA genotypes available in the patients’ medical record,
the physician can prescribe medications to patients without the
HLA genotypes responsible for specific drug-induced ADRs with
confidence and use alternative medications for patients with the
HLA genotypes that put them at risk for ADRs37–39.
Interestingly, the population allele frequencies of several

pathogenic variants are higher than those predicted by disease
prevalence, probably due to incomplete penetrance or previously
undiagnosed cases with milder clinical symptoms in these
autosomal dominant diseases. For example, patients carrying the
CADASIL founder mutation, NOTCH3 R544C, display a much
broader clinical spectrum than that of classical CADASIL, which
may explain the difference between genetic and clinical
diagnosis40,41. Interestingly, some older individuals with the
NOTCH3 rs201118034 (R544C) mutation have MRI (magnetic
resonance imaging) evidence of multifocal brain lesions without
clinical symptoms25.
Although the original TWB study design does not a provision to

return results to the participants, discussions have been initiated
to return clinically relevant results, such as cancer risk, to the
participants who opt to receive such information for clinical
management.
Genetic profiling using SNP arrays have several limitations,

including (1) genotype calls for extremely rare variants (MAF <
0.1%) are unreliable, (2) only known variants will be typed so de
novo germline mutations and somatic mutations will be missed,
and (3) some important variants in duplicated regions in gene
families cannot be typed due to lack of probe design options.
These platform-specific limitations cannot be overcome and
studies of some important variants have to be done by other
means. However, while genotyping does not capture all possible
risk variants, our results show that the majority of the variants of
appreciable frequency can be tested at relatively low cost (~USD
40 from blood to data).

Table 2. Recessive genetic disorders with the highest carrier rates in
the TWB cohort.

Recessive genetic disorder Gene Carrier rate

G6PD deficiency G6PD 2.49%

Citrullinemia type II SLC25A13 1.94%

Wilson disease ATP7B 1.77%

Pendred syndrome SLC26A4 1.70%

Krabbe Disease GALC 1.67%

Nonsyndromic hearing loss and deafness GJB2 1.59%

Nagashima-type palmoplantar keratosis SERPINB7 1.43%

Primary carnitine deficiency SLC22A5 0.90%

Hereditary spastic paraplegia 5 CYP7B1 0.83%

Congenital hypothyroidism TSHR 0.71%

Sitosterolemia ABCG5 0.66%

Beta Thalassemia HBB 0.59%

Total iodide organification defect TPO 0.56%

Joubert Syndrome CEP290 0.51%

Usher syndrome USH2A 0.50%

Phenylketonuria PAH 0.48%

Mucolipidosis type III GNPTAB 0.44%

Waardenburg syndrome EDNRB 0.40%

Congenital Disorder of Glycosylation 1a PMM2 0.40%

Glutaric aciduria 1 GCDH 0.38%

Table 3. Autosomal dominant disorders with the highest allele
frequencies in the cohort.

Dominant genetic disorder Gene Allele freq.

DFNA2 nonsyndromic hearing loss KCNQ4 1.24%

Hereditary pancreatitis SPINK1, PRSS1 1.05%

Familial hypercholesterolemia APOB, LDLR 0.89%

Cerebral autosomal dominant
arteriopathy with subcortical infarcts and
leukoencephalopathy type 1 (CADASIL)

NOTCH3 0.88%

Familial hypertrophic cardiomyopathy TCAP 0.45%

Spastic paraplegia 4 SPAST 0.29%

Maturity-onset diabetes of the
young type 3

HNF1A 0.17%

Table 4. Cancer susceptibility conditions with the highest fraction of
affected individuals in the cohort.

Cancer susceptibility syndromes Gene Allele freq.

Hereditary cancer-predisposing
syndrome

CHEK2+ RAD51 0.58%

Juvenile polyposis syndrome SMAD4 0.44%

Adenomatous polyposis coli APC 0.42%

Breast-ovarian cancer, familial 1 BRCA1 0.41%

Li-Fraumeni syndrome 1 TP53 0.40%

Lynch syndrome MSH6 0.40%

MYH-associated polyposis MUTYH 0.40%

Neuroblastoma KIF1B 0.40%

PTEN hamartoma tumor syndrome PTEN 0.40%

Prostate cancer EHBP1 0.40%

Breast-ovarian cancer, familial 2 BRCA2 0.29%
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Unlike genome-wide association studies that focus on identifying
risk variants for gene discovery and downstream therapeutic
development, personalized or precision medicine aims to aggre-
gate all risk factors to predict disease risk for an individual. In this
study, we generated a large reference panel that greatly improved
the imputation accuracy of SNP genotyping data and designed a
custom SNP array optimized for genetic studies in the Han Chinese
population, the largest ethnic group that, at 1.5 billion, accounts for
19% of the world’s population. While it is custom-built for the TWB,
the TWBv2 array is available to all commercially without any
restrictions. Furthermore, we obtained genetic testing results for
thousands of known risk variants and simultaneously collected
genetic profiles in the TWB participants for PRS calculations for
common diseases and future GWAS. As a test that needs to be
done only once in a person’s lifetime, it has great clinical value.
Overall, our study shows that combining comprehensive genetic
testing and returning of results in a population setting can serve as
a model for precision health management.

METHODS
Participant samples
Demographic and health-related survey data for 103,106 individuals,
together with WGS data (1492 individuals), genotyping data (27,737
typed on the TWBv1 custom array and 75,369 on the TWBv2 array, with
1463 typed on both), and high-resolution allele typing of 6 HLA alleles
(1101 individuals) were obtained from the Taiwan Biobank with the
approval from the respective ethical committees of the Academia Sinica
and the Taiwan Biobank. In addition, TWBv2 genotype data and high-
resolution HLA typing data from 502 individuals and WGS data from 26
individuals were obtained from the Collaborative Study to Establish a Cell
Bank and a Genetic Database on Non-Aboriginal Taiwanese42. WGS data
from 64 individuals were obtained from the Pan-Asian Population
Genomics Initiative and the Taiwan Han Chinese Sequence Database.
These studies were approved by the ethical committee of Academia
Sinica. All data from human participants were obtained from databases
where data sharing was part of the consent, so the waiver of consent was
granted by the Academia Sinica IRB.

TWB array design
The TWBv1 SNP array was designed in 2011 for genome-wide association
studies and the markers were selected from several sources, including the

SNPs on the Axiom Genome-Wide CHB 1 Array plate (Affymetrix, Inc., Santa
Clara, CA, USA), with a MAF ≥ 5% based on genotyping results of 1950
Taiwanese Han Chinese samples, exonic SNPs with MAF > 10% based on
genotyping results of 600 Taiwanese Han Chinese samples, ancestry
informative SNPs43, SNPs associated with cancer risk44, and SNPs on the
Affymetrix DMET pharmacogenetic array. The array consists of a set of
∼650,000 SNPs that was designed to provide maximal coverage (R2 > 0.8)
of the human genome.
The TWBv2 SNP array (Thermo Fisher Scientific, Inc., Santa Clara, CA,

USA) was designed in 2017 for both GWAS and testing of known risk
alleles. Accordingly, TWBv2 has 106,614 coding sequence variants (vs 9545
in TWBv1) and 92,804 protein-altering variants (vs 5972 in TWBv1). There
are 104,463 overlapping markers on the two arrays, of which 98,034 passed
QC. Overall, the TWBv2 array contains ~415,000 markers for GWAS and
imputation. The GWAS markers were selected from the whole genome
sequencing data of 946 TWB participants to optimize for coverage of the
Han Chinese in Taiwan. Around 57,000 markers intensively covering 179
known disease-relevant CNV regions were also included in the array
(Supplementary Table 2) and all markers on the array were used for whole-
genome copy number detection. Among ~214,000 markers associated
with known diseases, ~114,000 risk variants designated as pathogenic,
likely pathogenic, and high-risk variants were selected from several
sources, including ACMG, ClinVar, GWAS Catalog, HGMD, locus-specific
databases, and the literature. The rare genetic disease genes and variants
included in the array are listed in Supplementary Table 9. The drug
metabolism gene variants were selected from the literature and on-line
databases (CPIC, PharmVar, and FDA). The full list of variants on the TWBv2
array can be found at https://www.twbiobank.org.tw/new_web/exp_doc/
TWBv2.0_SNPs%E4%BD%8D%E9%BB%9E%E7%9B%B8%E9%97%9C%E8%
B3%87%E8%A8%8A.zip.

Imputation
The imputation of the GWAS data from the 103,106 individuals was
carried out by a three-step process. The first step is to establish a
population-specific reference haplotype panel from 1445 genome
sequences of Taiwan Biobank, which were aligned to GRCh38 using alt-
aware pipeline of bwa-kit and jointly called using GATK45,46. A total of
9,387,945 biallelic variant sites with MAF > 1% were selected for
computational phasing, performed using SHAPEIT2. Additional haplo-
types derived from the EAS sample of the 1000 Genomes Project were
also incorporated to enrich the diversity of the panel. After removing the
non-monomorphic sites and using the same estimation process, the EAS
reference haplotypes consisted of 30,498,845 mapping sites, of which
8,761,215 have MAF > 1%. There were 8,291,319 variants shared between
the Taiwan and EAS reference panels.

Table 5. Frequency distribution of pharmacogenetic phenotypes predicted by genotypes of TWB cohort.

Gene Drug Rxa/year EM IM PM ADRb carrier rate

CYP2B6 Efavirenz 1,662,525 66.0% 30.5% 3.6%

CYP2C19 Clopidogrel 63,664,076 39.8% 56.4% 3.8%

CYP2C9 Celecoxib 65,058,810 93.6% 6.3% 0.1%

CYP3A5 Tacrolimus 10,272,406 8.1% 40.6% 51.2%

IL28 Peginterferon 40,941 88.6% 11.1% 0.3%

NAT2 Isoniazid 7,885,251 28.8% 59.2% 12.0%

SLCO1B1 Simvastatin 50,695,934 78.9% 19.9% 1.3%

TPMT Azathioprine 7,435,217 97.0% 2.9% 0.02%

UGT1A1 Atazanavir 719,793 53.2% 39.8% 7.0%

VKORC1 Warfarin 16,121,944 1.1% 19.2% 79.7%

HLA-A*3101 Carbamazepine 17,078,849 2.0%

HLA-B*1502 Carbamazepine 17,078,849 4.1%

HLA-B*5701 Abacavir 3,049,217 0.2%

HLA-B*5801 Allopurinol 23,888,472 10.5%

MT-RNR1 Amikacin 321,561 4.7%

aRx= prescriptions.
bADR= adverse drug reactions.
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The second step is to impute the un-genotyped SNPs/variants based on
the reference panels. Pre-phasing and imputation were carried out using
SHAPEIT2 and IMPUTE247,48. We “Hard-called” genotypes, calling geno-
types if the posterior likelihood was >0.9. If not, the genotype was treated
as missing data. The expected dosages were calculated directly from the
posterior genotype likelihoods from IMPUTE2.
The third step is to validate the imputed results by comparing between

whole-genome sequences and imputed genotypes from 137 independent
samples (47 from the TWB cohort, 26 from the Collaborative Study to
Establish a Cell Bank and a Genetic Database on Non-Aboriginal Taiwanese
project, and 64 from the Pan-Asian Population Genomics Initiative and the
Taiwan Han Chinese Sequence Database). The concordance between
sequence data and hard imputed genotype calls at each variant was used
to validate the imputed result. The squared Pearson correlation (r2)
between sequence and dosages was also calculated.
Finally, we converted the TWBv1 array coordinates from GRCh37 to

GRCh38 and performed imputation using the TWB reference panel. An allelic
association test of imputed genotypes (based on a χ2 test) was used to find
the frequency differences between 27,737 TWBv1 samples and 75,369
TWBv2 samples. After filtering out the variants with MAF < 5% and call-rate
<90%, 4,596,726 of 5,177,055 (88.8%) were not significant (p-value >10−4).
For the comparison across genotype arrays (Supplementary Fig. 1), we

used the 1000 Genomes Project high-coverage data as a reference panel
and constructed in silico SNP array data (both TWBv2 and GSA2) using
whole-genome sequence data from the Japanese samples in the
GenomeAsia 100 K Project callset27. We then compared imputation
accuracy stratified by MAF using r2 as described above.

Principal component analysis
Principal component analysis (PCA) was performed using a two-stage
approach. The first stage was the training stage, which estimated the
principal components (linear combinations of allele count of SNPs) using a
set of 58,393 autosomal SNPs from 25,000 subjects. To maximize the
diversity of the training set, all subjects with at least one parent born in
mainland China were selected (N= 19,110). The remaining 5890 subjects
were randomly sampled from the TWB participants who had both parents
born in Taiwan. The SNPs used for PCA were randomly selected from the
pool of autosomal SNPs on TWB 2.0 array with the following criteria: minor
allele frequency >5%, low inter-marker linkage disequilibrium (r2 < 0.3),
call-rate larger than 99%, and Hardy–Weinberg equilibrium (p > 10−4). The
second stage was to calculate values of principal components for all
96,715 subjects (including the training set of 25,000 subjects) for which
survey data on familial origins were available.

Novel allele analysis
This analysis focused only on those individuals with high-coverage WGS
data. We started with the 825 individuals who self-identified as being
Taiwanese Minnan and removed one individual from each 1st-degree
relative pair as well as obvious genetic outliers. This left us with a panel of
804 Minnanese. 125 out of the remaining WGS samples self-identified as
having both parents from the same province in mainland China. For each
sample, we counted up the number of SNP alleles present in the sample
but not present in the 804 Minnanese. (Note that private homozygous
variants were counted twice.) These counts were then averaged across
province-of-origin for Fig. 3.
To test for a correlation between number of novel variants and distance

from Taiwan, we calculated the distance (in km) between each provincial
capital and Taipei and constructed a scatterplot of novel variants vs.
distance for the 125 mainland WGS samples. We then calculated the
Pearson’s correlation coefficient and assessed its significance using a t-test
with 123 degrees of freedom.

Population growth
We considered 804 unrelated Minnan individuals (as described above) and
considered all autosomal SNP variation in ‘callable’ regions of the genome
using the GIAB mask file (see Web Resources). We tabulated the folded SFS
of numbers of sites with various minor allele counts for those variants with
high-confidence (GQ ≥ 40) genotype calls in all 804 individuals. We then
explored four families of population size change models, containing:

(1) A single epoch of constant size [c]
(2) A single epoch of exponential growth/decline [e]
(3) Two epochs of constant size [cc]

(4) One epoch of constant size followed by one epoch of exponential
growth/decline [ec].

We then used fastNeutrino21 to estimate best-fit parameters for each
model family, and then compared the model families to each other using the
Bayesian information criterion (BIC). The model with the lowest BIC was the
4th one [ec]. To convert the parameters of this best-fit model into years and
effective population size, we assumed a mean generation time of 29 years, a
mutation rate of 1.25 × 10−8 per site per generation, and an autosomal
diversity estimate of π= 6.977 × 10−4 per site. Finally, 95% confidence
intervals for model parameters were obtained as previously described21.

HLA type prediction
We imputed the classical HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-
DQB1, and HLA-DPB1) at two-field resolution using the Hibag R package49

with a 765 sample training set. A 500-kb flanking region along with each
HLA locus (including 2446–3496 SNPs) was used for subsequent
imputation. The prediction model was evaluated by independent
validation samples for HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 genes by
cross-validation. The accuracy of imputed HLA types was also estimated by
consistency of HLA types of parent–child pairs in the cohort. The
frequencies of all predicted HLA loci among 103,106 Han Chinese were
calculated. For 75,369 TWB participants genotyped using the TWBv2 array,
the input for Hibag prediction was genotype data; we used the imputed
genotype data as input for those samples genotyped using the
TPMv1 array.

ABO blood type imputation
We inferred ABO blood types (AA, AO, BB, BO, AB, and O) from three SNPs
(rs8176719, rs8176746, and rs8176747) located in the ABO gene as
described previously50. The frequencies of the imputed ABO blood types of
TWB participants were compared with those derived from antigen-typed
ABO blood types as reported previously31. The accuracy of imputed ABO
blood types was also estimated by consistency of blood types of parent-
child pairs in the cohort.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The TWB genetic and phenotype datasets, together with the WGS data from 1445
TWB participants, are available through the TWB (https://www.twbiobank.org.tw/
new_web_en/about-export.php). The data that support the findings of this study
from “The Pan-Asian Population Genomics Initiative and the Taiwan Han Chinese
Sequence Database” and the “Collaborative Study to Establish a Cell Bank and a
Genetic Database on Non-Aboriginal Taiwanese” are available through the Taiwan
National Center for Genomic Medicine (NCGM, http://ncgm.sinica.edu.tw/ncgm_02/
contact_e.html) upon request. The GenomeAsia 100K Project callset is available on
request (https://genomeasia100k.org/collaborate). The high-coverage NGS data of
1000 Genomes Project used in this study is available in http://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/
20190425_NYGC_GATK/.
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