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Identifying brain degeneration patterns
in early-stage Parkinson’s disease:
a multimodal MRI study

Check for updates

Zihao Zhu1,2, Jiaqi Wen1,2, Xiaojie Duanmu1,2, Weijin Yuan1,2, Qianshi Zheng1,2, Tao Guo1,2, Chenqing Wu1,2,
HaotingWu1,2, ChengZhou1,2, QingzeZeng1,2, JianmeiQin1,2, JingjingWu1,2, JingwenChen1,2, Yuelin Fang3,
Bingting Zhu3, Yaping Yan3, Jun Tian3, Baorong Zhang3, Minming Zhang1,2, Xiaojun Guan1,2 &
Xiaojun Xu1,2

Parkinson’s disease (PD) is a highly heterogeneous neurodegenerative disorder. This study aimed to
identify different patterns of early brain degeneration in PD patients and investigate their clinical
relevance. 179 early-stage PD patients and 115 healthy controls were included. We assessed cortical
morphology, white matter microstructure, and subcortical iron metabolism using multimodal
magnetic resonance imaging and employed clustering techniques to identify subtypes. Two subtypes
were identified: the early-deterioration subtype, characterized by fronto-temporal atrophy, parietal
thickening, widespread reductions in fractional anisotropy (FA) values, and increased subcortical iron
content, which exhibited more severe baseline symptoms and a trend of faster memory decline; and
the early-compensatory subtype, characterized by rostral middle frontal atrophy, parietal-occipital
thickening, increased FA values, and normal iron content, which exhibited milder symptoms initially
but experienced faster progression of both motor and non-motor symptoms. These discoveries
provided new insights into disease heterogeneity and facilitated the exploration of early
neurodegenerative mechanisms.

Parkinson’s disease (PD) is a common progressive neurodegenerative
disorder, characterized by significant clinical heterogeneity and
prognosis1,2, which makes investigating the clinical and biological sub-
types a crucial breakthrough for exploring its underlying mechanisms.
Previous studies have demonstrated that patients with dominant postural
instability and gait difficulty or with significant non-motor symptoms
would have a poor quality of life and suffer a fast disease progression3–6.
However, it is not possible to accurately identify the subtype based on
patient symptoms alone until the disease progresses to an advanced stage
and presents with significant clinical symptoms. The brain change
underlying clinical symptoms is expected to provide a more characteristic
and objective characterization of the disease7. Unfortunately, the hetero-
geneity of brain degeneration patterns in the early stages of PD is also
largely unknown.

The hallmark pathophysiological change in PD is the widespread
aggregation of α-synuclein pathology throughout the brain1, which leads to

the progressive and heterogeneous brain alterationswith different aspects of
clinical relevance8. In the recent years, magnetic resonance imaging (MRI)
has proven to be a valuable non-invasive technique for in vivo quantifying
brain tissues, thereby providing insights into disclosing the clinical pre-
sentations and disease prognoses of PD9. Unsupervised clustering enables
the discovery of latent patterns underlying the systematical brain infor-
mation characterized by multimodal MRI, which would enhance the
identificationof PDsubtypes that share commondegenerationmechanisms
in a data-drivenway3,10. Based on these techniques and algorithms, previous
studies have demonstrated the spatial and temporal brain degeneration of
PD, successfully reflecting their pathophysiological information and
revealing significant heterogeneity. Uribe et al. discovered distinct patterns
of cortical atrophy associated with cognitive performance11, they also
focusedondenovoPDpatients12, revealing longitudinal atrophydifferences
across these distinct cortical degenerationpatterns over a 4-year follow-up13;
Inguanzo et al. examined both gray and white matter, providing a more
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comprehensive view of brain degeneration patterns in PD14; Guo et al.
integrated clinical symptoms with fiber connectivity, revealing distinct
patterns of brain damage associated with the depression-dominant and
motor-dominant subtypes15. All these studies strongly supported the exis-
tence of differentiated brain degeneration in PD. However, the systemic
characterization of brain degeneration patterns in early-stage PD remains
insufficient, with few studies incorporating degeneration information from
the core nigrostriatal regions. The disruption of iron homeostasis in these
key regions could exacerbate oxidative reactions between dopamine and
iron, thereby playing a crucial role in the pathophysiologicalmechanisms of
PD16, which could be non-invasively measured by Quantitative Suscept-
ibility Mapping (QSM)17. While previous studies have revealed the iron
heterogeneity in the early disease18, data-driven clustering research in this
field remains limited. Incorporatingmeasurements of iron could enrich the
quantification of brain tissue, offering a broader perspective on brain
degeneration in PD. Therefore, we hypothesized that, the brain degenera-
tionhas alreadydifferentiatedwhenPDpatients are at early-stage andmight
exhibit different clinical profiles and the longitudinal progression.

This study aimed to identify the existence of different brain degen-
eration patterns among early-stage PD patients by employing multimodal
MRI and investigate its clinical relevance according to the following steps:
(1) utilizing an unsupervised clustering method to classify early-stage PD
patients into subtypes that were sharing different degeneration of brain
morphometry, white matter (WM) microstructure and iron metabolism;
(2) demonstrating the differential clinical profiles and their longitudinal
progression between the early-stage PD patients with different brain
degeneration patterns.

Results
Demographic information of PD and HC
The demographic information of the discovery dataset was shown in
Table 1. There was no significant difference in age (p = 0.930) and sex
(p = 0.362) between PD patients and healthy controls (HC). However, HC
had received a longer duration of education compared to PD
patients (p < 0.001).

Two PD subtypes identified by the multimodal MRI parameters
We ranked the independent principal component (PC) generated during
the reduction of principal component analysis (PCA) dimensionality based
on decreasing variance explainability. Subsequently, we selected the initial
27 PCs with variance explainability >1%, retaining 70.57% of the effective
information. Details of the loadings of each imaging feature for the first PC
and the cumulative contributions for the first 27 PCs can be found in
Supplementary Fig. 1. The hierarchical clustering analysis applied to the 27
PC scores identified two PD subtypes as the optimal solution. The overall
changes in their imaging variables of 126 brain regions were illustrated in
Fig. 1.

Specifically, compared to HC, Subtype1 patients (n = 72) exhibited a
neurodegeneration pattern characterized by reduced cortical thickness in

Table 1 | Demographics of healthy controls and Parkinson’s
disease patients in discovery dataset

Parkinson’s disease
patients

Healthy controls

Variable (n = 179) (n = 115) p value

Age, years 56.77 ± 10.53 56.67 ± 4.88 0.930

Sex, male 100 (55.87%) 58 (50.43%) 0.362

Education, years 9.00 (7.00) 10.00 (4.00) <0.001

Continuous variables are presented as mean ± standard deviation or median (interquartile range);
categorical data are presented as number (percentage). Significant p values are shown in bold.

Fig. 1 | The imaging differences between two subtypes and HC. All significant p
values were corrected using FDR correction. Using warm and cool color tones to
indicate the relative magnitude of imaging features between groups. a Comparison
of cortical thickness; b Comparison of Fractional Anisotropy; c Comparison of
magnetic susceptibility. HC Healthy Control. CN caudate nucleus, GP globus

pallidus, SN substantia nigra, RN red nucleus. All comparisons of imaging features
above were adjusted for age, sex, and education, and the comparisons of cortical
thickness were adjusted for eTIV and mean cortical thickness additionally. The
results were corrected for multiple comparisons using FDR correction.
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frontal and temporal regions, including the right caudal anterior cingulate
(p = 0.005) and left lingual (p = 0.022) gyrus, and increased cortical thick-
ness in parietal regions, including the left inferior parietal (p < 0.001),
bilateral superior parietal (p < 0.001), and right supramarginal (p = 0.001)
gyrus. Additionally, these patients manifested as extensive decreases in
fractional anisotropy (FA) values compared to HC, encompassing a wide
range of 36 regions including 17 association fibers (p-range: <0.001 to
0.019), 3 commissural fibers (p-range: <0.001 to 0.014), 14 projection fibers
(p-range: <0.001 to 0.002), and2brainstemfibers (p-range: <0.001 to 0.028),
while increased FA value in the middle cerebellar peduncle (p < 0.001) was
observed. In the considerationof regional irondeposition, Subtype1patients
exhibited significantly increased iron deposition in the left caudate nucleus
(CN) (p = 0.030), bilateral putamen (p < 0.001), bilateral substantia nigra
(SN) (left: p = 0.024; right: p < 0.001), and bilateral red nucleus (RN)
(p < 0.001) compared to HC.

Subtype2 patients (n = 107) exhibited a different pattern characterized
by reduced cortical thickness in the left rostral middle frontal gyrus
(p = 0.002), and increased cortical thickness in parieto-occipital regions,
including the left inferior parietal (p = 0.002), left lateral occipital
(p = 0.020), and left supramarginal (p = 0.010) gyrus compared to HC.

Additionally, there were 18 WM skeletons with increased FA values com-
pared to HC, predominantly involving 9 projection fibers (p-range: <0.001
to 0.049), as well as some association fibers (p-range: <0.001 to 0.013) and
brainstem fibers (p-range: <0.001 to 0.037). No significant differences were
observed in iron deposition within the nucleus compared to HC (p-range:
0.109 to 1).

Compared to the Subtype2 patients, patients in Subtype1 showed
cortical thinning in the right temporal pole (p = 0.003) and cortical thick-
ening in the right superior parietal cortex (p = 0.036). Additionally, Sub-
type1 patients exhibited significant reductions in FA values in 44 fibers
(p-range: <0.001 to 0.010). Regarding regional iron deposition, Subtype1
patients exhibited significantly increased iron deposition in the left CN
(p = 0.005), bilateral putamen (left: p = 0.006; right: p = 0.008), and RN (left:
p = 0.016; right: p = 0.004) than Subtype2. Detailed results were provided in
Supplementary Table 1.

Demographic and clinical characteristics of PD subtypes
Significant differences were observed in age (p < 0.001), with patients of
Subtype1 (63.86 ± 7.44 years) being older than those of Subtype2
(51.99 ± 9.59 years); sex (p < 0.001), with Subtype2 (68 males, 63.55%)
contained more males than Subtype1 (32 males, 44.44%); and education
(p < 0.001), with Subtype1 (6.00 (6.80) years) having a lower level of edu-
cation compared to Subtype2 (9.00 (5.00) years).No significant difference in
disease duration (p = 0.365) and Hoehn Yahr (HY) stage (p = 0.535) was
observed between the two subtypes.

Patients of Subtype1 exhibited more severe clinical manifestations,
encompassing both motor and non-motor aspects. Specifically, Subtype1
patients had higher scores in the following assessments and tests: Unified
Parkinson’sDiseaseRating Scale (UPDRS)-II scores (p = 0.047),UPDRS-III
scores (p = 0.047), and bradykinesia scores in UPDRS-III (p = 0.047) for
motor symptom and Geriatric Depression Scale (GDS) scores (p = 0.047)
for emotional function; and lower scores including Mini-Mental State
Examination (MMSE) scores (p = 0.047) and number of correct responses
on the Symbol Digit Modalities Test (SDMT) (p = 0.023) for cognitive
ability. No significant differences were observed in tremor (p = 0.412) or
rigidity (p = 0.075) scores within UPDRS-III, performance in the Auditory
Verbal Learning Test (AVLT) (p = 0.309), Semantic Fluency Test (SFT)
(p = 0.247), Digit Span Test (DST) (p = 0.095), rapid eye movement (REM)
sleepbehaviordisorderquestionnaire-HongKong (RBDQ-HK) (p = 0.847),
Parkinson’s Disease Questionnaire-39 items (PDQ-39) (p = 0.110), and
Scale for Outcomes in Parkinson’s Disease for Autonomic Symptoms
(SCOPA-AUT) scores (p = 0. 075). All details were summarized in Table 2
and Fig. 2.

Comparison of clinical progression between PD subtypes
Forty-seven patients were followed up at least once (median: 1.00; inter-
quartile range: 1.00 to 2.00), with a median duration of 1.58 (interquartile
range: 1.17 to 2.33) years, enabling us to assess the discrepancy in clinical
progression between the two subtypes. The comparisons of clinical char-
acteristics and imaging features for these patients at baseline were presented
in Supplementary Tables 2 and 3. Through linear mixed model (LMM), we
found distinct disease progression trajectories for the two subtypes. Speci-
fically, significant progression was exclusively observed in Subtype2 for the
following clinical and neuropsychological assessments: UPDRS-II scores
(Time: β = 1.061, p = 0.007), UPDRS-III scores (Time: β = 3.365, p < 0.001),
rigidity scores in UPDRS-III (Time: β = 1.003, p = 0.003), bradykinesia
scores in UPDRS-III (Time: β = 1.538, p = 0.003), and SCOPA-AUT scores
(Time: β = 0.959, p = 0.020). Additionally, a comparison between the two
subtypes revealed that Subtype2 exhibited a trend of a higher rate of change
in bradykinesia scores in UPDRS-III (Subtype × Time: β = 1.572, uncor-
rected p = 0.042) compared to Subtype1. Conversely, Subtype1 exhibited a
trend of a faster decline in AVLT long-delayed recall compared to Subtype2
(Subtype × Time: β = 1.363, uncorrected p = 0.030). The difference in pro-
gression between the two subtypes regarding clinical and neuropsycholo-
gical assessmentsweredemonstrated inTable 3 andFig. 3.After additionally

Table 2 | Demographics and clinical characteristics of
Parkinson’s disease patients in two subtypes

Subtype1 Subtype2
Variable (n = 72) (n = 107) p value Adj.p

Demographics

Age, years 63.86 ± 7.44 51.99 ± 9.59 <0.001 /

Sex, male 32 (44.44%) 68 (63.55%) <0.001 /

Education, years 6.00 (6.80) 9.00 (5.00) <0.001 /

Disease
duration, years

1.82 (1.59) 1.64 (2.28) 0.365 /

HY stage 2.12 ± 0.49 1.86 ± 0.50 0.535 /

Motor symptoms

UPDRS-II 9.08 ± 4.93 6.05 ± 4.10 0.009 0.047

UPDRS-III 25.39 ± 12.88 16.93 ± 9.61 0.012 0.047

Tremor scores 4.43 ± 3.90 3.58 ± 2.89 0.382 0.412

Rigidity scores 6.32 ± 5.61 4.30 ± 3.40 0.041 0.075

Bradykinesia
scores

12.10 ± 7.81 7.80 ± 5.81 0.019 0.047

Cognitive assessment

MMSE scores 24.71 ± 4.17 27.43 ± 3.48 0.020 0.047

AVLT long
delayed recall

3.33 ± 2.80 4.73 ± 2.78 0.265 0.309

SFT-Animal
Naming

12.69 ± 4.10 15.68 ± 5.01 0.194 0.247

DST (total) 10.79 ± 2.29 11.97 ± 2.86 0.061 0.095

SDMT (correct) 25.55 ± 12.64 39.59 ± 13.76 0.003 0.023

Other Non-Motor symptoms

GDS 3.42 ± 3.19 2.22 ± 2.66 0.013 0.047

RBDQ-HK (total) 19.08 ± 15.47 13.88 ± 12.26 0.847 0.847

PDQ-39 21.58 ± 19.76 13.01 ± 14.52 0.078 0.110

SCOPA-AUT 9.93 ± 7.08 5.61 ± 4.98 0.043 0.075

All comparisons of clinical characteristics above were adjusted for age, sex, and education. FDR
correctionwas applied formultiple comparisons. Significantp values are shown inbold.Continuous
variables are presented as mean ± standard deviation or median (interquartile range); categorical
data are presented as number (percentage).
Adj.p p-value after FDR corrected, HY Hoehn–Yahr, UPDRS unified Parkinson’s disease rating
scale,MMSEmini-mental state examination, AVLT auditory verbal learning test, SFT semantic
fluency test,DSTdigit span test,SDMT symbol digitmodalities test,GDSgeriatric depression scale,
RBDQ-HK rapid eye movement sleep behavior disorder questionnaire (Chinese University of Hong
Kong version), PDQ-39 Parkinson’s disease questionnaire-39 items, SCOPA-AUT scale for
outcomes in PD for autonomic symptoms.
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Fig. 2 | The differences of clinical features between two PD subtypes at baseline.
The differential clinical features between the two subtypes are represented using a
raincloud plot. In this plot, box plots with center line indicating median, bounds of
boxes showing upper and lower quartile, whiskers illustrating 1.5*interquartile
range, and the position of the dots and the width of the violin representing the

distribution of raw data. All comparisons above were adjusted for age, sex, and
education. The p values were FDR corrected. UPDRS Unified Parkinson’s disease
rating scale, MMSE mini-mental state examination, SDMT symbol digit modalities
test, GDS geriatric depression scale. *p < 0.05.

Table 3 | Linear mixed model analysis results in two subtypes

Subtype1 Subtype2 Subtype*Time

Variable β1 p1 Adj.p1 β2 p2 Adj.p2 β3 p3 Adj.p3

Motor symptoms

UPDRS-II 1.528 0.075 0.377 1.061 0.002 0.007 0.663 0.258 0.718

UPDRS-III 2.276 0.200 0.377 3.365 <0.001 <0.001 2.131 0.098 0.547

Tremor scores −0.118 0.868 0.868 0.367 0.104 0.243 0.202 0.693 0.816

Rigidity scores 1.001 0.051 0.377 1.003 <0.001 0.003 0.196 0.702 0.816

Bradykinesia scores 0.606 0.549 0.613 1.538 <0.001 0.003 1.572 0.042 0.294

Cognitive assessment

MMSE scores 0.379 0.491 0.613 0.079 0.771 0.830 −0.070 0.818 0.818

AVLT long delayed recall −0.988 0.157 0.377 0.282 0.188 0.332 1.363 0.030 0.294

SFT-Animal Naming −0.439 0.440 0.613 −0.404 0.216 0.332 0.177 0.758 0.816

DST (total) −0.816 0.095 0.377 −0.002 0.992 0.992 0.333 0.401 0.718

SDMT (correct) / / / −0.734 0.237 0.332 −1.100 0.410 0.718

Other Non-Motor symptoms

GDS −0.203 0.420 0.613 −0.239 0.190 0.332 −0.130 0.685 0.816

RBDQ (total) 2.900 0.203 0.377 0.725 0.437 0.556 −1.992 0.342 0.718

PDQ-39 2.227 0.566 0.613 0.664 0.567 0.662 1.450 0.531 0.816

SCOPA-AUT 1.143 0.142 0.377 0.959 0.007 0.020 −0.193 0.141 0.494

Significantp valuesare shown inbold.All comparisonsof clinical progressionsabovewereadjusted for age at baseline, sex, andeducation. FDRcorrectionwasapplied formultiple comparisons.Due to two
missing data points from multiple follow-up visits, the number of SDMT observations (n = 16) in Subtype1 didn’t exceed the number of random effects (n = 16).
UPDRSunifiedParkinson’sdisease ratingscale,MMSEmini-mental stateexamination,AVLTauditory verbal learning test,SFTsemanticfluency test,DSTdigit span test,SDMT symbol digitmodalities test,
GDS geriatric depression scale, RBDQ-HK rapid eye movement sleep behavior disorder questionnaire (Chinese University of Hong Kong version), PDQ-39 Parkinson’s disease questionnaire-39 items,
SCOPA-AUT scale for outcomes in PD for autonomic symptoms. β1, p1 The time effect of variable in Subtype1, β2, p2 The time effect of variable in Subtype2, β3, p3 The interaction effect of subtype and
time. Adj.p p-value after FDR correct.
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considering the influence of baseline conditions, significant progressionwas
still observed inSubtype2 forUPDRS-III scores (Time:β = 3.358,p = 0.023),
rigidity scores in UPDRS-III (Time: β = 0.961, p = 0.023), bradykinesia
scores in UPDRS-III (Time: β = 1.424, p = 0.039), and SCOPA-AUT scores
(Time: β = 1.137, p = 0.023) was still observed in Subtype2. Detailed infor-
mation was provided in Supplementary Table 4.

Reproducibility of PD subtypes
Weassessed the reproducibility of the subtypes in an independent validation
dataset including 82 patients (age: 59.68 ± 8.59 years; sex: 42males, 51.22%).
Employing the same methodology, each patient was categorized into a
subtype, enabling the calculation of the average z-score of each imaging
feature across individuals within the same subtype, serving as a repre-
sentation of subtype-specific degeneration signature. As a result, we iden-
tified two PD subtypes in the validation dataset and observed a high
consistency of z-scores between the corresponding subtypes in both the
discovery andvalidationdatasets (r = 0.830,p < 0.001 inSubtype1; r = 0.739,
p < 0.001 in Subtype2) (Supplementary Fig. 2).

Correlation analysis
Twenty-six imaging features were chosen to examine their correlation with
clinical features across the entire cohort, Subtype1, and Subtype2. Addi-
tional details on the imaging feature selection process were provided in
Supplementary Table 5.

In Subtype1, lower FA values in the right cingulum (hippocampus)
(r =−0.389, p < 0.001) and the fornix (cres)/stria terminalis (r =−0.415,
p < 0.001) were significantly correlated with higher UPDRS-III scores at
baseline (Fig. 4a). However, within each subtype, we did not observe any
correlation between imaging features and clinical progression rates. But in

the entire cohort, higherFAvalues in the genuof corpus callosum(r = 0.514,
p < 0.001) and the left posterior thalamic radiation (r = 0.470, p < 0.001)
were significantly correlatedwith a greater increase in bradykinesia scores of
UPDRS-III. Additionally, lower FA values in the left corticospinal tract
(r = 0.554, p < 0.001) was significantly correlated with a faster decline in
AVLT long-delayed recall scores (Fig. 4b). Non-significant results of the
correlation analysis were presented in Supplementary Fig. 3.

Lateralization analysis
An analysis of brain changes associated with the laterality of motor symp-
toms was presented below. Among the 179 PD patients, 166 showed
lateralization of motor symptoms, with 71 exhibiting higher UPDRS-III
scores on the left side and 95on the right side.Among the 126 brain imaging
features, there were 60 paired comparisons. None of the brain imaging
features showed a significant difference associated with the laterality of
motor symptoms (p-range: 0.080 to 0.976). More details were provided in
Supplementary Table 6.

Alternative analysis using mean diffusivity (MD)
To further validate the reliability of the clustering results using FA as the
primary WM metric, we conducted clustering analysis using MD as an
alternative. The clustering results still identified two subtypes (Subtype1:
n = 59; Subtype2: n = 120), exhibiting similar brain imaging features,
demographic characteristics, and clinical assessments as those observed
with FA. Detailed results were provided in Supplementary Tables 7 and 8.

Analysis of the suboptimal clustering solution
To explore potential insights from other clustering solutions, we conducted
an analysis of the suboptimal clustering solution. The suboptimal solution

Fig. 3 | The differences of clinical progression between two PD subtypes. The red/
blue dots and connected lines indicate the changes of variables during follow-up at
the subject level for Subtype1/Subtype2. The corresponding bold lines represent the
changes at the group level for each subtype. All comparisons were adjusted for age at
baseline, sex, and education. The p values were FDR corrected. Significant p values

are shown in bold. β1, p1: The time effect of variable in Subtype1; β2, p2: The time
effect of variable in Subtype2; β3, p3: The interaction effect of subtype and time.
UPDRS unified Parkinson’s disease rating scale, AVLT auditory verbal learning test,
SCOPA-AUT scale for outcomes in PD for autonomic symptoms.
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Fig. 4 | Correlation between imaging and clinical features. aAssociations between
imaging features and baseline clinical characteristics in Subtype1; b Associations
between imaging features and the rates of clinical symptom progression in all PD
patients. The heatmap provides an overview of the correlation between the 26
selected imaging features and clinical indicators that show differences at baseline or
follow-up. All features included were adjusted for age, sex, and education, the

cortical thickness was further adjusted for eTIV and mean cortical thickness. The
scatter plots display results with p < 0.001. FA fractional anisotropy, UPDRS unified
Parkinson’s disease rating scale, MMSE mini-mental state examination, SDMT
symbol digit modalities test, GDS geriatric depression scale, AVLT auditory verbal
learning test, SCOPA-AUT scale for outcomes in PD for autonomic symptoms.
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identified by the ‘NbClust’ package classified early-stage PD patients into
three subtypes (Supplementary Fig. 4). Compared to the two-cluster solu-
tion, the three-cluster solution further subdivided Subtype1 (n = 72) into
Subtype1 (n = 37) and Subtype3 (n = 35), while Subtype2 remained
unchanged (n = 107). To simplify the presentation of the new clustering
results, we compared brain imaging features between Subtype1 and Sub-
type3 after incorporating the HC. Compared to HC, Subtype3 patients
exhibited more widespread (38 WM fibers) reductions in FA values
(p-range: <0.001 to 0.026) and normal subcortical iron deposition, while
Subtype1 patients showed higher iron deposition in the bilateral putamen
(left: p < 0.001; right: p = 0.002), left GP (p = 0.012), bilateral SN (p < 0.001),
and bilateral RN (p < 0.001), with relatively mild (8 WM fibers) or non-
significant WM degeneration. These findings revealed results that were
additional to those observed in the two-cluster solution, whichmay suggest
the existence of distinct degeneration sequences, especially in the original
Subtype1. More details were provided in Supplementary Table 9.

Discussion
This unsupervised data-driven study revealed different neurodegeneration
patterns in early-stage PD patients utilizing multimodal MRI information,
and identified their clinical symptoms and progression trajectories. Our
study’s findings and inferences were summarized in Fig. 5. Based on the
clustering scheme, the primary brain degeneration patterns were labeled as
“Subtype1: early-deterioration” and “Subtype2: early-compensatory”. The
early-deterioration subtype exhibited atrophy of frontotemporal cortex,
thickening of parietal lobes, widespread reduction in FA values, and
increased subcortical iron content. Theymanifested severe motor and non-
motor symptoms at baseline and demonstrated a trend of faster memory
decline longitudinally. In this subtype, lower FA values of the right hippo-
campus part of cingulum and fornix were associated with more severe
motor symptoms at baseline. The early-compensatory subtype showed
atrophy of the left rostral middle frontal gyrus, thickening of the parieto-
occipital cortex, extensively increased FA values, and normal subcortical
iron content. This subtype presented with mild symptoms at baseline but
exhibited accelerated progression in motor and autonomic nervous system

symptoms. Across the entire cohort, the higher FA values of the genu of
corpus callosum and the left posterior thalamic radiation were correlated
with the faster bradykinesia progression, while the lower FA values of the
corticospinal tract were correlated with the faster memory decline

The degeneration pattern of early-deterioration subtype was primarily
characterized by frontotemporal atrophy, widespread reduction in FA
values acrossWMtracts and elevated subcortical iron content in the left CN,
bilateral putamen, SN, and RN. The morphometry atrophy can result from
the neuron loss and dendrite degeneration19. The FA reduction indicates the
microstructural damage of WM, like axonal atrophy and myelin
degradation20, while the excessive iron deposition can increase regional
oxidative stress and injury, and facilitate a-syn aggregation17. Here, we
reported a number of impaired hub regions that may closely associate with
PD. Specifically, we identified widespread subcortical iron accumulation in
bilateral SN, RN, and putamen, which was the phenomenon previously
observed in the PD patients at late-stage21,22, indicating a high iron-related
oxidative stress in these patients. Similarly, we detected widespread struc-
tural damage in gray andwhitematter regions responsible formotor control
and spatial navigation, including the pontine crossing tract, superior long-
itudinal fasciculus, posterior corona radiata, and lingual gyrus, as well as in
areas associated with cognitive function and emotional regulation, such as
the cingulum, fornix, uncinate fasciculus, and the caudal anterior cingulate
gyrus23–25. In contrast, parietal thickening in these patients was observed.
From a functional perspective, the parietal cortex is known to play a critical
role in integrating sensory and motor functions26. We speculated this
alteration may be related to the dendrite regeneration, enhanced synaptic
plasticity, and morphometry reorganization, possibly disclosing a com-
plementarily enhanced brain function from the higher cortical areas27.
Therefore, these findings offered a new insight into the existence of
pathological heterogeneity in early-stage PD, thus a malignant brain dete-
rioration pattern was suggested in the early disease3. Consistently, under-
lying the poor intrinsic brain architecture, these patients were observedwith
worsemotor, cognitive, and emotional performanceat baseline, alongwith a
trend of faster memory decline during follow-up. It is worth noting that,
these patients were older, with a similar disease duration compared to those

Fig. 5 | Synthesis of information for the two subtypes. Subtype1 (early-dete-
rioration) was characterized by an older age of onset and significant brain degen-
eration at baseline (green box), along with more severe clinical symptoms and a
trend of faster memory decline during follow-up (red lines and dots). In contrast,

Subtype2 (early-compensatory) was characterized by a younger age of onset and
widespread compensatory brain changes at baseline (yellow box), with milder
clinical symptoms initially, but accelerated progression of both motor and non-
motor symptoms during follow-up (blue lines and dots).
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of another subtype, indicating that they had a significantly later age of
disease onset. As well established, general brain organization would get
fragilewhen the brain chronological age gets old,with a reduced capacity for
adaptation and increased susceptibility when facing pathological
conditions28,29; this may explain one of the reasons of the occurrence of
malignant brain degeneration pattern in these early PD patients. A recent
study identified a subtype characterized by predominant degeneration of
neocortical regions, which was associated with older age of onset, worse
cognitive performance, and emotional disturbances30. We identified an
early-deterioration subtype characterized by widespread WM damage
connecting these neocortical regions, accompanied with similar clinical
features. This further supports the empirically proposed subtypes based on
age of onset31. Additionally, males exhibited a higher incidence of PD in our
cohort, but a higher proportionof female patientswas observed in Subtype1.
This finding is consistent with demographic studies which reported a
delayed age of onset of PD in female patients32. In summary, these findings
supported the existence of an early-deterioration subtype characterized by
an older age of onset and an early malignant brain deterioration pattern,
accompanied by overt clinical symptoms.

The cortical alterations of early-compensatory subtype patients
were generally similar to those of another subtype, characterized by
frontal lobe atrophy and thickening of the parieto-occipital regions.
We speculated that cortical morphological change is mild and display
analogous trends in the early-stage. Here, we reported a differential
alteration pattern inWMand subcortical nuclei. Specifically, increased
FA values across multiple tracts including corticospinal tract, superior
cerebellar peduncle, and internal capsule were observed. Wen et al.33

reported increased FA values in multiple WM tracts in the early dis-
ease, with these changes diminishing as the disease progresses, which
further supported our observations. This may indicate the myelin
remodeling and axonal regeneration could serve as a compensatory
reorganization of neural circuits to counteract dopaminergic deficits,
particularly in the early stages of the disease34. Abnormal regional iron
deposition was not detected, suggesting high iron-related oxidative
stress was not the case for these patients. Considering the earlier age of
onset, this mild pattern of brain alterations may be attributable to an
initial neural adaptation driven by the better neuroplasticity35,36. These
findings were highly aligned with the mild clinical symptoms at
baseline; however, after a median of 1.75 years’ follow-up, a rapid
progression ofmotor symptoms occurred, alongwith worse autonomic
nervous system symptoms; thus a nonlinear progression with later
acceleration was suggested. Consistently, some researchers had pro-
posed a nonlinear progression pattern characterized by an initial
period of symptom stability, followed by an accelerated progression in
the later-stage37–39. Besides, higher FA values in the genu of the corpus
callosum and the left posterior thalamic radiation were associated with
faster progression of bradykinesia in the entire cohort. This may sug-
gest that the enhanced integrity of WM connecting the bilateral pre-
frontal motor cortices and those responsible for integrating sensory
information could be a potential compensatorymechanism in the early
motor dysfunction40,41. Even though our findings had explained the
initial symptom stability with mild brain degeneration in these
patients, the source of the later acceleration of symptoms are largely
unknown. Future researches are warranted to clarify this important
clinical phenomenon. In summary, here we also suggested an early-
compensatory subtype that were with an earlier age of onset and mild
brain degeneration at baseline, but with significantly accelerated
clinical progression during follow-up.

This study had several limitations. First, this study merely included
single-center data and a relatively small sample size, with only a subset of
patients having amedian follow-upof 1.58 (interquartile range: 1.17 to 2.33)
years. Since PD is a progressive neurodegenerative disease with high het-
erogeneity as this study preliminarily disclosed, future studies with larger
longitudinal sample size and longer follow-up duration are warranted to
further validate and clarify the disease trajectory. Second, even though PD

patients discontinued anti-parkinsonian medications for more than 12 h
before data acquisition, the underlying effects of drugs cannot be completely
eliminated especially for patients at re-visit.

In conclusion, two distinct early-stage brain degeneration patterns of
PD were identified using unsupervised clustering methods based on mul-
timodal MRI data. These subtypes exhibited differential clinical symptoms
and progression characteristics, supporting the existence of high disease
heterogeneity in early PD population.

Methods
Participants
This researchwas approved by theMedical Ethics Committee of the Second
AffiliatedHospital of ZhejiangUniversity School ofMedicine and informed
consent forms were obtained from all participants. We prospectively
recruited 376 subjects: the discovery dataset included 179 early-stage PD
patients (disease duration ≤5 years)42 in the study from our institution from
February 2019 toNovember 2023, and 115HC from the social community.
In addition, a validation dataset consisting of 82 PD patients was enrolled
fromAugust 2014 to January 2019at the same institute. The diagnosis of PD
wasmade by experienced neurologists according toUKParkinson’sDisease
Society Brain Bank criteria43 before 2015 and Movement Disorder Society
diagnostic criteria44 thereafter. Exclusion criteria for all subjects were as
follows: (i) a history of stroke; (ii) a history of head injury; (iii) severe WM
hyperintensity ormassive cerebral infarction; (iv) obvious cerebral atrophy;
(v) Left-handed or double-handed; (vi) severe metal dentures; (vii) motion
artifact of imagingdata; (viii) incompleteT1, diffusion tensor imaging (DTI)
or enhanced susceptibility weighted angiography (ESWAN) data. Among
these included patients, 47 of them had attended clinical follow-up visits,
with a median follow-up duration of 1.58 years. The study flowchart was
shown in Fig. 6.

Clinical and neuropsychological assessments
A battery of clinical questionnaire assessments was obtained from 179 PD
patients during the “OFF state” (a period at least 12 h after withholding PD
medications). Each patient was assessed using theUPDRS. The subscores of
tremor, rigidity, and bradykinesia symptoms were calculated: subscore for
tremor was obtained by adding the UPDRS-III items 20–21; subscore for
rigidity was equal to the UPDRS-III item 22; subscore for bradykinesia was
obtained by adding the UPDRS-III items 23–26 and 31. Cognitive assess-
ments included MMSE for global cognition, Chinese Version of the AVLT
for verbal learning and memory, SFT for executive function, DST, and
SDMT for attention and working memory45,46. Depressive mood was
measured usingGDS, REM sleep behavior wasmeasured using RBDQ-HK,
quality of daily living was measured using PDQ-39 and the autonomic
nervous function was calculated using SCOPA-AUT. The same evaluation
instruments were used at all follow-up visits for the PD patients.

Image acquisition and analysis
All participants were scanned on a GE Discovery MR750 3.0 T MRI scan-
ner. Earplugs and foam pads were used to reduce noise and head
motion, respectively. High-resolution 3D T1-weighted imaging, DTI,
and ESWAN were performed. T1WI were acquired using a fast-spoiled
gradient recalled sequence: repetition time (TR) = 7.336ms; echo time
(TE) = 3.036ms; inversion time = 450ms; flip angle = 11°; field of view
(FOV) = 260 × 260mm2; matrix = 256 × 256; slice thickness = 1.2mm; 196
continuous sagittal slices. DTI imageswere acquired using a spin echo-echo
planar imaging sequence: TR = 8000ms; TE = 80ms; flip angle = 90°;
FOV = 256 × 256mm2; matrix = 128 × 128; slice thickness = 2mm; slice
gap = 0mm; number of slices = 67 (axial). Diffusion images were acquired
from 30 gradient directions (b = 1000 s/mm2), and included five acquisi-
tions without diffusion weighting (b = 0). ESWAN images were acquired
using gradient recalled echo sequence: TR = 33.7ms; first echo time/spa-
cing/eighth echo time = 4.556ms/3.648ms/30.092ms; flip angle = 20°;
FOV = 240 × 240mm2; matrix = 416 × 384; slice thickness = 2mm; slice
gap = 0mm; 64 continuous axial slices.
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Image processing
T1 structural MRI processing: all parcellations were performed with
fully automated segmentation software FreeSurfer (version 6.0.0, http://
surfer.nmr.mgh.harvard.edu/) using “recon-all” pipeline which inclu-
ded an automated procedure of motion correction, skull stripping,
spatial normalization, registration, cortical parcellation, and volumetric
segmentation. To ensure quality control, we visually inspected the seg-
mentations of 68 cortical regions based on the Desikan-Killiany atlas47.
The cortical thickness features were defined and extracted according to
the Desikan-Killiany atlas, which contained 34 cortical ROIs in each
hemisphere. Estimated total intracranial volume (eTIV) was calculated
simultaneously.

Diffusion MRI processing: DTI data were processed using the FMRIB
Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl). The preprocessing

procedures included the following steps: (1) correction of head movement
and eddy-current-induced handling motion with the “eddy” tool; (2) skulls
were stripped from the DTI data for each participant with the “BET” tool;
and (3) fitting of FA with the “DTIFIT” tool. Tract-based spatial statistics
(TBSS)were applied for skeletonizedWManalysis tomitigate the impact of
local misregistration48. The specific steps of TBSS were as follows: (1) DTI
metric maps from all subjects were nonlinearly registered to an FMRIB58
FA template and subsequently projected to the mean FA images. (2) A
threshold of 0.2 was applied to the mean FA images to generate a mean FA
skeleton. (3) The registered FA data from all subjects were then projected to
the mean FA skeleton. (4) Nonlinear warping and projection were also
applied to the non-FA data, such as MD. The JHU atlas, with its 48 WM
ROIs,was used for furtherWMmetrics extraction and analysis. FA serves as
an indicator of cellular structures within WM fiber tracts, including axon

Fig. 6 | Study flowchart of data processing and analysis. (Step1) A total of 376
individuals (294 in discovery dataset and 82 in validation dataset) were enrolled in
this study. Imaging data from three modalities and both motor and non-motor
clinical features at baseline and follow-up were collected; (Step2) All imaging fea-
tures were first corrected for covariates using linear regression, then subjected to
dimensionality reduction through principal component analysis for hierarchical
clustering analysis, thereby obtaining imaging subtypes of PD; (Step3) The

differences of clinical/imaging variables, and longitudinal progression were assessed
between subtypes; the correlations between imaging features and the clinical severity
were analyzed. MRI magnetic resonance imaging, QSM quantitative susceptibility
mapping, REM rapid eye movement, FA fractional anisotropy, PCA principal
component analysis, UPDRS unified Parkinson’s disease rating scale, MMSE mini-
mental state examination.
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diameter and fiber directionality, MD is considered as an indicator of the
average magnitude of water diffusion49.

QSMdataprocessing: SusceptibilityTensor ImagingSuiteV3.0 software
package (https://people.eecs.berkeley.edu/~chunlei.liu/software.html) was
used to calculate the susceptibilitymaps from the phase images50. Specifically,
thephase imageswereunwrappedusing theLaplacian approach,which relies
solely on the sine and cosine functions of the phase angle51. The background
phase was eliminated using the V-SHARP method with a spherical kernel
radius rising from 0.6mm at the periphery of the brain to 25mm toward the
center of the brain51. QSM images were calculated using the streaking artifact
reduction for QSM (STAR-QSM) method52. The mean signal from the
individual brain was used as a susceptibility reference.

To automatically extract subcortical nuclei, we used a deep
learning-based end-to-end tool (DeepQSMSeg)22,53, which was devel-
oped by setting the ground truth as the previous manually and semi-
automatically segmented data21,54, to segment bilateral CN, putamen,
globus pallidus (GP), SN, and RN. All the automatically segmented data
were checked and manually revised by an experienced neuroradiologist
using the ITK-SNAP (www.itksnap.org). Then, the regional magnetic
susceptibility of the bilateral CN, putamen, GP, SN, and RN were
extracted.

Clustering analysis
As described above, we acquired a dataset consisting of 126 imaging
features, encompassing individual cortical thickness from 68 cortical
regions defined in the Desikan-Killiany atlas, mean FA values from the
skeletons of 48 WM tracts defined in the JHU atlas, and the magnetic
susceptibility of 10 segmented subcortical nuclei. To further validate the
reliability of the clustering results using FA as the primary WM metric,
we also performed an extended analysis using MD as an alternative
metric to FA. All the following clustering analyses were performed
in R 4.3.1.

To eliminate the influenceof covariates such as age, sex, and education,
we used a linear regression model to examine the relationship between 126
imaging features and the covariates. Firstly, we identified 115 HC as the
robust normative control group. For each imaging feature, we regressed
values on age, sex, and education to get the regression weights (β values).
Then,weutilized theseβ valuesderived fromthenormative control group to
calculate the predicted value for each imaging feature for all participants.
While assessing regional cortical thickness, eTIV and mean cortical thick-
ness were additionally considered as covariates.

Subsequently, we conducted dimensionless processing through
standardization. To further exclude undesired background noise and
improve the clustering performance, PCA was used to extract a lower
dimensional component space of the selected features. Specifically, we
took the variance explainability >1% as the selection criterion for cal-
culated PC55.

In hierarchical clustering analysis, the Euclidean distance between
every pair of patients was calculated. Then, we used Ward’s clustering
linkage method to combine pairs of clusters at each step while minimizing
the sum of square errors from the cluster mean12,56. Next, we used the
‘NbClust’ package to determine the best number of clusters in our analysis.
To explore potential insights from other clustering solutions, we conducted
an analysis of the suboptimal clustering solution.

Reproducibility of PD subtypes
In order to validate the reproducibility, we used our validation dataset
consisting of 82 PD patients. Following the same methodology for image
processing and clustering analysis described before, we extracted 126 ima-
ging features for each patient and classify PD patients into different sub-
types. Subsequently, we separately calculated the average z-score of each
imaging feature for the discovery and validation datasets after combining
each with HC. Spearman correlation coefficient was used as a quantitative
coefficient to evaluate the consistency of z-scores within corresponding
subtypes across the discovery and validation datasets57.

Other statistical analyses
Statistical analyses comparing demographic, clinical, neuropsychological,
and imaging variables at baseline betweenPD subtypes andHCparticipants
were conducted using IBM SPSS 26.0 statistical software forWindows. The
Shapiro-Wilk test was used to assess the normality of the distribution of
continuous data. In comparing demographic information between PD and
HC, or between the two PD subtypes, the Student’s t-test for independent
samples was used for variables that followed a normal distribution;
Mann–WhitneyU testwas employed for variables that did not conform to a
normal distribution; and the Chi-square test was used for the assessment of
sex distribution difference. Subsequently, general linear model (GLM) was
employed to compare the other clinical, neuropsychological, and imaging
variables. The comparisons of clinical and neuropsychological variables, as
well as imaging variables, were adjusted for age, sex, and education. For
cortical thickness comparisons, additional corrections were made for eTIV
and mean cortical thickness. The results except for demographic variables
were corrected for multiple comparisons using FDR correction, and the
significance level was set at p < 0.05. The same statistical methods were
applied to the sub-sample of patients with follow-up data, aiming to test
whether these information of this sub-sample could adequately represent
the entire cohort.

To evaluate the differential progressions of PD subtypes, a LMM was
used through the ‘lme4’ package in R 4.3.1. The following formulas were
applied to the models:

Model 1: lmer (variable ~ Subtype*Time+ age_bl+ sex+ education+
(1 + Time | Subject_ID))

Model 2: lmer (variable ~ Time + age_bl + sex + education+
(1 + Time | Subject_ID))

Subtype*Time represented the interaction between subtype and time,
while age_bl meant age at baseline. Model 1 was designed to calculate the
interaction effect between subtype and time for each clinical and neu-
ropsychological variable.Meanwhile,Model 2was devised to assess the time
effects within each subtype separately, and to extract the progression rates
for all individuals within each subtype’s model for further correlation
analysis. To further examine the influence of baseline values of the variables,
we included themas covariates and applied the samemethod for calculating
longitudinal progression. The results were corrected for multiple compar-
isons using FDR correction, statistical significance was determined
at p < 0.05.

To explore the clinical significance of imaging features, Spearman
correlation analysis was conducted between the adjusted brain metrics and
clinical assessments using a linear regressionmodel, as described previously
in the “Clustering analysis” section. Tomitigate any redundant features, we
employed PD subtypes as outcomes and subjected all imaging features
showing disparities after comparison using GLM to Lasso regression with
1000 random seeds. Then, we retained the top n features (n = the average
number of retained features per regression iteration) as imaging features of
interest. Lasso regression was performed using the ‘glmnet’ package in R
4.3.1. Subsequently, we selected clinical features that differed at baseline and
thosewithdifferent interactionor time effect between subtypes as features of
interest for correlation analysis with the aforementioned imaging features.
Statistical significance was determined at p < 0.001, to reduce the false-
positive rate58.

To investigate whether the brain degeneration in our study was asso-
ciated with the lateralization of motor symptoms, we calculatedUPDRS-III
scores for the left and right sides separately. Based on the laterality of motor
symptoms, we classified the brain imaging features of patients into the
“Contralateral side of the less affected limb” and “Contralateral side of the
more affected limb”. Paired t-tests were conducted using IBM SPSS 26.0 to
compare thebrain imagingdifferencesbetween the two sides, and the results
of multiple comparisons were corrected using FDR correction.

Data availability
Thedata usedand/or analyzed during the current study is available from the
corresponding author on reasonable request.
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